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Strongly Correlated Electron Materials:
Dynamical Mean-Field Theory
and Electronic Structure

Antoine Georges
Centre de Physique Théorique, Ecole Polytechnique, 91aRk8deau Cedex, France

Abstract. These are introductory lectures to some aspects of the gshgsistrongly correlated
electron systems. | first explain the main reasons for stroorgelations in several classes of
materials. The basic principles of dynamical mean-fieldth€DMFT) are then briefly reviewed.

| emphasize the formal analogies with classical mean-fleddty and density functional theory,
through the construction of free-energy functionals of @lmbservable. | review the application
of DMFT to the Mott transition, and compare to recent spesttopy and transport experiments.
The key role of the quasiparticle coherence scale, and ofiees of spectral weight between
low- and intermediate or high energies is emphasized. Atloigescale, correlated metals enter
an incoherent regime with unusual transport propertieg. fEitent combinations of DMFT with
electronic structure methods are also discussed, antrdtad by some applications to transition
metal oxides and f-electron materials.
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1. INTRODUCTION: WHY STRONG CORRELATIONS ?

1.1. Hesitant electrons: delocalised waves or localised piles ?

The physical properties of electrons in many solids can Iserd®sed, to a good ap-
proximation, by assuming an independent particle pictlings is particularly successful
when one deals with broad energy bands, associated witgevatue of the kinetic en-
ergy. In such cases, the (valence) electrons are highgrant they are delocalised over
the entire solid. The typical time spent near a specific atothe crystal lattice is very
short. In such a situation, valence electrons are well destiusing avave-like picture
in which individual wavefunctions are calculated from afeefive one-electron periodic
potential.

For some materials however, this physical picture sufiemmfsevere limitations and
may fail altogether. This happens when valence electroaadsp larger time around
a given atom in the crystal lattice, and hence have a tendem@rdslocalisation In
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such cases, electrons tend to “see each other” and theseffestatistical correlations
between the motions of individual electrons become impori&n independent particle
description will not be appropriate, particularly at shmrintermediate time scales (high
to intermediate energies). particle-like picturemay in fact be more appropriate than a
wave-like one over those time scales, involving wavefuomdilocalised around specific
atomic sites. Materials in which electronic correlatioms aignificant are generally
associated with moderate values of the bandwidth (narravd$)a The small kinetic
energy implies a longer time spent on a given atomic sitdst anplies that the ratio
of the Coulomb repulsion energy between electrons and thigahle kinetic energy
becomes larger. As a result delocalising the valence elestover the whole solid
may become less favorable energetically. In some extresescthe balance may even
become unfavorable, so that the corresponding electrdhsewmain localised. In a naive
picture, these electrons sit on the atoms to which they lgedoil refuse to move. If this
happens to all the electrons close to the Fermi level, thiel f@comes an insulator.
This insulator is difficult to understand in the wave-likadmage: it is not caused by the
absence of available one-electron states caused by destrinterference irk-space,
resulting in a band-gap, as in conventional band insulatbrs however very easy to
understand in real space (thinking of the solid as made ofishahl atoms pulled closer
to one another in order to form the crystal lattice). This hagsm was understood long
ago [1, 2] by Mott (and Peierls), and such insulators aresfloee calledViott insulators
(Sec. 4. In other cases, such as f-electron materials,l#usen localisation affects only
part of the electrons in the solid (e.g the ones correspgnidirthe f-shell), so that the
solid remains a (strongly correlated) metal.

The most interesting situation, which is also the one whithardest to handle
theoretically, is when the localised character on shoretgsoales and the itinerant
character on long time-scales coexist. In such cases, gotr@hs “hesitate” between
being itinerant and being localised. This gives rise to a lbemof physical phenomena,
and also results in several possible instabilities of teetebn gas which often compete,
with very small energy differences between them. In ordendndle such situations
theoretically, it is necessary to think bothkaspace and in real space, to handle both
the particle-like and the wave-like character of the etatdrand, importantly, to be
able to describe physical phenomenaimtermediate energy scaleBor example, one
needs to explain how long-lived (wave-like) quasiparsateay eventually emerge at low
energy/temperature in a strongly correlated metal whileigther energy/temperature,
only incoherent (particle-like) excitations are visibleis the opinion of the author
that, in many cases, understanding these intermediatgyeseales and the associated
coherent/incoherent crossover is the key to the intrigyghgsics often observed in
correlated metals. In these lectures, we discuss a teahnilqe dynamical mean-field
theory (DMFT), which is able to (at least partially) handiéstproblem. This technique
has led to significant progress in our understanding of gtaoirelation physics, and
allows for a quantitative description of many correlatederals[3, 4]. Extensions and
generalisations of this technique are currently being ldgesl in order to handle the
most difficult/mysterious situations which cannot be tarbgdhe simplest version of
DMFT.
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1.2. Bare energy scales

Localised orbitals and narrow bands.In practice, strongly correlated materials are
generally associated with partially filled d- or f- shellerte, the suspects are materials
involving:

« Transition metal elements (particularly from the 3d-sHigin Ti to Cu, and to a
lesser extent 4d from Zr to Ag).

» Rare earth (4f from Ce to Yb) or actinide elements (5f from @ hw)

To this list, one should also add molecular (organic) cotmhscwith large unit cell
volumes in which the overlap between molecular orbitalseskv

What is so special about d- and f- orbitals (particularly 3d @f) ? Consider the
atomic wavefunctions of the 3d shell in a 3d transition metaim (e.g Cu). There
are no atomic wavefunctions with the same value 2 of the angular momentum
guantum number, but lower principal quantum numbéhann = 3 (since one must
havel < n—1). Hence, the 3d wavefunctions are orthogonal to alihtkel andn =2
orbitals just because of their angular dependence, andathial ppart needs not have
nodes or extend far away from the nucleus. As a result, therBidal wave functions
are confined more closely to the nucleus than for s or p stdtesmparable energy.
The same argument applies to the 4f shell in rare earthssdt iahplies that the 4d
wavefunctions in the 4d transition metals or the 5f ones itnaes will be more
extended (and hence that these materials are expectegtaylisn the whole, weaker
correlation effects than 3d transition metals, or the raréhe respectively).

Oversimplified as it may be, these qualitative argumentgadtitell us that a key
energy scale in the problem is the degree of overlap betwdstals on neighbouring
atomic sites. This will control the bandwidth and the ordemagnitude of the kinetic
energy. A simple estimate of this overlap is the matrix eleine

LL * HZDZ /
tRRY N/erL(r_R>ﬂXL’(r_R> 1)

In the solid, the wavefunctiog, (r — R) should be thought of as a Wannier-like wave
function centered on atomic site. In narrow band systems, typical values of the
bandwith are a few electron-volts.

Coulomb repulsion and the Hubbard U Another key parameter is the typical
strength of the Coulomb repulsion between electrons gittinthe most localized or-
bitals. The biggest repulsion is associated with electvaitis opposite spins occupying
the same orbital: this is the Hubbard repulsion which we climate as:

U ~ [ drdr’|x.(r = R)PUS(r —r') Ix (r' =R @

In this expressionJs is the interaction between electransluding screening effectsy
other electrons in the solid. Screening is a very large effewe were to estimate (2)
with the unscreened Coulomb interactiorfr —r’) = €?/|r —r’|, we would typically
obtain values in the range of tens of electron-volts. Inktélae screened value of
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in correlated materials is typically a few electron-volt$his can be comparable to
the kinetic energy for narrow bandwiths, hence the compatitetween localised and
itinerant aspects. Naturally, other matrix elements (eetyvben different orbitals, or
between different sites) are important for a realistic dpsion of materials (see the last
section of these lectures).

In fact, a precise description of screening in solids is headifficult problem. An
important point is, again, that this issue cruciallgpends on energy scalAt very
low energy, one should observe the fully screened valueradroa few eV'’s, while
at high energies (say, above the plasmon energy in a metalsloould observe the
unscreened value, tens of eV'’s. Indeed, the screenedieffésteractionW(r,r’; w)
as estimated e.g from the RPA approximation, is a strongtiomof frequency (see
e.g Ref. [5, 6] for an ab-initio GW treatment in the case ofKgi¢. As a result, using
an energy-independent parametrization of the on-siteixna&#ments of the Coulomb
interaction such as (2) can only be appropriate for a desmnipestricted to low- enough
energies [6]. The Hubbard interaction can only be given aipeemeaning in a solid,
over a large enery range, if it is made energy-dependenall abme back to this issue
in the very last section of these lectures (Sec. 5.5).

The simplest model hamiltonianFrom this discussion, it should be clear that the
simplest model in which strong correlation physics can lseulsed is that of a lattice
of single-level “atoms”, or equivalently of a single tigbinding band (associated with
Wannier orbitals centered on the sites of the crystal E)ticetaining only the on-site
interaction term between electrons with opposite spins:

H=- Y trrCReCrio + Eog Nrg + U ;nmnm (3)
RR’,o o

The kinetic energy term is diagonalized in a single-paetluhsis of Bloch’s wavefunc-
tions:
HO = ;EkC;aCka ; &k = Z [F=Y=Y; elk'(RiR) (4)
o R

with e.g for nearest-neighbour hopping on the simple cudtiecke in d-dimensions:
d
&= —2t Z cogkya) (5)
u=1

In the absence of hopping, we have, at each site, a singleiaiexel and hence
four possible quantum state®),| 7),| |) and| T]) with energies Q&y andU + 2¢p,
respectively.

Eq. (3) is the famous Hubbard model [7, 8, 9]. It plays in theddfithe same role than
that played by the Ising model in statistical mechanicsbadatory for testing physical
ideas, and theoretical methods alike. Simplified as it mayahd despite the fact that
it already has a 40-year old history, we are far from havingla@ed all the physical
phenomena contained in this model, let alone of being abileli@bly calculate with it
in all parameter ranges !
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1.3. Examples of strongly correlated materials

In this section, | give a few examples of strongly correlateaterials. The discus-
sion emphasizes a few key points but is otherwise very bfieére are many useful
references related to this section, e.g [10, 11, 2, 12, 13].

1.3.1. Transition metals

In 3d transition metals, the 4s orbitals have lower energy the 3d and are therefore
filled first. The 4s orbitals extend much further from the eud, and thus overlap
strongly. This holds the atoms sulfficiently far apart so thatd- orbitals have amall
direct overlap Nevertheless, d-orbitals extend much further from thdeuscthan the
“core” electrons (corresponding to shells which are deepnargy below the Fermi
level). As a result, throughout the 3d series of transiti@tals (and even more so in the
4d series), d-electrons do have an itinerant charactangnse to quasiparticle bands.
That this is the case is already clear from a very basic ptppéthe material, namely
how the equilibrium unit- cell volume depends on the elenzanbne moves along the
3d series (Fig. 1). The unit-cell volume has a very chargtier roughly parabolic,
dependence. A simple model of a narrow band being graduliéig fintroduced long
ago by Friedel [14] accounts for this parabolic dependesee élso [15, 16]). Because
the states at the bottom of the band are bonding-like whiesthtes at the top of the
band are anti-bonding like, the binding energy is maximat(hence the equilibrium
volume is minimal) for a half-filled shell. Instead, if theetectrons were localised we
would expect little contribution of the d-shell to the colvesnergy of the solid, and the
equilibrium volume should not vary much along the series.

Screening is relatively efficient in transition metals hesmthe 3d band is not too far in
energy from the 4s band. The latter plays the dominant roteieening the Coulomb
interaction (crudely speaking, one has to consider thevatig charge transfer process
between two neighbouring atomsd™s+ 3d"4s — 3d"14s? + 3d™*1, see e.g [17]
for further discussion). For all these reasons (the bandbeotg extremely narrow,
screening being efficient), electron correlations do hawgartant physical effects for
3d transition metals, but not extreme ones like localisatMagnetism of these metals
below the Curie temperature, but also the existence of fhiicig local moments in the
paramagnetic phase are exemples of such correlationsfi&mnd structure calculations
based on DFT-LDA methods overestimate the width of the oecug-band (by about
30% in the case of nickel). Some features observed in specpy experiments (such
as the (in)famous 6 eV satellite in nickel) are also sigregtwf correlation effects, and
are not reproduced by standard electronic structure edlounk.
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FIGURE 1. Experimental Wigner-Seitz Radius of Actinides, Lanthasidand 5d Transition Metals.
The equilibrium volume of the primitive unit cell is given b= 47TR§VS/3. Elements that lie on top of
each other have the same number of valence electrons. Timaealf the transition metals has a roughly
parabolic shape, indicating delocalised 5d electrons. idiemes of the lanthanides remain roughly
constant, indicating localised 4f electrons. The volumiethe light actinides decrease with increasing
atomic number, whereas the volumes of the late actinideavashsimilarly to that of the lanthanides.
From Ref. [16]

1.3.2. Transition metal oxides

In transition metal compounds (e.g oxides or chalcogepjdie direct overlap be-
tween d-orbitals is generally so small that d-electronsardy move through hybridisa-
tion with the ligand atoms (e.g oxygen 2p-bands). For exatiplthe cubic perovskite
structure shown on Fig. 2, each transition-metal atom i€dged” at the center of an
octahedron made of six oxygen atoms. Hybridisation leadkédormation of bond-
ing and antibonding orbitals. An important energy scaléhescharge-transfer energy
A = g4 — £p, i.e the energy difference between the average positioheobkygen and
transition metal bands. Whénis large as compared to the overlap integyalthe bond-
ing orbitals have mainly oxygen character and the antibumdnes mainly transition-
metal character. In this case, the effective metal- to- hitpping can be estimated as
toff ~ tgd/A, and is therefore quite small.

The efficiency of screening in transition-metal oxides aejsecrucially on the relative
position of the 4s and 3d band. For 3d transition metal marexiMO with M to the
right of Vanadium, the 4s level is much higher in energy thentBus leading to poor
screening and large valuesf This, in addition to the small bandwidth and relatively
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FIGURE 2. The cubic perovskite structure, e.g of the compound SrVDansition-metal atoms (V) -
small grey spheres- are at the center of oxygen octahediagpheres). Sr atoms are the larger spheres
in-between planes. From Ref. [18].

large A, leads to dramatic correlation effects, turning the sysietim a Mott insulator
(or rather, a charge- transfer insulator, see below), itegfithe incomplete filling of
the d-band. The Mott phenomenon plays a key role in the payitransition- metal
oxides, as discussed in detail later in these lectures @eed&nd Fig. 6).

Crystal field splitting. The 5-fold (10-fold with spin) degeneracy of the d- orbitals
in the atom is lifted in the solid, due to the influence of thectic field created
by neighbouring atoms, i.e the ligand oxygen atoms in tteomsimetal oxides. For a
transition metal ion in an octahedral environment (as in Ejgthis results in a three-fold
group of statest{y) which is lower in energy and a doubleg) higher in energy. Indeed,
the dyy, dy, dx orbitals forming the,y multiplet do not point towards the ligand atoms,
in contrast to the states in tieg doublet (l,2_y2, d32_,2). The latter therefore lead to a
higher cost in Coulomb repulsion energy. For a crystal wétfgxt cubic symmetry, the
tog andeyg multiplets remain exactly degenerate, while a lower symyneftthe crystal
lattice lifts the degeneracy further. For a tetrahedralrervnent of the transition-metal
ion, the opposite situation is found, witly higher in energy thag,. In transition metals,
the energy scale associated with crystal- field splittintyjscally much smaller than
the bandwith. This is not so in transition-metal oxides,drich these considerations
become essential. In some materials, such as e.g $Sav0 the othed? oxides studied
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in Sec. 5.3 of these lectures, the energy bands emergingfrety andey orbitals form
two groups of bands well separated in energy.

Mott- and charge-transfer insulators.There are two important considerations,
which are responsible for the different physical properbéthe “early” (i.e involving
Ti, V, Cr, ...) and “late” (Ni, Cu) transition- metal oxides:

- whether the Fermi level falls within thgy or e; multiplets,

- what is the relative position of oxygesy) and transition-metaky) levels ?

For those compounds which correspond to an octahedralosmagnt:

- In early transition-metal oxidedpq is partially filled, g5 is empty. Hence, the
hybridisation with ligand is very weak (becauisg orbitals point away from the
2p oxygen orbitals). Also, the d-orbitals are much higheemergy than the 2p
orbitals of oxygen. As a result, the charge-transfer en&rgyey — & is large, and
the bandwidth is small. The local d-d Coulomb repuldigg is a smaller scale than
A but it can be larger than the bandwidth (sd/A): this leads to Mott insulators.

