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Strongly Correlated Electron Materials:
Dynamical Mean-Field Theory

and Electronic Structure

Antoine Georges

Centre de Physique Théorique, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Abstract. These are introductory lectures to some aspects of the physics of strongly correlated
electron systems. I first explain the main reasons for strongcorrelations in several classes of
materials. The basic principles of dynamical mean-field theory (DMFT) are then briefly reviewed.
I emphasize the formal analogies with classical mean-field theory and density functional theory,
through the construction of free-energy functionals of a local observable. I review the application
of DMFT to the Mott transition, and compare to recent spectroscopy and transport experiments.
The key role of the quasiparticle coherence scale, and of transfers of spectral weight between
low- and intermediate or high energies is emphasized. Abovethis scale, correlated metals enter
an incoherent regime with unusual transport properties. The recent combinations of DMFT with
electronic structure methods are also discussed, and illustrated by some applications to transition
metal oxides and f-electron materials.
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1. INTRODUCTION: WHY STRONG CORRELATIONS ?

1.1. Hesitant electrons: delocalised waves or localised particles ?

The physical properties of electrons in many solids can be described, to a good ap-
proximation, by assuming an independent particle picture.This is particularly successful
when one deals with broad energy bands, associated with a large value of the kinetic en-
ergy. In such cases, the (valence) electrons are highlyitinerant: they are delocalised over
the entire solid. The typical time spent near a specific atom in the crystal lattice is very
short. In such a situation, valence electrons are well described using awave-like picture,
in which individual wavefunctions are calculated from an effective one-electron periodic
potential.

For some materials however, this physical picture suffers from severe limitations and
may fail altogether. This happens when valence electrons spend a larger time around
a given atom in the crystal lattice, and hence have a tendencytowardslocalisation. In
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such cases, electrons tend to “see each other” and the effects of statistical correlations
between the motions of individual electrons become important. An independent particle
description will not be appropriate, particularly at shortor intermediate time scales (high
to intermediate energies). Aparticle-like picturemay in fact be more appropriate than a
wave-like one over those time scales, involving wavefunctions localised around specific
atomic sites. Materials in which electronic correlations are significant are generally
associated with moderate values of the bandwidth (narrow bands). The small kinetic
energy implies a longer time spent on a given atomic site. It also implies that the ratio
of the Coulomb repulsion energy between electrons and the available kinetic energy
becomes larger. As a result delocalising the valence electrons over the whole solid
may become less favorable energetically. In some extreme cases, the balance may even
become unfavorable, so that the corresponding electrons will remain localised. In a naive
picture, these electrons sit on the atoms to which they belong and refuse to move. If this
happens to all the electrons close to the Fermi level, the solid becomes an insulator.
This insulator is difficult to understand in the wave-like language: it is not caused by the
absence of available one-electron states caused by destructive interference ink-space,
resulting in a band-gap, as in conventional band insulators. It is however very easy to
understand in real space (thinking of the solid as made of individual atoms pulled closer
to one another in order to form the crystal lattice). This mechanism was understood long
ago [1, 2] by Mott (and Peierls), and such insulators are therefore calledMott insulators
(Sec. 4. In other cases, such as f-electron materials, this electron localisation affects only
part of the electrons in the solid (e.g the ones corresponding to the f-shell), so that the
solid remains a (strongly correlated) metal.

The most interesting situation, which is also the one which is hardest to handle
theoretically, is when the localised character on short time-scales and the itinerant
character on long time-scales coexist. In such cases, the electrons “hesitate” between
being itinerant and being localised. This gives rise to a number of physical phenomena,
and also results in several possible instabilities of the electron gas which often compete,
with very small energy differences between them. In order tohandle such situations
theoretically, it is necessary to think both ink-space and in real space, to handle both
the particle-like and the wave-like character of the electrons and, importantly, to be
able to describe physical phenomena onintermediate energy scales. For example, one
needs to explain how long-lived (wave-like) quasiparticles may eventually emerge at low
energy/temperature in a strongly correlated metal while athigher energy/temperature,
only incoherent (particle-like) excitations are visible.It is the opinion of the author
that, in many cases, understanding these intermediate energy scales and the associated
coherent/incoherent crossover is the key to the intriguingphysics often observed in
correlated metals. In these lectures, we discuss a technique, the dynamical mean-field
theory (DMFT), which is able to (at least partially) handle this problem. This technique
has led to significant progress in our understanding of strong correlation physics, and
allows for a quantitative description of many correlated materials[3, 4]. Extensions and
generalisations of this technique are currently being developed in order to handle the
most difficult/mysterious situations which cannot be tamedby the simplest version of
DMFT.
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1.2. Bare energy scales

Localised orbitals and narrow bands.In practice, strongly correlated materials are
generally associated with partially filled d- or f- shells. Hence, the suspects are materials
involving:

• Transition metal elements (particularly from the 3d-shellfrom Ti to Cu, and to a
lesser extent 4d from Zr to Ag).

• Rare earth (4f from Ce to Yb) or actinide elements (5f from Th to Lw)

To this list, one should also add molecular (organic) conductors with large unit cell
volumes in which the overlap between molecular orbitals is weak.

What is so special about d- and f- orbitals (particularly 3d and 4f) ? Consider the
atomic wavefunctions of the 3d shell in a 3d transition metalatom (e.g Cu). There
are no atomic wavefunctions with the same valuel = 2 of the angular momentum
quantum number, but lower principal quantum numbern thann = 3 (since one must
havel ≤ n−1). Hence, the 3d wavefunctions are orthogonal to all then = 1 andn = 2
orbitals just because of their angular dependence, and the radial part needs not have
nodes or extend far away from the nucleus. As a result, the 3d-orbital wave functions
are confined more closely to the nucleus than for s or p states of comparable energy.
The same argument applies to the 4f shell in rare earths. It also implies that the 4d
wavefunctions in the 4d transition metals or the 5f ones in actinides will be more
extended (and hence that these materials are expected to display, on the whole, weaker
correlation effects than 3d transition metals, or the rare earth, respectively).

Oversimplified as it may be, these qualitative arguments at least tell us that a key
energy scale in the problem is the degree of overlap between orbitals on neighbouring
atomic sites. This will control the bandwidth and the order of magnitude of the kinetic
energy. A simple estimate of this overlap is the matrix element:

t LL′
RR′ ∼

∫
dr χ∗

L(r −R)
h̄2∇2

2m
χL′(r −R′) (1)

In the solid, the wavefunctionχL(r −R) should be thought of as a Wannier-like wave
function centered on atomic siteR. In narrow band systems, typical values of the
bandwith are a few electron-volts.

Coulomb repulsion and the Hubbard U.Another key parameter is the typical
strength of the Coulomb repulsion between electrons sitting in the most localized or-
bitals. The biggest repulsion is associated with electronswith opposite spins occupying
the same orbital: this is the Hubbard repulsion which we can estimate as:

U ∼
∫

drdr ′|χL(r −R)|2Us(r − r ′) |χL(r ′−R)|2 (2)

In this expression,Us is the interaction between electronsincluding screening effectsby
other electrons in the solid. Screening is a very large effect: if we were to estimate (2)
with the unscreened Coulomb interactionU(r − r ′) = e2/|r − r ′|, we would typically
obtain values in the range of tens of electron-volts. Instead, the screened value ofU
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in correlated materials is typically a few electron-volts.This can be comparable to
the kinetic energy for narrow bandwiths, hence the competition between localised and
itinerant aspects. Naturally, other matrix elements (e.g between different orbitals, or
between different sites) are important for a realistic description of materials (see the last
section of these lectures).

In fact, a precise description of screening in solids is a rather difficult problem. An
important point is, again, that this issue cruciallydepends on energy scale. At very
low energy, one should observe the fully screened value, of order a few eV ’s, while
at high energies (say, above the plasmon energy in a metal) one should observe the
unscreened value, tens of eV ’s. Indeed, the screened effective interactionW(r , r ′;ω)
as estimated e.g from the RPA approximation, is a strong function of frequency (see
e.g Ref. [5, 6] for an ab-initio GW treatment in the case of Nickel). As a result, using
an energy-independent parametrization of the on-site matrix elements of the Coulomb
interaction such as (2) can only be appropriate for a description restricted to low- enough
energies [6]. The Hubbard interaction can only be given a precise meaning in a solid,
over a large enery range, if it is made energy-dependent. I shall come back to this issue
in the very last section of these lectures (Sec. 5.5).

The simplest model hamiltonian.From this discussion, it should be clear that the
simplest model in which strong correlation physics can be discussed is that of a lattice
of single-level “atoms”, or equivalently of a single tight-binding band (associated with
Wannier orbitals centered on the sites of the crystal lattice), retaining only the on-site
interaction term between electrons with opposite spins:

H = − ∑
RR′,σ

tRR′ c+
Rσ cR′σ + ε0∑

Rσ
nRσ + U ∑

R
nR↑nR↓ (3)

The kinetic energy term is diagonalized in a single-particle basis of Bloch’s wavefunc-
tions:

H0 = ∑
kσ

εkc+
kσ ckσ ; εk ≡ ∑

R′
tRR′ eik·(R−R′) (4)

with e.g for nearest-neighbour hopping on the simple cubic lattice in d-dimensions:

εk = −2t
d

∑
µ=1

cos(kµa) (5)

In the absence of hopping, we have, at each site, a single atomic level and hence
four possible quantum states:|0〉, | ↑〉, | ↓〉 and | ↑↓〉 with energies 0, ε0 andU + 2ε0,
respectively.

Eq. (3) is the famous Hubbard model [7, 8, 9]. It plays in this field the same role than
that played by the Ising model in statistical mechanics: a laboratory for testing physical
ideas, and theoretical methods alike. Simplified as it may be, and despite the fact that
it already has a 40-year old history, we are far from having explored all the physical
phenomena contained in this model, let alone of being able toreliably calculate with it
in all parameter ranges !
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1.3. Examples of strongly correlated materials

In this section, I give a few examples of strongly correlatedmaterials. The discus-
sion emphasizes a few key points but is otherwise very brief.There are many useful
references related to this section, e.g [10, 11, 2, 12, 13].

1.3.1. Transition metals

In 3d transition metals, the 4s orbitals have lower energy than the 3d and are therefore
filled first. The 4s orbitals extend much further from the nucleus, and thus overlap
strongly. This holds the atoms sufficiently far apart so thatthe d- orbitals have asmall
direct overlap. Nevertheless, d-orbitals extend much further from the nucleus than the
“core” electrons (corresponding to shells which are deep inenergy below the Fermi
level). As a result, throughout the 3d series of transition metals (and even more so in the
4d series), d-electrons do have an itinerant character, giving rise to quasiparticle bands.
That this is the case is already clear from a very basic property of the material, namely
how the equilibrium unit- cell volume depends on the elementas one moves along the
3d series (Fig. 1). The unit-cell volume has a very characteristic, roughly parabolic,
dependence. A simple model of a narrow band being gradually filled, introduced long
ago by Friedel [14] accounts for this parabolic dependence (see also [15, 16]). Because
the states at the bottom of the band are bonding-like while the states at the top of the
band are anti-bonding like, the binding energy is maximal (and hence the equilibrium
volume is minimal) for a half-filled shell. Instead, if the d-electrons were localised we
would expect little contribution of the d-shell to the cohesive energy of the solid, and the
equilibrium volume should not vary much along the series.

Screening is relatively efficient in transition metals because the 3d band is not too far in
energy from the 4s band. The latter plays the dominant role inscreening the Coulomb
interaction (crudely speaking, one has to consider the following charge transfer process
between two neighbouring atoms: 3dn4s+ 3dn4s → 3dn−14s2 + 3dn+1, see e.g [17]
for further discussion). For all these reasons (the band notbeing extremely narrow,
screening being efficient), electron correlations do have important physical effects for
3d transition metals, but not extreme ones like localisation. Magnetism of these metals
below the Curie temperature, but also the existence of fluctuating local moments in the
paramagnetic phase are exemples of such correlation effects. Band structure calculations
based on DFT-LDA methods overestimate the width of the occupied d-band (by about
30% in the case of nickel). Some features observed in spectroscopy experiments (such
as the (in)famous 6 eV satellite in nickel) are also signatures of correlation effects, and
are not reproduced by standard electronic structure calculations.
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FIGURE 1. Experimental Wigner-Seitz Radius of Actinides, Lanthanides, and 5d Transition Metals.
The equilibrium volume of the primitive unit cell is given byV = 4π R3

WS/3. Elements that lie on top of
each other have the same number of valence electrons. The volume of the transition metals has a roughly
parabolic shape, indicating delocalised 5d electrons. Thevolumes of the lanthanides remain roughly
constant, indicating localised 4f electrons. The volumes of the light actinides decrease with increasing
atomic number, whereas the volumes of the late actinides behaves similarly to that of the lanthanides.
From Ref. [16]

1.3.2. Transition metal oxides

In transition metal compounds (e.g oxides or chalcogenides), the direct overlap be-
tween d-orbitals is generally so small that d-electrons canonly move through hybridisa-
tion with the ligand atoms (e.g oxygen 2p-bands). For example, in the cubic perovskite
structure shown on Fig. 2, each transition-metal atom is “encaged” at the center of an
octahedron made of six oxygen atoms. Hybridisation leads tothe formation of bond-
ing and antibonding orbitals. An important energy scale is the charge-transfer energy
∆ = εd − εp, i.e the energy difference between the average position of the oxygen and
transition metal bands. When∆ is large as compared to the overlap integraltpd, the bond-
ing orbitals have mainly oxygen character and the antibonding ones mainly transition-
metal character. In this case, the effective metal- to- metal hopping can be estimated as
te f f ∼ t2

pd/∆, and is therefore quite small.
The efficiency of screening in transition-metal oxides depends crucially on the relative

position of the 4s and 3d band. For 3d transition metal monoxides MO with M to the
right of Vanadium, the 4s level is much higher in energy than 3d, thus leading to poor
screening and large values ofU . This, in addition to the small bandwidth and relatively
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FIGURE 2. The cubic perovskite structure, e.g of the compound SrVO3 . Transition-metal atoms (V) -
small grey spheres- are at the center of oxygen octahedra (dark spheres). Sr atoms are the larger spheres
in-between planes. From Ref. [18].

large∆, leads to dramatic correlation effects, turning the systeminto a Mott insulator
(or rather, a charge- transfer insulator, see below), in spite of the incomplete filling of
the d-band. The Mott phenomenon plays a key role in the physics of transition- metal
oxides, as discussed in detail later in these lectures (see Sec. 4 and Fig. 6).

Crystal field splitting. The 5-fold (10-fold with spin) degeneracy of the d- orbitals
in the atom is lifted in the solid, due to the influence of the electric field created
by neighbouring atoms, i.e the ligand oxygen atoms in transition metal oxides. For a
transition metal ion in an octahedral environment (as in Fig. 2), this results in a three-fold
group of states (t2g) which is lower in energy and a doublet (eg) higher in energy. Indeed,
thedxy,dyz,dzx orbitals forming thet2g multiplet do not point towards the ligand atoms,
in contrast to the states in theeg doublet (dx2−y2, d3z2−r2). The latter therefore lead to a
higher cost in Coulomb repulsion energy. For a crystal with perfect cubic symmetry, the
t2g andeg multiplets remain exactly degenerate, while a lower symmetry of the crystal
lattice lifts the degeneracy further. For a tetrahedral environment of the transition-metal
ion, the opposite situation is found, witht2g higher in energy thaneg. In transition metals,
the energy scale associated with crystal- field splitting istypically much smaller than
the bandwith. This is not so in transition-metal oxides, forwhich these considerations
become essential. In some materials, such as e.g SrVO3 and the otherd1 oxides studied
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in Sec. 5.3 of these lectures, the energy bands emerging fromthet2g andeg orbitals form
two groups of bands well separated in energy.

Mott- and charge-transfer insulators.There are two important considerations,
which are responsible for the different physical properties of the “early” (i.e involving
Ti, V, Cr, ...) and “late” (Ni, Cu) transition- metal oxides:

- whether the Fermi level falls within thet2g or eg multiplets,
- what is the relative position of oxygen (εp) and transition-metal (εp) levels ?
For those compounds which correspond to an octahedral environment:

• In early transition-metal oxides,t2g is partially filled, eg is empty. Hence, the
hybridisation with ligand is very weak (becauset2g orbitals point away from the
2p oxygen orbitals). Also, the d-orbitals are much higher inenergy than the 2p
orbitals of oxygen. As a result, the charge-transfer energy∆ = εd− εp is large, and
the bandwidth is small. The local d-d Coulomb repulsionUdd is a smaller scale than
∆ but it can be larger than the bandwidth (∼ t2

pd/∆): this leads to Mott insulators.
• For late transition-metal oxides,t2g is completely filled, and the Fermi level lies

within eg. As a result, hybridisation with the ligand is stronger. Also, because of
the greater electric charge on the nuclei, the attractive potential is stronger and
as a result, the Fermi level moves closer to the energy of the 2p ligand orbitals.
Hence,∆ is a smaller scale thanUdd and controls the energy cost of adding an extra
electron. When this cost becomes larger than the bandwidth,insulating materials
are obtained, often called “charge transfer insulators” [19, 20]. The mechanism is
not qualitatively different than the Mott mechanism, but the insulating gap is set
by the scale∆ rather thanUdd and separates the oxygen band from a d-band rather
than a lower and upper Hubbard bands having both d-character.

The p-d model. The single-band Hubbard model is easily extended in order totake
into account both transition-metal and oxygen orbitals in asimple modelisation of
transition-metal oxides. The key terms to be retained are1:

Hpd = − ∑
RR′,σ

tpd(d+
Rσ pR′σ +h.c) + εd ∑

Rσ
nd

Rσ + εp ∑
R′σ

np
R′σ + Udd∑

R
nd

R↑n
d
R↓ (6)

to which one may want to add other terms, such as: Coulomb repulsionsUpp andUpd or
direct oxygen-oxygen hoppingstpp.

