Real algebraic morphisms and Del Pezzo surfaces of degree 2

Abstract : Let X and Y be affine nonsingular real algebraic varieties. A general problem in Real Algebraic Geometry is to try to decide when a smooth map f : X -> Y can be approximated by regular maps in the space of smooth mappings from X to Y, equipped with the compact-open topology. In this paper we give a complete solution to this problem when the target space is the usual 2-dimensional sphere and the source space is a geometrically rational real algebraic surface. The approximation result for real algebraic surfaces rational over R is due to J. Bochnak and W. Kucharz. Here we give a detailed description of the more interesting case, namely a real Del Pezzo surfaces of degree 2.
Type de document :
Article dans une revue
Journal of Algebraic Geometry, 2004, 13, pp.269-285
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00001368
Contributeur : Frédéric Mangolte <>
Soumis le : samedi 27 mars 2004 - 11:56:49
Dernière modification le : mercredi 28 mars 2018 - 14:38:34
Document(s) archivé(s) le : lundi 29 mars 2010 - 17:36:37

Fichier

Identifiants

  • HAL Id : hal-00001368, version 1

Collections

Citation

Frédéric Mangolte, Nuria Joglar-Prieto. Real algebraic morphisms and Del Pezzo surfaces of degree 2. Journal of Algebraic Geometry, 2004, 13, pp.269-285. 〈hal-00001368〉

Partager

Métriques

Consultations de la notice

170

Téléchargements de fichiers

159