- For late transition-metal oxidety is completely filled, and the Fermi level lies
within gy. As a result, hybridisation with the ligand is stronger. dlsecause of
the greater electric charge on the nuclei, the attractitergi@l is stronger and
as a result, the Fermi level moves closer to the energy of phikgand orbitals.
Hence A is a smaller scale thddyg and controls the energy cost of adding an extra
electron. When this cost becomes larger than the bandwitthlating materials
are obtained, often called “charge transfer insulator8; PI0]. The mechanism is
not qualitatively different than the Mott mechanism, bu¢ thsulating gap is set
by the scale\ rather tharJyq and separates the oxygen band from a d-band rather
than a lower and upper Hubbard bands having both d-character

The p-d model. The single-band Hubbard model is easily extended in ord&xki®
into account both transition-metal and oxygen orbitals isimple modelisation of
transition-metal oxides. The key terms to be retained: are

Hoa == 3 tpa(GoPra+h0) + &3 Mo+ £&p Y N + Udd 2 NRiMk;  (6)
RR.0 o R'g

to which one may want to add other terms, such as: CoulomltsiepgUp, andU 4 or
direct oxygen-oxygen hoppingsy.
1.3.3. f-electrons: rare earths, actinides and their coonpds

A distinctive character of the physics of rare-earth meflaisthanides) is that the 4f
electrons tend to be localised rather than itinerant (atiamtipressure). As a result, the

1 For simplicity, the hamiltonian is written in the case whemy one d-band is relevant, as e.g for
cuprates.
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f-electrons contribute contribute little to the cohesivemgy of the solid, and the unit-
cell volume depends very weakly on the filling of the 4f shElp( 1). Other electronic
orbitals do form bands which cross the Fermi level howevenck the metallic char-
acter of the lanthanides. When pressure is applied, thectfehs become increasingly
itinerant. In fact, at some critical pressure, some raréheaetals (mots notably Ce and
Pr) undergo a sharp first-order transition which is accornguhiny a discontinuous drop
of the equilibrium unit-cell volume. Cerium is a particllaremarkable case, with a
volume drop of as much as 15% and the same crystal symmetiyirifthe low-volume
(a) and high-volumey) phase. In other cases, the transition corresponds to @ehan
crystal symmetry, from a lower symmetry phase at low presswia higher symmetry
phase at high pressure. For a recent review on the voluniapsel transition of rare
earth metals, see Ref. [15].

The equilibrium volume of actinide (5f) metals display belbar which is interme-
diate between transition metals and rare earths. From tij@rfiag of the series (Th)
until Plutonium (Pu), the volume has an approximately palialdependence on the
filling of the f-shell, indicating delocalised 5f electrosom Americium onwards, the
volume has a much weaker dependence on the number of ferlectsuggesting lo-
calised behaviour. Interestingly, plutonium is right oe trerge of this delocalisation to
localisation transition. Not surprisingly then, plutomus, among all actinide metals,
the one which has the most complex phase diagram and whideaghe most diffi-
cult to describe using conventional electronic structuethods (see [16, 21] for recent
reviews). This will be discussed further in the last sectibthese lectures. This very
brief discussion of rare-earths and actinide compoundseaninto illustrate the need
for methods able to deal simultaneously with the itinerard bbcalised character of
electronic degrees of freedom.

The physics of strong electronic correlations becomes ewere apparent for f-
electron materials which are compounds involving rareéhg@r actinide) ions and other
atoms, such as e.g CeAlA common aspect of such compounds is the formation of
quasiparticle bands with extremely large effective magaad hence large values of
the low-temperature specific heat coefficignt C/T), up to a thousand time the bare
electron mass ! Hence the term “heavy-fermion” given toétmampounds: for reviews,
see e.g [22, 23]. The origin of these large effective massttgeiweak hybridization be-
tween the very localised f-orbitals and the rather broadiootion band associated with
the metallic ion. At high temperature/energy, the f-el@sthave localised behaviour
(yielding e.g local magnetic moments and a Curie law for tlagnetic susceptibility).
At low temperature/energy, the conduction electrons sctiee local moments, leading
to the formation of quasiparticle bands with mixed f- and dwction electron charac-
ter (hence a large Fermi surface encompassing both f- andlictan electrons). The
low-temperature susceptibility has a Pauli form and the-ém&rgy physics is, apart
from some specific compounds, well described by Fermi lig@bry. This screening
process, the Kondo effect, is associated with a very lowgneoherence scale, the
(lattice [24]-) Kondo temperature, considerably renoise as compared to the bare
electronic energy scales.
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FIGURE 3. Pressure volume data for the rare earths. Structures artfiele, with “cmplx” signifiying

a number of complex, low-symmetry structures. The volunikapse transitions are marked by the wide
hatched lines for Ce, Pr, and Gd, while lines perpendicoltré curves denote the d-fcc to hP3 symmetry
change in Nd and Sm. The curves are guides to the eye. Notththdtata and curves have been shifted
in volume by the numbers (inFatom) shown at the bottom of the figure. Figure and captiproguced
from Ref. [15].

The periodic Anderson modelThe simplest model hamiltonian appropriate for f-
electron materials is the Anderson lattice or periodic Aeda model. It retains the
f-orbitals associated with the rare-earth or actinide atatreach lattice site, as well as
the relevant conduction electron degrees of freedom whybhitiise with those orbitals.
In the simplest form, the hamiltonian reads:

2
f f
Hpam = ;ek Clacka + Z (Vk clafmkg-i-h.c) + &5 Z NrRom + U Z Z NRom
o kom Rom am
(7)

Depending on the material considered, other terms may bessary for increased
realism, e.g an orbital dependent f-lexg},, hybridisationVky, or interaction matrix

Un‘ir‘f{ or a direct f-f hoppind .

2. DYNAMICAL MEAN-FIELD THEORY AT A GLANCE

Dealing with strong electronic correlations is a notorigusfficult theoretical problem.

From the physics point of view, the difficulties come maintgrh the wide range of
energy scales involved (from the bare electronic energiasthe scale of electron-
\olts, to the low-energy physics on the scale of Kelvins) &od the many competing
orderings and instabilities associated with small diffiees in energy.
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FIGURE 4. Mean-field theory replaces a lattice model by a single sitgt=al to a self-consistent bath.

It is the opinion of the author that, on top of the essentiatlgnce from physical
intuition and phenomenology, the development of quamtgdaechniques is essential in
order to solve the key open questions in the field (and alsedardo provide a deeper
understanding of some “classic” problems, only partialiglerstood to this day).

In this section, we explain the basic principles of Dynamidean-Field Theory
(DMFT). This approach has been developed over the lastHifyears and has led to
some significant advances in our understanding of strorrgledions. In this section, we
explain the basic principles of this approach in a concisermaa The Hubbard model is
taken as an example. For a much more detailed presentdteoredder is referred to the
available review articles [3, 4].

2.1. The mean-field concept, from classical to quantum
Mean-field theory approximates a lattice problem with maegrdes of freedom by
a single-site effective problemith less degrees of freedom. The underlying physical
idea is that the dynamics at a given site can be thought ofeamtéraction of the local

degrees of freedom at this site with an external bath crelayedll other degrees of
freedom on other sites (Fig. 4).

Classical mean-field theory.The simplest illustration of this idea is for the Ising
model:
H=-3%JSS-h}S§ (8)
(1) '

Let us focus on the thermal average of the magnetization cm lagtice sitem = (S).
We consider an equivalent probleminflependent spins

Heff:—zhie”S (9)

Dynamical Mean-Field Theory March 3, 2004 12



in which the (Weiss) effective field is chosen in such a wayt tha value ofm is
accurately reproduced. This requires:

Bhe'" = tanh tm (10)

Let us consider, for definiteness, a ferromagnet with neargighbour couplings;j =
J > 0. The mean-field theory approximation (first put forward lgrieé Weiss, under

the name of “molecular field theory”) is thb;fff can be approximated by the thermal
average of the local field seen by the spin atisitamely:

hf'f~h+ 3 Jjm; =h+zdm (12)
J

wherezis the connectivity of the lattice, and translation invage has been usedj(= J
for n.n sitesm; = m). This leads to a self-consistent equation for the magatbia:

m = tanh(Bh+z3Jm) (12)

We emphasize that replacing the problem of interactingsspya problem of non-
interacting ones in a effective bath is not an approxima@gsriong as we use this equiv-
alent model for the only purpose of calculating the local netzations. The approxi-
mation is made when relating the Weiss field to the degreeseetibm on neighbour-
ing sites, i.e in theself-consistency conditiofl1l). We shall elaborate further on this
point of view in the next section, where exact energy fumle will be discussed. The
mean-field approximation becomesgactin the limit where the connectivity of the
lattice becomes large. It is quite intuitive indeed that nlegghbors of a given site can
be treated globally as an external bath when their numbeasrbes large, and that the
spatial fluctuations of the local field become negligible.

Generalisation to the quantum case: dynamical mean-fieddrgh This construc-
tion can be extended to quantum many-body systems. Key kag@mg to this quan-
tum generalisation where: the introduction of the limit afgde lattice coordination for
interacting fermion models by Metzner and Vollhardt [25¢8dahe mapping onto a self-
consistent quantum impurity by Georges and Kotliar [26]ichlestablished the DMFT
framework.

| explain here the DMFT construction on the simplest exangiléehe Hubbard
modef:

H=- ZtijCiTang—l—U anniptso Znig (13)
1],0 | |0
As explained above, it describes a collection of singlatarJatoms” placed at the
nodesR; of a periodic lattice. The orbitals overlap from site to s¢e that the fermions

2 See also the later work in Ref. [27], and Ref. [3] for an exiembst of references.

3 The energyg, of the single-electron atomic level has been introducedhis section for the sake of
pedagogy. Naturally, in the single band case, everythipgaés only on the energy — pt with respect
to the global chemical potential so that one cargget O
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can hop with an amplitudg . In the absence of hopping, each “atom” has 4 eigenstates:
|0),| T),] 1) andT|) with energies Qg andU + 2¢, respectively.
The key quantity on which DMFT focuses is tleeal Green’s function at a given
lattice site:
GY(1-1) = ~(Tao(1)ely () (14)

In classical mean-field theory, the local magnetizatipis represented as that of a single
spin on sita coupled to an effective Weiss field. In a completely analesgoanner, we
shall introduce a representation of the local Green’s foncas that of asingle atom
coupled to an effective batfihis can be described by the hamiltonian of an Anderson
impurity model*:

Haim = Hatom+ Hpath+ Hcoupling (15)

in which:
Hatom=U nfn{ + (g0 — ) (nf +nY)

Hoath= Y10 & a|To'a|O'
Heoupling= Y10V (aITo'CU + CJcrral o) (16)

In these expressions, a set of non-interacting fermiorsc(deed by thear’s) have been
introduced, which are the degrees of freedom of the effediath acting on Sit&;.
Theg andV,’s are parameters which should be chosen in such a way thatdHgital
(i.e impurity) Green'’s function of (16) coincides with theckhl Green’s function of the
lattice Hubbard model under consideration. In fact, thesameters enter only through
the hybridisation function:

M2

P (17)

Aion) = Z
This is easily seen when the effective on-site problem iasem a form which does
not explicitly involves the effective bath degrees of freed However, this requires the
use of an effective action functional integral formalisrthea than a simple hamiltonian
formalism. Integrating out the bath degrees of freedom dnaios the effective action
for the impurity orbital only under the form:

Sff= —/Oﬁ dT/OBdT/ ;cg(r)%*l(r—r’)cg(r’)jtu /OB drni(T)n ()  (18)

in which:
Gy H(ion) = ion+ p — &0 — Aiawn) (19)

4 Strictly speaking, we have a collection of independent iritpumodels, one at each lattice site. In this
section, for simplicity, we assume a phase with translatisariance and focus on a particular site of the
lattice (we therefore drop the site index for the impuritiital c‘;). We also assume a paramagnetic phase.
The formalism easily generalizes to phases with long-ramder (i.e translational and/or spin-symmetry
breaking) [3]
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This local action represents the effective dynamics of dleall site under consideration:
a fermion is created on this site at timécoming from the "external bath", i.e from the
other sites of the lattice) and is destroyed at tirhggoing back to the bath). Whenever
two fermions (with opposite spins) are present at the same,tan energy codi is
included. Hence this effective action describes the fluzina between the 4 atomic
stateg0),| 1),] 1), T1) induced by the coupling to the bath. We can intergfgtr — t’)
as the quantum generalisation of the Weiss effective fietdarclassical case. The main
difference with the classical case is that this “dynamicalmfield” is afunction of
energy(or time) instead of a single number. This is required in otdeake full account
of local quantum fluctuations, which is the main purpose of BM%, also plays the
role of a bare Green'’s function for the effective actips, but it shouldhot be confused
with the non-interacting{ = 0) local Green'’s function of the original lattice model.
At this point, we have introduced the quantum generaligabiothe Weiss effective
field and have represented the local Green’s fundlpias that of a single atom coupled
to an effective bath. This can be viewed asaact representatigras further detailed in
Sec. 3. We now have to generalise to the quantum case the flreshapproximation
relating the Weiss function t&;i (in the classical case, this is the self-consistency
relation (12)). The simplest manner in which this can be @&xgld - but perhaps not
the more illuminating one conceptually (see Sec. 3 and [B; 28to observe that, in
the effective impurity model (18), we can define a local sglérgy from the interacting
Green’s functionG(1 — 7') = — < Tc(1)c™ (7)) >g,, and the Weiss dynamical mean-
field as:

Smplian) = % (i) ~ G Xicn)
iah+ p— &0 —Aian) — G Hiwn) (20)

Let us, on the other hand, consider the self-energy of thggradi lattice model, defined
as usual from the full Green'’s functi@; (1 — 17') = — < Tqﬁ(r)cfr’a(r’) > by:

1
lan+p — &0 — & — Z(K,ian)

G(k,imn) = (21)

in which g is the Fourier transform of the hopping integral, i.e thepdrsion relation
of the non-interacting tight-binding band:

&=t (g Ri=Ry) (22)
J

We then make the approximation that the lattice self-eneagycides with the impurity
self-energy. In real-space, this means that we neglectoallocal components dfj;
and approximate the on-site one By, p:

2ji =~ Zimp , Zizj =0 (23)

We immediately see that this is a consistent approximatidy provided it leads to a
unique determination of the local (on-site) Green’s fumttiwhich by construction is
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TABLE 1. Correspondance between the mean-field theory of a classistdm and the dynamical
mean-field theory of a quantum system.

| Quantum Case Classical Case | |

|
| —YijotijCigCio + i Hatom(i) | H=—5%SS—hyiS | Hamiltonian |
| Gi(iwh) =—<c¢ (iom)ci(ion) > | m=<S > | Local Observable |
Heft = Hatom+ Y15 &8 @10+ Heif = —hefsS Effective single-site
+ Yo Vi(g5co +hc) Hamiltonian
Alian) =73, % hett Weiss function/Weiss field
G Hiom) =iwn+ p —Alion)
| Sk[A(ion)+Glion) t—&]t=G(ion) |  herr=3;%jmj+h | Self-consistency relation|

the impurity-model Green’s function. Summing (21) okein order to obtain the on-
site componenG;; of the the lattice Green’s function, and using (20), we arav the
self-consistency conditién

1
- . = G(i 24
ZA(l%)-ﬁ-G(l&h)_l—ﬂ( (|O)n) ( )
Defining the non-interacting density of states:
D(¢g) = Z o(e— &) (25)
this can also be written as:
D(¢) o~
/d"E Alion) +Glian)1—¢ Glion) (26)

This self-consistency conditiorelates, for each frequency, the dynamical mean-field
A(iwn) and the local Green'’s functioB(icw,). FurthermoreG(iay,) is the interacting
Green'’s function of the effective impurity model (16) -o8f1 Therefore, we have a
closed set of equations that fully determine in principketthio function®), G (or %,G)).

In practice, one will use aiterative procedureas represented on Fig. 5. In many cases,
this iterative procedure converges to a unique solutioapeddently of the initial choice

of A(ian). In some cases however, more than one stable solution caube e.g close

to the Mott transition, see section below). The close andb@jween the classical mean-
field construction and its quantum (dynamical mean-field)nterpart is summarized in
Table 1.

5 Throughout these notes, the sums over momentum are noeadljzthe volume of the Brillouin zone,
i.e Zk 1=1
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EFFECTIVE LOCAL IMPURITY PROBLEM

-
Go(iw,) DMFT

Loor (; (an)

SELF-CONSISTENCY CONDITION

FIGURE 5. The DMFT iterative loop. The following procedure is genbraised in practice: starting
from an initial guess fo#, the impurity Green’s functiol®@imp is calculated by using an appropriate
solver for the impurity model (top arrow). The impurity selfiergy is also calculated frofimp =
G5 (i) — Gi;nlp(iah). This is used in order to obtain the on-site Green’s funatiihe lattice model by
performing &-summation (or integration over the free d.oGkc = Sk[iwh + U — & — Zimp(icn)] L. An
updated Weiss function is then obtained%fﬁewz GE)%JF Zimp, Which is injected again into the impurity
solver (bottom arrow). The procedure is iterated until @gence is reached.

2.2. Limits in which DMFT becomes exact

Two simple limits: non-interacting band and isolated atomi is instructive to check
that the DMFT equations yield the exact answer in two simiphé$:

« In the non-interacting limit U= 0, solving (18) yieldsG(iw) = %(iw,) and
Zimp = 0. Hence, from (24)G(iwn) = S 1/(iwn+ U — &9 — &) reduces to the free
on-site Green’s function. DMFT is trivially exact in thigrit since the self-energy
is not onlyk-independent but vanishes altogether.