1.3.3. f-electrons: rare earths, actinides and their compounds

A distinctive character of the physics of rare-earth metals(lanthanides) is that the 4f
electrons tend to be localised rather than itinerant (at ambiant pressure). As a result, the

1 For simplicity, the hamiltonian is written in the case whereonly one d-band is relevant, as e.g for
cuprates.
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f-electrons contribute contribute little to the cohesive energy of the solid, and the unit-
cell volume depends very weakly on the filling of the 4f shell (Fig. 1). Other electronic
orbitals do form bands which cross the Fermi level however, hence the metallic char-
acter of the lanthanides. When pressure is applied, the f-electrons become increasingly
itinerant. In fact, at some critical pressure, some rare-earth metals (mots notably Ce and
Pr) undergo a sharp first-order transition which is accompanied by a discontinuous drop
of the equilibrium unit-cell volume. Cerium is a particularly remarkable case, with a
volume drop of as much as 15% and the same crystal symmetry (fcc) in the low-volume
(α) and high-volume (γ) phase. In other cases, the transition corresponds to a change in
crystal symmetry, from a lower symmetry phase at low pressure to a higher symmetry
phase at high pressure. For a recent review on the volume-collapse transition of rare
earth metals, see Ref. [15].

The equilibrium volume of actinide (5f) metals display behaviour which is interme-
diate between transition metals and rare earths. From the beginning of the series (Th)
until Plutonium (Pu), the volume has an approximately parabolic dependence on the
filling of the f-shell, indicating delocalised 5f electrons. From Americium onwards, the
volume has a much weaker dependence on the number of f-electrons, suggesting lo-
calised behaviour. Interestingly, plutonium is right on the verge of this delocalisation to
localisation transition. Not surprisingly then, plutonium is, among all actinide metals,
the one which has the most complex phase diagram and which is also the most diffi-
cult to describe using conventional electronic structure methods (see [16, 21] for recent
reviews). This will be discussed further in the last sectionof these lectures. This very
brief discussion of rare-earths and actinide compounds is meant to illustrate the need
for methods able to deal simultaneously with the itinerant and localised character of
electronic degrees of freedom.

The physics of strong electronic correlations becomes evenmore apparent for f-
electron materials which are compounds involving rare-earth (or actinide) ions and other
atoms, such as e.g CeAl3 . A common aspect of such compounds is the formation of
quasiparticle bands with extremely large effective masses(and hence large values of
the low-temperature specific heat coefficientγ = C/T), up to a thousand time the bare
electron mass ! Hence the term “heavy-fermion” given to these compounds: for reviews,
see e.g [22, 23]. The origin of these large effective masses is the weak hybridization be-
tween the very localised f-orbitals and the rather broad conduction band associated with
the metallic ion. At high temperature/energy, the f-electron have localised behaviour
(yielding e.g local magnetic moments and a Curie law for the magnetic susceptibility).
At low temperature/energy, the conduction electrons screen the local moments, leading
to the formation of quasiparticle bands with mixed f- and conduction electron charac-
ter (hence a large Fermi surface encompassing both f- and conduction electrons). The
low-temperature susceptibility has a Pauli form and the low-energy physics is, apart
from some specific compounds, well described by Fermi liquidtheory. This screening
process, the Kondo effect, is associated with a very low energy coherence scale, the
(lattice [24]-) Kondo temperature, considerably renormalised as compared to the bare
electronic energy scales.

Dynamical Mean-Field Theory March 3, 2004 10



5 10 15 20 25 30 35 40 45

1

10

100

P
re

s
s
u

re
 (

G
P

a
)

Sm type

dhcp

d-fcc

fcc

cmplx

bct

Volume (A
3
/atom)

ο

Ce
Pr

Nd
Pm

GdSm

V − 10 −6 −2 +6+2 +10

FIGURE 3. Pressure volume data for the rare earths. Structures are identified, with “cmplx” signifiying
a number of complex, low-symmetry structures. The volume collapse transitions are marked by the wide
hatched lines for Ce, Pr, and Gd, while lines perpendicular to the curves denote the d-fcc to hP3 symmetry
change in Nd and Sm. The curves are guides to the eye. Note thatthe data and curves have been shifted
in volume by the numbers (in Å3/atom) shown at the bottom of the figure. Figure and caption reproduced
from Ref. [15].

The periodic Anderson model.The simplest model hamiltonian appropriate for f-
electron materials is the Anderson lattice or periodic Anderson model. It retains the
f-orbitals associated with the rare-earth or actinide atoms at each lattice site, as well as
the relevant conduction electron degrees of freedom which hybridise with those orbitals.
In the simplest form, the hamiltonian reads:

HPAM = ∑
kσ

εk c†
kσ ckσ + ∑

kσ m

(Vk c†
kσ fmkσ +h.c)+ ε f ∑

Rσ m

nf
Rσ m + U ∑

R

(

∑
σ m

nf
Rσ m

)2

(7)
Depending on the material considered, other terms may be necessary for increased
realism, e.g an orbital dependent f-levelε f m, hybridisationVk m or interaction matrix
Uσσ ′

mm′ or a direct f-f hoppingt f f .

2. DYNAMICAL MEAN-FIELD THEORY AT A GLANCE

Dealing with strong electronic correlations is a notoriously difficult theoretical problem.
From the physics point of view, the difficulties come mainly from the wide range of
energy scales involved (from the bare electronic energies,on the scale of electron-
Volts, to the low-energy physics on the scale of Kelvins) andfrom the many competing
orderings and instabilities associated with small differences in energy.
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BATH

FIGURE 4. Mean-field theory replaces a lattice model by a single site coupled to a self-consistent bath.

It is the opinion of the author that, on top of the essential guidance from physical
intuition and phenomenology, the development of quantitative techniques is essential in
order to solve the key open questions in the field (and also in order to provide a deeper
understanding of some “classic” problems, only partially understood to this day).

In this section, we explain the basic principles of Dynamical Mean-Field Theory
(DMFT). This approach has been developed over the last fifteen years and has led to
some significant advances in our understanding of strong correlations. In this section, we
explain the basic principles of this approach in a concise manner. The Hubbard model is
taken as an example. For a much more detailed presentation, the reader is referred to the
available review articles [3, 4].

2.1. The mean-field concept, from classical to quantum

Mean-field theory approximates a lattice problem with many degrees of freedom by
a single-site effective problemwith less degrees of freedom. The underlying physical
idea is that the dynamics at a given site can be thought of as the interaction of the local
degrees of freedom at this site with an external bath createdby all other degrees of
freedom on other sites (Fig. 4).

Classical mean-field theory.The simplest illustration of this idea is for the Ising
model:

H = −∑
(i j )

Ji j SiSj −h ∑
i

Si (8)

Let us focus on the thermal average of the magnetization on each lattice site:mi = 〈Si〉.
We consider an equivalent problem ofindependent spins:

He f f = −∑
i

he f f
i Si (9)
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in which the (Weiss) effective field is chosen in such a way that the value ofmi is
accurately reproduced. This requires:

βhe f f
i = tanh−1mi (10)

Let us consider, for definiteness, a ferromagnet with nearest-neighbour couplingsJi j =
J > 0. The mean-field theory approximation (first put forward by Pierre Weiss, under
the name of “molecular field theory”) is thathe f f

i can be approximated by the thermal
average of the local field seen by the spin at sitei, namely:

he f f
i ≃ h+∑

j
Ji j mj = h+zJm (11)

wherez is the connectivity of the lattice, and translation invariance has been used (Ji j = J
for n.n sites,mi = m). This leads to a self-consistent equation for the magnetization:

m = tanh(βh+zβJm) (12)

We emphasize that replacing the problem of interacting spins by a problem of non-
interacting ones in a effective bath is not an approximation, as long as we use this equiv-
alent model for the only purpose of calculating the local magnetizations. The approxi-
mation is made when relating the Weiss field to the degrees of freedom on neighbour-
ing sites, i.e in theself-consistency condition(11). We shall elaborate further on this
point of view in the next section, where exact energy functionals will be discussed. The
mean-field approximation becomesexact in the limit where the connectivityz of the
lattice becomes large. It is quite intuitive indeed that theneighbors of a given site can
be treated globally as an external bath when their number becomes large, and that the
spatial fluctuations of the local field become negligible.

Generalisation to the quantum case: dynamical mean-field theory. This construc-
tion can be extended to quantum many-body systems. Key stepsleading to this quan-
tum generalisation where: the introduction of the limit of large lattice coordination for
interacting fermion models by Metzner and Vollhardt [25] and the mapping onto a self-
consistent quantum impurity by Georges and Kotliar [26], which established the DMFT
framework2.

I explain here the DMFT construction on the simplest exampleof the Hubbard
model3:

H = − ∑
i j ,σ

ti j c†
iσ c jσ +U ∑

i
ni↑ni↓ + ε0 ∑

iσ
niσ (13)

As explained above, it describes a collection of single-orbital “atoms” placed at the
nodesRi of a periodic lattice. The orbitals overlap from site to site, so that the fermions

2 See also the later work in Ref. [27], and Ref. [3] for an extensive list of references.
3 The energyε0 of the single-electron atomic level has been introduced in this section for the sake of
pedagogy. Naturally, in the single band case, everything depends only on the energyε0− µ with respect
to the global chemical potential so that one can setε0 = 0
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can hop with an amplitudeti j . In the absence of hopping, each “atom” has 4 eigenstates:
|0〉, | ↑〉, | ↓〉 and↑↓〉 with energies 0, ε0 andU +2ε0, respectively.

The key quantity on which DMFT focuses is thelocal Green’s function at a given
lattice site:

Gσ
ii (τ − τ ′) ≡ −〈Tciσ (τ)c†

iσ (τ ′)〉 (14)

In classical mean-field theory, the local magnetizationmi is represented as that of a single
spin on sitei coupled to an effective Weiss field. In a completely analogous manner, we
shall introduce a representation of the local Green’s function as that of asingle atom
coupled to an effective bath. This can be described by the hamiltonian of an Anderson
impurity model4:

HAIM = Hatom+Hbath+Hcoupling (15)

in which:

Hatom= U nc
↑n

c
↓ +(ε0−µ)(nc

↑ +nc
↓)

Hbath = ∑lσ ε̃l a†
lσalσ

Hcoupling= ∑lσ Vl (a
†
lσcσ +c†

σ alσ ) (16)

In these expressions, a set of non-interacting fermions (described by thea†
l ’s) have been

introduced, which are the degrees of freedom of the effective bath acting on siteRi .
The ε̃l andVl ’s are parameters which should be chosen in such a way that thec-orbital
(i.e impurity) Green’s function of (16) coincides with the local Green’s function of the
lattice Hubbard model under consideration. In fact, these parameters enter only through
the hybridisation function:

∆(iωn) = ∑
l

|Vl |2
iωn− ε̃l

(17)

This is easily seen when the effective on-site problem is recast in a form which does
not explicitly involves the effective bath degrees of freedom. However, this requires the
use of an effective action functional integral formalism rather than a simple hamiltonian
formalism. Integrating out the bath degrees of freedom one obtains the effective action
for the impurity orbital only under the form:

Se f f = −
∫ β

0
dτ
∫ β

0
dτ ′ ∑

σ
c+

σ (τ)G−1
0 (τ − τ ′)cσ (τ ′)+U

∫ β

0
dτ n↑(τ)n↓(τ) (18)

in which:
G

−1
0 (iωn) = iωn+ µ − ε0−∆(iωn) (19)

4 Strictly speaking, we have a collection of independent impurity models, one at each lattice site. In this
section, for simplicity, we assume a phase with translationinvariance and focus on a particular site of the
lattice (we therefore drop the site index for the impurity orbitalc†

σ ). We also assume a paramagnetic phase.
The formalism easily generalizes to phases with long-rangeorder (i.e translational and/or spin-symmetry
breaking) [3]
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This local action represents the effective dynamics of the local site under consideration:
a fermion is created on this site at timeτ (coming from the "external bath", i.e from the
other sites of the lattice) and is destroyed at timeτ ′ (going back to the bath). Whenever
two fermions (with opposite spins) are present at the same time, an energy costU is
included. Hence this effective action describes the fluctuations between the 4 atomic
states|0〉, | ↑〉, | ↓〉,↑↓〉 induced by the coupling to the bath. We can interpretG0(τ − τ ′)
as the quantum generalisation of the Weiss effective field inthe classical case. The main
difference with the classical case is that this “dynamical mean-field” is afunction of
energy(or time) instead of a single number. This is required in order to take full account
of local quantum fluctuations, which is the main purpose of DMFT. G0 also plays the
role of a bare Green’s function for the effective actionSe f f, but it shouldnot be confused
with the non-interacting (U = 0) local Green’s function of the original lattice model.

At this point, we have introduced the quantum generalisation of the Weiss effective
field and have represented the local Green’s functionGii as that of a single atom coupled
to an effective bath. This can be viewed as anexact representation, as further detailed in
Sec. 3. We now have to generalise to the quantum case the mean-field approximation
relating the Weiss function toGii (in the classical case, this is the self-consistency
relation (12)). The simplest manner in which this can be explained - but perhaps not
the more illuminating one conceptually (see Sec. 3 and [3, 28])- is to observe that, in
the effective impurity model (18), we can define a local self-energy from the interacting
Green’s functionG(τ − τ ′) ≡ − < Tc(τ)c+(τ ′) >Se f f and the Weiss dynamical mean-
field as:

Σimp(iωn) ≡ G
−1
0 (iωn)−G−1(iωn)

= iωn + µ − ε0−∆(iωn)−G−1(iωn) (20)

Let us, on the other hand, consider the self-energy of the original lattice model, defined
as usual from the full Green’s functionGi j (τ − τ ′) ≡− < Tci,σ (τ)c+

j ,σ (τ ′) > by:

G(k, iωn) =
1

iωn+ µ − ε0− εk −Σ(k, iωn)
(21)

in which εk is the Fourier transform of the hopping integral, i.e the dispersion relation
of the non-interacting tight-binding band:

εk ≡ ∑
j

ti j e
ik.(Ri−R j) (22)

We then make the approximation that the lattice self-energycoincides with the impurity
self-energy. In real-space, this means that we neglect all non-local components ofΣi j
and approximate the on-site one byΣimp:

Σii ≃ Σimp , Σi 6= j ≃ 0 (23)

We immediately see that this is a consistent approximation only provided it leads to a
unique determination of the local (on-site) Green’s function, which by construction is
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TABLE 1. Correspondance between the mean-field theory of a classicalsystem and the dynamical
mean-field theory of a quantum system.

Quantum Case Classical Case

−∑i j σ ti j c
+
iσ c jσ + ∑i Hatom(i) H = −∑(i j ) Ji j SiSj −h∑i Si Hamiltonian

Gii (iωn) = − < c+
i (iωn)ci(iωn) > mi =< Si > Local Observable

He f f = Hatom+ ∑lσ ε̃l a
+
lσ alσ + He f f = −he f f S Effective single-site

+∑lσ Vl (a
+
lσ cσ +h.c) Hamiltonian

∆(iωn) = ∑l
|Vl |2

iωn−ε̃l
he f f Weiss function/Weiss field

G
−1
0 (iωn) ≡ iωn + µ −∆(iωn)

∑k [∆(iωn)+G(iωn)
−1− εk]

−1 = G(iωn) he f f = ∑ j Ji j mj +h Self-consistency relation

the impurity-model Green’s function. Summing (21) overk in order to obtain the on-
site componentGii of the the lattice Green’s function, and using (20), we arrive at the
self-consistency condition5:

∑
k

1
∆(iωn)+G(iωn)−1− εk

= G(iωn) (24)

Defining the non-interacting density of states:

D(ε) ≡ ∑
k

δ (ε − εk) (25)

this can also be written as:
∫

dε
D(ε)

∆(iωn)+G(iωn)−1− ε
= G(iωn) (26)

This self-consistency conditionrelates, for each frequency, the dynamical mean-field
∆(iωn) and the local Green’s functionG(iωn). Furthermore,G(iωn) is the interacting
Green’s function of the effective impurity model (16) -or (18)-. Therefore, we have a
closed set of equations that fully determine in principle the two functions∆,G (orG0,G)).
In practice, one will use aniterative procedure, as represented on Fig. 5. In many cases,
this iterative procedure converges to a unique solution independently of the initial choice
of ∆(iωn). In some cases however, more than one stable solution can be found (e.g close
to the Mott transition, see section below). The close analogy between the classical mean-
field construction and its quantum (dynamical mean-field) counterpart is summarized in
Table 1.

5 Throughout these notes, the sums over momentum are normalized by the volume of the Brillouin zone,
i.e ∑k 1 = 1
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EFFECTIVE LOCAL IMPURITY PROBLEM

THE

DMFT

LOOP

Effective bath

Local G.F

SELF-CONSISTENCY CONDITION

FIGURE 5. The DMFT iterative loop. The following procedure is generally used in practice: starting
from an initial guess forG0, the impurity Green’s functionGimp is calculated by using an appropriate
solver for the impurity model (top arrow). The impurity self-energy is also calculated fromΣimp =

G
−1
0 (iωn)−G−1

imp(iωn). This is used in order to obtain the on-site Green’s functionof the lattice model by

performing ak-summation (or integration over the free d.o.s):Gloc = ∑k [iωn+µ−εk −Σimp(iωn)]
−1. An

updated Weiss function is then obtained asG
−1
0,new= G−1

loc +Σimp, which is injected again into the impurity
solver (bottom arrow). The procedure is iterated until convergence is reached.

2.2. Limits in which DMFT becomes exact

Two simple limits: non-interacting band and isolated atoms. It is instructive to check
that the DMFT equations yield the exact answer in two simple limits:

• In the non-interacting limit U= 0, solving (18) yieldsG(iωn) = G0(iωn) and
Σimp = 0. Hence, from (24),G(iωn) = ∑k 1/(iωn+µ −ε0−εk) reduces to the free
on-site Green’s function. DMFT is trivially exact in this limit since the self-energy
is not onlyk-independent but vanishes altogether.