« In theatomic limit {; = 0, one just has a collection of independent atoms on each
site andex = 0. Then (24) implied\(icw,) = 0: as expected, the dynamical mean-
field vanishes since the atoms are isolated. Accordingéystif-energy only has
on-site components, and hence DMFT is again exact in this lithe Weiss field
read%o_1 = iwh + U — &, which means that the acti@+ s simply corresponds to
the quantization of the atomic hamiltonibi;om This yields:

. 1-n/2 n/2

G(ith)atom= iah-i-/ﬁ + ioqq+/ﬁ—U

- _ 2
% (in)atom= " + Jfﬁ({% 7

with [I = p — &g andn/2 = (eBH 4 eB(2H-V)) /(1 4 26PH 4 B(2H-V)),
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Hence, the dynamical mean-field approximation is exact entivo limits of the non-
interacting band and of isolated atoms, and provides ampoli@ion in between. This
interpolative aspect is a key to the success of this approdtie intermediate coupling
regime.

Infinite coordination. The dynamical mean-field approximation becomes exact in
the limit where the connectivity of the lattice is taken to infinity. This is also true
of the mean-field approximation in classical statisticalchanics. In that case, the
exchange coupling between nearest-neighbour sites mustabed asJjj = J/z (for
Jij’s of uniform sign), so that the Weiss mean-figigk s in (11) remains of order one.
This also insures that the entropy and internal energy perasmain finite and hence
preserves the competition which is essential to the phydiosagnetic ordering. In the
case of itinerant quantum systems [25], a similar scalingtrbe made on the hopping
term in order to maintain the balance between the kineticiatgtaction energy. The
nearest-neighbour hopping amplitude must be scaletjas:t/,/z. This insures that
the non-interacting d.o3(¢) = S« &(& — &) has a non-trivial limit ag — . Note that
it also insures that the superexchadgé] tizj /U scales as [z, so that magnetic ordering
is preserved with transition temperatures of order unityractice, two lattices are often
considered in the = o limit:

- The d-dimensional cubic lattice with= 2d — « andg, = —2t Z%:l cogkp)/v/z

In this case the non-interacting d.o.s becomes a Gauds{an= le_nexp—(zst—zz)

« The Bethe lattice (Cayley tree) with coordination- o and nearest-neighbor hop-
pingtij =t//z This corresponds to a semicircular d.d$g) = % 1-(g/D)?
with a half-bandwidthD = 2t. In this case, the self-consistency condition (24)
can be inverted explicitly in order to relate the dynamica&am-field to the local
Green’s function asA(iwh) = t°G(iw).

Apart from the intrinsic interest of solving strongly cdated fermion models in the
limit of infinite coordination, the fact that the DMFT equattis become exact in this limit
is important since it guarantees, for example, that exacstcaints (such as causality
of the self-energy, positivity of the spectral functionsirsrules such as the Luttinger
theorem or the f-sum rule) are preserved by the DMFT appration.

2.3. Important topics not reviewed here

There are several important topics related to the DMFT fraonlke, which | have not
included in these lecture notes. Some of them were covertbe ilectures, but extensive
review articles are available in which these topics areatlpartially described.

This is a brief list of such topics:

DMFT for ordered phases. The DMFT equations can easily be extended to study

phases with long-range order, calculate critical tempeeest for ordering as well as
phase diagrams, see e.g [3].
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Response and correlation functions in DMFTResponse and correlation functions
can be expressed in terms of the lattice Green’s functiams,0é the impurity model
vertex functions, see e.g [3, 4]. Note that momentum-depecel enters, through the
lattice Green'’s function.

Physics of the Anderson impurity modelJnderstanding the various possible fixed
points of quantum impurity models is important for gaininigypical intuition when
solving lattice models within DMFT. See Ref. [23] for a rewiand references on the
Anderson impurity model. It is important to keep in mind thatcontrast to the common
situation in the physics of magnetic impurities or mesogzxhe effective conduction
electron bath in the DMFT context has significant energyedéelence. Also, the self-
consistency condition can drive the effective impurity rabtfom one kind of low-
energy behaviour to another, depending on the range of gdeasn(e.g close to the
Mott transition, see Sec. 4).

Impurity solvers. Using reliable methods for calculating the impurity Gresfioinc-
tion and self-energy is a key step in solving the DMFT equmticA large numbers
of “impurity solvers” have been implemented in the DMFT aaxtt, including: the
guantum Monte Carlo (QMC) method [27] (see also [29, 30]xdokhon the Hirsch-
Fye algorithm [31], adaptative exact diagonalisation a@jgutive schemes (see [3] for a
review and references), the Wilson numerical renormatisajroup (NRG, see e.g [32]
and references therein). Approximation schemes have ats@p useful, when used
in appropriate regimes, such as the “iterated perturbaheary” approximation (IPT,
[26, 33]), the non-crossing approximation (NCA, see [4] feferences) and various
extensions [34], as well as schemes interpolating betwigmand low energies [35].

Beyond DMFT. DMFT does capture ordered phases, but does not take intotcco
the coupling of short-range spatial correlations (let ellmmg-wavelength) to quasiparti-
cle properties, in the absence of ordering. This is a keyagpsome strongly correlated
materials (e.g cuprates, see the concluding section of tleetures), which requires an
extension of the DMFT formalism. Two kinds of extensionsénaeen explored:

+ k-dependence of the self-energy can be reintroduced bydenmsg cluster exten-
sions of DMFT, i.e a small cluster of sites (or coupled atomts) a self-consistent
bath. Various embedding schemes have been discussed [37,383, 39, 40, 41]
and | will not attempt a review of this very interesting lineresearch here. One of
the key questions is whether such schemes can account fong stariation of the
guasiparticle properties (e.g the coherence scale) alengdrmi surface.

« Extended DMFT (E-DMFT [42, 43, 44, 45]) focuses on two-paetiocal observ-
ables, such as the local spin or charge correlation fungtionaddition to the lo-
cal Green'’s function of usual DMFT. For applications to &leaic structure, see
Sec. 5.5.

6 Some early versions of numerical codes are available @t/htivw.Ips.ens.fribkrauth
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3. FUNCTIONALS, LOCAL OBSERVABLES, AND
INTERACTING SYSTEMS

In this section, | would like to discuss a theoretical framework which apgliquite
generally to interacting systems. This framework reveatarmon concepts underlying
different theories such as: the Weiss mean-field theory (M#fTa classical magnet,
the density functional theory (DFT) of the inhomogeneowstbn gas in solids, and
the dynamical mean-field theory (DMFT) of strongly correthelectron systems. The
idea which is common to these diverse theories is the castgiruof a functional of
some local quantityeffective action) by the Legendre transform method. Toexact
in principle, it requires in practice that the exact funotbis approximated in some
manner. This method has a wide range of applicability instteal mechanics, many-
body physics and field-theory [46]. The discussion will begéfully) pedagogical, and
for this reason | will begin with the example of a classicagmet. For a somewhat more
detailed presentation, see Ref. [28].

There are common concepts underlying all these constng{jcf. Table), as will
become clear below, namely:

« i) These theories focus on a speclical quantity the local magnetization in MFT,
the local electronic density in DFT, the local Green'’s fumct(or spectral density)
in DMFT.

« ii) The original system of interest is replaced byeguivalent systemvhich is used
to provide a representation of the selected quantity: dessyn in an effective field
for a classical magnet, free electrons in an effective ampotential in DFT, a
single impurity Anderson model within DMFT. The effectivarameters entering
this equivalent problem defingeneralized Weiss fieldthe Kohn-Sham potential
in DFT, the effective hybridization within DMFT), which areelf-consistently
adjusted. | note that the associated equivalent systemecambn-interacting (one-
body) problem, as in MFT and DFT, or a fully interacting mamwydy problem
(albeit simpler than the original system) such as in DMFT iéméxtensions.

« iii) In order to pave the way between the real problem of ie$éand the equivalent
model, the method of coupling constant integration willy@do be very useful
in constructing (formally) the desired functional using thegendre transform
method. The coupling constant can be either the coefficigheonteracting part of
the hamiltonian (which leads to a non-interacting equivaggoblem, as in DFT),
or in front of the non-local part of the hamiltonian (whictatks in general to a
local, but interacting, equivalent problem such as in DMFT)

Some issues and questions are associated with each of tiate p

« i) While the theory and associated functional primarily aiat calculating the se-
lected local quantity, it always come with the possibilifydetermining some more
general object. For example, classical MFT aims primatilgadculating the local
magnetization, but it can be used to derive the OrnsteimiKerexpression of the

7 This section is based in part on Ref. [28]
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TABLE 2. Comparison of theories based on functionals of a local ebbdée
| Theory | MFT | DFT | DMFT |
| Quantity | Local magnetizatiomy | Local densityn(x) | Local GFGji(w) |

Equivalent Spinin Electronsin Quantum
system effective field effective potential| impurity model

Generalised Effective Kohn-Sham Effective

Weiss field local field potential hybridisation

correlation function between different sites. Similaif T aims at the local den-
sity, but Kohn-Sham orbitals can beerpreted(without a firm formal justification)
as one-electron excitations. DMFT produces a local sedfggnwhich one may in-
terpret as the lattice self-energy from which the full k-diegent Green’s function
can be reconstructed. In each of these cases, the preciseanta interpretation of
these additional quantities can be questioned.

« ii) | emphasize that the choice of an equivalent represiemaif the local quan-
tity has nothing to do with subsequent approximations maw@e functional. The
proposed equivalent system is in fact an exact representatithe problem under
consideration (for the sake of calculating the selectedllquantity). It does raise
a representabilityissue, however: is it always possible to find values of the gen
eralised Weiss field which will lead to a specified form of tbedl quantity, and
in particular to the exact form associated with the specifstesn of interest? For
example: given the local electronic dengii\x) of a specific solid, can one always
find a Kohn-Sham effective potential such that the one-eladbcal density ob-
tained by solving the Schrddinger equation in that potéobacides withn(x) ?
Or, in the context of DMFT: given the local Green’s functionaospecific model,
can one find a hybridisation function such that it can be vieagthe local Green’s
function of the specified impurity problem ?

« iii) There is also a stability issue of the exact functiomathe equilibrium value of
the local quantity a minimum ? More precisely, one would tikehow that negative
eigenvalues of the stability matrix correspond to true ptatanstabilities of the
system. | will not seriously investigate this issue in thasture (for a discussion
within DMFT, where it is still quite open, see [47]).

3.1. The example of a classical magnet

For the sake of pedagogy, | will consider in this section thgtest example on which
the above ideas can be made concrete: that of a classiogghigignet with hamiltonian

H:—ZJijSSj (28)
]

Construction of the effective actionWe want to construct a function&l[m;] of a
preassignedet of local magnetizations;, such that minimizing this functional yields
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the equilibrium state of the system. This functional is afitse the Legendre transform
of the free-energy with respect to a set of local magnetidgieTo make contact with
the field-theory literature, | note th@tl is generally called theffective actionn this
context. | will give a formal construction of this functidn&llowing a method due to
Plefka [48] and Yedidia and myself [49]. Let us introduce aywag coupling constant
a € [0,1], and define:

HaEGH:ZGJijSSj (29)

1]

Introducing local Lagrange multipliers, we consider the functional:

Q[m, Ai;a] = —% InTre PHatPIAST™ — F[N] 4+ 5 Aim (30)
|

Requesting stationarity of this functional with respecthe A;'s amounts to impose
that,for all values ofa, (S) coincides with the preassigned local magnetizatmrirhe
equationany = (§) which expresses the magnetization as a function of the esirc
can then be inverted to yield thig's as functions of then;’s and ofa:

(S)ra =M — A = Aimj; a] (31)

(The averageg: - -),  in this equation is with respect to the Boltzmann weight apipe
in the above definition of2, includingA;j’s anda). The Lagrange parameters can then
be substituted int® to obtain thea-dependent Legendre transformed functional:

ralm] = Q[m, Afmy, a]] = F [\ [m] + 3 Aifmim (32)

Of course, the functional we are really interested in is tifahe original system with
o =1, namely:
F[m] =Tg=1[m] (33)

Let us first look at the non-interacting limit = O for which the explicit expression of
Q is easily obtained as:

1
Qo= <——Incosh(3)\-+m)\-) (34)
IZ B | |
Varying in theA’s yields:
tanhBA*=% = m (35)
and finally:
1 1+m, 1+4m 1-m, 1-m
I_a—O[mi]—BIZ< 5 In 5t In 5 ) (36)

The a = 0 theory defines thequivalent problenthat we want to use in order to deal
with the original system. Here, it is just a theoryindlependent spins in a local effective
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field. The expression (36) is simply the entropy term correspuntt independent Ising
spins for a given values of the local magnetizations.

The value taken by the Lagrange multiplier in the equivamﬁtem,)\iazo (denoted
AL in the following), must be interpreted as teiss effective fieldVe note that, in this
simple example, there is an explicit and very simple refe8b) between the Weiss field
andm;, so that one can workquivalentlyin terms of either quantities. Also, because of
the simple form of (35)representabilityis trivially satisfied: given the actual values of
the magnetizationsy’s (€ [—1,1]) at equilibrium for the model under consideration,

one can always represent them by the Weiss fiﬁhfé = arctanhm.
To proceed with the construction 6f we use a coupling constant integration and

write:
drr 4

dar |
It is immediate that, because of the constra(® — m;)) = 0:

r[m;azl]:ro[m]+/olda m| 37)

dar
d—cf = (H)apja=— %Jij (SS)a(am (38)

In this expression, the correlation must be viewed as a imak of the local magne-
tizations (thanks to the inversion formula (31)). Introshgcthe connected correlation
function:

gicj {mdsal = (S —m)(Sj—mj))aafam (39)
we obtain: dr
o = 2 dimmi = 3 gij[{md;al (40)
] ]

So that finally, one obtains the formal expressionfon| = I g—1[m]:
1
F[m] =o[m] — ZJijmimj - ZJij /0 dagicj [mg; a] =To+EmF +Teorr (41)
] M

In this expressiomg® denotes the connected correlation function for a givenevafithe
coupling constangxpressed as a functional of the local magnetisations
Hence, theexact functional appears as a sum of three contributions:

» The part associated with the equivalent system (correspgtietre to the entropy
of constrained but otherwise free spins)

« The mean-field energy;; Jijmm;

+ A contribution from correlations which contains all cortieas beyond mean-field

As explained in the next section, there is a direct analogyéen this and the various
contributions to the density functional within DFT (kinegnergy, Hartree energy and
exchange-correlation).

| note in passing that one can derive a closed equation faxaet functional, which
reads (see [28] for a derivation):
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i]

1 a
ra[mi]:ro[m]—aZJijmmj—BZJij/o da/{am(ém )
1 1)

This equation fully determines in principle the effectivaian functional. However, in
order to use it in practice, one generally has to start frommd in which the functional
is known explicitly, and expand around that limit. For exd@pn expansion around the
high-temperature limit yields systematic corrections wamfield theory [49, 28]. This
equation is closely related [28] to the Wilson-Polchinskyation [50] for the effective
action (after a Legendre transformation: see also [51])clvban be taken as a starting
point for a renormalisation group analysis by starting fittw@local limit and expanding
in the “locality” (see e.g [52, 51].

Equilibrium condition and stability. The physical values of the magnetisations at
equilibrium are obtained by minimisidg which yields:

5rc0rr
m = tanh(B Jjm: — B ) (43)

and the Weiss field takes the following value:

5rCOI‘I’

h'' = =29 * (44)

This equation is &elf-consistency conditiomhich determines the Weiss field in terms

of the local magnetizations on all other sites. Its physitrpretation is clearheff
the true (average) local field seen by sitét is equal to the sum of two terms one in
which all spins are treated as independent, and a corredtiero correlations.
The stability of the functional around equilibrium is carited by the fluctuation
matrix:
5°r AL %M con
smom;  dm; ' omom,

(45)

At equilibrium, this is nothing else than the inverse of theceptibility (or correlation
function) matrix:

6 ACOI’I’

om; om; (46)

=X i =i —d+ s

with:
= 5 0 (47)

Hence, our functional does satisfy a stability criteriorda$ined in the introduction: a
negative eigenvalue of this matrix (i.e pfd)) would correspond to a physical instability
of the system. Note that at the simple mean-fied level, wevexdbe RPA formula for
the susceptibility(x 1)ij = (Xo 1ij — Jij.
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Mean-field approximation and beyondObviously, this construction of thexact
Legendre transformed free energy, and the exact equitibcondition (43) has formal
value, but concrete applications require some further @pprations to be made on
the correlation ternT . The simplest such approximation is just to neglegs
altogether. This is the familiar Weiss mean-field theory:

<1+m 1+m  1-m 1-m

rMFT_BZ 5+ In 5 )—%Jijmimj (48)

For a ferromagnet (uniform positivig 's), this approximation becomesact in the limit
of infinite coordinatiorof the lattice.