• In theatomic limit ti j = 0, one just has a collection of independent atoms on each
site andεk = 0. Then (24) implies∆(iωn) = 0: as expected, the dynamical mean-
field vanishes since the atoms are isolated. Accordingly, the self-energy only has
on-site components, and hence DMFT is again exact in this limit. The Weiss field
readsG−1

0 = iωn+µ −ε0, which means that the actionSe f f simply corresponds to
the quantization of the atomic hamiltonianHatom. This yields:

G(iωn)atom=
1−n/2
iωn+µ̃ +

n/2
iωn+µ̃−U

Σ(iωn)atom= nU
2 + n/2(1−n/2)U2

iωn+µ̃−(1−n/2)U (27)

with µ̃ ≡ µ − ε0 andn/2 = (eβ µ̃ +eβ (2µ̃−U))/(1+2eβ µ̃ +eβ (2µ̃−U)).
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Hence, the dynamical mean-field approximation is exact in the two limits of the non-
interacting band and of isolated atoms, and provides an interpolation in between. This
interpolative aspect is a key to the success of this approachin the intermediate coupling
regime.

Infinite coordination. The dynamical mean-field approximation becomes exact in
the limit where the connectivityz of the lattice is taken to infinity. This is also true
of the mean-field approximation in classical statistical mechanics. In that case, the
exchange coupling between nearest-neighbour sites must bescaled as:Ji j = J/z (for
Ji j ’s of uniform sign), so that the Weiss mean-fieldhe f f in (11) remains of order one.
This also insures that the entropy and internal energy per site remain finite and hence
preserves the competition which is essential to the physicsof magnetic ordering. In the
case of itinerant quantum systems [25], a similar scaling must be made on the hopping
term in order to maintain the balance between the kinetic andinteraction energy. The
nearest-neighbour hopping amplitude must be scaled as:ti j = t/

√
z. This insures that

the non-interacting d.o.sD(ε) = ∑k δ (ε −εk) has a non-trivial limit asz→ ∞. Note that
it also insures that the superexchangeJi j ∝ t2

i j/U scales as 1/z, so that magnetic ordering
is preserved with transition temperatures of order unity. In practice, two lattices are often
considered in thez= ∞ limit:

• The d-dimensional cubic lattice withz= 2d → ∞ andεk = −2t ∑d
p=1cos(kp)/

√
z.

In this case the non-interacting d.o.s becomes a Gaussian:D(ε) = 1
t
√

2π exp−( ε2

2t2)

• The Bethe lattice (Cayley tree) with coordinationz→ ∞ and nearest-neighbor hop-
ping ti j = t/

√
z. This corresponds to a semicircular d.o.s:D(ε) = 2

πD

√
1− (ε/D)2

with a half-bandwidthD = 2t. In this case, the self-consistency condition (24)
can be inverted explicitly in order to relate the dynamical mean-field to the local
Green’s function as:∆(iωn) = t2G(iωn).

Apart from the intrinsic interest of solving strongly correlated fermion models in the
limit of infinite coordination, the fact that the DMFT equations become exact in this limit
is important since it guarantees, for example, that exact constraints (such as causality
of the self-energy, positivity of the spectral functions, sum rules such as the Luttinger
theorem or the f-sum rule) are preserved by the DMFT approximation.

2.3. Important topics not reviewed here

There are several important topics related to the DMFT framework, which I have not
included in these lecture notes. Some of them were covered inthe lectures, but extensive
review articles are available in which these topics are at least partially described.

This is a brief list of such topics:

DMFT for ordered phases.The DMFT equations can easily be extended to study
phases with long-range order, calculate critical temperatures for ordering as well as
phase diagrams, see e.g [3].
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Response and correlation functions in DMFT.Response and correlation functions
can be expressed in terms of the lattice Green’s functions, and of the impurity model
vertex functions, see e.g [3, 4]. Note that momentum-dependence enters, through the
lattice Green’s function.

Physics of the Anderson impurity model.Understanding the various possible fixed
points of quantum impurity models is important for gaining physical intuition when
solving lattice models within DMFT. See Ref. [23] for a review and references on the
Anderson impurity model. It is important to keep in mind that, in contrast to the common
situation in the physics of magnetic impurities or mesoscopics, the effective conduction
electron bath in the DMFT context has significant energy-dependence. Also, the self-
consistency condition can drive the effective impurity model from one kind of low-
energy behaviour to another, depending on the range of parameters (e.g close to the
Mott transition, see Sec. 4).

Impurity solvers. Using reliable methods for calculating the impurity Green’s func-
tion and self-energy is a key step in solving the DMFT equations. A large numbers
of “impurity solvers” have been implemented in the DMFT context6, including: the
quantum Monte Carlo (QMC) method [27] (see also [29, 30]), based on the Hirsch-
Fye algorithm [31], adaptative exact diagonalisation or projective schemes (see [3] for a
review and references), the Wilson numerical renormalisation group (NRG, see e.g [32]
and references therein). Approximation schemes have also proven useful, when used
in appropriate regimes, such as the “iterated perturbationtheory” approximation (IPT,
[26, 33]), the non-crossing approximation (NCA, see [4] forreferences) and various
extensions [34], as well as schemes interpolating between high and low energies [35].

Beyond DMFT. DMFT does capture ordered phases, but does not take into account
the coupling of short-range spatial correlations (let alone long-wavelength) to quasiparti-
cle properties, in the absence of ordering. This is a key aspect of some strongly correlated
materials (e.g cuprates, see the concluding section of these lectures), which requires an
extension of the DMFT formalism. Two kinds of extensions have been explored:

• k-dependence of the self-energy can be reintroduced by considering cluster exten-
sions of DMFT, i.e a small cluster of sites (or coupled atoms)into a self-consistent
bath. Various embedding schemes have been discussed [3, 36,37, 38, 39, 40, 41]
and I will not attempt a review of this very interesting line of research here. One of
the key questions is whether such schemes can account for a strong variation of the
quasiparticle properties (e.g the coherence scale) along the Fermi surface.

• Extended DMFT (E-DMFT [42, 43, 44, 45]) focuses on two-particle local observ-
ables, such as the local spin or charge correlation functions, in addition to the lo-
cal Green’s function of usual DMFT. For applications to electronic structure, see
Sec. 5.5.

6 Some early versions of numerical codes are available at: http://www.lps.ens.fr/∼krauth
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3. FUNCTIONALS, LOCAL OBSERVABLES, AND
INTERACTING SYSTEMS

In this section7, I would like to discuss a theoretical framework which applies quite
generally to interacting systems. This framework reveals common concepts underlying
different theories such as: the Weiss mean-field theory (MFT) of a classical magnet,
the density functional theory (DFT) of the inhomogeneous electron gas in solids, and
the dynamical mean-field theory (DMFT) of strongly correlated electron systems. The
idea which is common to these diverse theories is the construction of a functional of
some local quantity(effective action) by the Legendre transform method. Though exact
in principle, it requires in practice that the exact functional is approximated in some
manner. This method has a wide range of applicability in statistical mechanics, many-
body physics and field-theory [46]. The discussion will be (hopefully) pedagogical, and
for this reason I will begin with the example of a classical magnet. For a somewhat more
detailed presentation, see Ref. [28].

There are common concepts underlying all these constructions (cf. Table), as will
become clear below, namely:

• i) These theories focus on a specificlocal quantity: the local magnetization in MFT,
the local electronic density in DFT, the local Green’s function (or spectral density)
in DMFT.

• ii) The original system of interest is replaced by anequivalent system, which is used
to provide a representation of the selected quantity: a single spin in an effective field
for a classical magnet, free electrons in an effective one-body potential in DFT, a
single impurity Anderson model within DMFT. The effective parameters entering
this equivalent problem definegeneralized Weiss fields(the Kohn-Sham potential
in DFT, the effective hybridization within DMFT), which areself-consistently
adjusted. I note that the associated equivalent system can be a non-interacting (one-
body) problem, as in MFT and DFT, or a fully interacting many-body problem
(albeit simpler than the original system) such as in DMFT andits extensions.

• iii) In order to pave the way between the real problem of interest and the equivalent
model, the method of coupling constant integration will prove to be very useful
in constructing (formally) the desired functional using the Legendre transform
method. The coupling constant can be either the coefficient of the interacting part of
the hamiltonian (which leads to a non-interacting equivalent problem, as in DFT),
or in front of the non-local part of the hamiltonian (which leads in general to a
local, but interacting, equivalent problem such as in DMFT).

Some issues and questions are associated with each of these points:

• i) While the theory and associated functional primarily aims at calculating the se-
lected local quantity, it always come with the possibility of determining some more
general object. For example, classical MFT aims primarily at calculating the local
magnetization, but it can be used to derive the Ornstein-Zernike expression of the

7 This section is based in part on Ref. [28]
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TABLE 2. Comparison of theories based on functionals of a local observable

Theory MFT DFT DMFT

Quantity Local magnetizationmi Local densityn(x) Local GFGii (ω)

Equivalent Spin in Electrons in Quantum
system effective field effective potential impurity model

Generalised Effective Kohn-Sham Effective
Weiss field local field potential hybridisation

correlation function between different sites. Similarly,DFT aims at the local den-
sity, but Kohn-Sham orbitals can beinterpreted(without a firm formal justification)
as one-electron excitations. DMFT produces a local self-energy which one may in-
terpret as the lattice self-energy from which the full k-dependent Green’s function
can be reconstructed. In each of these cases, the precise status and interpretation of
these additional quantities can be questioned.

• ii) I emphasize that the choice of an equivalent representation of the local quan-
tity has nothing to do with subsequent approximations made on the functional. The
proposed equivalent system is in fact an exact representation of the problem under
consideration (for the sake of calculating the selected local quantity). It does raise
a representabilityissue, however: is it always possible to find values of the gen-
eralised Weiss field which will lead to a specified form of the local quantity, and
in particular to the exact form associated with the specific system of interest? For
example: given the local electronic densityn(x) of a specific solid, can one always
find a Kohn-Sham effective potential such that the one-electron local density ob-
tained by solving the Schrödinger equation in that potential coincides withn(x) ?
Or, in the context of DMFT: given the local Green’s function of a specific model,
can one find a hybridisation function such that it can be viewed as the local Green’s
function of the specified impurity problem ?

• iii) There is also a stability issue of the exact functional:is the equilibrium value of
the local quantity a minimum ? More precisely, one would liketo show that negative
eigenvalues of the stability matrix correspond to true physical instabilities of the
system. I will not seriously investigate this issue in this lecture (for a discussion
within DMFT, where it is still quite open, see [47]).

3.1. The example of a classical magnet

For the sake of pedagogy, I will consider in this section the simplest example on which
the above ideas can be made concrete: that of a classical Ising magnet with hamiltonian

H = −∑
i j

Ji j SiSj (28)

Construction of the effective action.We want to construct a functionalΓ[mi] of a
preassignedset of local magnetizationsmi , such that minimizing this functional yields
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the equilibrium state of the system. This functional is of course the Legendre transform
of the free-energy with respect to a set of local magnetic fields. To make contact with
the field-theory literature, I note thatβ Γ is generally called theeffective actionin this
context. I will give a formal construction of this functional, following a method due to
Plefka [48] and Yedidia and myself [49]. Let us introduce a varying coupling constant
α ∈ [0,1], and define:

Hα ≡ α H = ∑
i j

αJi j SiSj (29)

Introducing local Lagrange multipliersλi, we consider the functional:

Ω[mi,λi;α] ≡− 1
β

lnTr e−βHα+β ∑i λi(Si−mi) = F[λi]+∑
i

λimi (30)

Requesting stationarity of this functional with respect tothe λi ’s amounts to impose
that,for all values ofα, 〈Si〉 coincides with the preassigned local magnetizationmi . The
equationsmi = 〈Si〉 which expresses the magnetization as a function of the sourcesλi
can then be inverted to yield theλi ’s as functions of themj ’s and ofα:

〈Si〉λ ,α = mi → λi = λi[mj ;α] (31)

(The average〈· · ·〉λ ,α in this equation is with respect to the Boltzmann weight appearing
in the above definition ofΩ, includingλi ’s andα). The Lagrange parameters can then
be substituted intoΩ to obtain theα-dependent Legendre transformed functional:

Γα [mi ] = Ω[mi,λi[mj ,α]] = F [λi [m]]+∑
i

λi[m]mi (32)

Of course, the functional we are really interested in is thatof the original system with
α = 1, namely:

Γ[mi] ≡ Γα=1[mi ] (33)

Let us first look at the non-interacting limitα = 0 for which the explicit expression of
Ω is easily obtained as:

Ω0 = ∑
i

(
− 1

β
lncoshβλi +miλi

)
(34)

Varying in theλ ’s yields:

tanhβλ (α=0)
i = mi (35)

and finally:

Γα=0[mi] =
1
β ∑

i

(
1+mi

2
ln

1+mi

2
+

1−mi

2
ln

1−mi

2

)
(36)

The α = 0 theory defines theequivalent problemthat we want to use in order to deal
with the original system. Here, it is just a theory ofindependent spins in a local effective
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field. The expression (36) is simply the entropy term corresponding to independent Ising
spins for a given values of the local magnetizations.

The value taken by the Lagrange multiplier in the equivalentsystem,λ α=0
i (denoted

λ 0
i in the following), must be interpreted as theWeiss effective field. We note that, in this

simple example, there is an explicit and very simple relation (35) between the Weiss field
andmi, so that one can workequivalentlyin terms of either quantities. Also, because of
the simple form of (35),representabilityis trivially satisfied: given the actual values of
the magnetizationsmi ’s (∈ [−1,1]) at equilibrium for the model under consideration,
one can always represent them by the Weiss fieldsβhe f f

i = arctanhmi .
To proceed with the construction ofΓ, we use a coupling constant integration and

write:

Γ[mi;α = 1] = Γ0[mi ]+

∫ 1

0
dα

dΓα
dα

[mi ] (37)

It is immediate that, because of the constraint〈(Si −mi)〉 = 0:

dΓα
dα

= 〈H〉α,λ [α] = −∑
i j

Ji j 〈SiSj〉α,λ [α,m] (38)

In this expression, the correlation must be viewed as a functional of the local magne-
tizations (thanks to the inversion formula (31)). Introducing the connected correlation
function:

gc
i j [{mk};α] ≡ 〈(Si −mi)(Sj −mj)〉α,λ [α,m] (39)

we obtain:
dΓα
dα

= −∑
i j

Ji j mimj −∑
i j

Ji j gc
i j [{mk};α] (40)

So that finally, one obtains the formal expression forΓ[mi ] ≡ Γα=1[mi]:

Γ[mi ] = Γ0[mi]−∑
i j

Ji j mimj −∑
i j

Ji j

∫ 1

0
dαgc

i j [mk;α] ≡ Γ0 +EMF +Γcorr (41)

In this expression,gc denotes the connected correlation function for a given value of the
coupling constant,expressed as a functional of the local magnetisations.

Hence, theexact functionalΓ appears as a sum of three contributions:

• The part associated with the equivalent system (corresponding here to the entropy
of constrained but otherwise free spins)

• The mean-field energy∑i j Ji j mimj

• A contribution from correlations which contains all corrections beyond mean-field

As explained in the next section, there is a direct analogy between this and the various
contributions to the density functional within DFT (kinetic energy, Hartree energy and
exchange-correlation).

I note in passing that one can derive a closed equation for theexact functional, which
reads (see [28] for a derivation):
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Γα [mi ] = Γ0[mi]−α ∑
i j

Ji j mimj −
1
β ∑

i j
Ji j

∫ α

0
dα ′

[
δ 2Γα ′

δmkδml

]−1

i j
(42)

This equation fully determines in principle the effective action functional. However, in
order to use it in practice, one generally has to start from a limit in which the functional
is known explicitly, and expand around that limit. For example, an expansion around the
high-temperature limit yields systematic corrections to mean-field theory [49, 28]. This
equation is closely related [28] to the Wilson-Polchinsky equation [50] for the effective
action (after a Legendre transformation: see also [51]), which can be taken as a starting
point for a renormalisation group analysis by starting fromthe local limit and expanding
in the “locality” (see e.g [52, 51].

Equilibrium condition and stability. The physical values of the magnetisations at
equilibrium are obtained by minimisingΓ, which yields:

m∗
i = tanh

(
β ∑

j
Ji j m

∗
j −β

δΓcorr

δmi

)
(43)

and the Weiss field takes the following value:

he f f
i ≡ (λ 0

i )∗ = ∑
j

Ji j m∗
j −

δΓcorr

δmi
|∗ (44)

This equation is aself-consistency conditionwhich determines the Weiss field in terms
of the local magnetizations on all other sites. Its physicalinterpretation is clear:he f f

i is
the true (average) local field seen by sitei. It is equal to the sum of two terms: one in
which all spins are treated as independent, and a correctiondue to correlations.

The stability of the functional around equilibrium is controlled by the fluctuation
matrix:

δ 2Γ
δmiδmj

=
δλ 0

i

δmj
−Ji j +

δ 2Γcorr

δmiδmj
(45)

At equilibrium, this is nothing else than the inverse of the susceptibility (or correlation
function) matrix:

δ 2Γ
δmiδmj

≡ (χ−1)i j = (χ−1
0 )i j −Ji j +

δ 2Acorr

δmiδmj
(46)

with:

(χ−1
0 )i j =

1

β (1−m2
i )

δi j (47)

Hence, our functional does satisfy a stability criterion asdefined in the introduction: a
negative eigenvalue of this matrix (i.e ofχ(~q)) would correspond to a physical instability
of the system. Note that at the simple mean-fied level, we recover the RPA formula for
the susceptibility:(χ−1)i j = (χ−1

0 )i j −Ji j .

Dynamical Mean-Field Theory March 3, 2004 24



Mean-field approximation and beyond.Obviously, this construction of theexact
Legendre transformed free energy, and the exact equilibrium condition (43) has formal
value, but concrete applications require some further approximations to be made on
the correlation termΓcorr. The simplest such approximation is just to neglectΓcorr
altogether. This is the familiar Weiss mean-field theory:

ΓMFT =
1
β ∑

i

(
1+mi

2
ln

1+mi

2
+

1−mi

2
ln

1−mi

2

)
−∑

i j
Ji j mimj (48)

For a ferromagnet (uniform positiveJi j ’s), this approximation becomesexact in the limit
of infinite coordinationof the lattice.

The formal construction above is a useful guideline when trying to improve on the
mean-field approximation. I emphasize that, within the present approach,it is the self-
consistency condition (44) (relating the Weiss field to the environment) that needs to be
corrected, while the equationmi = tanhβhe f f

i is attached to our choice of equivalent
system and will be always valid. For example, in [48, 49] it was shown how to con-
structΓcorr by a systematic high-temperature expansion inβ . This expansion can be
conveniently generated by iterating the exact equation (42). It can also be turned into an
expansion around the limit of infinite coordination [49]. The first contribution toΓcorr
in this expansion appears at orderβ (or α2) and reads:

Γ(1)
corr = −β

2 ∑
i j

J2
i j (1−m2

i )(1−m2
j ) (49)

This is a rather famous correction to mean-field theory, known as the “Onsager reaction
term”. For spin glass models (Ji j ’s of random sign), it is crucial to include this term
even in the large connectivity limit. The corresponding equations for the equilibrium
magnetizations are those derived by Thouless, Anderson andPalmer [53].

3.2. Density functional theory

In this section, I explain how density-functional theory8 (DFT) [55, 56] can be derived
along very similar lines. This section borrows from the workof Fukuda et al. [57, 46]
and of Valiev and Fernando [58]. For a recent pedagogical review emphasizing this point
of view, see [59]. For detailed reviews of the DFT formalism,see e.g [60, 61].

Let us consider the inhomogeneous electron gas of a solid, with hamiltonian:

H = −∑
i

1
2

∇2
i +∑

i
v(r i)+

1
2 ∑

i 6= j

U(r i − r j) (50)

in which v(x) is the external potential due to the nuclei andU(x− x′) (= e2/|x−x′|) is
the electron-electron interaction. (I use conventions in which h̄ = m= 1). Let us write

8 I actually consider the finite-temperature extension of DFT[54]
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this hamiltonian in second- quantized form, and again introduce a coupling-constant
parameterα (the physical case isα = 1):

Hα = −1
2

∫
dxψ†∇2ψ +

∫
dxv(x)n̂(x)+

α
2

∫
dxdx′ n̂(x)U(x−x′)n̂(x′) (51)

We want to construct the free energy functional of the systemwhile constraining the
average density to be equal to some specified functionn(x). In complete analogy with
the previous section, we introduce a Lagrange multiplier functionλ (x), and consider9:

Ωα [n(x),λ (x)]≡− 1
β

lnTr exp

(
−βHα +β

∫
dxλ (x)(n(x)− n̂(x))

)
(52)

A functional ofboth n(x) andλ (x). As before, stationarity inλ insures that:

〈n̂(x)〉λ ,α = n(x) → λ (x) = λα [n(x)] (53)

This will be used to eliminateλ (x) in terms ofn(x) and construct the functional ofn(x)
only:

Γα [n(x)] ≡ Ωα [n(x),λα [n(x)]] (54)

3.2.1. Equivalent system: non-interacting electrons in aneffective
potential

Again, I first look at the non-interacting caseα = 0. Then we have to solve a one-
particle problem in anx-dependent external potential. This yields:

Ω0[n[x],λ [x]] = −tr ln[iωn− t̂ − v̂− λ̂ ]−
∫

dxλ (x)n(x) (55)

In this equation, tr denotes the trace over the degrees of freedom of a single electron,iωn

is the usual Matsubara frequency, andt̂ ≡ −∇2/2, v̂, λ̂ are the one-body operators cor-
responding to the kinetic energy, external potential andλ (x) respectively. The identity
lndet= tr ln has been used.

Minimisation with respect toλ (x) yields the following relation betweenλ 0 andn(x):

1
β ∑

n
〈x| 1

iωn− t̂ − v̂− λ̂0
|x〉 = n(x) (56)

This defines the functionalλ0[n(x)], albeit in a somewhat implicit manner. This is
directly analogous to Eq.(35) defining the Weiss field in the Ising case (but in that case,

9 Note that I chose in this expression a different sign convention for λ than in the previous section, and
also that Tr denotes the full many-body trace over allN-electrons degrees of freedom.
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this equation was easily invertible). If we want to be more explicit, what we have to do
is solve the one-particle Schrodinger equation:

(
−1

2
∆+vKS(x)

)
φl(x) = εlφl (x) (57)

where theeffective one-body potential(Kohn-Sham potential) isdefinedas:

vKS(x) ≡ v(x)+λ 0(x) (58)

It is convenient to construct the associated resolvent:

R(x,x′; iωn) = ∑
l

φl (x)φ∗
l (x′)

iωn− εl
(59)

and the relation (56) now reads:

∑
l

|φl (x)|2 fFD(εl) = n(x) (60)

in which fFD is the Fermi-Dirac distribution.
This relation expresses the local density in an interactingmany-particle system as

that of a one-electron problemin an effective potentialdefined by (56). In so doing,
the effective one-particle wave functions and energies (Kohn-Sham orbitals) have been
introduced, whose relation to the original system (and in particular their interpretation
as excitation energies) is far from obvious (see e.g [61]). There is, for example, no
fundamental justification in identifying the resolvent (59) with the true one-electron
Green’s function of the interacting system. The issue ofrepresentability(i.e whether an
effective potential can always be found given a density profile n(x)) is far from being as
obvious as in the previous section, but has been establishedon a rigorous basis [62, 63].

To summarize, the non-interacting functionalΓ0[n(x)] reads:

Γ0[n(x)] = −tr ln[iωn− t̂ − v̂− λ̂0[n]]−
∫

dxλ 0[x;n]n(x) (61)

which can be rewritten as:

Γ0[n(x)] == − 1
β ∑

l

ln
[
1+e−βεl [n]

]
−
∫

dxvKS(x)n(x)+

∫
dxv(x)n(x) (62)

in whichλ0 andvKS are viewed as a functional ofn(x), as detailed above.
In the limit of zero temperature (β → ∞), this reads:

Γ0[n(x),T = 0] =
′

∑
l

εl −
∫

dxvKS(x)n(x)+

∫
dxv(x)n(x) (63)

in which the sum is over the N occupied Kohn-Sham states. We note that it contains extra
terms beyond the ground-state energy of the KS equivalent system (see also Sec. 5.4).
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We also note thatΓ0 is not a very explicit functional ofn(x). It is a somewhat more
explicit functional ofλ0(x) (or equivalently of the KS effective potentialvKS(x)) so that
it is often more convenient to think in terms of this quantitydirectly. At any rate, in
order to evaluateΓ0 for a specific density profile or effective potential one mustsolve
the Schrödinger equation for KS orbitals and eigenenergies. This is a time-consuming
task for realistic three-dimensional potentials and practical calculations would be greatly
facilitated if a more explicit accurate expression forΓ[n(x)] would be available10.

3.2.2. The exchange-correlation functional

We turn to the interacting theory, and use the coupling constant integration method
(see [64] for its use in DFT):

Γ[n(x)] = Γ[n(x);α = 0]+

∫ 1

0
dα

dΓα
dα

(64)

Similarly as before:

dΓα
dα

= 〈Û〉λ ,α =
1
2

∫
dxdx′U(x−x′)〈n̂(x)n̂(x′)〉λ ,α (65)

Separating again a Hartree (mean-field) term, we get:

Γ[n(x)] = Γ0[n(x)]+EHartree[n(x)]+Γxc[n(x)] (66)

with:

EHartree[n(x)] =
1
2

∫
dxdx′U(x−x′)n(x)n(x′) (67)

andΓxc is the correction-to mean field term (the exchange-correlation functional):

Γxc[n(x)] =
1
2

∫
dxdx′U(x−x′)

∫ 1

0
dαgc

α [n;x,x′] (68)

In which:
gc

α [n;x,x′] ≡ 〈(n̂(x)−n(x))(n̂(x′)−n(x′))〉λα [n],α (69)

is the (connected) density-density correlation function,expressed as a functional of the
local density, for a given value of the couplingα.

It should be emphasized that the exchange-correlation functionalΓxc is independentof
the specific form of the crystal potentialv(x): it is auniversal functionalwhich depends
only on the form of the inter-particle interactionU(x− x′) ! To see this, we first observe
that, becauseΓ[n(x)] is the Legendre transform of the free energy with respect to the

10 see e.g the lecture notes by K.Burke: http://dft.rutgers.edu/kieron/beta/index.html
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one-body potential, we can easily relate the functional in the presence of the crystal
potentialv(x) to that of the homogeneous electron gas (i.e withv = 0):

Γ[n(x)] = ΓHEG[n(x)]+
∫

dxv(x)n(x) (70)

Since this relation is also obeyed for the non-interacting system (see Eq. (61)), and using
Γ = Γ0 + ΓH + Γxc, we see that the functional form ofΓxc is independent ofv(x). It is
the same for all solids, and also for the homogeneous electron gas.

I finally note that an exact relation can again be derived for the density functional (or
alternatively the exchange-correlation functional) by noting that:

βgc
α [n;x,x′] =

[
δΓα

δn(x)δn(y)

]−1

xx′
(71)

Inserting this relation into (66,68), one obtains:

Γα [n] = Γ0[n]+αEH[n]+
1
2

∫
dxdx′U(x−x′)

∫ α

0
dα ′

[
δΓα

δn(x)δn(y)

]−1

xx′
(72)

in complete analogy with (42). For applications of this exact functional equation, see
e.g [65, 66]. Analogies with the exact renormalization group approach (see previous
section) might suggest further use of this relation in the DFT context.

3.2.3. The Kohn-Sham equations

Let us now look at the condition for equilibrium. We varyΓ[n(x)], and we note that,
as before, the terms originating from the variationδλ 0/δn(x) cancel because of the
relation (56). We thus get:

δΓ
δn(x)

= −λ0(x)+

∫
dx′U(x−x′)n(x′)+

δΓxc

δn(x)
(73)

so that the equilibrium densityn∗(x) is determined by:

λ 0(x)∗ =
∫

dx′U(x−x′)n∗(x′)+
δΓxc

δn(x)
|n=n∗ (74)

which equivalently specifies the KS potential at equilibrium as:

v∗KS(x) = v(x)+

∫
dx′U(x−x′)n∗(x′)+

δΓxc

δn(x)
|n=n∗ (75)

Equation (74) is the precise analog of Eq.(44) determining the Weiss field in the Ising
case, andv∗KS is the true effective potential seen by an electron at equilibrium, in a one-
electron picture. Together with (57), it forms the fundamental (Kohn-Sham) equations
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of the DFT approach. To summarize, the expression of the total energy (T = 0) reads:

Γ[n(x),T = 0] =
′

∑
l

εl −
∫

dxvKS(x)n(x)+
∫

dxv(x)n(x) + Γxc[n(x)] (76)

Concrete applications of the DFT formalism require an approximation to be made on
the exchange-correlation term. The celebratedlocal density approximation(LDA) reads:

Γxc[n(x)] |LDA =
∫

dxn(x)εHEG
xc [n(x)] (77)

in which εHEG
xc (n) is the exchange-correlation energy density of thehomogeneouselec-

tron gas, for an electron densityn. Discussing the reasons for the successes of this ap-
proximation (as well as its limitations) is quite beyond thescope of these lectures. The
interested reader is referred e.g to [61, 59].

Finally, we observe that DFT satisfies the stability properties discussed in the intro-
duction, sinceδ 2Γ/δn(x)δn(x′) is the inverse of the density-density response function
(q-dependent compressibility). A negative eigenvalue wouldcorrespond to a charge or-
dering instability.

3.3. Exact functional of the local Green’s function, and theDynamical
Mean-Field Theory approximation

In this section, I would like to explain how the concepts of the previous sections pro-
vide a broader perspective on the dynamical mean field approach to strongly correlated
fermion systems. In contrast to DFT which focuses on ground-state properties (or ther-
modynamics), the goal of DMFT (see [3] for a review) is to address excited states by
focusing on thelocal Green’s function(or thelocal spectral density). Thus, it is natural
to formulate this approach in terms of a functional of the local Green’s function. This
point of view has been recently emphasized by Chitra and Kotliar [67] and by the author
in Ref. [28].

I describe below how such anexact functionalcan be formally constructed for a
correlated electron model (irrespective, e.g of dimensionality), hence leading to alocal
Green’s function (or local spectral density) functional theory. I will adopt a somewhat
different viewpoint than in [67], by taking theatomic limit(instead of the non-interacting
limit) as a reference system. This leads naturally to represent the exact local Green’s
function as that of a quantum impurity model, with a suitablychosen hybridisation
function. There is no approximation involved in this mapping (only a representability
assumption). This gives a general value to the impurity model mapping of Ref.[26].
Dynamical mean field theory as usually implemented can then be viewed as asubsequent
approximationmade on the non-local contributions to the exact functional(e.g. the
kinetic energy).

For the sake of simplicity, I will take the Hubbard model as anexample throughout
this section. The hamiltonian is decomposed as:

Hα = U ∑
i

ni↑ni↓−α ∑
i j ,σ

ti j c+
iσ c jσ (78)
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I emphasize that the varying coupling constantα ∈ [0,1] has been introduced in front
of the hopping term, which is the non-local term of this hamiltonian, andnot in front
of the interaction. When dealing with a more general hamiltonian, we would similarly
decomposeH = Hloc+αHnon-loc.

3.3.1. Representing the local Green’s function by a quantumimpurity
model

In order to constrain the local Green’s function〈ci(τ)c+
i (τ ′)〉 to take a specified value

G(τ − τ ′), we introduce conjugate sources (or Lagrange multipliers)∆(τ − τ ′) and
consider11:

Ωα [G(ω),∆(ω)]≡ − 1
Nsβ

ln
∫

DcDc+ exp{
∫ β

0
dτ(∑

iσ
c+

iσ (−∂τ + µ)ciσ −Hα [c,c+])+

+
∫ β

0

∫ β

0
dτdτ ′∑

iσ
∆(τ − τ ′)[G(τ − τ ′)−c+

iσ (τ)ciσ (τ ′)]} (79)

Inverting the relationG= Gα [∆] yields∆ = ∆α [G], and a functional of the local Green’s
function is obtained asΓα [G] = Ωα [G,∆α [G]]. This is the Legendre transform of the
free energy with respect to the local source∆.

I would like to emphasize that this construction is quite different from the Baym-
Kadanoff formalism, which considers a functional of all thecomponents of the lattice
Green’s functionGi j , not only of its local partGii . The Baym-Kadanoff approach also
gives interesting insights into the DMFT construction [3, 47], and will be considered at
a later stage in these lectures.

Consider first theα = 0 case, in which the hamiltonian is purely local (atomic limit).
Then, we have to consider a local problem defined by the action:

Simp = −
∫ β

0
dτ
∫ β

0
dτ ′∑

σ
c+

σ (τ)
[
(−∂τ + µ)δ (τ − τ ′)−∆0(τ − τ ′)

]
cσ (τ ′)

+U
∫ β

0
dτ n↑(τ)n↓(τ) (80)

Hence, the local Green’s functionG(iωn) is represented as that of a quantum impurity
problem (an Anderson impurity problem in the context of the Hubbard model):

G = Gimp[∆0] (81)

As before,∆0 plays the role of a Weiss field (analogous to the effective field for a magnet,
or to the KS effective potential in DFT). Formally, this Weiss field specifies [26] the

11 In this section, I will divide the free energy functional by the numberNs of lattice sites (restricting
myself for simplicity to an homogeneous system)
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effective bare Green’s function of the impurity action (80):

G
−1
0 (iωn) = iωn + µ −∆0(iωn) (82)

There are however two important new aspects here:

• i) The Weiss function∆0 is a dynamical(i.e frequency dependent) object. As a
result the local equivalent problem (80) is not in Hamiltonian form but involves
retardation

• ii) The equivalent local problem is not a one-body problem, but involves local
interactions.

We note that, as in DFT, the explicit inversion of (81) is not possible in general. In
practice, one needs a (numerical or approximate) techniqueto solve the quantum im-
purity problem (an“impurity solver” ), and one can use an iterative procedure. Starting
from some initial condition for∆0 (or G 0) , one computes the interacting Green’s func-
tion Gimp, and the associated self-energyΣimp ≡ G

−1
0 −G−1

imp. One then updatesG 0 as:

G 0new= [Σimp+G−1]−1, whereG is the specified value of the local Green’s function.

3.3.2. Exact functional of the local Green’s function

We proceed with the construction of the exact functional of the local Green’s function,
by coupling constant integration (starting from the atomiclimit).

At α = 0 (decoupled sites, or infinitely separated atoms), we have12 :

Ω0[∆0,G] = Fimp[∆0]−Tr (G∆0) (83)

whereFimp is the free energy of the local quantum impurity model viewedas a functional
of the hybridisation function. By formal inversion∆0 = ∆0[G]:

Γ0[G] = Fimp[∆0[G]]−Tr (G∆0[G]) (84)

We then observe that (since theα-derivatives of the Lagrange multipliers do not con-
tribute because of the stationarity ofΩ):

dΓα
dα

= 〈Hnon-loc〉 (85)

which, for the Hubbard model, reduces to the kinetic energy:

dΓα
dα

= 〈T̂〉 = − 1
Ns

∑
i j

ti j 〈c+
i c j〉|G = Tr

1
Ns

∑
k

εk Gα(k, iωn)|G (86)

In this expression, the lattice Green’s functionGα(k, iωn) should be expressed, for a
givenα, as a functional of the local Green’s functionG.

12 In this formula and everywhere below, Tr denotes1
β ∑n, with possibly a convergence factoreiωn0+.
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This leads to the following formal expression of the exact functionalΓ[G] = Γα=1[G]:

Γ[G] = Fimp[∆0[G]]−Tr (G∆0[G])+T [G] (87)

in whichT [G] is the kinetic energy functional (evaluated while keepingGii = G fixed):

T [G] =

∫ 1

0
dα

1
Ns

∑
i j

ti j 〈c+
i c j〉|G =

∫ 1

0
dαTr

1
Ns

∑
k

εk Gα(k, iωn)|G (88)

The conditionδΓ/δG = 0 determines the actual value of the local Green’s function at
equilibrium as (usingδΓ0/δG = −∆0):

∆0[G(iωn)] =
δT [G]

δG(iωn)
(89)

We recall that the generalized Weiss function (hybridization) andG are, by construction,
related by (81):

G = Gimp[∆0] (90)

Equations (89,90) (together with the definition of the impurity model, Eq. 80)) are
the key equations of dynamical mean-field theory, viewed as an exact approach. The
cornerstone of this approach [26] is that, in order to obtainthe local Green’s function,
one has to solve an impurity model (80), submitted to the self-consistency condition (89)
relating the hybridization function∆0 to G(iωn) itself. I emphasize that, sinceΓ[G] is
an exact functional, this construction is completely general: it is valid for the Hubbard
model in arbitrary dimensions and on an arbitrary lattice.