The formal construction above is a useful guideline whemgryo improve on the
mean-field approximation. | emphasize that, within the @néspproachit is the self-
consistency condition (44) (relating the Weiss field to thdrenment) that needs to be
corrected while the equationm; = tanhBhfaff is attached to our choice of equivalent
system and will be always valid. For example, in [48, 49] itsweown how to con-
structl¢orr by a systematic high-temperature expansiofinrhis expansion can be
conveniently generated by iterating the exact equatioh (42an also be turned into an
expansion around the limit of infinite coordination [49].€Tfirst contribution td oy
in this expansion appears at org&for a?) and reads:

I_corr = Z J2(1- mz)(l—mjz) (49)

This is a rather famous correction to mean-field theory, kmawthe “Onsager reaction
term”. For spin glass modelsi(’'s of random sign), it is crucial to include this term
even in the large connectivity limit. The corresponding a&epns for the equilibrium
magnetizations are those derived by Thouless, Andersoainder [53].

3.2. Density functional theory

In this section, | explain how density-functional the8(FT) [55, 56] can be derived
along very similar lines. This section borrows from the wofkFukuda et al. [57, 46]
and of Valiev and Fernando [58]. For a recent pedagogicaweemphasizing this point
of view, see [59]. For detailed reviews of the DFT formalis®ee e.g [60, 61].

Let us consider the inhomogeneous electron gas of a solid hamiltonian:

—2%D?+zv<ri>+§;U<ri—rj> (50)
I 1 17]

in which v(x) is the external potential due to the nuclei antk — x) (= €/|x—x|) is
the electron-electron interaction. (I use conventions lmcWwh = m = 1). Let us write

8 | actually consider the finite-temperature extension of [/54]
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this hamiltonian in second- quantized form, and again thice a coupling-constant
parameten (the physical case is = 1):

Hy :_%/dwamzler/dxv(x)ﬁ(x)+%/dxd>€ﬁ(x)U(x-x’)ﬁ(X') (51)

We want to construct the free energy functional of the sysidrite constraining the
average density to be equal to some specified functigh In complete analogy with
the previous section, we introduce a Lagrange multipliacfion A (x), and considet:

Qq[n(X),A(X)] = —%InTr exp(—BHa—i—B/dxA (x)(n(x) —ﬁ(x))) (52)

A functional ofboth nx) andA (x). As before, stationarity id insures that:
(A A.a =NX) — A(X) = Aa[n(X)] (53)

This will be used to eliminaté (x) in terms ofn(x) and construct the functional afx)
only:
Fa[n(X)] = Qa[n(x), Aa[n(X)]] (54)

3.2.1. Equivalent system: non-interacting electrons ireiactive
potential

Again, | first look at the non-interacting case= 0. Then we have to solve a one-
particle problem in ax-dependent external potential. This yields:

Qo[N[X], A [X]] = —tr In[ion —f—\?—ﬁ\] — /dx)\ (x)n(x) (55)

In this equation, tr denotes the trace over the degreesexdre of a single electrong,
is the usual Matsubara frequency, dnd —[02/2,V, A are the one-body operators cor-
responding to the kinetic energy, external potential &) respectively. The identity
Indet= tr In has been used.

Minimisation with respect td (x) yields the following relation betweek® andn(x):

53— = (Y (56)

This defines the functionalg[n(x)], albeit in a somewhat implicit manner. This is
directly analogous to Eq.(35) defining the Weiss field in #iad case (but in that case,

9 Note that | chose in this expression a different sign corigerfor A than in the previous section, and
also that Tr denotes the full many-body trace oveNa#lectrons degrees of freedom.
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this equation was easily invertible). If we want to be morpleit, what we have to do
is solve the one-particle Schrodinger equation:

1
(~58+ws0) % = 8@ (57)
where theesffective one-body potentigohn-Sham potential) idefinedas:
Vks(X) = V(X) + A O(X) (58)

It is convenient to construct the associated resolvent:

R(X,X;ith) = Z% (59)

and the relation (56) now reads:

Z\qq(x)|2fFD(e|) = n(x) (60)

in which fgp is the Fermi-Dirac distribution.

This relation expresses the local density in an interactivagy-particle system as
that of a one-electron problem an effective potentiatiefined by (56). In so doing,
the effective one-particle wave functions and energieh(ik8ham orbitals) have been
introduced, whose relation to the original system (and inig@aar their interpretation
as excitation energies) is far from obvious (see e.g [61fer€ is, for example, no
fundamental justification in identifying the resolvent }58ith the true one-electron
Green'’s function of the interacting system. The issugepfesentability(i.e whether an
effective potential can always be found given a density fgrafix)) is far from being as
obvious as in the previous section, but has been establ@hadigorous basis [62, 63].

To summarize, the non-interacting functiofa[n(x)] reads:

Fo[n(X)] = —tr In[ico —f — 9 — Ao[n]] — /dx)\o[x; Aln(x) (61)
which can be rewritten as:

Fo[n(X)] == —%Zm [1+e—ﬁf'[”1] — / dXwks(X)N(X) + / dxvx)nx)  (62)

in which Ag andvks are viewed as a functional ofx), as detailed above.
In the limit of zero temperaturgB(— ), this reads:

Foln(x),T = 0] = ia - / dxs()N(X) + / dxv(X)n(x) (63)

in which the sum is over the N occupied Kohn-Sham states. \Wéethat it contains extra
terms beyond the ground-state energy of the KS equivalstesy(see also Sec. 5.4).
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We also note thdl is not a very explicit functional ofi(x). It is a somewhat more
explicit functional ofAg(X) (or equivalently of the KS effective potentiats(x)) so that
it is often more convenient to think in terms of this quantliyectly. At any rate, in
order to evaluaté&  for a specific density profile or effective potential one mssive
the Schrodinger equation for KS orbitals and eigenenergieis is a time-consuming
task for realistic three-dimensional potentials and pecattalculations would be greatly
facilitated if a more explicit accurate expression ffan(x)] would be availablé®.

3.2.2. The exchange-correlation functional

We turn to the interacting theory, and use the coupling @nshtegration method
(see [64] for its use in DFT):

Fn()] = Fin(x);a = 0] + / da e (64)
Similarly as before:
ddl;; U, /dXd*U (X=X)(AX)AX))1 a (65)

Separating again a Hartree (mean-field) term, we get:

F[N(X)] = Fo[N(X)] + Enartree[N(X)] + Mxc[N(X)] (66)
with: 1
Enartreeln()] = 5 / dxdXU (x—x)n(x)n(x) (67)
andl ¢ is the correction-to mean field term (the exchange-coroglduinctional):
[ xc[N(X /ddeU (x—x) / dagg [n;x,X] (68)
In which:
Ja[mx,X] = ((A(X) —n(x)) (AX) = (X)) Aq ] (69)

is the (connected) density-density correlation functexpressed as a functional of the
local density, for a given value of the coupling

It should be emphasized that the exchange-correlatiortimad I ¢ is independenof
the specific form of the crystal potentiglx): it is a universal functionahich depends
only on the form of the inter-particle interactibhx— X') ! To see this, we first observe
that, becaus€[n(x)] is the Legendre transform of the free energy with respechéo t

10 see e.g the lecture notes by K.Burke: http:/dft.rutgeslkieron/beta/index.html
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one-body potential, we can easily relate the functionahm presence of the crystal
potentialv(x) to that of the homogeneous electron gas (i.e with0):

()] = Frecin()] + [ dxwxn() (70)

Since this relation is also obeyed for the non-interactysgesm (see Eq. (61)), and using
=To+ T+ xe, We see that the functional form &% is independent o¥(x). It is
the same for all solids, and also for the homogeneous etegas.
| finally note that an exact relation can again be derivedterdensity functional (or
alternatively the exchange-correlation functional) byimgpthat:
-1
ol g } 71)

Bda[nxx] = [W

xX

Inserting this relation into (66,68), one obtains:

p -1
da’ [L} (72)

Faln] = Mol + aEnfn]+ 5 [ XU (x—x) | BNO)BNY) |

0

in complete analogy with (42). For applications of this exanctional equation, see
e.g [65, 66]. Analogies with the exact renormalization gr@pproach (see previous
section) might suggest further use of this relation in thd @Bntext.

3.2.3. The Kohn-Sham equations
Let us now look at the condition for equilibrium. We vdrin(x)], and we note that,

as before, the terms originating from the variat®h®/dn(x) cancel because of the
relation (56). We thus get:

or B Ol xc
5 = 000+ / XU (X N0 + 8 (73)
so that the equilibrium density*(x) is determined by:
O/y\* _ * 5rXC
A0(x)* = /d)(U(x KO0 + 58 e (74)
which equivalently specifies the KS potential at equilibrias:
or
VeslX) = V09 + [ XU (X" () + 8 e 75)

Equation (74) is the precise analog of Eq.(44) determinimegWeiss field in the Ising
case, andy g is the true effective potential seen by an electron at dugyidim, in a one-
electron picture. Together with (57), it forms the fundataé(Kohn-Sham) equations
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of the DFT approach. To summarize, the expression of thedotagy I = 0) reads:

rinx),T=0] = ia — /dX\,kS(X)n(X) +/dxv(x)n(x) + Mxe[N(X)] (76)

Concrete applications of the DFT formalism require an apipnation to be made on
the exchange-correlation term. The celebrdbed| density approximatio(LDA) reads:

Mxe[N(X)]|LDA = / dxn(x) &= °[n(x)] (77)

in which efFG(n) is the exchange-correlation energy density oftibenogeneouslec-

tron gas, for an electron density Discussing the reasons for the successes of this ap-
proximation (as well as its limitations) is quite beyond #o®pe of these lectures. The
interested reader is referred e.g to [61, 59].

Finally, we observe that DFT satisfies the stability prapsrtiscussed in the intro-
duction, sinced?l" /&n(x)dn(X) is the inverse of the density-density response function
(g-dependent compressibility). A negative eigenvalue waoldespond to a charge or-
dering instability.

3.3. Exact functional of the local Green'’s function, and theDynamical
Mean-Field Theory approximation

In this section, | would like to explain how the concepts & irevious sections pro-
vide a broader perspective on the dynamical mean field apprwoestrongly correlated
fermion systems. In contrast to DFT which focuses on grostatk properties (or ther-
modynamics), the goal of DMFT (see [3] for a review) is to addr excited states by
focusing on théocal Green'’s functior{or thelocal spectral densify Thus, it is natural
to formulate this approach in terms of a functional of thealo@reen’s function. This
point of view has been recently emphasized by Chitra and&d@7] and by the author
in Ref. [28].

| describe below how such aexact functionalcan be formally constructed for a
correlated electron model (irrespective, e.g of dimeraity), hence leading to kcal
Green's function (or local spectral density) functionagdny. | will adopt a somewhat
different viewpoint than in [67], by taking tretomic limit(instead of the non-interacting
limit) as a reference system. This leads naturally to reprethe exact local Green's
function as that of a quantum impurity model, with a suitabhosen hybridisation
function. There is no approximation involved in this magpi{lenly a representability
assumption). This gives a general value to the impurity rhatspping of Ref.[26].
Dynamical mean field theory as usually implemented can teandwed as aubsequent
approximationmade on the non-local contributions to the exact functiqea. the
kinetic energy).

For the sake of simplicity, | will take the Hubbard model aseaample throughout
this section. The hamiltonian is decomposed as:

Ha=U Y mni —a 3 tijGyCjo (78)
|

i|,0
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| emphasize that the varying coupling constant [0, 1] has been introduced in front
of the hopping term, which is the non-local term of this haamlan, andnot in front
of the interaction. When dealing with a more general hami#éo, we would similarly
decomposé! = H|gc+ aHpon-loc

3.3.1. Representing the local Green’s function by a quantopurity
model

In order to constrain the local Green'’s functi(t)c;" (7')) to take a specified value
G(t — 1), we introduce conjugate sources (or Lagrange multipliafg)— 1) and
consider:

B
——In/Dch+exp{/0 dr( ch (=0 + U)Cig — Hqg[c,ct]) +
10

Qa[G(w),A(w)]

-1-/0 /0 drdr’gA(r—r’)[G(r—r’)—C@(T)Cia(T/)]} (79)

Inverting the relatiorG = G4 [4] yieldsA = A4[G], and a functional of the local Green'’s
function is obtained ak4[G] = Qq [G,Ay[G]]. This is the Legendre transform of the
free energy with respect to the local soufce

| would like to emphasize that this construction is quitded#nt from the Baym-
Kadanoff formalism, which considers a functional of all t@mponents of the lattice
Green’s functiorG;j, not only of its local parG;ji. The Baym-Kadanoff approach also
gives interesting insights into the DMFT construction [3],4and will be considered at
a later stage in these lectures.

Consider first thex = 0 case, in which the hamiltonian is purely local (atomic tjmi
Then, we have to consider a local problem defined by the action

Smp = _/oB dT/oB dr ;Cifr(r) [(=0r +1)8(T — T') = Do(T — T') | Co(T')

B
+U /0 drn; (T)ny (1) (80)

Hence, the local Green’s functidi(iwy) is represented as that of a quantum impurity
problem (an Anderson impurity problem in the context of théobard model):

G = Gimp[Ao] (81)

As before Ag plays the role of a Weiss field (analogous to the effective fil a magnet,
or to the KS effective potential in DFT). Formally, this WeiBeld specifies [26] the

11n this section, | will divide the free energy functional Hyet numbems of lattice sites (restricting
myself for simplicity to an homogeneous system)
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effective bare Green'’s function of the impurity action (80)
Gy Hiwn) =iwn+ 1 —Do(iawn) (82)
There are however two important new aspects here:

« i) The Weiss functiordg is a dynamical(i.e frequency dependent) object. As a
result the local equivalent problem (80) is not in Hamileomiform but involves
retardation

« ii) The equivalent local problem is not a one-body problemt imvolves local
interactions.

We note that, as in DFT, the explicit inversion of (81) is nosgible in general. In
practice, one needs a (humerical or approximate) techrimselve the quantum im-
purity problem (arfimpurity solver”), and one can use an iterative procedure. Starting
from some initial condition fof\g (or ¢40) , one computes the interacting Green'’s func-
tion Gimp, and the associated self-ene@yp = %5 * — Gi;, One then update®0 as:
GOV = [Zimp+ G171, whereG is the specified value of the local Green’s function.

3.3.2. Exact functional of the local Green’s function

We proceed with the construction of the exact functionaheflocal Green’s function,
by coupling constant integration (starting from the atohmmt).
At a = 0 (decoupled sites, or infinitely separated atoms), we Kave

Qo[Ao, G] = Fimp[Ao] — Tr (GAo) (83)

whereFmpis the free energy of the local quantum impurity model vieasda functional
of the hybridisation function. By formal inversidiy = Ag[G]:

M0[G] = Fimp[L0[G]] — Tr (GAo[G]) (84)

We then observe that (since thederivatives of the Lagrange multipliers do not con-
tribute because of the stationarity Qj:

drq

da {(Hnon-lod (85)
which, for the Hubbard model, reduces to the kinetic energy:
drrg - 1 1 :
— L (M =—=Sticc)|lc=Tr— k
ag =D Ns%t”@' Cj)le =Tr NSZEkGa( sian)|c (86)

In this expression, the lattice Green’s functiGg (k,icn) should be expressed, for a
givena, as a functional of the local Green’s functiGn

12 |n this formula and everywhere below, Tr deno#;n, with possibly a convergence factefno+.
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This leads to the following formal expression of the exaactionall [G] =T 4_1[G]:
in which 7 [G] is the kinetic energy functional (evaluated while keepBig= G fixed):
—/1dori tij(c i) —/1daTri & Ga (K, ion)| (88)
=, NS§|JiJG—O NSZkaawnG
The conditiondl /dG = 0 determines the actual value of the local Green’s functton a
equilibrium as (usin@rlo/8G = —Ay):

537G
3G (icon)

We recall that the generalized Weiss function (hybrid@atandG are, by construction,
related by (81):

Do[G(ian)] =

(89)

G = Gimp|Aq] (90)

Equations (89,90) (together with the definition of the impumodel, Eq. 80)) are
the key equations of dynamical mean-field theory, viewedmaexact approach. The
cornerstone of this approach [26] is that, in order to obtaenlocal Green’s function,
one has to solve an impurity model (80), submitted to thesafisistency condition (89)
relating the hybridization functiofg to G(iwy) itself. | emphasize that, sinddG| is
an exact functional, this construction is completely gehet is valid for the Hubbard
model in arbitrary dimensions and on an arbitrary lattice.

Naturally, using it in practice requires a concrete appration to the kinetic energy
functional 7 [G] (similarly, the DFT framework is only practical once an appmation
to 'yc is used, for example the LDA). The DMRpproximationusually employed is
described below. In fact, it might be useful to employ a défe terminology and call
"local spectral density functional theory” (or “local impty functional theory”) the
exact framework, and DMFT the subsequent approximatiomeonty made in7 [G].

3.3.3. A simple case: the infinite connectivity Bethe lattic

It is straightforward to see that the formal expressiontierkinetic energy functional
7 |G| simplifies into a simple closed expression for the Bethéckatith connectivity
Z in the limit z— . In fact, a closed form can be given on an arbitrary latticéhim
limit of large dimensions, but this is a bit more tedious arel postpone it to the next
section.