Naturally, using it in practice requires a concrete approximation to the kinetic energy
functionalT [G] (similarly, the DFT framework is only practical once an approximation
to Γxc is used, for example the LDA). The DMFTapproximationusually employed is
described below. In fact, it might be useful to employ a different terminology and call
”local spectral density functional theory” (or “local impurity functional theory”) the
exact framework, and DMFT the subsequent approximation commonly made inT [G].

3.3.3. A simple case: the infinite connectivity Bethe lattice

It is straightforward to see that the formal expression for the kinetic energy functional
T [G] simplifies into a simple closed expression for the Bethe lattice with connectivity
z, in the limit z→ ∞. In fact, a closed form can be given on an arbitrary lattice inthe
limit of large dimensions, but this is a bit more tedious and we postpone it to the next
section.

In the limit of large connectivity, the hopping must be scaled as: ti j = t/
√

z [25].
Expanding the kinetic energy functional in (87) in powers ofα, one sees that only the
term of orderα remains in thez= ∞ limit thanks to the tree-like geometry, namely:

α ∑
i jkl

ti j tkl〈c+
i c jc

+
k cl 〉α=0 = α ∑

i j
t2
i j Tr G2 = α(zNs)

t2

z
Tr G2 (91)
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So that, integrating overα, one obtainsT [G] = t2Tr G2/2 and finally:

ΓBethe,z=∞[G] = Fimp[∆0[G]]−Tr (G∆0[G])+
t2

2
Tr G2 (92)

This functional is similar (although different in details)to the one recently used by
Kotliar [68] in a Landau analysis of the Mott transition within DMFT.

The self-consistency condition (89) that finally determines both the local Green’s
function and the Weiss field (through an iterative solution of the impurity model) thus
reads in this case:

∆0[G, iωn] = t2G(iωn) (93)

3.3.4. DMFT as an approximation to the kinetic energy functional.

Now, I will show that the usual form of DMFT [3] (for a general non-interacting dis-
persionεk) corresponds to a very simple approximation of the kinetic energy termT [G]
in the exact functionalΓ[G]. Consider the one-particle Green’s functionGα(k, iωn) as-
sociated with the action (79) of the Hubbard model, in the presence of the source term
∆α and for an arbitrary coupling constant. We can define a self-energy associated with
this Green’s function:

Gα(k, iωn) =
1

iωn + µ −∆α [iωn]−αεk −Σα [k, iωn]
(94)

The self-energyΣa is in general ak-dependent object, except obviously forα = 0 in
which all sites are decoupled into independent impurity models. The DMFT approxima-
tion consists in replacingΣa for arbitraryα by the impurity model self-energyΣ0 (hence
depending only on frequency), at least for the purpose of calculatingT [G]. Hence:

Gα(k, iωn)|DMFT =
1

iωn+ µ −∆α [iωn;G]−αεk −Σα=0[iωn,G]
(95)

With:
Σα=0[G; iωn] ≡ G 0−1−G−1 = iωn + µ −∆0[iωn,G]−G−1 (96)

Summing overk, one then expresses the local Green’s function in terms of the hybridi-
sation as:

G(iωn) =

∫
dε

D(ε)

ζ −αε
=

1
α

D̃

(
ζ
α

)
(97)

With ζ ≡ iωn+µ−∆α −Σ0 = ∆0−∆a+G−1. In this expression,D(ε) = 1
Ns

∑k δ (ε−εk)

is the non-interacting density of states, andD̃(z) =
∫

dε D(ε)
z−ε its Hilbert transform.

Introducing the inverse function such thatD̃[R(g)] = g, we can invert the relation above
to obtain the hybridisation function as a functional of the localG for U = 0:

∆α [iωn;G] = G−1+∆0[G]−αR[αG] (98)
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So that the lattice Green’s function is also expressed as a functional ofG as:

Gα(k, iωn) =
1

αR(αG)−αεk
(99)

Inserting this into (87), we can evaluate the kinetic energy:

1
Ns

∑
k

εkGα(k) =
1
α

∫
dε

ε D(ε)

R(αG)− ε
=

1
α

[−1+αGR(αG)] (100)

and hence the DMFT approximation toT [G]:

TDMFT [G] =
∫ 1

0
dαTr

[
G(iωn)R(αG(iωn))−

1
α

]
(101)

So that the total functional reads, in the DMFT approximation:

ΓDMFT [G] = Fimp[∆0[G]]−Tr (G∆0[G])+

+
∫ 1

0
dαTr

[
G(iωn)R(αG(iωn))−

1
α

]
(102)

In the case of an infinite-connectivity Bethe lattice, corresponding to a semi-circular
d.o.s of width 4t, one has:R[g] = t2g+ 1/g, so that the result (92) is recovered from
this general expression. I note that the DMFT approximationto the functionalT [G] is
completely independent of the interaction strengthU .

The equilibrium condition (89)δΓ/δG = 0 thus reads13 , in the DMFT approxima-
tion [3]:

∆0[iωn,G]|DMFT = R[G(iωn)]−
1

G(iωn)
(103)

This can be rewritten in a more familiar form, using (96):

G(iωn) =
∫

dε
D(ε)

iωn+ µ −Σimp(iωn)
, with: Σimp = G 0−1−G−1 (104)

The self-consistency condition is equivalent to the condition ∆α=1[G] = 0, as expected
from the fact that∆α=1 = δΓ/δG. Hence, within the DMFT approximation, the lattice
Green’s function is obtained by settingα = 1 into (95):

G(k, iωn)|DMFT =
1

iωn + µ − εk −Σimp(iωn)
(105)

3.4. The Baym-Kadanoff viewpoint

Finally, let me briefly mention that the DMFT approximation can also be formulated
using the more familiar Baym-Kadanoff functional. In contrast to the previous section,

13 When deriving this equation, it is useful to note thatR(αG)+ αGR′(αG) = ∂α [αR(αG)].
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this is a functional ofall components Gi j of the lattice Green’s function, not only of the
local oneGii . The Baym-Kadanoff functional is defined as:

ΩBK[Gi j ,Σi j ] = −tr ln
[
(iωn+ µ)δi j − ti j −Σi j (iωn)

]
− tr [Σ · G]+ΦLW[{Gi j}] (106)

Variation with respect toΣi j yields the usual Dyson’s equation relating the Green’s func-
tion and the self-energy. The Luttinger-Ward functionalΦLW has a simple diagrammatic
definition as the sum of all skeleton diagrams in the free-energy. Variation with respect
to Gi j express the self-energy as a total derivative of this functional:

Σi j (iωn) =
δΦ

δGi j (iωn)
(107)

The DMFT approximation amounts to approximate the Luttinger-Ward functional by a
functional which is the sum of that ofindependent atoms, retaining only the dependence
over the local Green’s function, namely:

ΦDMFT
LW = ∑

i
Φimp[Gii ] (108)

An obvious consequence is that the self-energy is site-diagonal:

Σi j (iωn) = δi j Σ(iωn) (109)

EliminatingΣii amounts to do a Legendre transformation with respect toGii , and therfore
leads to a different expression of the local DMFT functionalintroduced in the previous
section [67]:

ΓDMFT [Gii ] = −tr ln

[
(iωn+ µ − δΦimp

δGii
)δi j − ti j

]
− tr [

δΦ
δGii

· Gii ]+∑
i

Φimp[Gii ]

(110)
The Baym-Kadanoff formalism is useful for total energy calculations, and will be used
in Sec. 5.4.

4. THE MOTT METAL-INSULATOR TRANSITION

4.1. Materials on the verge of the Mott transition

Interactions between electrons can be responsible for the insulating character of a
material, as realized early on by Mott [1, 2]. The Mott mechanism plays a key role in
the physics of strongly correlated electron materials. Outstanding examples [2, 11] are
transition-metal oxides (e.g superconducting cuprates),fullerene compounds, as well as
organic conductors14. Fig. 6 illustrates this in the case of transition metal oxides with
perovskite structure ABO3 [74].

14 The Mott phenomenon may also be partly responsible for the localization of f-electrons in some rare
earth and actinidesmetals, see [69, 70, 71, 72, 73] and [16, 21] for recent reviews.
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FIGURE 6. This diagram (due to A.Fujimori [74], see also [11]) can be viewed as a map of the vast
territory of transition- metal compounds with perovskite structure ABO3. Varying the transition metal ion
B corresponds to gradual filling of the 3d-shell. Different substitutions on the A-site can be made (A=
Sr,Ca and A=La,Y are mainly considered in this diagram). This allows to change either the valence of the
transition metal ion (doping), or the structural parameters in an isoelectronic manner. The shaded region
corresponds to insulating compounds, while the unshaded one corresponds to metals. This illustrates the
key role of the Mott phenomenon in the physics of transition-metal oxides.

A limited number of materials are poised right on the verge ofthis electronic instabil-
ity. This is the case, for example, of V2O3, NiS2−xSex and of quasi two-dimensional
organic conductors of theκ-BEDT family. These materials are particularly interest-
ing for the fundamental investigation of the Mott transition, since they offer the pos-
sibility of going from one phase to the other by varying some external parameter (e.g
chemical composition,temperature, pressure,...). Varying external pressure is definitely
a tool of choice since it allows to sweep continuously from the insulating phase to the
metallic phase (and back). The phase diagrams of (V1−x Crx)2O3 and of κ-(BEDT-
TTF)2Cu[N(CN)2]Cl under pressure are displayed in Fig. 7. There is a great similarity
between the high-temperature part of the phase diagrams of these materials, despite very
different energy scales. At low-pressure they areparamagneticMott insulators, which
are turned into metals as pressure is increased. Above a critical temperatureTc (of order
∼ 450K for the oxide compound and∼ 40K for the organic one), this corresponds to a
smooth crossover. In contrast, forT < Tc a first-order transition is observed, with a dis-
continuity of all physical observables (e.g resistivity).The first order transition line ends
in a second order critical endpoint at(Tc,Pc). We observe that in both cases, the critical
temperature is a very small fraction of the bare electronic energy scales (for V2O3 the
half-bandwidth is of order 0.5−1 eV, while it is of order 2000 K for the organics).

There are also some common features between the low-temperature part of the phase
diagram of these compounds, such as the fact that the paramagnetic Mott insulator orders
into an antiferromagnet as temperature is lowered. However, there are also striking
differences: the metallic phase has a superconducting instability for the organics, while
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FIGURE 7. Left: Phase diagram of (V1−x Crx)2O3 as a function of either Cr-concentrationx or pressure
(after[75]). Increasingx by 1% produces similar effects thandecreasingpressure by∼ 4kbar, for this
material. Right: Phase diagram ofκ-(BEDT-TTF)2Cu[N(CN)2]Cl as a function of pressure (after [76]).

this is not the case for V2O3. Also, the magnetic transition is only superficially similar :
in the case of V2O3 , it is widely believed to be accompanied (or even triggered)by
orbital ordering[77] (in contrast to NiS2−xSex[78]), and as a result the transition is first-
order. In general, there is a higher degree of universality associated with the vicinity of
the Mott critical endpoint than in the low-temperature region, in which long-range order
takes place in a material- specific manner.

Mott localization into a paramagnetic insulator implies a high spin entropy, which
must therefore be quenched in some way as temperature is lowered. An obvious possi-
bility is magnetic ordering, as in these two materials. In fact, a Mott transition between a
paramagnetic Mott insulator and a metallic phase is only observed in those compounds
where magnetism is sufficientlyfrustratedso that the transition is not preempted by
magnetic ordering. This is indeed the case in both compoundsdiscussed here: V2O3
has competing ferromagnetic and antiferromagnetic exchange constants, while the two-
dimensional layers in the organics have a triangular structure. Another possibility is
that the entropy is quenched through a Peierls instability (dimerization), in which case
the Mott insulator can remain paramagnetic (this is the case, for example, of VO2).
Whether it is possible to stabilize a paramagnetic Mott insulator down toT = 0 without
breaking spin or translational symmetries is a fascinatingproblem, both theoretically
and from the materials point of view (for a recent review on resonating valence bond
phases in frustrated quantum magnets, see e.g [79] and [80]). The compoundκ-(BEDT-
TTF)2Cu2(CN)3 may offer [81] a realization of such a spin-liquid state (presumably
through a combination of strong frustration and strong charge fluctuations [82]), but this
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behaviour is certainly more the exception than the rule.

4.2. Dynamical mean-field theory of the Mott transition

Over the last decade, a detailed theory of the strongly correlated metallic state, and
of the Mott transition itself has emerged, based on thedynamical mean-field theory
(DMFT). We refer to [3] for a review and an extensive list of original references [26, 29,
30, 83, 84, 85] We now review some key features of this theory.

Quasiparticle coherence scale.In the metallic state, Fermi-liquid theory applies be-
low a low energy scaleε∗F , which can be interpreted as the coherence-scale for quasipar-
ticles (i.e long-lived quasiparticles exist only for energies and temperature smaller than
ε∗F). This low-energy coherence scale is given byε∗F ∼ ZD (with D the half-bandwith,
also equal to the Fermi energy of the non-interacting systemat half-filling) whereZ is
the quasiparticle weight. In the strongly correlated metalclose to the transition,Z ≪ 1,
so thatε∗F is strongly reduced as compared to the bare Fermi energy.

Three peaks in the d.o.s: Hubbard bands and quasiparticles.In addition to low-
energy quasiparticles (carrying a fractionZ of the spectral weight), the one-particle
spectrum of the strongly correlated metal contains high-energy excitations carrying a
spectral weight 1−Z. These are associated to the atomic-like transitions corresponding
to the addition or removal of one electron on an atomic site, which broaden into Hubbard
bands in the solid. As a result, thek-integrated spectral functionA(ω) = ∑k A(k,ω)
(density of states d.o.s) of the strongly correlated metal is predicted [26] to display a
three-peak structure, made of a quasiparticle band close tothe Fermi energy surrounded
by lower and upper Hubbard bands (Fig. 8 and inset of Fig. 14).The quasiparticle part
of the d.o.s has a reduced width of orderZD∼ ε∗F . The lower and upper Hubbard bands
are separated by an energy scale∆.

The insulating phase: local moments, magnetism and frustration. At strong enough
coupling (see below), the paramagnetic solution of the DMFTequations is a Mott
insulator, with a gap∆ in the one-particle spectrum. This phase is characterized by
unscreened local moments, associated with a Curie law for the local susceptibility
∑q χq ∝ 1/T, and an extensive entropy. Note however that the uniform susceptiblity
χq=0 is finite, of order 1/J ∼ U/D2. As temperature is lowered, these local moments
order into an antiferromagnetic phase [27, 83]. The Néel temperature is however strongly
dependent on frustration [3] (e.g on the ratiot ′/t between the next nearest-neighbour
and nearest-neighbour hoppings) and can be made vanishingly small for fully frustrated
models.

Separation of energy scales, spinodals and transition line. Within DMFT, a separa-
tion of energy scales holds close to the Mott transition. Themean-field solution corre-
sponding to the paramagnetic metal atT = 0 disappears at a critical couplingUc2. At this
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FIGURE 8. Local spectral function for several values of the interaction strength in DMFT. These results
have been obtained using the IPT approximation, for the half-filled Hubbard model with a semi-circular
d.o.s (from Ref. [3]). Close to the transition, the separation of scales between the quasiparticle coherence
energy (ε∗F ) and the distance between Hubbard bands (∆ ) is clearly seen.

point, the quasiparticle weight vanishes (Z ∝ 1−U/Uc2) as in Brinkman-Rice theory15

On the other hand, a mean-field insulating solution is found for U > Uc1, with the Mott
gap∆ opening up at this critical coupling (Mott-Hubbard transition). As a result,∆ is a
finite energy scale forU = Uc2 and the quasiparticle peak in the d.o.s is well separated
from the Hubbard bands in the strongly correlated metal.

These two critical couplings extend at finite temperature into two spinodal lines
Uc1(T) and Uc2(T), which delimit a region of the(U/D,T/D) parameter space in
which two mean-field solutions (insulating and metallic) are found (Fig. 9). Hence,
within DMFT, a first-order Mott transition occurs at finite temperature even in a purely
electronic model. The corresponding critical temperatureTel

c is of orderTel
c ∼ ∆E/∆S,

with ∆E and ∆S∼ ln(2S+ 1) the energy and entropy differences between the metal
and the insulator. Because the energy difference is small (∆E ∼ (Uc2−Uc1)

2/D), the
critical temperature is much lower thanD andUc (by almost two orders of magnitude).

15 Since the self-energy only depends on frequency within DMFT, this also implies that quasiparticles
become heavy close to the transition, withm⋆/m = 1/Z. In real materials, we expect however that
magnetic exchange will quench out the spin entropy associated with local moments, resulting in a
saturation of the effective mass close to the Mott transition. In the regime whereε∗F ≪ J, the effective
mass is then expected to be of orderJ, as found e.g in slave-boson theories. Describing this effect requires
extensions of DMFT in order to deal with short-range spatialcorrelations
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FIGURE 9. Paramagnetic phases of the Hubbard model within DMFT, displaying schematically the
spinodal lines of the Mott insulating and metallic mean-field solutions (dashed), the first-order transition
line (plain) and the critical endpoint. The shaded crossover lines separating the different transport regimes
discussed in Sec.3 are also shown. The Fermi-liquid to “bad metal” crossover line corresponds to the
quasiparticle coherence scale and is a continuation of the spinodalUc2(T) aboveTc. The crossover into
the insulating state corresponds to the continuation of theUc1 spinodal. Magnetic phases are not displayed
and depend on the degree of frustration. Figure from Refs. [86] and [87].

Indeed, in V2O3 as well as in the organics, the critical temperature corresponding to the
endpoint of the first-order Mott transition line is a factor of 50 to 100 smaller than the
bare electronic bandwith.

4.3. Physical properties of the correlated metallic state:DMFT
confronts experiments

4.3.1. Three peaks: evidence from photoemission

In Fig. 10, we reproduce the early photoemission spectra of somed1 transition metal
oxides, from the pioneering work of Fujimori and coworkers [88]. This work established
experimentally, more than ten years ago, the existence of well-formed (lower) Hubbard
bands in correlated metals, in addition to low-energy quasiparticles. This experimental
study and the theoretical prediction of a 3-peak structure from DMFT [26] came in-
dependently around the same time. However, back in 1992, theexistence of a narrow
quasiparticle peak inA(ω) resembling the DMFT results was, to say the least, not ob-
vious from these early data. Further studies [89] on Ca1−xSrxVO3 therefore aimed at
studying the dependence of low-energy quasiparticle spectral features upon the degree
of correlations. One of the main difficulty raised by these photoemission results is that
the weightZ of the low-energy quasiparticle peak estimated from these early data is
quite small (particularly for CaVO3), while specific heat measurements do not reveal
a dramatic mass enhancement. This triggered some discussion [89, 90, 11] about the
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FIGURE 10. Photoemission spectra of severald1 transition metal oxides, reproduced from Ref. [88].
The effects of correlations increases from ReO3 (a weakly correlated metal) to YTiO3 (a Mott insulator).
The plain lines are the d.o.s obtained from band structure calculations. A lower Hubbard band around
−1.5 eV is clearly visible in the most correlated materials, both in the metallic and insulating case.

possibility of a strongk-dependence of the self-energy. A decisive insight into this ques-
tion came from further experimental developments by Maiti and coworkers [91, 18] in
which it was demonstrated that the photoemission spectra are actually quite sensitive to
the photon energy. Studies at different photon energies allowed these authors to extract
the estimated spectra corresponding to the bulk and the surface of the material. Surface
and bulk spectra were found to be very different indeed: the surface of CaVO3 being
apparently insulating-like while the bulk spectrum did show a much more pronounced
quasiparticle peak. Very recently, high resolution, high-photon energy photoemission
studies [92, 93] clarified considerably this issue. The highphoton-energy spectrum re-
produced on Fig. 11 displays a clear quasiparticle d.o.s at low-energy (with a weight
in good agreement withm/m⋆ and a height comparable to the LDA d.o.s), as well as a
lower Hubbard band carrying the rest of the spectral weight.Moreover, recent calcula-
tions [94, 95, 93] combining electronic structure methods and DMFT (see next section)
compare favorably to the experimental spectra, on a quantitative level.
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FIGURE 11. (a) Bulk V 3d spectral functions of SrVO3 (closed circles), Sr0.5Ca0.5VO3 (solid line) and
CaVO3 (open squares). (b) Comparison of the experimentally obtained bulk V 3d spectral function of
SrVO3 (closed circles) to the V 3d partial density of states for SrVO3 (dashed curve) obtained from the
band-structure calculation, which has been broadened by the experimental resolution of 140 meV. The
solid curve shows the same V 3d partial density of states but the energy is scaled down by a factor of 0.6.
Figure and caption from Ref. [92] (see also [93]).

In the case of NiS2−xSex , angular resolved photoemission have revealed a clear
quasiparticle peak, with strong spectral weight redistributions as a function of tempera-
ture [96]. For the metallic phase of V2O3 , high photon energy photoemission proved to
be an essential tool in the recent experimental finding of thequasiparticle peak (Fig. 12)
by Mo et al. [97].

4.3.2. Spectral weight transfers

The quasiparticle peak in the d.o.s is characterized by an extreme sensitivity to
changes of temperature, as shown in the inset of Fig. 14. Its height is strongly reduced as
T is increased, and the peak disappears altogether asT reachesε∗F , leaving a pseudogap
at the Fermi energy. Indeed, aboveε∗F , long-lived coherent quasiparticles no longer
exist. The corresponding spectral weight is redistributedover a very large range of
energies, of orderU (hence much larger than temperature itself). This is reminiscent
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FIGURE 12. Photoemission spectra of V2O3 , for various photon energies, from Ref. [97]. The highest
photon energy spectrum, corresponding to the greatest bulksensitivity, reveals a prominent quasiparticle
peak.

of Kondo systems [98], and indeed DMFT establishes a formal and physical connection
[26] between a metal close to the Mott transition and the Kondo problem. The local
moment present at short time-scales is screened through a self-consistent Kondo process
involving the low-energy part of the (single- component) electronic fluid itself.

These spectral weight transfers and redistributions are a distinctive feature of strongly
correlated systems. As already mentioned, they have been observed in the photoemission
spectra of NiS2−xSex . They are also commonly observed in optical spectroscopy of
correlated materials, as shown on Fig. 13 for metallic V2O3 [99] and theκ-BEDT
organics [100]. DMFT calculations give a good description of the optical spectral weight
transfers for these materials, at least on a qualitative level [99, 101].

4.3.3. Transport regimes and crossovers

The disappearance of coherent quasiparticles, and associated spectral weight trans-
fers, results in three distinct transport regimes [99, 102,101, 103, 87] for a correlated
metal close to the Mott transition, within DMFT (Figs. 9 and 14):

• In theFermi-liquid regime T≪ ε∗F , the resistivity obeys aT2 law with an enhanced
prefactor:ρ = ρM (T/ε∗F)2. In this expression,ρM is the Mott-Ioffe-Regel resistiv-
ity ρM ∝ ha/e2 corresponding to a mean-free path of the order of a single lattice
spacing in a Drude picture.

• ForT ∼ ε∗F , an“incoherent” (or “bad”) metal regime is entered. The quasiparticle
lifetime shortens dramatically, and the quasiparticle peak is strongly suppressed
(but still present). In this regime, the resistivity is metallic-like (i.e increases with
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FIGURE 13. Left: Optical conductivity of metallicV2O3 [99] at T = 170K (thick line) andT =
300K (thin line)). The inset contains the difference of the two spectra∆σ(ω) = σ170K(ω)−σ300K(ω).
Diamonds indicate the measured dc conductivityσdc. Dotted lines are for the insulating compounds
V2−yO3 with y = .013 at 10K (upper) andy = 0 at 70K (lower). Right: Optical conductivity ofκ-(BEDT-
TTF)2Cu[N(CN)2]Br at ambiant pressure [100], forT = 25K andT = 50K. For both materials, transfer
of spectral weight from high energies to the Drude peak is clearly visible as temperature is lowered.

T) but reaches values considerably larger than the Mott “limit” ρM. A Drude
description is no longer applicable in this regime.

• Finally, for ε∗F ≪ T ≪ ∆, quasiparticles are gone altogether and the d.o.s displays
a pseudogap associated with the scale∆ and filled with thermal excitations. This
yields an insulating-like regime of transport, with the resistivity decreasing upon
heating (dρ/dT < 0). At very low temperature, the resistivity follows an activated
behaviour, but deviations from a pure activation law are observed at higher tem-
perature (these two regimes are depicted as the “insulating” and “semi-conducting”
ones on Fig. 9).

These three regimes, and the overall temperature dependence of the resistivity obtained
within DMFT are illustrated by Fig. 14. A distinctive feature is the resistivity maximum,
which occurs close to the Mott transition. This behaviour isindeed observed experi-
mentally in both Cr-doped V2O3 and the organics. In the latter case, the transport data
obtained recently in the Orsay group are depicted on Fig. 15,and compared to DMFT
model calculations [103, 87].

Within DMFT, the conductivity can be simply obtained from a calculation of
the one-particle self-energy since vertex corrections areabsent [104, 3]. However,
a precise determination of both the real and imaginary part of the real-frequency
self-energy is required. This is a challenge for most “impurity solvers”. In prac-
tice, early calculations[102, 99, 101] used the iterated perturbation theory (IPT)
approximation[26]. The results displayed in Fig. 14 have been obtained with this
technique, and the overall shape of the resistivity curves are qualitatively reasonable.
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FIGURE 14. Left: Resistivity in the metallic phase close to the Mott transition (U = 2.4D), as
a function of temperature, calculated within DMFT using theIPT approximation. For three selected
temperatures, corresponding to the three regimes discussed in the text, the corresponding spectral density
is displayed in the inset. Right: IPT results for the resistivity for values ofU in the metallic regime
(lower curves), the coexistence region (bold curve) and theinsulating regime (upper two curves). From
Ref. [86, 87].
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FIGURE 15. Left: Temperature-dependence of the resistivity at different pressures, forκ-(BEDT-
TTF)2Cu[N(CN)2]Cl. The data (circles) are compared to a DMFT-NRG calculation (diamonds), with
a pressure dependence of the bandwidth as indicated. The measured residual resistivityρ0 has been added
to the theoretical curves. Right: Transport regimes and crossovers for this compound. Figures reproduced
from Limeletteet al. [103].

However, the IPT approximation does a poor job on the quasiparticle lifetime in the
low-temperature regime, as shown on Fig. 16. Indeed, we expect on general grounds
that, close to the transition,D ImΣ becomes a scaling function [105] ofω/ε∗F and
T/ε∗F , so that forT ≪ ε∗F it behaves as: ImΣ(ω = 0) ∝ D(T/ε∗F)2 ∝ T2/(Z2D) which
leads to an enhancement of theT2 coefficient of the resistivity by 1/Z2 as mentioned
above. The IPT approximation does not capture this enhancement and yields the in-
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FIGURE 16. Comparison between the IPT (dashed lines) and NRG methods (plain lines), reproduced
from Ref. [87]. The low-frequency behaviour of the inverse lifetime ImΣ clearly displays a critically
enhanced curvature, which is not reproduced by IPT.

correct result ImΣIPT(ω = 0) ∝ U2T2/D3, as illustrated For this reason, the numerical
renormalization group (NRG) has been used recently [103, 87] in order to perform
accurate transport calculations within DMFT. This method is very appropriate in this
context, since it is highly accurate at low energies and yields real-frequency data[32].
DMFT-NRG calculations compare favorably to transport dataon organics, as shown on
Fig. 15.

The crossovers described here in electrical transport alsohave consequences for
thermal transport. The thermopower, in particular, displays a saturation in the incoherent
metal regime [106, 101]. This is presumably relevant for thecobalt- based thermoelectric
oxides such as NaxCoO2 . Finally, let me emphasize that an interesting experimental
investigation of the correlations between transport crossovers (both ab-plane and c-axis)
and the loss of quasiparticle coherence observed in photoemission has been performed
by Vallaet al. [107] for several layered materials. This study raises intriguing questions
in connection with DMFT, and particularly itsk-dependent extensions.

4.4. Critical behaviour: a liquid-gas transition

Progress has been made recently in identifying the criticalbehaviour at the Mott
critical endpoint, both from a theoretical and experimental standpoint. It was been
pointed early on by Castellaniet al.[108] (see also [109]) that an analogy exists with the
liquid-gas transition in a classical fluid. This is based on aqualitative picture illustrated
on Fig. 17. The Mott insulating phase has few double occupancies (or holes) and
corresponds to a low-density “gas”, while the metallic phase corresponds to a high-
density “liquid” with many double-occupancies and holes (so that the electrons can be
itinerant).
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FIGURE 17. Cartoon of a typical real-space configuration of electrons in the Mott insulator (left) and
metallic (right) phase. The insulator has few double-occupancies or holes, and corresponds to a gas of
these excitations. Fluctuating local moments exist in thisphase. The metal has many double-occupancies
and holes, corresponding to a dense “liquid”. Electrons areitinerant in the metallic phase, and the local
moments are quenched. Within DMFT this quenching is akin to a(self-consistent) local Kondo effect.

Recently, this analogy has been given firm theoretical foundations within the framework
of a Landau theory [68, 110, 111] derived from DMFT by Kotliarand coworkers. In
this framework, a scalar order parameterφ is associated with the low-energy electronic
degrees of freedom which build up the quasiparticle resonance in the strongly correlated
metallic phase close to the transition. This order parameter couples to the singular part of
the double occupancy (hence providing a connection to the qualitative picture above), as
well as to other observables such as the Drude weight or the dc-conductivity. Because of
the scalar nature of the order parameter, the transition falls in the Ising universality class.
In Table 1, the correspondence between the Ising model quantities, and the physical
observables of the liquid-gas transition and of the Mott metal-insulator transition is
summarized.

In Fig. 18, the dc-conductivity obtained from DMFT in the half-filled Hubbard model
(using IPT) is plotted as a function of the half-bandwithD, for several different temper-
atures. The curves qualitatively resemble those of the Ising model order parameter as
a function of magnetic field (in fact,D−Dc is a linear combination of the fieldh and
of the mass termr in the Ising model field theory). Close to the critical point,scaling
implies that the whole data set can be mapped onto a universalform of the equation of
state:

〈φ〉 = h1/δ f±
(

h/|r|γδ/(δ−1)
)

(111)

In this expression,γ andδ are critical exponents associated with the order parameterand
susceptibility, respectively:〈φ〉 ∼ h1/δ atT = Tc andχ = d〈φ〉/dh∼ |T−Tc|−γ . f± are
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TABLE 3. Liquid-gas description of the Mott critical endpoint. The associated
Landau free-energy density readsrφ2+uφ4−hφ (a possibleφ3 can be eliminated
by an appropriate change of variables and a shift ofφ ).

Hubbard model Mott MIT Liquid-gas Ising model

D−Dc p− pc p− pc Field h
(w/ some admixture ofr)

Distance to
T −Tc T −Tc T −Tc critical pointr

(w/ some admixture ofh)

Low-ω Low-ω vg−vL Order parameter
spectral weight spectral weight (scalar fieldφ )

0.995 1
0

1

2

3

4

5

σ (  )
DCD

D/Dc

FIGURE 18. IPT calculation of the dc-conductivity as a function of the half-bandwith for the half-
filled Hubbard model within DMFT, for several different temperatures. IncreasingD drives the system
more metallic. The curve atT = Tc displays a singularity (vertical slope: dot), analogous tothe non-
linear dependence of the order parameter upon the magnetic field at a second-order magnetic transition.
Hysteretic behaviour is found forT < Tc.

universal scaling functions associated withT > Tc (resp.T < Tc). A quantitative study
of the critical behaviour of the double occupancy within DMFT was made in Ref. [110],
with the expected mean-field values of the exponentsγ = 1,δ = 3.

Precise experimental studies of the critical behaviour at the Mott critical endpoint
have been performed very recently, using a variable pressure technique, for Cr-doped
V2O3 by Limeletteet al. [112] (Fig. 19) and also for theκ-BEDT organic compounds
by Kagawaet al. [113]. These studies provide the first experimental demonstration of
the liquid-gas critical behaviour associated with the Mottcritical endpoint, including a
a full scaling [112] onto the universal equation of state (111).
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FIGURE 19. Conductivity of Cr-doped V2O3 , at the critical endpointT = Tc, measured as a function
of pressureP/Pc (Limeletteet al. [112]). A characteristic sigmoidal form is found, which is well fitted by
σ −σc ∼ |P−Pc|1/δ (plain line). Inset: log-log scale. See Ref. [112] for a fullexperimental study of the
critical behaviour, including scaling onto the universal equation of state.

4.5. Coupling to lattice degrees of freedom

Lattice degrees of freedom do play a role at the Mott transition in real materials,
e.g the lattice spacing changes discontinuously through the first-order transition line in
(V1−x Crx)2O3, as displayed in Fig. 20. In the metallic phase, the d-electrons participate
in the cohesion of the solid, hence leading to a smaller lattice spacing than in the
insulating phase.

Both the electronic degrees of freedom and the ionic positions must be retained in order
to describe these effects. In Ref. [114] (see also [115]), such a model was treated in the
simplest approximation where all phonon excitations are neglected. The free energy then
reads:

F =
1
2

B0
(v−v0)

2

v0
+Fel [D(v)] (112)

In this expression,v is the unit-cell volume,B0 is a reference elastic modulus and the
electronic part of the free-energyFel depends onv through the volume-dependence of the
bandwith. In such a model, the critical endpoint is reached when the electronic response
function:

χ = −∂ 2Fel

∂D2 (113)

is large enough (but not infinite), and hence the critical temperatureTc of the compress-
ible model is larger thanTel

c (at which χ diverges in the Hubbard model). The com-

pressibilityκ =
(
v∂ 2F/∂v2

)−1
diverges atTc. This implies an anomalous lowering of

the sound-velocity at the transition [116, 117], an effect that has been experimentally
observed in theκ-BEDT compounds recently [118], as shown on Fig. 21.

Dynamical Mean-Field Theory March 3, 2004 50



FIGURE 20. Left: Change of the lattice constant as a function of temperature for two samples of
(V1−xCrx)2O3 with different Cr-concentrations. The discontinuous change in the lattice constant through
the first-order transition transition line is clearly seen for x = .006, while the sample withx = .004 is
slightly to the right of the critical point. Right: Percentage volume change of the unit-cell volume close to
the critical line, reflecting the critical behaviour of the order parameter. Reproduced from Ref. [109]

We emphasize that, within DMFT, an unambiguous answer is given to the “chicken
and egg” question: is the first-order Mott transition drivenby electronic or lattice degrees
of freedom ? Within DMFT, the transition is described as an electronic one, with lattice
degrees of freedom following up. In fact, it is aremarkable finding of DMFT that a
purely electronic model can display a first-order Mott transition and a finite-T critical
endpoint (associated with a divergingχ), provided that magnetism is frustrated enough
so that ordering does not preempt the transition. Whether this also holds for the finite-
dimensional Hubbard model beyond DMFT is to a large extent anopen question (see
[41] for indications supporting this conclusion in the 2D case).

4.6. The frontier: k-dependent coherence scale, cold and hot spots

A key question, still largely open, in our theoretical understanding of the Mott transi-
tion is the role of spatial correlations (inadequately treated by DMFT). This is essential
in materials like cuprates, in which short-range spatial correlations play a key role (in
particular magnetic correlations due to superexchange, leading to a strong tendency to-
wards the formation of singlet bonds, as well as pair correlations). In the regime where
the quasiparticle coherence scaleε∗F is small as compared to the (effective strength of
the) superexchangeJ, the DMFT picture is certainly deeply modified. There is com-
pelling experimental evidence that the quasiparticle coherence scale then has a strong
variation as the momentumk is varied along the Fermi surface, leading to the formation
of “cold spots” and “hot regions”. Such effects have been found in recent studies using
cluster extensions of the DMFT framework ([119], see also [39, 120]).
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FIGURE 21. Relative change in the sound velocity ofκ-(BEDT-TTF)2Cu[N(CN)2]Cl as a function of
temperature, at various pressures. The velocity variationis relative to the value at 90 K. Inset: position
and amplitude of the anomaly below 230 bars. (Figure and caption from Ref. [118]).