In the limit of large connectivity, the hopping must be sdabes:ti; =t/./z [25].
Expanding the kinetic energy functional in (87) in powersxgfone sees that only the
term of ordera remains in the = o limit thanks to the tree-like geometry, namely:

Z!t”tkl (ccicia)a athTr G?=a( st) Tr G? (91)
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So that, integrating over, one obtains7 [G] = t?Tr G?/2 and finally:

2
Meether-o[G) = Fimp[80[G]] ~ Tr (GA0[G]) + - Tr G (92)

This functional is similar (although different in details) the one recently used by
Kotliar [68] in a Landau analysis of the Mott transition WitltDMFT.

The self-consistency condition (89) that finally deterrsirmth the local Green’s
function and the Weiss field (through an iterative solutidbthe impurity model) thus
reads in this case:

Do[G, ian] =t Gian) (93)

3.3.4. DMFT as an approximation to the kinetic energy florci.

Now, | will show that the usual form of DMFT [3] (for a generadm-interacting dis-
persiongy) corresponds to a very simple approximation of the kinaiergy term7 (G|
in the exact functiondl [G]. Consider the one-particle Green’s functiGgp (k,iw,) as-
sociated with the action (79) of the Hubbard model, in thes@nee of the source term
Ay and for an arbitrary coupling constant. We can define a swdfgy associated with
this Green’s function:

1

Ga(k7|%> - |Q)(1+H_AU[I%] —ac‘:k_za[kJo‘h]

(94)

The self-energyz, is in general &-dependent object, except obviously fr= 0 in
which all sites are decoupled into independent impurity ei@drhe DMFT approxima-
tion consists in replacingy for arbitrarya by the impurity model self-energyy (hence
depending only on frequency), at least for the purpose cidaing.7 [G]. Hence:

1
Gq (K, i = - . . 95
a (K ) oMt = e Rl ] — 08 — Za—oliwn, G (99)
With:
Sa—0[G;iwn] =901 — G =iwn+u—Dofian, G -G 1 (96)
Summing ovek, one then expresses the local Green’s function in termseotfiyboridi-
sation as: D(e) 1 ¢
. € ~
G(um_/dez_as_at) (E) 97)
With  =iwn+ U —Ag —Zo =DAo—Da+G L. Inthis expressiorD (&) = Nis SkO(E—&)

is the non-interacting density of states, ad(z) = [de— its Hilbert transform.

Introducing the inverse function such tHafiR(g)] = g, we can invert the relation above
to obtain the hybridisation function as a functional of thedl G for U = 0O:

Aglion; Gl = G+ 29[G] — aR[aG] (98)
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So that the lattice Green’s function is also expressed asaifunal ofG as:

Ga(k,iawh) = aR(aGl)—ask (99)
Inserting this into (87), we can evaluate the kinetic energy
I\t £Ga (K / de—=2\8) % (—1+ aGRAG)] (100)
and hence the DMFT approximation £6[G]:
JoMET[G / daTr |G(iwn)R(aG(iwn)) — ﬂ (101)
So that the total functional reads, in the DMFT approximatio
FomeT[G] = Fimp[Qo[G]] — Tr (GAo[G]) +
4 /0 CdarTr R(aG(ian)) —g (102)

In the case of an infinite-connectivity Bethe lattice, cep@ending to a semi-circular
d.o.s of width 4, one hasR[g] = t?g+ 1/g, so that the result (92) is recovered from
this general expression. | note that the DMFT approximatiotine functional7 [G] is
completely independent of the interaction strergth

The equilibrium condition (899I /3G = 0 thus read$?, in the DMFT approxima-
tion [3]:

: . 1
Aolion, G|pmrT = RIG(iwh)] — Glicn) (103)
This can be rewritten in a more familiar form, using (96):

D(e)
[h + M — Zimp(iwh)
The self-consistency condition is equivalent to the coodif,_1[G] = 0, as expected

from the fact that\,_1 = 8 /8G. Hence, within the DMFT approximation, the lattice
Green’s function is obtained by setting= 1 into (95):

1
[0h + U — & — Zimp(ian)

, with: Zjmp=940"1-G™* (104)

Glian) = /de

(105)

G(kai%ﬂDMFT =

3.4. The Baym-Kadanoff viewpoint

Finally, let me briefly mention that the DMFT approximaticemcalso be formulated
using the more familiar Baym-Kadanoff functional. In cadr to the previous section,

13 When deriving this equation, it is useful to note tRitG) + aGR (aG) = d4[aR(aG)].
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this is a functional ofll components ¢ of the lattice Green’s function, not only of the
local oneG;i. The Baym-Kadanoff functional is defined as:

Qpk([Gij, Zij] = —trin[(iwnh+ p)&j —tij — Zij(iwn) | —tr[Z- Gl + Puw([{Gij}] (106)

Variation with respect t@jj yields the usual Dyson’s equation relating the Green’s{func
tion and the self-energy. The Luttinger-Ward functiofal, has a simple diagrammatic
definition as the sum of all skeleton diagrams in the freeggn&/ariation with respect
to Gjj express the self-energy as a total derivative of this foneti:

: o
ii(ion) = =—=—+—— 107
1) ( ) 5GI] (Ia)n) ( )
The DMFT approximation amounts to approximate the Luttrigfard functional by a
functional which is the sum of that aidependent atomsetaining only the dependence
over the local Green'’s function, namely:

ORNTT = S Pimp[Gii] (108)

An obvious consequence is that the self-energy is siteedialg

%ij (iwn) = & Z(icon) (109)
EliminatingZ;; amounts to do a Legendre transformation with respe@fjti@nd therfore
leads to a different expression of the local DMFT function&ioduced in the previous
section [67]:
5G; )d] — 1] _tr[—5Gii . Gii] + Izcbimp[Gii]

(110)

The Baym-Kadanoff formalism is useful for total energy cddtions, and will be used
in Sec. 5.4.

MomET[Gii] = —trin | (ian+ 1 —

4. THE MOTT METAL-INSULATOR TRANSITION

4.1. Materials on the verge of the Mott transition

Interactions between electrons can be responsible fornthdating character of a
material, as realized early on by Mott [1, 2]. The Mott medkanplays a key role in
the physics of strongly correlated electron materials s@unding examples [2, 11] are
transition-metal oxides (e.g superconducting cuprate¢rene compounds, as well as
organic conductofé. Fig. 6 illustrates this in the case of transition metal esiavith
perovskite structure AB&[74].

14 The Mott phenomenon may also be partly responsible for tbalikation of f-electrons in some rare
earth and actinidemetals see [69, 70, 71, 72, 73] and [16, 21] for recent reviews.
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distorted

FIGURE 6. This diagram (due to A.Fujimori [74], see also [11]) can bewed as a map of the vast
territory of transition- metal compounds with perovskiteisture ABQ. Varying the transition metal ion

B corresponds to gradual filling of the 3d-shell. Differenbstitutions on the A-site can be made (A=
Sr,Ca and A=La,Y are mainly considered in this diagram)sHfiows to change either the valence of the
transition metal ion (doping), or the structural paramgeteran isoelectronic manner. The shaded region
corresponds to insulating compounds, while the unshadeaomesponds to metals. This illustrates the
key role of the Mott phenomenon in the physics of transitioetal oxides.

A limited number of materials are poised right on the vergthf electronic instabil-
ity. This is the case, for example, of,@3, NiS,_«Se and of quasi two-dimensional
organic conductors of the-BEDT family. These materials are particularly interest-
ing for the fundamental investigation of the Mott trangitisince they offer the pos-
sibility of going from one phase to the other by varying somemal parameter (e.g
chemical composition,temperature, pressure,...). ¥igreixternal pressure is definitely
a tool of choice since it allows to sweep continuously from ifsulating phase to the
metallic phase (and back). The phase diagrams af (\Cry)>O3 and of k-(BEDT-
TTF),Cu[N(CN)]CI under pressure are displayed in Fig. 7. There is a greatasity
between the high-temperature part of the phase diagrarhes¢ materials, despite very
different energy scales. At low-pressure they paeamagnetidMott insulators, which
are turned into metals as pressure is increased. Abovaaattémperaturd, (of order
~ 450K for the oxide compound and 40K for the organic one), this corresponds to a
smooth crossover. In contrast, for< T. a first-order transition is observed, with a dis-
continuity of all physical observables (e.g resistivitine first order transition line ends
in a second order critical endpoint@, P;). We observe that in both cases, the critical
temperature is a very small fraction of the bare electronargy scales (for ¥O3 the
half-bandwidth is of order.® — 1 eV, while it is of order 2000 K for the organics).

There are also some common features between the low-tetapepart of the phase
diagram of these compounds, such as the fact that the panatmalott insulator orders
into an antiferromagnet as temperature is lowered. Howekere are also striking
differences: the metallic phase has a superconductingliisy for the organics, while
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(after[75]). Increasing by 1% produces similar effects thalecreasingpressure by~ 4kbar, for this
material. Right: Phase diagramof(BEDT-TTF)LCU[N(CN)]CI as a function of pressure (after [76]).

this is not the case for d03. Also, the magnetic transition is only superficially simila
in the case of Y03, it is widely believed to be accompanied (or even triggeiey)
orbital ordering[77] (in contrast to NjSySg[78]), and as a result the transition is first-
order. In general, there is a higher degree of universadispeaiated with the vicinity of
the Mott critical endpoint than in the low-temperature cggiin which long-range order
takes place in a material- specific manner.

Mott localization into a paramagnetic insulator impliesighhspin entropy, which
must therefore be quenched in some way as temperature issldwen obvious possi-
bility is magnetic ordering, as in these two materials. rt,fa Mott transition between a
paramagnetic Mott insulator and a metallic phase is onlgontesl in those compounds
where magnetism is sufficientliyustratedso that the transition is not preempted by
magnetic ordering. This is indeed the case in both compodistsissed here: 303
has competing ferromagnetic and antiferromagnetic exgdannstants, while the two-
dimensional layers in the organics have a triangular sirectAnother possibility is
that the entropy is quenched through a Peierls instabdityérization), in which case
the Mott insulator can remain paramagnetic (this is the ,cemseexample, of VQ).
Whether it is possible to stabilize a paramagnetic Mottletsm down toT = 0 without
breaking spin or translational symmetries is a fascinagrapblem, both theoretically
and from the materials point of view (for a recent review osoreating valence bond
phases in frustrated quantum magnets, see e.g [79] and T8@)compound-(BEDT-
TTF),Cu(CN)3 may offer [81] a realization of such a spin-liquid state Gneably
through a combination of strong frustration and strong gd&uctuations [82]), but this
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behaviour is certainly more the exception than the rule.

4.2. Dynamical mean-field theory of the Mott transition

Over the last decade, a detailed theory of the strongly late@ metallic state, and
of the Mott transition itself has emerged, based ondiiramical mean-field theory
(DMFT). We refer to [3] for a review and an extensive list oiganal references [26, 29,
30, 83, 84, 85] We now review some key features of this theory.

Quasiparticle coherence scaleln the metallic state, Fermi-liquid theory applies be-
low a low energy scale:, which can be interpreted as the coherence-scale for qarasip
ticles (i.e long-lived quasiparticles exist only for enesggand temperature smaller than
g¢). This low-energy coherence scale is givenddy~ ZD (with D the half-bandwith,
also equal to the Fermi energy of the non-interacting systehalf-filling) whereZ is
the quasiparticle weight. In the strongly correlated mel@de to the transitiory < 1,
so thatef is strongly reduced as compared to the bare Fermi energy.

Three peaks in the d.o.s: Hubbard bands and quasiparticlés.addition to low-
energy quasiparticles (carrying a fracti@gnof the spectral weight), the one-particle
spectrum of the strongly correlated metal contains higerggn excitations carrying a
spectral weight 1 Z. These are associated to the atomic-like transitions sporeding
to the addition or removal of one electron on an atomic sitectwbroaden into Hubbard
bands in the solid. As a result, theintegrated spectral functioA(w) = Y Ak, w)
(density of states d.o.s) of the strongly correlated matgredicted [26] to display a
three-peak structure, made of a quasiparticle band clabe téermi energy surrounded
by lower and upper Hubbard bands (Fig. 8 and inset of Fig. THg.quasiparticle part
of the d.o.s has a reduced width of ordd ~ &f. The lower and upper Hubbard bands
are separated by an energy sdale

The insulating phase: local moments, magnetism and frtisira At strong enough
coupling (see below), the paramagnetic solution of the DMigliations is a Mott
insulator, with a gap) in the one-particle spectrum. This phase is characterized b
unscreened local moments, associated with a Curie law ®ridbal susceptibility
YqXq O 1/T, and an extensive entropy. Note however that the uniforncegility
Xq=0 is finite, of order ¥J ~ U/D?. As temperature is lowered, these local moments
order into an antiferromagnetic phase [27, 83]. The Néeptature is however strongly
dependent on frustration [3] (e.g on the ratitt between the next nearest-neighbour
and nearest-neighbour hoppings) and can be made vaniglsimall for fully frustrated
models.

Separation of energy scales, spinodals and transition lin&ithin DMFT, a separa-
tion of energy scales holds close to the Mott transition. fite&an-field solution corre-
sponding to the paramagnetic metalat O disappears at a critical couplibig,. At this

Dynamical Mean-Field Theory March 3, 2004 39



—ImG

U/D=3 N
0 A ‘ I__ J\/\
21— U/D=4 —
ol /_\\ | /\-\ !
-4 -2 0 2 4

/D

FIGURE 8. Local spectral function for several values of the intexatttrength in DMFT. These results
have been obtained using the IPT approximation, for thefiilfi Hubbard model with a semi-circular
d.o.s (from Ref. [3]). Close to the transition, the separatf scales between the quasiparticle coherence
energy €£) and the distance between Hubbard baddsg clearly seen.

point, the quasiparticle weight vanishesl{ 1 —U /Uc) as in Brinkman-Rice theoty

On the other hand, a mean-field insulating solution is foumdUf > U¢q, with the Mott
gapA opening up at this critical coupling (Mott-Hubbard trarsi. As a resultA is a
finite energy scale fdd = U, and the quasiparticle peak in the d.o.s is well separated
from the Hubbard bands in the strongly correlated metal.

These two critical couplings extend at finite temperatuite itwo spinodal lines
Uct(T) and Ue(T), which delimit a region of thgU /D, T/D) parameter space in
which two mean-field solutions (insulating and metallicg #&ound (Fig. 9). Hence,
within DMFT, a first-order Mott transition occurs at finitem@erature even in a purely
electronic model. The corresponding critical temperaﬂgﬁ’e’s of orderTCeI ~ AE/AS,
with AE and AS ~ In(2S+ 1) the energy and entropy differences between the metal
and the insulator. Because the energy difference is smBli~ (Uc —Ug1)?/D), the
critical temperature is much lower th&nhandU, (by almost two orders of magnitude).

15 Since the self-energy only depends on frequency within DMRE also implies that quasiparticles
become heavy close to the transition, witfi/m = 1/Z. In real materials, we expect however that
magnetic exchange will quench out the spin entropy assmtiafith local moments, resulting in a
saturation of the effective mass close to the Mott transitla the regime wheref < J, the effective
mass is then expected to be of ordeas found e.g in slave-boson theories. Describing thiseféguires
extensions of DMFT in order to deal with short-range spatiatelations
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FIGURE 9. Paramagnetic phases of the Hubbard model within DMFT, @jépy schematically the
spinodal lines of the Mott insulating and metallic meandfigblutions (dashed), the first-order transition
line (plain) and the critical endpoint. The shaded crossliwes separating the different transport regimes
discussed in Sec.3 are also shown. The Fermi-liquid to “bathfhcrossover line corresponds to the
quasiparticle coherence scale and is a continuation ofgim®dalU(T) aboveT.. The crossover into
the insulating state corresponds to the continuation dfithepinodal. Magnetic phases are not displayed
and depend on the degree of frustration. Figure from Re®.48d [87].

Indeed, in \AO3 as well as in the organics, the critical temperature comegding to the
endpoint of the first-order Mott transition line is a factdrs® to 100 smaller than the
bare electronic bandwith.

4.3. Physical properties of the correlated metallic stateDMFT
confronts experiments

4.3.1. Three peaks: evidence from photoemission

In Fig. 10, we reproduce the early photoemission spectramgsi® transition metal
oxides, from the pioneering work of Fujimori and coworke38][ This work established
experimentally, more than ten years ago, the existence lbfevened (lower) Hubbard
bands in correlated metals, in addition to low-energy quaasicles. This experimental
study and the theoretical prediction of a 3-peak structtoenfDMFT [26] came in-
dependently around the same time. However, back in 1992xistence of a narrow
quasiparticle peak id(w) resembling the DMFT results was, to say the least, not ob-
vious from these early data. Further studies [89] on_G&r,VO3therefore aimed at
studying the dependence of low-energy quasiparticle sgdetatures upon the degree
of correlations. One of the main difficulty raised by thesetplkemission results is that
the weightZ of the low-energy quasiparticle peak estimated from thesky elata is
quite small (particularly for CaVg), while specific heat measurements do not reveal
a dramatic mass enhancement. This triggered some disoy8§ip90, 11] about the
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FIGURE 10. Photoemission spectra of sevedaltransition metal oxides, reproduced from Ref. [88].
The effects of correlations increases from Bé®weakly correlated metal) to YTigJa Mott insulator).
The plain lines are the d.o.s obtained from band structuiledions. A lower Hubbard band around
—15eVis clearly visible in the most correlated materials hhatthe metallic and insulating case.

possibility of a strondk-dependence of the self-energy. A decisive insight inte djoies-
tion came from further experimental developments by Mant aoworkers [91, 18] in
which it was demonstrated that the photoemission spearacually quite sensitive to
the photon energy. Studies at different photon energiesvall these authors to extract
the estimated spectra corresponding to the bulk and thacgudf the material. Surface
and bulk spectra were found to be very different indeed: tirase of CaVQ@ being
apparently insulating-like while the bulk spectrum did whe much more pronounced
guasiparticle peak. Very recently, high resolution, hpftoton energy photoemission
studies [92, 93] clarified considerably this issue. The lpgbton-energy spectrum re-
produced on Fig. 11 displays a clear quasiparticle d.o.evatelnergy (with a weight
in good agreement witm/m* and a height comparable to the LDA d.o.s), as well as a
lower Hubbard band carrying the rest of the spectral weiglareover, recent calcula-
tions [94, 95, 93] combining electronic structure methaus$ BMFT (see next section)
compare favorably to the experimental spectra, on a qadingtlevel.
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FIGURE 11. (a)Bulk V 3d spectral functions of SrvgXclosed circles), S5Ca 5VO3 (solid line) and
CaVGs (open squares). (b) Comparison of the experimentally obthbulk V 31 spectral function of
SrVO; (closed circles) to the V@partial density of states for Sr\{Jdashed curve) obtained from the
band-structure calculation, which has been broadenedégxperimental resolution of 140 meV. The
solid curve shows the same \d partial density of states but the energy is scaled down bytarfaf 0.6.
Figure and caption from Ref. [92] (see also [93]).

In the case of Nig xSeg, angular resolved photoemission have revealed a clear
quasiparticle peak, with strong spectral weight redistidns as a function of tempera-
ture [96]. For the metallic phase ob®@3, high photon energy photoemission proved to
be an essential tool in the recent experimental finding ofjtresiparticle peak (Fig. 12)
by Mo et al. [97].

4.3.2. Spectral weight transfers

The quasiparticle peak in the d.o.s is characterized by @rerae sensitivity to
changes of temperature, as shown in the inset of Fig. 14eigghhis strongly reduced as
T is increased, and the peak disappears altogethEreaches;, leaving a pseudogap
at the Fermi energy. Indeed, abosgg, long-lived coherent quasiparticles no longer
exist. The corresponding spectral weight is redistributedr a very large range of
energies, of orded (hence much larger than temperature itself). This is resnemt
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FIGURE 12. Photoemission spectra obW@s, for various photon energies, from Ref. [97]. The highest
photon energy spectrum, corresponding to the greatessleukitivity, reveals a prominent quasiparticle
peak.

of Kondo systems [98], and indeed DMFT establishes a formaimdnysical connection
[26] between a metal close to the Mott transition and the Koprbblem. The local

moment present at short time-scales is screened throudihaasistent Kondo process
involving the low-energy part of the (single- componengatonic fluid itself.

These spectral weight transfers and redistributions argtiactive feature of strongly
correlated systems. As already mentioned, they have bessmadd in the photoemission
spectra of NiS_4xSe,. They are also commonly observed in optical spectroscopy of
correlated materials, as shown on Fig. 13 for metalli®y [99] and thek-BEDT
organics [100]. DMFT calculations give a good descriptibthe optical spectral weight
transfers for these materials, at least on a qualitative [©9, 101].

4.3.3. Transport regimes and crossovers

The disappearance of coherent quasiparticles, and assbsipectral weight trans-
fers, results in three distinct transport regimes [99, 1@A,, 103, 87] for a correlated
metal close to the Mott transition, within DMFT (Figs. 9 amd)1

- In the Fermi-liquid regime T< &2, the resistivity obeys &2 law with an enhanced
prefactor:p = pw (T/€2)?. In this expressionpy is the Mott-loffe-Regel resistiv-
ity pm O ha/€? corresponding to a mean-free path of the order of a singliedat
spacing in a Drude picture.

« ForT ~ g, an“incoherent” (or “bad”) metal regime is entered. The quasiparticle
lifetime shortens dramatically, and the quasiparticlekpisastrongly suppressed
(but still present). In this regime, the resistivity is nktalike (i.e increases with
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FIGURE 13. Left: Optical conductivity of metallic/,03 [99] at T = 17K (thick line) andT =
30K (thin line)). The inset contains the difference of the twedpaAo(w) = 0170k (W) — T30 (W).
Diamonds indicate the measured dc conductivgy. Dotted lines are for the insulating compounds
Vo_,Oz with y = .013 at 1& (upper) and/ = 0 at 7K (lower). Right: Optical conductivity ok-(BEDT-
TTF),Cu[N(CN)]Br at ambiant pressure [100], fdr = 25K andT = 50K. For both materials, transfer
of spectral weight from high energies to the Drude peak iartjevisible as temperature is lowered.

T) but reaches values considerably larger than the Mott tlimy. A Drude
description is no longer applicable in this regime.

- Finally, for e < T < A, quasiparticles are gone altogether and the d.o.s displays
a pseudogap associated with the sdalend filled with thermal excitations. This
yields an insulating-like regime of transport, with theisésity decreasing upon
heating flp/dT < 0). At very low temperature, the resistivity follows an aeated
behaviour, but deviations from a pure activation law areeoled at higher tem-
perature (these two regimes are depicted as the “insulatim)“semi-conducting”
ones on Fig. 9).

These three regimes, and the overall temperature depemndétite resistivity obtained
within DMFT are illustrated by Fig. 14. A distinctive featuis the resistivity maximum,
which occurs close to the Mott transition. This behavioumdeed observed experi-
mentally in both Cr-doped »03 and the organics. In the latter case, the transport data
obtained recently in the Orsay group are depicted on Figad8,compared to DMFT
model calculations [103, 87].

Within DMFT, the conductivity can be simply obtained from alaulation of
the one-particle self-energy since vertex corrections aosent [104, 3]. However,
a precise determination of both the real and imaginary pathe real-frequency
self-energy is required. This is a challenge for most “inilgusolvers”. In prac-
tice, early calculations[102, 99, 101] used the iteratedupeation theory (IPT)
approximation[26]. The results displayed in Fig. 14 haverbebtained with this
technique, and the overall shape of the resistivity curvesgaalitatively reasonable.
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FIGURE 14. Left: Resistivity in the metallic phase close to the Mottnsdion U = 2.4D), as
a function of temperature, calculated within DMFT using tR§ approximation. For three selected
temperatures, corresponding to the three regimes distus#ee text, the corresponding spectral density
is displayed in the inset. Right: IPT results for the registifor values ofU in the metallic regime

(lower curves), the coexistence region (bold curve) andribelating regime (upper two curves). From
Ref. [86, 87].
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FIGURE 15. Left: Temperature-dependence of the resistivity at déffeérpressures, fok-(BEDT-
TTF),Cu[N(CN)]CI. The data (circles) are compared to a DMFT-NRG calcatatidiamonds), with
a pressure dependence of the bandwidth as indicated. Treinedaesidual resistivityp has been added

to the theoretical curves. Right: Transport regimes andsaeers for this compound. Figures reproduced
from Limeletteet al.[103].

However, the IPT approximation does a poor job on the quasifalifetime in the
low-temperature regime, as shown on Fig. 16. Indeed, weotxgegeneral grounds
that, close to the transitior) ImX becomes a scaling function [105] ob/&f and
T /g, so that forT < g it behaves as: 1&@(w = 0) 0 D(T/gX)? 0 T2/(Z2D) which
leads to an enhancement of thé coefficient of the resistivity by Az as mentioned
above. The IPT approximation does not capture this enhagieceand yields the in-
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FIGURE 16. Comparison between the IPT (dashed lines) and NRG methtais (jmes), reproduced
from Ref. [87]. The low-frequency behaviour of the invergetime ImX clearly displays a critically
enhanced curvature, which is not reproduced by IPT.

correct result Il jpt(w = 0) D U?T?/D3, as illustrated For this reason, the numerical
renormalization group (NRG) has been used recently [10B,r86rder to perform
accurate transport calculations within DMFT. This methedeéry appropriate in this
context, since it is highly accurate at low energies anddgieeal-frequency data[32].
DMFT-NRG calculations compare favorably to transport datarganics, as shown on
Fig. 15.

The crossovers described here in electrical transport lsds® consequences for
thermal transport. The thermopower, in particular, digpksaturation in the incoherent
metal regime [106, 101]. This is presumably relevant foicibiealt- based thermoelectric
oxides such as N&€oO, . Finally, let me emphasize that an interesting experimienta
investigation of the correlations between transport @esss (both ab-plane and c-axis)
and the loss of quasiparticle coherence observed in phadsEm has been performed
by Vallaet al. [107] for several layered materials. This study raisesgatng questions
in connection with DMFT, and particularly itsdependent extensions.

4.4. Critical behaviour: a liquid-gas transition

Progress has been made recently in identifying the critieddaviour at the Mott
critical endpoint, both from a theoretical and experimestandpoint. It was been
pointed early on by Castellaat al[108] (see also [109]) that an analogy exists with the
liquid-gas transition in a classical fluid. This is based aualitative picture illustrated
on Fig. 17. The Mott insulating phase has few double occupan@r holes) and
corresponds to a low-density “gas”, while the metallic ghasrresponds to a high-
density “liquid” with many double-occupancies and holes tfgat the electrons can be
itinerant).
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FIGURE 17. Cartoon of a typical real-space configuration of electronthé Mott insulator (left) and
metallic (right) phase. The insulator has few double-oemgpes or holes, and corresponds to a gas of
these excitations. Fluctuating local moments exist inphiase. The metal has many double-occupancies
and holes, corresponding to a dense “liquid”. Electronstarerant in the metallic phase, and the local
moments are quenched. Within DMFT this quenching is akin(seH-consistent) local Kondo effect.

Recently, this analogy has been given firm theoretical fatinds within the framework
of a Landau theory [68, 110, 111] derived from DMFT by Kotlerd coworkers. In
this framework, a scalar order parameges associated with the low-energy electronic
degrees of freedom which build up the quasiparticle resomanthe strongly correlated
metallic phase close to the transition. This order paranoeigples to the singular part of
the double occupancy (hence providing a connection to thbtgtive picture above), as
well as to other observables such as the Drude weight or Hvewductivity. Because of
the scalar nature of the order parameter, the transititsifalhe Ising universality class.
In Table 1, the correspondence between the Ising model ijeantand the physical
observables of the liquid-gas transition and of the Mottahgtsulator transition is
summarized.

In Fig. 18, the dc-conductivity obtained from DMFT in the féilled Hubbard model
(using IPT) is plotted as a function of the half-bandwiithfor several different temper-
atures. The curves qualitatively resemble those of theylsiodel order parameter as
a function of magnetic field (in fac) — D¢ is a linear combination of the field and
of the mass term in the Ising model field theory). Close to the critical poistaling
implies that the whole data set can be mapped onto a univiersalof the equation of
state:

(@) = W2 £ (yJrpe/ o) (111)

In this expressiorny andd are critical exponents associated with the order pararaater
susceptibility, respectivelyp) ~ h'/% atT = T, andx = d(@)/dh~ |T —T| Y. f.. are
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TABLE 3. Liquid-gas description of the Mott critical endpoint. Thesaciated
Landau free-energy density read® + ug®* — hg (a possiblep® can be eliminated
by an appropriate change of variables and a shiét)of

| Hubbard model | MottMIT | Liquid-gas | Ising model |
D — D¢ P— Pc P—Pc Fieldh
(w/ some admixture of)
Distance to
T-Te T-Te T-Te critical pointr
(w/ some admixture affi)
Low-w Low-w Vg — VL Order parameter
spectral weight | spectral weight (scalar fieldgp)

\
0.995

D/Dc

FIGURE 18. IPT calculation of the dc-conductivity as a function of thaffbandwith for the half-
filled Hubbard model within DMFT, for several different teeratures. Increasing drives the system
more metallic. The curve a = T; displays a singularity (vertical slope: dot), analogoush® non-
linear dependence of the order parameter upon the magredtiafia second-order magnetic transition.
Hysteretic behaviour is found far < Te.

universal scaling functions associated with> T; (resp.T < T¢). A quantitative study
of the critical behaviour of the double occupancy within DMivas made in Ref. [110],
with the expected mean-field values of the expongntsl, o = 3.

Precise experimental studies of the critical behaviouhatNlott critical endpoint
have been performed very recently, using a variable pregsghnique, for Cr-doped
V203 by Limeletteet al.[112] (Fig. 19) and also for the-BEDT organic compounds
by Kagawaet al. [113]. These studies provide the first experimental demmansh of
the liquid-gas critical behaviour associated with the Muitical endpoint, including a
a full scaling [112] onto the universal equation of statel(11
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FIGURE 19. Conductivity of Cr-doped YOg3, at the critical endpoint = T, measured as a function
of pressurd®/P; (Limeletteet al. [112]). A characteristic sigmoidal form is found, which iglMitted by
0 — 0c ~ |P—P:|¥2 (plain line). Inset: log-log scale. See Ref. [112] for a fedperimental study of the
critical behaviour, including scaling onto the universgiation of state.

4.5. Coupling to lattice degrees of freedom

Lattice degrees of freedom do play a role at the Mott tramsitn real materials,
e.g the lattice spacing changes discontinuously througlitst-order transition line in
(V1_x Crx)203, as displayed in Fig. 20. In the metallic phase, the d-edestparticipate
in the cohesion of the solid, hence leading to a smallercetsipacing than in the
insulating phase.

Both the electronic degrees of freedom and the ionic pastioust be retained in order
to describe these effects. In Ref. [114] (see also [115Ph sumodel was treated in the
simplest approximation where all phonon excitations aggewted. The free energy then
reads: )
1 —
F =B (v—vo)®
2 Vo
In this expressiony is the unit-cell volumeBy is a reference elastic modulus and the
electronic part of the free-energy depends on through the volume-dependence of the
bandwith. In such a model, the critical endpoint is reachbdmthe electronic response
function:

+ Fel [D(V)] (112)

(92Fe|
X= ~ D2 (113)
is large enough (but not infinite), and hence the criticalgeraturel; of the compress-
ible model is larger tharTCe' (at which x diverges in the Hubbard model). The com-

pressibilityk = (vaZF/dvzf1 diverges aflc. This implies an anomalous lowering of
the sound-velocity at the transition [116, 117], an efféetthas been experimentally
observed in th&-BEDT compounds recently [118], as shown on Fig. 21.
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FIGURE 20. Left: Change of the lattice constant as a function of temipeeafor two samples of
(V1-xCry)203 with different Cr-concentrations. The discontinuous a&im the lattice constant through
the first-order transition transition line is clearly seemn X = .006, while the sample witlk = .004 is
slightly to the right of the critical point. Right: Percegavolume change of the unit-cell volume close to
the critical line, reflecting the critical behaviour of theder parameter. Reproduced from Ref. [109]

We emphasize that, within DMFT, an unambiguous answer ismgio the “chicken
and egg” question: is the first-order Mott transition drivsgrelectronic or lattice degrees
of freedom ? Within DMFT, the transition is described as attbnic one, with lattice
degrees of freedom following up. In fact, it is aremarkabfedifing of DMFT that a
purely electronic model can display a first-order Mott traos and a finite-T critical
endpoint (associated with a divergixg, provided that magnetism is frustrated enough
so that ordering does not preempt the transition. Whethgratho holds for the finite-
dimensional Hubbard model beyond DMFT is to a large exter@en question (see
[41] for indications supporting this conclusion in the 2ea

4.6. The frontier: k-dependent coherence scale, cold and hepots

A key question, still largely open, in our theoretical urstanding of the Mott transi-
tion is the role of spatial correlations (inadequatelytedeby DMFT). This is essential
in materials like cuprates, in which short-range spatiatedations play a key role (in
particular magnetic correlations due to superexchangdirg to a strong tendency to-
wards the formation of singlet bonds, as well as pair cotiaaig). In the regime where
the quasiparticle coherence scafeis small as compared to the (effective strength of
the) superexchang& the DMFT picture is certainly deeply modified. There is com-
pelling experimental evidence that the quasiparticle caiee scale then has a strong
variation as the momentuknis varied along the Fermi surface, leading to the formation
of “cold spots” and “hot regions”. Such effects have beemtbin recent studies using
cluster extensions of the DMFT framework ([119], see al€) [20]).
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FIGURE 21. Relative change in the sound velocityiof BEDT-TTF),Cu[N(CN)]Cl as a function of
temperature, at various pressures. The velocity variatigalative to the value at 90 K. Inset: position
and amplitude of the anomaly below 230 bars. (Figure andarafrom Ref. [118]).