5. ELECTRONIC STRUCTURE AND DYNAMICAL MEAN-FIELD
THEORY

The possibility of using DMFT in combination with electronic structure calculation
methods, in order to overcome some of the limitations of DFT-LDA for strongly corre-
lated materials, was pointed out early on [3]. In the last fewyears, very exciting develop-
ments have taken place, in which theorists from the electronic structure and many-body
communities joined forces and achieved concrete implementations of DMFT within
electronic structure calculations. The first papers [121, 122] implementing this com-
bination appeared in 1997-1998, and the field has been extremely active since then. For
reviews of the early developments in this field16, see Refs. [123, 124, 125, 126]. For
on-line material presented at recent workshops, see Refs. [127, 128, 129]

5.1. Limitations of DFT-LDA for strongly correlated systems

In Sec. 3.2, I briefly presented the basic principles of density functional theory (DFT).
In practice, the local density approximation (LDA) to the exchange-correlation energy,
and its extensions (such as the generalised gradient approximation) have been remark-
ably successful at describing ground-state properties of many solids from first princi-
ples. This is also the state of the art method for band structure calculations, with the
additional assumption that Kohn-Sham eigenvalues can be interpreted as single-particle
excitations. For strongly correlated materials however, DFT-LDA has severe limitations,

16 This section is merely a brief introduction to the field and certainly not as an exhaustive review.
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which we now briefly review.

Issues about ground-state properties.Ground-state properties, such as equilibrium
unit-cell volume, are not accurately predicted from LDA (oreven GGA) for the most
strongly correlated materials. This is particularly true of materials in which some elec-
trons are very localized, such as the 4f electrons of rare-earth elements at ambiant or low
pressure (Sec. 1.3.3). If these orbitals are treated as valence orbitals, the LDA leads to
a much too itinerant character, and therefore overestimates the contribution of these or-
bitals to the cohesive energy of the solids, hence leading toa too small unit-cell volume.
If instead the f-orbitals are treated as core states, the equilibrium volume is then over-
estimated (albeit closer to experimental value, in the caseof rare earth), since binding
is underestimated. Phenomena such as the volume-collapse transitions, associated with
the partial delocalization of the f-electrons, (and associated structural changes) under
pressure [15] are simply out of reach of standard methods. Athigh pressures however,
the f-electrons recover itinerant character and DFT-LDA(GGA) does better, as expected.
In some particular cases, the electrons are just on the vergeof the itinerant/localized be-
haviour. In such cases, standard electronic structure methods perform very poorly. A
spectacular example is theδ -phase of metallic plutonium in which the unit-cell volume
is underestimated (compared to the experimental value) by as much as 35% by stan-
dard electronic structure methods (Fig. 24) ! All these examples illustrate the need of a
method which is able to handle intermediate situations between fully localized and fully
itinerant electrons. I emphasize that this issue may dependcrucially on energy scales,
with localized character most pronounced at high-energy (short time) scales, and itiner-
ant quasiparticles forming at low-energy (long time scales).

Excitation spectra. Even though the Kohn-Sham eigenvalues and wavefunctions
are, strictly speaking, auxiliary quantities in the DFT formalism used to represent the
local density, they are commonly interpreted as energy bands in electronic structure
calculations. This is very successful in many solids, but does fail badly in strongly
correlated ones. The most spectacular difficulty is that Mott insulators are found to have
metallic Kohn-Sham spectra. This is documented, e.g by Fig.23, in which the LDA
density of states of two Mott insulators, LaTiO3 and YTiO3 are shown. I emphasize
that, in both compounds (as well as in many other Mott insulators), the Mott insulating
gap has nothing to do with the magnetic ordering in the ground-state. Even though
magnetic long-range order is found at low-enough temperatures in both materials (below
TN ≃ 140 K in LaTiO3 andTC ≃ 30 K in YTiO3 ), the insulating behaviour and Mott
gap (≃ 1eV for YTiO3 ) are maintained well above the ordering temperature. In other
cases (such as VO2 ), the insulating phase is a paramagnet and the LDA spectrum is
again metallic.

In strongly correlated metals, e.g close to Mott insulators, the LDA bandstructure is
also in disagreement with experimental observations. The two main discrepancies are the
following. (i) LDA single-particle bands are generally toobroad. Correlation effects lead
to band-narrowing, corresponding to a (Brinkman-Rice) enhancement of the effective
masses of quasiparticles. This becomes dramatic in f-electron materials, where the large
effective mass is due to the Kondo effect, a many-body process which is beyond the
reach of single-particle theories. (ii) The spectral weight Z associated with quasiparticles

Dynamical Mean-Field Theory March 3, 2004 53



is reduced by correlations, and the corresponding missing spectral weight 1−Z is found
in intermediate or high-energy incoherent excitations. Incorrelated metals, as well as in
Mott insulators, lower and upper Hubbard bands are observed, which are absent in the
LDA density of states (e.g for SrVO3 and CaVO3 in Fig. 11 and Fig 23).

Related correlation effects are observed also for pure transition metals, such as nickel,
in which the LDA spectrum is unable to account for: the∼ −6eV photoemission
satellite, and for the correct values of the occupied bandwidth and exchange splitting
between the majority and minority band in the ferromagneticground-state.

5.2. Marrying DMFT and DFT-LDA

In this section, I briefly describe the (happy) marriage of electronic structure methods
and dynamical mean-field theory. I first give a simple practical formulation in terms
of a realistic many-body hamiltonian, and keep for the next section the construction of
energy functionals.

The first issue to be discussed is the choice of the basis set for the valence electrons.
Since DMFT emphasizes local correlations, we need a localised basis set, i.e basis
functions which are centered on the atomic positionsR in the crystal lattice. Up to now,
most implementations have used basis sets based on linear muffin-tin orbitals [130, 131]
(LMTOs) χLR(r) = χL(r −R) (in which L = {l ,m} stands for the angular momentum
quantum number of the valence electrons). These basis sets offer the advantage to
carry over the physical intuition of atomic orbitals from the isolated atoms to the
solid. In the words of their creator, O.K. Andersen, LMTO- based electronic structure
methods are “intelligible” because they are based on a minimal and flexible basis set
of short-range orbitals [132]. There are several possible choices of basis even within
the LMTO method. Basically, a compromise has to be made between the degree of
localisation and the orthogonality of the basis set. The most localised basis set (the so-
called “screened” orα-basis) is not orthogonal and will therefore involve17 an overlap
matrix OLL′ = 〈χL|χL′〉. Since DMFT neglects non-local correlations, they may be the
best one to choose. However, a non-orthogonal basis set may not be simple to implement,
for technical reasons, when using some impurity solvers (e.g QMC). Orthogonal LMTOs
basis sets are somewhat more extended.

Another possibility is to use basis sets made of Wannier functions. This has been little
explored yet in combination with DMFT. Wannier functions can in fact be constructed
starting from the LMTO formalism by using the “downfolding”procedure (the so-called
third-generation LMTO [132, 133]). Recently, DMFT has beenimplemented within a
downfolded (NMTO) Wannier basis, and successfully appliedto transition metal oxides
with non-cubic structures. Other routes to Wannier functions (such as the Marzari-
Vanderbilt construction of maximally localised Wannier functions [134]) might be worth
pursuing. Given a basis set, the electron creation operatorat a pointr in the solid can be

17 In the following, we assume an orthogonal basis set to simplify the formalism. The overlap matrix can
be easily reintroduced where it is appropriate
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decomposed as:
ψ†(r) = ∑

R,L

χ∗
LR(r)c†

LR (114)

The decomposition of the full Green’s function in the solid:G(r , r ′,τ − τ ′) ≡
−〈Tψ(r ,τ)ψ†(r ′,τ ′)〉 (as well as of any other one-particle quantity) thus reads:

G(r , r ′, iω) = ∑
RR′

∑
LL′

χLR(r)GLL′(R−R′, iω)χL′R′(r ′)∗ (115)

The simplest combination of DMFT and electronic structure methods uses a starting
point which is similar to that of the LDA+U approach [135, 136]. Namely, one first
separates the valence electrons into two groups: those for which standard electronic
structure methods are sufficient on one hand (e.gl = s, p in an oxide orl = s, p,d in
rare-earth compounds), and on the other hand the subset of orbitals which will feel
strong correlations (e.gl = d or l = f ). This separation refers, of course, to the specific
choice of basis set which has been made. In the following, I denote the orbitals withl
in the correlated subset by the indexa ≡ {m,σ} (andb, · · ·). Let us then consider the
one-particle hamiltonian:

HKS = ∑
λ

εKS
λ |λ 〉〈λ |= ∑

kL

hKS
LL′(k)c†

kLckL′ (116)

obtained from solving the Kohn-Sham equations for the material under consideration.
The Kohn-Sham potential we have in mind is, in the simplest implementation, the one
obtained within a standard DFT-LDA (or GGA) electronic structure calculation of the
local density. In a more sophisticated implementation, onemay also correct the local
density by correlation effects and use the associated Kohn-Sham potential (i.e modify
the self-consistency cycle over the local density in comparison to standard LDA, see
below). A many-body hamiltonian is then constructed as follows:

H = HKS−HDC +HU (117)

In this expression,HU are many-body terms acting in the subset of correlated orbitals
only. They correspond to matrix elements of the Coulomb interaction, and will in general
involve arbitrary 2-particle termsUabcdc†

ac†
bcdcc. In practice however, one often makes a

further simplification and keep only density-density interactions (for technical reasons,
this is always done when using QMC as a solver). To simplify notations, we shall limit
ourselves here to this case, and use:

HU =
1
2∑

R
∑
abσ

Uabn̂Ran̂Rb (118)

with:
U↑↓

mm′ = Umm′ , U↑↑
m6=m′ = U↓↓

m6=m′ = Umm′ −Jmm′ (119)

In this expression,Jmm′ is the Hund’s coupling. For a more detailed discussion of the
choice of the matrix of interaction parameters, see e.g Ref.[136].
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The “double-counting” termHDC needs to be introduced, since the contribution of in-
teractions between the correlated orbitals to the total energy is already partially included
in the exchange-correlation potential. Unfortunately, itis not possible to derive this term
explicitly, since the energy within DFT is a functional of the total electron density, which
combines all orbitals in a non-linear manner. In practice, the most commonly used form
of the double-counting term is (for other choices, see e.g [137]):

HDC = ∑
Rσab

VDC
abσ c†

aσ cbσ

VDC
abσ = δab

[
U(N− 1

2
)−J(Nσ − 1

2
)

]
(120)

The many-body hamiltonian (117) is then soved using the DMFTapproximation. This
means that a local self-energy matrix is assumed, which actsin the subset of correlated
orbitals only:

ΣRR′
LL′ (iω) = δR,R′

(
0 0
0 Σab(iω)

)
(121)

In the DMFT framework, the local Green’s function in the correlated subset:

Gab(τ − τ ′) ≡−〈Tc†
a(τ)cb(τ ′)〉 (122)

is represented as the Green’s function of the multi-orbitalimpurity model:

S= −
∫ β

0
dτ
∫ β

0
dτ ′ ∑

ab

c†
a(τ)[G−1

0 ]ab(τ − τ ′)cb(τ ′)+
1
2∑

ab

Uab

∫ β

0
dτ na(τ)nb(τ)

(123)
The Weiss function (or alternatively the dynamical mean-field, or effective hybridisa-
tion function ∆ab = (iωn + µ)δab− [G−1

0 ]ab) is determined, as before, from the self-
consistency condition requesting that the on-site Green’sfunction in the solid coincides
with the impurity model Green’s function. The components ofthe Green’s function of
the solid in the chosen basis set read:

[G−1]LL′(k, iωn) = (iωn+ µ)δLL′ −hKS
LL′ +VDC

LL′ −ΣLL′(iωn) (124)

In this expression, the self-energy matrixΣLL′ is constructed by using the components
of the impurity self-energyΣab ≡ [G−1

0 ]ab− [G−1
imp]ab into (121). The self-consistency

condition relating implicitlyG0 andGimp finally reads:

G(iωn)ab = ∑
k

[
(iωn+ µ)δLL′ −hKS

LL′ +VDC
LL′ −ΣLL′(iωn)

]−1

ab
(125)

Note that this involves a matrix inversion at eachk-point, as well as ak-summation
over the Brillouin zone (which does not, in general, reducesto an integration over the
band density of states, in contrast to the single-band case). Also let us emphasize that,
even though the self-energy matrix has only components in the subspace of correlated
orbitals, the components of the Green’s function corresponding to all valence orbitals
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FIGURE 22. DMFT combined with electronic structure calculations. Starting from a local electronic
densityρ(r), the associated Kohn-Sham potential is calculated and the Kohn-Sham equations are solved.
The Kohn-Sham hamiltonianHKS

LL′(k) is expressed in a localised basis set (e.g LMTOs). A double-counting
term is substracted to obtain the one-electron hamiltonianH0 ≡ HKS−HDC. The local self-energy matrix
for the subset of correlated orbitals is obtained through the iteration of the DMFT loop: a multi-orbital
impurity model for the correlated subset is solved (red arrow), containing as an input the dynamical mean-
field (or Weiss fieldG0). The self-energyΣab is combined withH0 into the self-consistency condition
Eq. (125) in order to update the Weiss field (blue arrow). At the end of the DMFT loop, the components
of the full, k-dependent, Green’s function in the local basis set can be calculated and thus also an updated
local densityρ(r). This is used (dashed arrow) as a new starting density for theKohn-Sham calculation
until a converged local density is also reached . Alternatively, in a simplified implementation of this
full scheme, the DFT-LDA calculation can be converged first and the correspondingH0 injected into the
DMFT loop without attempting to updateρ(r).

(s, p,d, · · ·) are modified due to the matrix inversion. Correlation effects encoded in the
self-energy affect the local electronic density, which canbe calculated from the full
Green’s function as:

ρ(r) = ∑
k

χLk(r)GLL′(k,τ = 0−)χ∗
L′k(r) (126)

In a complete implementation, self-consistency over the local density should also be
reached [73, 138]. The general structure of the combinationof DMFT with electronic
structure calculations, as well as the iterative procedureused in practice to solve the
DMFT equations, is summarised on Fig. 22.
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5.3. An application tod1 oxides

On Fig. 23, I show the spectral functions recently obtained in Ref. [95] for SrVO3 ,
CaVO3 , LaTiO3 and YTiO3 . These oxides have the same formal valence of the d-
shell (d1). The single electron sits in thet2g multiplet, and the (empty)eg doublet is
well separated in energy. They have a perovskite structure with perfect cubic symme-
try for the first one (Fig. 2) and increasing degree of structural distortion for the three
others (corresponding mainly to the GdFeO3-like tilting of oxygen octahedra). These
calculations were performed in a downfolded (NMTO) basis set, including the off-
diagonal components of the self-energy matrix. The latter are important for the com-
pounds with the largest structural distortions. For comparison, the LDA density of states
are shown on the same plot. For an independent DMFT calculation of the Ca/SrVO3
compounds, see Ref. [94, 93] and Ref. [121, 139] for early calculations of the doped
system La1−xSrxTiO3 . The spectra in Fig. 23 have features which should be familiar to
the reader at this point, namely:

• SrVO3 and CaVO3 are correlated metals with lower (∼ −1.5 eV) and upper
(∼ 2.5 eV) Hubbard bands, as well as a relatively moderate narrowing of the
quasiparticle bandwith. The calculated spectra compare favorably to the recent
photoemission experiments of Fig. 11 (see [93] for a comparison).

• LaTiO3 and YTiO3 are Mott insulators, with quite different values of the Mottgap
(∼ 0.3 eV and∼ 1 eV, respectively) as observed experimentally. It was emphasized
in [95] that the main reason for this difference is that the orbital degeneracy of the
t2g multiplet is lifted to a greater degree in YTiO3 than in LaTiO3 due to the larger
structural distortion. Indeed, reducing orbital degeneracy is known to increase the
effect of correlations (for comparable interaction strength) [140, 141, 142, 143].
It was also found in Ref. [95] that both compounds develop a very pronounced
orbital polarization, of a quite different nature in each compound (see [144] for a
discussion of orbital ordering in these materials and [145]for a recent experimental
investigation).

This example, as well as several other recent studies, demonstrate that the embedding
of DMFT within electronic structure calculations yields a powerful quantitative tool
for understanding the rich interplay between correlation effects and material-specific
aspects.

5.4. Functionals and total- energy calculations

In order to discuss total energy calculations in the LDA+DMFT framework18, it
is best to use a formulation of this scheme in terms of a (free-) energy functional.
Kotliar and Savrasov [138, 147] have introduced for this purpose a (“spectral-density-

18 I acknowledge a collaboration with B. Amadon and S. Biermann[146] on the topic of this section.
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FIGURE 23. LDA+DMFT spectral densities of the transition-metal oxides discussed in the text, from
Ref. [95]. The (QMC) calculations were made atT = 770K. For comparison, the LDA d.o.s are also
displayed (thin lines).