5. ELECTRONIC STRUCTURE AND DYNAMICAL MEAN-FIELD
THEORY

The possibility of using DMFT in combination with electrenstructure calculation
methods, in order to overcome some of the limitations of B for strongly corre-
lated materials, was pointed out early on [3]. In the lastyears, very exciting develop-
ments have taken place, in which theorists from the elemtisiructure and many-body
communities joined forces and achieved concrete impleatiens of DMFT within
electronic structure calculations. The first papers [122] implementing this com-
bination appeared in 1997-1998, and the field has been estlyexative since then. For
reviews of the early developments in this fitldsee Refs. [123, 124, 125, 126]. For
on-line material presented at recent workshops, see R&Xg, 128, 129]

5.1. Limitations of DFT-LDA for strongly correlated systems

In Sec. 3.2, | briefly presented the basic principles of dgtisnctional theory (DFT).
In practice, the local density approximation (LDA) to theckange-correlation energy,
and its extensions (such as the generalised gradient apmtian) have been remark-
ably successful at describing ground-state propertiesafynsolids from first princi-
ples. This is also the state of the art method for band streiatalculations, with the
additional assumption that Kohn-Sham eigenvalues cantbspireted as single-particle
excitations. For strongly correlated materials howev&TIDDA has severe limitations,

16 This section is merely a brief introduction to the field andaialy not as an exhaustive review.
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which we now briefly review.

Issues about ground-state propertiessround-state properties, such as equilibrium
unit-cell volume, are not accurately predicted from LDA émen GGA) for the most
strongly correlated materials. This is particularly trdematerials in which some elec-
trons are very localized, such as the 4f electrons of rarh-eéements at ambiant or low
pressure (Sec. 1.3.3). If these orbitals are treated ascalarbitals, the LDA leads to
a much too itinerant character, and therefore overestsriagecontribution of these or-
bitals to the cohesive energy of the solids, hence leadiag®o small unit-cell volume.
If instead the f-orbitals are treated as core states, thiilegum volume is then over-
estimated (albeit closer to experimental value, in the chsare earth), since binding
is underestimated. Phenomena such as the volume-collaps#ibns, associated with
the partial delocalization of the f-electrons, (and assted structural changes) under
pressure [15] are simply out of reach of standard methodhight pressures however,
the f-electrons recover itinerant character and DFT-LD&&S does better, as expected.
In some particular cases, the electrons are just on the eétpe itinerant/localized be-
haviour. In such cases, standard electronic structureadstperform very poorly. A
spectacular example is tldephase of metallic plutonium in which the unit-cell volume
is underestimated (compared to the experimental valueshywach as 35% by stan-
dard electronic structure methods (Fig. 24) ! All these eplasillustrate the need of a
method which is able to handle intermediate situations eetwully localized and fully
itinerant electrons. | emphasize that this issue may depaiaally on energy scales,
with localized character most pronounced at high-eneriggr{sime) scales, and itiner-
ant quasiparticles forming at low-energy (long time scales

Excitation spectra. Even though the Kohn-Sham eigenvalues and wavefunctions
are, strictly speaking, auxiliary quantities in the DFTrf@lism used to represent the
local density, they are commonly interpreted as energy $amaklectronic structure
calculations. This is very successful in many solids, bugsd@ail badly in strongly
correlated ones. The most spectacular difficulty is thatthhgulators are found to have
metallic Kohn-Sham spectra. This is documented, e.g by Zg.in which the LDA
density of states of two Mott insulators, LalgGnd YTiO; are shown. | emphasize
that, in both compounds (as well as in many other Mott insugt the Mott insulating
gap has nothing to do with the magnetic ordering in the grestate. Even though
magnetic long-range order is found at low-enough tempegatn both materials (below
Tn >~ 140 K in LaTiO; andT¢ ~ 30 K in YTiO3), the insulating behaviour and Mott
gap & 1leV for YTiO3) are maintained well above the ordering temperature. Ieroth
cases (such as \W), the insulating phase is a paramagnet and the LDA spectsum i
again metallic.

In strongly correlated metals, e.g close to Mott insulattve LDA bandstructure is
also in disagreement with experimental observations. Whenain discrepancies are the
following. (i) LDA single-particle bands are generally tbwad. Correlation effects lead
to band-narrowing, corresponding to a (Brinkman-Rice)agement of the effective
masses of quasiparticles. This becomes dramatic in freleataterials, where the large
effective mass is due to the Kondo effect, a many-body psowedsch is beyond the
reach of single-particle theories. (ii) The spectral weigassociated with quasiparticles
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is reduced by correlations, and the corresponding misgagtsal weight - Z is found

in intermediate or high-energy incoherent excitationkdrrelated metals, as well as in
Mott insulators, lower and upper Hubbard bands are obsewileidh are absent in the
LDA density of states (e.g for Srvand CaVQ in Fig. 11 and Fig 23).

Related correlation effects are observed also for pursitian metals, such as nickel,
in which the LDA spectrum is unable to account for: thke—6eV photoemission
satellite, and for the correct values of the occupied badthwand exchange splitting
between the majority and minority band in the ferromagngtouind-state.

5.2. Marrying DMFT and DFT-LDA

In this section, | briefly describe the (happy) marriage et#&bnic structure methods
and dynamical mean-field theory. I first give a simple prattiormulation in terms
of a realistic many-body hamiltonian, and keep for the nextisn the construction of
energy functionals.

The first issue to be discussed is the choice of the basissétdwalence electrons.
Since DMFT emphasizes local correlations, we need a lazhlimsis set, i.e basis
functions which are centered on the atomic positiena the crystal lattice. Up to now,
most implementations have used basis sets based on linéfar-tiruorbitals [130, 131]
(LMTOS) xLr(r) = x.(r = R) (in which L = {I, m} stands for the angular momentum
quantum number of the valence electrons). These basis HBetstlee advantage to
carry over the physical intuition of atomic orbitals frometlisolated atoms to the
solid. In the words of their creator, O.K. Andersen, LMTOsbd electronic structure
methods are “intelligible” because they are based on a naihand flexible basis set
of short-range orbitals [132]. There are several possibtaces of basis even within
the LMTO method. Basically, a compromise has to be made legtwiee degree of
localisation and the orthogonality of the basis set. Thetroaslised basis set (the so-
called “screened” on-basis) is not orthogonal and will therefore involtan overlap
matrix O » = (XL|xv). Since DMFT neglects non-local correlations, they may fee th
best one to choose. However, a non-orthogonal basis setohag simple to implement,
for technical reasons, when using some impurity solvegs@®C). Orthogonal LMTOs
basis sets are somewhat more extended.

Another possibility is to use basis sets made of Wanniertfans. This has been little
explored yet in combination with DMFT. Wannier functionsida fact be constructed
starting from the LMTO formalism by using the “downfoldingfocedure (the so-called
third-generation LMTO [132, 133]). Recently, DMFT has beeplemented within a
downfolded (NMTO) Wannier basis, and successfully appietlansition metal oxides
with non-cubic structures. Other routes to Wannier fumgigsuch as the Marzari-
Vanderbilt construction of maximally localised Wannien&tions [134]) might be worth
pursuing. Given a basis set, the electron creation opeatitopointr in the solid can be

17 1n the following, we assume an orthogonal basis set to sfynihie formalism. The overlap matrix can
be easily reintroduced where it is appropriate
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decomposed as:

pi(r) = IzLxﬁR(r) Gr (114)

The decomposition of the full Green’s function in the soli@{r,r',;T — 1) =
—(Ty(r,)Y'(r', 7)) (as well as of any other one-particle quantity) thus reads:

G<r7rl7 IOL)) = Z ZXLR(r)GLL’(R - RI? iw)XL’R’(r/)* (115)
RR’LL’

The simplest combination of DMFT and electronic structueghmnds uses a starting
point which is similar to that of the LDAU approach [135, 136]. Namely, one first
separates the valence electrons into two groups: those li@mhvwstandard electronic
structure methods are sufficient on one hand [e=gs, p in an oxide orl = s, p,d in
rare-earth compounds), and on the other hand the subsebitdlsrwhich will feel
strong correlations (e.lg= d or | = f). This separation refers, of course, to the specific
choice of basis set which has been made. In the followingnbtiethe orbitals with
in the correlated subset by the indax {m,o} (andb,---). Let us then consider the
one-particle hamiltonian:

Hes=S eXSIA)(A| = ghﬁs,(k)cll_cku (116)
A

obtained from solving the Kohn-Sham equations for the nmadtander consideration.
The Kohn-Sham potential we have in mind is, in the simplegti@mentation, the one
obtained within a standard DFT-LDA (or GGA) electronic sture calculation of the
local density. In a more sophisticated implementation, @y also correct the local
density by correlation effects and use the associated ISitam potential (i.e modify
the self-consistency cycle over the local density in congparto standard LDA, see
below). A many-body hamiltonian is then constructed aied:

H = Hks—Hpc +Hu (117)

In this expressionHy are many-body terms acting in the subset of correlatedadsbit
only. They correspond to matrix elements of the Coulombraution, and will in general
involve arbitrary 2-particle termsabcdcgcgcdcc. In practice however, one often makes a
further simplification and keep only density-density iaigrons (for technical reasons,
this is always done when using QMC as a solver). To simplifations, we shall limit
ourselves here to this case, and use:

1 A A
Hu = ég éuab ARafRb (118)
a
with:
Ui =Ummt » ULy =Url = Ut — g (119)

In this expressionn is the Hund’s coupling. For a more detailed discussion of the
choice of the matrix of interaction parameters, see e.g[R86].
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The “double-counting” ternidpc needs to be introduced, since the contribution of in-
teractions between the correlated orbitals to the totaiggrie already partially included
in the exchange-correlation potential. Unfortunatelig itot possible to derive this term
explicitly, since the energy within DFT is a functional oéttotal electron density, which
combines all orbitals in a non-linear manner. In practibe,rhost commonly used form
of the double-counting term is (for other choices, see e3F])1

D
HDC = Z V, bgcgacba

Roab
VRS = & [U(N—%> —J(N“—%)} (120)

The many-body hamiltonian (117) is then soved using the DMpproximation. This
means that a local self-energy matrix is assumed, whichiatt® subset of correlated
orbitals only:

0 0
I (i) = Srp ( 0 Talie) ) (121)
In the DMFT framework, the local Green’s function in the @&ated subset:
Gap(T —T') = —(Tc(T)cp(T')) (122)

is represented as the Green'’s function of the multi-oriom@lurity model:

B
/ dr/ dr’ % N ab T—1 b(T')Jr%%Uab/o dTng(T)Np(T)
a
(123)

The Weiss function (or alternatively the dynamical meafdfier effective hybridisa-
tion function Agp = (it + U)dap — [%Ofl]ab) is determined, as before, from the self-
consistency condition requesting that the on-site Grdenstion in the solid coincides
with the impurity model Green’s function. The componentsh&f Green’s function of
the solid in the chosen basis set read:

[G (K ion) = (ian+p)d — S + V7 — i (ion) (124)

In this expression, the self-energy matkiy ; is constructed by using the components
of the impurity self-energyap = [4; ]ab— [Gjylab into (121). The self-consistency
condition relating implicitly%, andGimp, finally reads:

Glicn)an = 3 [lin + )8 —HEE U - Snulan] | a2s)

Note that this involves a matrix inversion at edctpoint, as well as &-summation

over the Brillouin zone (which does not, in general, reducean integration over the
band density of states, in contrast to the single-band cas) let us emphasize that,
even though the self-energy matrix has only componentsdrstibspace of correlated
orbitals, the components of the Green’s function corredpanto all valence orbitals
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FIGURE 22. DMFT combined with electronic structure calculations.rgig from a local electronic
densityp(r), the associated Kohn-Sham potential is calculated and ¢theSham equations are solved.
The Kohn-Sham hamiltonia-ﬁﬁs,(k) is expressed in a localised basis set (e.g LMTOSs). A doudiaeing
term is substracted to obtain the one-electron hamiltorigs H<S — HPC. The local self-energy matrix
for the subset of correlated orbitals is obtained throughititration of the DMFT loop: a multi-orbital
impurity model for the correlated subset is solved (redwayroontaining as an input the dynamical mean-
field (or Weiss field%). The self-energy .,y is combined withHg into the self-consistency condition
Eq. (125) in order to update the Weiss field (blue arrow). At¢ind of the DMFT loop, the components
of the full, k-dependent, Green'’s function in the local basis set can loalated and thus also an updated
local densityp(r). This is used (dashed arrow) as a new starting density fokde-Sham calculation
until a converged local density is also reached . Alterrdifivin a simplified implementation of this
full scheme, the DFT-LDA calculation can be converged firgt the correspondinly injected into the
DMFT loop without attempting to updaj(r).

(s,p,d,---) are modified due to the matrix inversion. Correlation eéfeancoded in the
self-energy affect the local electronic density, which ¢encalculated from the full
Green’s function as:

p(r) = ZXLk(r)GLL’(ka.[:0_)X|i</k(r) (126)

In a complete implementation, self-consistency over tleallalensity should also be
reached [73, 138]. The general structure of the combinatfddMFT with electronic
structure calculations, as well as the iterative procedisel in practice to solve the
DMFT equations, is summarised on Fig. 22.
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5.3. An application tod* oxides

On Fig. 23, | show the spectral functions recently obtaimeRef. [95] for SIVQ,
CaV(Qs, LaTiOz and YTiO;. These oxides have the same formal valence of the d-
shell @1). The single electron sits in they multiplet, and the (emptygy doublet is
well separated in energy. They have a perovskite structitreperfect cubic symme-
try for the first one (Fig. 2) and increasing degree of stnadtdistortion for the three
others (corresponding mainly to the GdFRelie tilting of oxygen octahedra). These
calculations were performed in a downfolded (NMTO) basis seluding the off-
diagonal components of the self-energy matrix. The latterimportant for the com-
pounds with the largest structural distortions. For consoar, the LDA density of states
are shown on the same plot. For an independent DMFT caloolati the Ca/Srv@
compounds, see Ref. [94, 93] and Ref. [121, 139] for earlgutations of the doped
system La 4SKTiO3. The spectra in Fig. 23 have features which should be famdia
the reader at this point, namely:

+ SrVO3 and CavQ@ are correlated metals with lower(—1.5 eV) and upper
(~ 2.5 eV) Hubbard bands, as well as a relatively moderate nangwi the
guasiparticle bandwith. The calculated spectra comparerdaly to the recent
photoemission experiments of Fig. 11 (see [93] for a conspai)i

« LaTiO3 and YTiOz are Mott insulators, with quite different values of the Mggip
(~ 0.3 eV and~ 1 eV, respectively) as observed experimentally. It was esizled
in [95] that the main reason for this difference is that thieitat degeneracy of the
tog multiplet is lifted to a greater degree in YTiQhan in LaTiQ due to the larger
structural distortion. Indeed, reducing orbital degeogia known to increase the
effect of correlations (for comparable interaction stténg140, 141, 142, 143].
It was also found in Ref. [95] that both compounds develop g yeonounced
orbital polarization, of a quite different nature in eachmpmund (see [144] for a
discussion of orbital ordering in these materials and [Id5& recent experimental
investigation).

This example, as well as several other recent studies, denata that the embedding
of DMFT within electronic structure calculations yields awerful quantitative tool
for understanding the rich interplay between correlatifieces and material-specific
aspects.

5.4. Functionals and total- energy calculations

In order to discuss total energy calculations in the LEBMFT frameworK®, it
Is best to use a formulation of this scheme in terms of a (freaergy functional.
Kotliar and Savrasov [138, 147] have introduced for thisqese a (“spectral-density-

18 | acknowledge a collaboration with B. Amadon and S. Bierm@ri6] on the topic of this section.
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FIGURE 23. LDA+DMFT spectral densities of the transition-metal oxddiscussed in the text, from
Ref. [95]. The (QMC) calculations were madeTat= 770K. For comparison, the LDA d.o.s are also
displayed (thin lines).

") functional of both the total local electron densip(r) and the on-site Green’s
function in the correlated subseBRY (denotedGgp for simplicity in the follow-
ing). Let us emphasize that these quantities are indepgnsiene Gy, is restricted
to local components and to a subset of orbitals so pi{aj cannot be reconstructed
from it. The functional is constructed by introducing (seect®n. 3) source terms
A(r) = vks(r) — ve(r) and AZp(ian) coupling to the operatorgs™(r)y(r) and to
SRXAr =R, DY, ) xp(r —R) = caR(r)ch(r’), respectively. Furthermore,
the Luttinger-Ward part of the functional is approximatgdtbat of the on-site local
many-body hamiltoniakly — Hpc introduced above. This yields:

Q[p(r), Gap; Vks(r ), AZ ab]LDA+DMFT =
—trinfich + U+ 30% —vs(r) — x*.AZ.x] — [ dr (vks—Ve)p(r) —tr[G.AZ] +
+3 [ drdr’p(NU(r —r")p(r') +Exclo(r)] + Sr (Pimp[GR] — Poc[GEF])
In this expressiony*.AZ.x denotes the “upfolding” of the local quantiyz to the
whole solid: x*.AZ.x = Yr YavXa(r — R)Zap(ian) xp(r’ — R). Variations of this func-

tional with respect to the sourcé€)/dvks = 0 anddQ/d%,, = O yield the standard
expression of the local density and local Green’s functioterms of the full Green’s
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function in the solid:

p(r) = (r|Glr) , Gap(ih) = (Xar|Glxer) (127)
with: L
A . 1 B
G= {Ia)n—l—[,l-l—éDZ—VKS(r)—X*.AZ.X} (128)
or, in the local basis set (see (124)):
A - n s - _1
G= 3 Ixu) |(ien+p).1— () — a8 (ian)|  (xud (129)
KLY

From these relations, the Legendre multiplier functigasandAZ could be eliminated
in terms ofp andGgp, so that a functional of the local observables only is oladin

Loa+DMET[P, Gab] = Qupoa+pmeT [P(1), Gani A [P, G, AZ [p, G]] (130)

Extremalisation of this functional with respectgddl /dp = 0) andGgy, (I /O Gap =
0) yields the expression of the Kohn-Sham potential andesedfgy correction at self-
consistency:

OE
— ! ! ! XC
vks(r) _vc(r)+/dr Urr—r)p(r)+ 50(r) (131)
o 5q)imp 5¢DC __<imp DC
AZ o= o — 3G =2 —Vap (132)

Hence, one recovers from this functional the defining equatiof the LDA+DMFT
combined scheme, including self-consistency over thel ldeasity (127). Using (66)
and (61), one notes that the free-energy can be written as:

QL paDMFT = QorT +1r In Ges(K,iewn) ™ —tr In G(k,icn) ™2 — tr [GimpZ™P] + 3 r Pimp +
+1r [GimpVP€] — S r Poc (133)

In this expressionQpgT is the usual density-functional theory expression (66)jevh
Gksis the Green’s function corresponding to the Kohn-Sham haman, i.e without
the self-energy correction:

Gra = itn+ p — hes(k) (134)
A careful examination of the zero-temperature limit of (L3ads to the following
expression of the total energy [146]:

ELpa+DMFT = Eprr — 3 €554 (Hks) + (Hu) — Enc (135)
= Epr1 + Yk S e o) omeT — (6] ccu)ks] + (Hu) — Enc (136)

The first term ,Epet is the energy found within DFT(LDA), using of course the lbca
density obtained at the end of the LBAMFT convergence cycle, namely:

Eorr = 3 e+ [ drlue(r) —wesl0)]p(r) + 3 [ drdp(r)u(r —1)p(r) + ]
A
(137)
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Hence the total energy within LDADMFT is made of several terms. Importantly, it
doesnot simply reduce to the expectation valdid) of the many-body hamiltonian
(117) introduced in the previous section. Furtherm@is) = tr [Hk sG] must be eval-
uated with the full Green’s function including the self-eme correction. Therefore,
this quantity does not coincide with the sum of the (occupkmhn-Sham eigenvalues
>4 s)’fS: trHksGks. EQ. (135) expresses that the latter has to be removedEggm, in
order to correctly take into account the change of energyimgiinom the Kohn-Sham
orbitals. This change can also be writtéts)pmrT — (Hks)ks = tr[(G — Gks)Hksg|-
This is used in the second expression for the energy, whigbhasizes the modi-
fication of the density matrix c[kcL/k> by correlations. Finally, the double-counting
correction to the energy is the zero-temperature limit-gHpc) + tr [GZPC] — dpc.
The simplest form of double-counting correction (neglegtd for simplicity) cor-
responds to®Ppc[Gap] = UN(N — 1)/2 with N = F,na = F,trGaa. HenceVIC =
dPpc/dGap = U (N — 1/2)ngdap, and (Hpc) = tr[GZP€] = UN(N — 1/2) so that, fi-
nally: Epc=U N(N — 1)/2.

Another formula for the total energy within LDA+DMFT has leesed by Heldet
al.in their investigation of the volume collapse transitiorG&rium [148, 149].

Total energy calculations within LDADMFT, with full self-consistency on the local
density have been performed by Savrasov, Kotliar and Alnahi@3, 138, 147] for
metallic plutonium with fcc structure, corresponding t@ rphase. The results are
reproduced in Fig. 24, in which the total energy is plotte@ &snction of the unit-cell
volume (normalised by the experimental value), for différealues of the parameter
U. It is seen that the GGA calculation underestimates themelby more than 30%.
As U increases, the minimum is pushed to higher volumes, and ggoeEment with
experiments is reached f&f in the range 8 — 4eV. Interestingly, in the presence
of correlations, the energy curve develops a metastabkoshminimum at a lower
volume, which can be interpreted as a manifestation obtihase (which has a more
complicated crystal structure however). For the corredpanspectra, see [147]. In
these DMFT calculations, thé-phase of plutonium is described as a paramagnetic
metal, in agreement with experiments. In contrast, a stddi+U treatment[72, 150]
also corrects the equilibrium volume, but at the expensatbducing an unphysical
spin polarizatiof?.

5.5. A life without U: towards ab-initio DMFT

The combination of DMFT with electronic structure methoésdibed in the previ-
ous section introduces a mattikof local interaction parameters acting in the subset of
correlated orbitals, as in the LDAJ scheme. Some of these parameters can be deter-
mined from constrained LDA calculations, or instead thay loa viewed as adjustable.

19 For an alternative description of thiephase of plutonium, in which a subset of the f-electrons are
viewed as localised while the others are itinerant, see][151
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FIGURE 24. Total energy of fcc plutonium as a function of unit-cell visla (normalised by the
experimental volume of th@-phase), reproduced from Ref. [73, 147]. The upper curyea€XGA result.
Other curves are from LDA+DMFT with different valuesdf The lower curve is for the bcc structure.

Furthermore, introducing these interactions implies teedhfor a “double-counting”
correction in order to remove the contribution to the totargy already taken into ac-
count in the (orbital-independent) exchange correlatioteptial. As such, this theory
has great practical virtues. However, going beyond thisiéaork and being able to
treat the electron-electron interaction entirely fromtfiggrinciples is a tempting and
challenging project. Work in this direction have appeamzkently [152, 125, 153, 154,
155, 156, 6].

Physically, the Hubbard interaction is associated withsttreened Coulomb interac-
tion as seen by a given atom in the solstreenings essential for estimating the order
of magnitude of this parameter correctly. The naive view thas simply the on-site
matrix element of the Coulomb potential in the local baset-vgould lead to values
on the scale of tens of electron-volts, while the appropnatue in the solid is a few
eV’s | This immediately points towards a key notion: thatfaet, the Hubbard) is a
concept whicldepends on the energy-scadd high energies (say, above the plasma fre-
guency in a metal), it has a very large value associated Wglhare, unscreened, matrix
element, while at low energy screening takes place and dnsiderably reduced. For
first-principle RPA studies of the frequency dependench@streened local interaction,
see [5, 6].

In fact, the screened effective interaction in a solid candbeted, quite generally, to
the density-density correlation function. Let us startrirthe first-principles hamilto-
nian:

H=—%i 308+ 5iv(ri) + 3 Sigjuri—rj)
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= -1 [drg O2@+ [drv(n)A(r) + 3 fdrdr’u(r —r') DA(NAC) . (138)

in which u(r —r’) = €/|r —r'| is the bare Coulomb interaction,= @' (r)y(r) and
: () : denotes normal ordering. The (connected) density-densitrelation function is

defined as:
X(rr'st—=1) = (T (A(r,7) — p(r)) (A", T') — p(r')) (139)

with p(r) = (A(r)) the local density. The screened effective interactionsead
W(r,r'jic) =u(r —r')— /drldrzu(r —r1)x(ri—rajicu(ra—r’) (140)

This can also be expressed in terms of the polarizafiea —x.[1—u.x]~* asW =
u.[1— Pu]~! (the dot is an abbreviation for spatial convolutions). Wephasize that

in this expressionP is the exact polarization operator, not its RPA approxiorati
The screened interactio can be interpreted as the correlation function of the local
scalar potential field conjugate tgr), as can be shown from a Hubbard-Stratonovich
transformation.

Armed with this precise formal definition of the screenee@iattion in the solid (and,
naturally, also of the full Green’s functid®(r,r’; 1 — ') = —(Tw(r, )Y (1", 7)), we
would like to adopt now a local picture in which we focus on aegi atom. This is
done,as before, by specifying a complete basis set of fumeki_r(r) localised around
the atomic position®. There is of course some arbitrariness in this choice, aadyr
discussed. Adopting a local point of view, we focus on therimatements of the Green’s
function and of the screened effective interactiona given atomic site

Gab(iw) - <XaR‘G‘XbR> 9 Wa1a2a3a4(iw) - <X8.1RX8.2R‘W‘X8.3RX&4R> (141)

In this expression, the indicesb,--- can run over the full set of valence orbitals, or
alternatively over a subset corresponding to the more glyaorrelated ones. This is
a matter of choice of the local quantities we decide to focusrollowing the point of
view developed in the third section of these lectures, theidea is again to introduce
an exact representatioof these local quantities as the solution of an atomic prable
coupled to an effective bath. Because we want to representottal components of
both G andW, this effective problem now involves two Weiss functionsttbin the
one-particle and two-particle sectors. This is an exterfidied of dynamical mean-field
theory (EDMFT). The action of the local problem reads:

S= [drdt' [- 3 ¢} (T)¥,5 (T — T)eo(T)+
+3 3 1 Gy (T)Cay (T) : Zayagagas (T—T') 1 ¢4, (T)Cay (T') 1] (142)

The local screened interaction is calculated from thisotiffe action asWimp = % —
U Ximp? With Ximp the 2-particle impurity correlation funcition. The two \8sifieldss
and? are adjusted in such a way tfGp = Gap andWimp = Wapcq, the local quantities
in the solid. The impurity model (142) can be viewed as an atgbridised with an
effective bath of non-interacting fermions and also codpe a bath of fluctuating
electric scalar potentials.
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This construction provides an unambiguous definition of thubbard interactions
Uapcd(iw) in the solid (as well as of the usual dynamical mean-fi¢ld assuming
of course that the local components of the screened interadt and of the Green’s
function G are known. Frequency- dependenceZofis essential in a proper definition
of these Hubbard interactions, at least when a wide rangeesfyg scale is considered.
Naturally, one degree of arbitrariness remains, assatiaith the choice of the basis
set: 7 will change when a different basis set is considered, kegtia same form of
the effective interactiodV(r,r’;icw) in the full solid.

To proceed from these formal considerations to a practada e, we need to decide
howW andG will actually be calculated, and this of course will involaeproximations.
Again, a free-energy functional is an excellent guidana# iadeed such a functional
of the full G(r,r’;iw) andW(r,r’;iw) has been introduced by Almbladh et al.[157],
generalizing the Baym-Kadanoff construction (see alspf@7independent work). The
functional reads:

M(G,W)=TrInG-Tr[(G;' -G 1G] - %TrInW+ %Tr[(ul ~WHw] + W[G,W|
(143)
Ggl =i+ U+ D2/2—VH corresponds to the Hartree Green’s function withbeing
the Hartree potential. For a derivation of (143) using a HubdEStratonovich trans-
formation and a Legendre transformation with respect td lidtand W, see [47].
The functionalW[G,W] is a generalization of the Luttinger-Ward functior@[G],
whose derivative with respect @ gives the self-energy. Here we have, similarly (from
or/6G=0r/6W=0):
oV oV
— P=-2_— 144
oG’ ’ oW (144)
A well established electronic structure calculation mdthahich offers in part an

alternative to DFT-LDA, is the so-called GW approach [1583€ [159] for a review).
This corresponds to the following approximation to thdunctional:

Gfl — Gﬁl _ ZXC , zXC — Wfl — ufl _ P

1
Wewa = —é/drdr’/drdr’G(r,r’,r—r’)W(r,r’,r—r’)G(r’,r,r’—r) (145)

which yields the RPA-like approximation to the polarisat@and exchange-correlation
self-energyP = Gx G andZ*® = —Gx W. The GW approximation to th&’-functional
is easily written in terms of the components®andW in the chosen basis set:

1 RR/ RR’ R'R
Wowa=— [dr 3 5 S (W (MEER(-T)  (149)
Ly, RR/
This can be separated into a contributwgmoc from non-local components (corre-
sponding to the terms witR # R’ in (146)) and a contributio9%, [GRR, WRR] from
local components onlyR = R’).
The GW approximation does treat the screened Coulomb cttenafrom first-
principles, but does not treat successfully strong caiimelaeffects. Recently, it has
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been suggested to improve on the GWA for the local contiwimstby using the DMFT
framework [152, 153] (see also [125, 154, 155, 156]). Onetlegnk of different approx-
imations to thé!-functional in this context, depending on whether the DMIgpr@ach

is used for all the valence orbitals= s, p,d, - - -, or for a subset (corresponding to the
indexa, b, ...) of correlated orbitals only. The correspondiiegfunctional reads:

RR’ RR’ non-loc loc RR RR
WowomrT [GL L WG] = Yowa  + [Wowa—AY) +Zwimp[Gab s Wabe

(247)
In this expression¥imp is the W-functional corresponding to the local effective model
(142), whileAW removes the components frdlwg’\f\,Awhich will be taken into account
in Wimp, namely:

1
sw—-2% [dr S GRWER(T)GE(-1) (148)
R abcd

If all valence orbitals are included in the DMFT treatmehg second term in the r.h.s of
(147) is absent altogether. If only a correlated subseeetdéd with DMFTAW can be
thought of as a term preventing double-counting of inteéoastin the correlated subset.
In this context however, in contrast to LBADMFT, the form of this double-counting
correction is known explicitly.

Taking derivatives of this functional with respect to thengmnents ofs andW, one
sees that, in the GWDMFT approach, the non-local components of the self-energy
and of the polarization operator keep the same form as in tMA,Gvhile the local
components are replaced by the ones from the effective itypuodel (possibly in the
correlated subset only). The GWDMFT theoretical framework is fully defined by (147)
and the form of the impurity model (142). As before, an intigeeself-consistent process
must be followed in order to obtain the self-energy and swdeeffective interaction,
as well as the dynamical mean-fiedd and effective Hubbard interactio®®. This is
described in more details in Refs. [152, 155, 156]. Conciref@ementations of this
scheme to electronic structure (and to model hamiltonianaell) is currently being
pursued by several groups. For early results, see [152,1833,155, 156, 6].

6. CONCLUSION AND PERSPECTIVES

In these lectures notes, | have tried to give an introductmisome aspects of the
physics of strong electron correlations in solids. Natyyainly a limited number of
topics could be covered. The field is characterized by arfasicig diversity of material-
dependent properties. It is, to a large extent, experinigriiaven, and new discoveries
are undoubtedly yet to come. Also, new territories outsiue ttaditional boundaries
of solid-state physics are currently being explored, sischaarelation effects in nano-
electronic devices or the condensed matter physics of ¢oldsain optical lattices.

On the theory side, these lectures are influenced by the @uthrejudice that (i)
physics on intermediate energy scale matters and may beta Key unusual behaviour
of many strongly correlated materials and that (ii) quaititre theoretical techniques
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are essential to the development of the field, in combinatith phenomenological
considerations and experimental investigations.

Dynamical mean-field theory is a method of choice for treatimese intermediate
energy scales. The basic principles of this approach haaeesiewed in these lectures.
On the formal side, analogies with classical mean-field mhemd density-functional
theory have been emphasized, through the constructioreefenergy functionals of
local observables. A distinctive aspect of DMFT is thatattis quasi-particle excitations
and higher energy incoherent excitations, on equal foothgga result, it is able to
describe transfers of spectra weight between quasipadiatl incoherent features as
temperature, coupling strength, or some other externalnpater (doping, pressure,...)
is varied. | have emphasized that tp@asiparticle coherence scapgays a key role in
the physics of a strongly correlated metal. Above this saghech can be dramatically
reduced by correlations, unusual (non-Drude) transpatsaectroscopic properties are
observed, corresponding to an incoherent metallic regiiis.is the case, in particular,
for metals which are close to a Mott insulating phase. | haiedlip reviewed the DMFT
description of these effects in these lectures, in comparis experiments, as well as
the detailed theory of the Mott transition which has been ohthe early successes
of this approach. | have also provided an (admittedly quitemct) introduction to the
recent combination of DMFT with electronic structure cédtions. These developments
have been made possible by researchers from two commypité@sy forces towards a
common goal. It provides us with a powerful quantitative fooinvestigating material-
dependent aspects of strong electron correlations.

Despite these successes, some key open questions in thesatfysgrongly correlated
electron systems remain out of reach of the simplest versfoBMFT. Indeed, in
materials like cuprates, short-range spatial correlatiplay a key role (in particular
magnetic correlations due to superexchange, leading tamagstendency towards the
formation of singlet bonds, as well as pair correlationd)e3e correlations deeply
affect the nature of quasiparticles. There is compellingeexmental evidence that the
quasiparticle coherence scale has thus a strong variaitimeamomentunk is varied
along the Fermi surface, leading to the formation of “coldtsp and “hot regions”.
Extending the DMFT framework in order to take these effents account may well be
the most important frontier in the field.
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