”) functional of both the total local electron densityρ(r) and the on-site Green’s
function in the correlated subset:GRR

ab (denotedGab for simplicity in the follow-
ing). Let us emphasize that these quantities are independent, sinceGab is restricted
to local components and to a subset of orbitals so thatρ(r) cannot be reconstructed
from it. The functional is constructed by introducing (see Section. 3) source terms
λ (r) = vKS(r) − vc(r) and ∆Σab(iωn) coupling to the operatorsψ†(r)ψ(r) and to
∑R χ∗

a(r − R)ψ(r ,τ)ψ†(r ′,τ ′)χb(r ′ − R) = caR(τ)c†
bR(τ ′), respectively. Furthermore,

the Luttinger-Ward part of the functional is approximated by that of the on-site local
many-body hamiltonianHU −HDC introduced above. This yields:

Ω[ρ(r),Gab;vKS(r),∆Σab]LDA+DMFT =

−tr ln[iωn+ µ + 1
2∇2−vKS(r)−χ∗.∆Σ .χ]−

∫
dr (vKS−vc)ρ(r)− tr [G.∆Σ ]+

+1
2

∫
dr dr ′ρ(r)U(r − r ′)ρ(r ′)+Exc[ρ(r)]+∑R

(
Φimp[GRR

ab ]−ΦDC[GRR
ab ]
)

In this expression,χ∗.∆Σ .χ denotes the “upfolding” of the local quantity∆Σ to the
whole solid:χ∗.∆Σ .χ = ∑R ∑abχ∗

a(r −R)Σab(iωn)χb(r ′−R). Variations of this func-
tional with respect to the sourcesδΩ/δ vKS = 0 andδΩ/δΣab = 0 yield the standard
expression of the local density and local Green’s function in terms of the full Green’s
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function in the solid:

ρ(r) = 〈r |Ĝ|r〉 , Gab(iωn) = 〈χaR|Ĝ|χbR〉 (127)

with:

Ĝ =

[
iωn+ µ +

1
2

∇2−vKS(r)−χ∗.∆Σ .χ
]−1

(128)

or, in the local basis set (see (124)):

Ĝ = ∑
k,LL′

|χLk〉
[
(iωn+ µ).1− ĥKS(k)−∆Σ̂(iωn)

]−1

LL′
〈χL′k | (129)

From these relations, the Legendre multiplier functionsvKS and∆Σ could be eliminated
in terms ofρ andGab, so that a functional of the local observables only is obtained:

ΓLDA+DMFT [ρ,Gab] = ΩLDA+DMFT [ρ(r),Gab;λ [ρ,G],∆Σ [ρ,G]] (130)

Extremalisation of this functional with respect toρ (δΓ/δρ = 0) andGab (δΓ/δ Gab =
0) yields the expression of the Kohn-Sham potential and self-energy correction at self-
consistency:

vKS(r) = vc(r)+
∫

dr ′U(r − r ′)ρ(r ′)+
δExc

δρ(r)
(131)

∆Σab =
δΦimp

δ Gab
− δΦDC

δ Gab
≡ Σimp

ab −VDC
ab (132)

Hence, one recovers from this functional the defining equations of the LDA+DMFT
combined scheme, including self-consistency over the local density (127). Using (66)
and (61), one notes that the free-energy can be written as:

ΩLDA+DMFT = ΩDFT + tr ln GKS(k, iωn)
−1− tr ln G(k, iωn)

−1− tr [GimpΣimp]+∑R Φimp+

+tr [GimpVDC]−∑R ΦDC (133)

In this expression,ΩDFT is the usual density-functional theory expression (66), while
GKS is the Green’s function corresponding to the Kohn-Sham hamiltonian, i.e without
the self-energy correction:

G−1
KS ≡ iωn + µ − ĥKS(k) (134)

A careful examination of the zero-temperature limit of (133) leads to the following
expression of the total energy [146]:

ELDA+DMFT = EDFT −∑′
λ εKS

λ + 〈HKS〉+ 〈HU〉−EDC (135)

= EDFT +∑k,LL′ hKS
LL′[〈c†

LkcL′k〉DMFT −〈c†
LkcL′k〉KS]+ 〈HU〉−EDC (136)

The first term,EDFT is the energy found within DFT(LDA), using of course the local
density obtained at the end of the LDA+DMFT convergence cycle, namely:

EDFT =
′

∑
λ

εKS
λ +

∫
dr [vc(r)−vKS(r)]ρ(r)+

1
2

∫
drdr ′ρ(r)u(r − r ′)ρ(r ′)+Exc[ρ]

(137)
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Hence the total energy within LDA+DMFT is made of several terms. Importantly, it
doesnot simply reduce to the expectation value〈H〉 of the many-body hamiltonian
(117) introduced in the previous section. Furthermore,〈HKS〉 = tr [HKSĜ] must be eval-
uated with the full Green’s function including the self-energy correction. Therefore,
this quantity does not coincide with the sum of the (occupied) Kohn-Sham eigenvalues
∑′

λ εKS
λ = trHKSGKS. Eq. (135) expresses that the latter has to be removed fromEDFT , in

order to correctly take into account the change of energy coming from the Kohn-Sham
orbitals. This change can also be written〈HKS〉DMFT − 〈HKS〉KS = tr [(G−GKS)HKS].
This is used in the second expression for the energy, which emphasizes the modi-
fication of the density matrix〈c†

LkcL′k〉 by correlations. Finally, the double-counting
correction to the energy is the zero-temperature limit of−〈HDC〉+ tr [GΣDC]−ΦDC.
The simplest form of double-counting correction (neglecting J for simplicity) cor-
responds to:ΦDC[Gab] = U N(N − 1)/2 with N = ∑ana = ∑a trGaa. HenceVDC

ab =

δΦDC/δ Gab = U(N−1/2)naδab, and〈HDC〉 = tr [GΣDC] = UN(N−1/2) so that, fi-
nally: EDC = U N(N−1)/2.

Another formula for the total energy within LDA+DMFT has been used by Heldet
al. in their investigation of the volume collapse transition ofCerium [148, 149].

Total energy calculations within LDA+DMFT, with full self-consistency on the local
density have been performed by Savrasov, Kotliar and Abrahams [73, 138, 147] for
metallic plutonium with fcc structure, corresponding to the δ -phase. The results are
reproduced in Fig. 24, in which the total energy is plotted asa function of the unit-cell
volume (normalised by the experimental value), for different values of the parameter
U . It is seen that the GGA calculation underestimates the volume by more than 30%.
As U increases, the minimum is pushed to higher volumes, and goodagreement with
experiments is reached forU in the range 3.8− 4eV. Interestingly, in the presence
of correlations, the energy curve develops a metastable shallow minimum at a lower
volume, which can be interpreted as a manifestation of theα-phase (which has a more
complicated crystal structure however). For the corresponding spectra, see [147]. In
these DMFT calculations, theδ -phase of plutonium is described as a paramagnetic
metal, in agreement with experiments. In contrast, a staticLDA+U treatment[72, 150]
also corrects the equilibrium volume, but at the expense of introducing an unphysical
spin polarization19.

5.5. A life without U: towards ab-initio DMFT

The combination of DMFT with electronic structure methods described in the previ-
ous section introduces a matrixU of local interaction parameters acting in the subset of
correlated orbitals, as in the LDA+U scheme. Some of these parameters can be deter-
mined from constrained LDA calculations, or instead they can be viewed as adjustable.

19 For an alternative description of theδ -phase of plutonium, in which a subset of the f-electrons are
viewed as localised while the others are itinerant, see [151]
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FIGURE 24. Total energy of fcc plutonium as a function of unit-cell volume (normalised by the
experimental volume of theδ -phase), reproduced from Ref. [73, 147]. The upper curve is the GGA result.
Other curves are from LDA+DMFT with different values ofU . The lower curve is for the bcc structure.

Furthermore, introducing these interactions implies the need for a “double-counting”
correction in order to remove the contribution to the total energy already taken into ac-
count in the (orbital-independent) exchange correlation potential. As such, this theory
has great practical virtues. However, going beyond this framework and being able to
treat the electron-electron interaction entirely from first- principles is a tempting and
challenging project. Work in this direction have appeared recently [152, 125, 153, 154,
155, 156, 6].

Physically, the Hubbard interaction is associated with thescreened Coulomb interac-
tion as seen by a given atom in the solid.Screeningis essential for estimating the order
of magnitude of this parameter correctly. The naive view that U is simply the on-site
matrix element of the Coulomb potential in the local basis- set would lead to values
on the scale of tens of electron-volts, while the appropriate value in the solid is a few
eV’s ! This immediately points towards a key notion: that, infact, the HubbardU is a
concept whichdepends on the energy-scale. At high energies (say, above the plasma fre-
quency in a metal), it has a very large value associated with the bare, unscreened, matrix
element, while at low energy screening takes place and it is considerably reduced. For
first-principle RPA studies of the frequency dependence of the screened local interaction,
see [5, 6].

In fact, the screened effective interaction in a solid can berelated, quite generally, to
the density-density correlation function. Let us start from the first-principles hamilto-
nian:

H = −∑i
1
2∇2

i +∑i v(r i)+ 1
2 ∑i 6= j u(r i − r j)
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= −1
2

∫
drψ†∇2ψ +

∫
dr v(r)n̂(r)+ 1

2

∫
drdr ′u(r − r ′) : n̂(r)n̂(r ′) : (138)

in which u(r − r ′) = e2/|r − r ′| is the bare Coulomb interaction, ˆn ≡ ψ†(r)ψ(r) and
: () : denotes normal ordering. The (connected) density-density correlation function is
defined as:

χ(r , r ′;τ − τ ′) = 〈T (n̂(r ,τ)−ρ(r))(n̂(r ′,τ ′)−ρ(r ′)〉 (139)

with ρ(r) = 〈n̂(r)〉 the local density. The screened effective interaction reads:

W(r , r ′, iω) = u(r − r ′)−
∫

dr1dr2u(r − r1)χ(r1− r2; iω)u(r2− r ′) (140)

This can also be expressed in terms of the polarizationP ≡ −χ.[1− u.χ]−1 asW =
u.[1−P.u]−1 (the dot is an abbreviation for spatial convolutions). We emphasize that
in this expression,P is the exact polarization operator, not its RPA approximation.
The screened interactionW can be interpreted as the correlation function of the local
scalar potential field conjugate to ˆn(r), as can be shown from a Hubbard-Stratonovich
transformation.

Armed with this precise formal definition of the screened interaction in the solid (and,
naturally, also of the full Green’s functionG(r , r ′;τ − τ ′) ≡−〈Tψ(r ,τ)ψ†(r ′,τ ′)〉), we
would like to adopt now a local picture in which we focus on a given atom. This is
done,as before, by specifying a complete basis set of functionsχLR(r) localised around
the atomic positionsR. There is of course some arbitrariness in this choice, as already
discussed. Adopting a local point of view, we focus on the matrix elements of the Green’s
function and of the screened effective interactionon a given atomic site:

Gab(iω) = 〈χaR|G|χbR〉 , Wa1a2a3a4(iω) = 〈χa1Rχa2R|W|χa3Rχa4R〉 (141)

In this expression, the indicesa,b, · · · can run over the full set of valence orbitals, or
alternatively over a subset corresponding to the more strongly correlated ones. This is
a matter of choice of the local quantities we decide to focus on. Following the point of
view developed in the third section of these lectures, the key idea is again to introduce
an exact representationof these local quantities as the solution of an atomic problem
coupled to an effective bath. Because we want to represent the local components of
both G andW, this effective problem now involves two Weiss functions, both in the
one-particle and two-particle sectors. This is an extendedform of dynamical mean-field
theory (EDMFT). The action of the local problem reads:

S=
∫

dτdτ ′
[
−∑c+

a (τ)G−1
ab (τ − τ ′)cb(τ ′)+

+1
2 ∑ : c+

a1
(τ)ca2(τ) : Ua1a2a3a4(τ − τ ′) : c+

a3
(τ ′)ca4(τ ′) :

]
(142)

The local screened interaction is calculated from this effective action as:Wimp = U −
U χimpU with χimp the 2-particle impurity correlation funcition. The two Weiss fieldsG
andU are adjusted in such a way thatGimp= Gab andWimp=Wabcd, the local quantities
in the solid. The impurity model (142) can be viewed as an atomhybridised with an
effective bath of non-interacting fermions and also coupled to a bath of fluctuating
electric scalar potentials.
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This construction provides an unambiguous definition of theHubbard interactions
Uabcd(iω) in the solid (as well as of the usual dynamical mean-fieldG ), assuming
of course that the local components of the screened interaction W and of the Green’s
functionG are known. Frequency- dependence ofU is essential in a proper definition
of these Hubbard interactions, at least when a wide range of energy scale is considered.
Naturally, one degree of arbitrariness remains, associated with the choice of the basis
set:U will change when a different basis set is considered, keeping the same form of
the effective interactionW(r , r ′; iω) in the full solid.

To proceed from these formal considerations to a practical scheme, we need to decide
howW andG will actually be calculated, and this of course will involveapproximations.
Again, a free-energy functional is an excellent guidance and indeed such a functional
of the full G(r , r ′; iω) andW(r , r ′; iω) has been introduced by Almbladh et al.[157],
generalizing the Baym-Kadanoff construction (see also [47] for independent work). The
functional reads:

Γ(G,W) = Tr lnG−Tr[(G−1
H −G−1)G]− 1

2
Tr lnW+

1
2

Tr[(u−1−W−1)W]+Ψ[G,W]

(143)
G−1

H = iωn+ µ +∇2/2−vH corresponds to the Hartree Green’s function withvH being
the Hartree potential. For a derivation of (143) using a Hubbard-Stratonovich trans-
formation and a Legendre transformation with respect to both G and W, see [47].
The functionalΨ[G,W] is a generalization of the Luttinger-Ward functionalΦ[G],
whose derivative with respect toG gives the self-energy. Here we have, similarly (from
δΓ/δ G = δΓ/δ W = 0):

G−1 = G−1
H −Σxc , Σxc =

δΨ
δG

; W−1 = u−1−P , P = −2
δΨ
δW

(144)

A well established electronic structure calculation method, which offers in part an
alternative to DFT-LDA, is the so-called GW approach [158] (see [159] for a review).
This corresponds to the following approximation to theΨ-functional:

ΨGWA = − 1
2

∫
drdr ′

∫
dτdτ ′G(r , r ′,τ − τ ′)W(r , r ′,τ − τ ′)G(r ′, r ,τ ′− τ) (145)

which yields the RPA-like approximation to the polarisation and exchange-correlation
self-energy:P = G⋆ G andΣxc = −G⋆ W. The GW approximation to theΨ-functional
is easily written in terms of the components ofG andW in the chosen basis set:

ΨGWA= −1
2

∫
dτ ∑

L1···L′
2

∑
RR′

GRR′
L1L′

1
(τ)WRR′

L1L2L′
1L′

2
(τ)GR′R

L′
2L2

(−τ) (146)

This can be separated into a contributionΨnon−loc
GWA from non-local components (corre-

sponding to the terms withR 6= R′ in (146)) and a contributionΨloc
GWA[G

RR,WRR] from
local components only (R = R′).

The GW approximation does treat the screened Coulomb interaction from first-
principles, but does not treat successfully strong correlation effects. Recently, it has
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been suggested to improve on the GWA for the local contributions by using the DMFT
framework [152, 153] (see also [125, 154, 155, 156]). One canthink of different approx-
imations to theΨ-functional in this context, depending on whether the DMFT approach
is used for all the valence orbitalsL = s, p,d, · · ·, or for a subset (corresponding to the
indexa,b, ...) of correlated orbitals only. The correspondingΨ-functional reads:

ΨGW+DMFT [GRR′
L1L′

1
,WRR′

L1L2L′
1L′

2
] = Ψnon−loc

GWA +[Ψloc
GWA−∆Ψ]+∑

R
Ψimp[G

RR
ab ,WRR

abcd]

(147)
In this expression,Ψimp is theΨ-functional corresponding to the local effective model
(142), while∆Ψ removes the components fromΨloc

GWA which will be taken into account
in Ψimp, namely:

∆Ψ = −1
2∑

R

∫
dτ ∑

abcd

GR
ab(τ)WRR

abcd(τ)GRR
DC(−τ) (148)

If all valence orbitals are included in the DMFT treatment, the second term in the r.h.s of
(147) is absent altogether. If only a correlated subset is treated with DMFT,∆Ψ can be
thought of as a term preventing double-counting of interactions in the correlated subset.
In this context however, in contrast to LDA+DMFT, the form of this double-counting
correction is known explicitly.

Taking derivatives of this functional with respect to the components ofG andW, one
sees that, in the GW+DMFT approach, the non-local components of the self-energy
and of the polarization operator keep the same form as in the GWA, while the local
components are replaced by the ones from the effective impurity model (possibly in the
correlated subset only). The GW+DMFT theoretical framework is fully defined by (147)
and the form of the impurity model (142). As before, an interative self-consistent process
must be followed in order to obtain the self-energy and screened effective interaction,
as well as the dynamical mean-fieldG and effective Hubbard interactionsU . This is
described in more details in Refs. [152, 155, 156]. Concreteimplementations of this
scheme to electronic structure (and to model hamiltonians as well) is currently being
pursued by several groups. For early results, see [152, 153,154, 155, 156, 6].

6. CONCLUSION AND PERSPECTIVES

In these lectures notes, I have tried to give an introductionto some aspects of the
physics of strong electron correlations in solids. Naturally, only a limited number of
topics could be covered. The field is characterized by a fascinating diversity of material-
dependent properties. It is, to a large extent, experimentally driven, and new discoveries
are undoubtedly yet to come. Also, new territories outside the traditional boundaries
of solid-state physics are currently being explored, such as correlation effects in nano-
electronic devices or the condensed matter physics of cold atoms in optical lattices.

On the theory side, these lectures are influenced by the author’s prejudice that (i)
physics on intermediate energy scale matters and may be a keyto the unusual behaviour
of many strongly correlated materials and that (ii) quantitative theoretical techniques
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are essential to the development of the field, in combinationwith phenomenological
considerations and experimental investigations.

Dynamical mean-field theory is a method of choice for treating these intermediate
energy scales. The basic principles of this approach have been reviewed in these lectures.
On the formal side, analogies with classical mean-field theory and density-functional
theory have been emphasized, through the construction of free-energy functionals of
local observables. A distinctive aspect of DMFT is that it treats quasi-particle excitations
and higher energy incoherent excitations, on equal footing. As a result, it is able to
describe transfers of spectra weight between quasiparticle and incoherent features as
temperature, coupling strength, or some other external parameter (doping, pressure,...)
is varied. I have emphasized that thequasiparticle coherence scaleplays a key role in
the physics of a strongly correlated metal. Above this scale, which can be dramatically
reduced by correlations, unusual (non-Drude) transport and spectroscopic properties are
observed, corresponding to an incoherent metallic regime.This is the case, in particular,
for metals which are close to a Mott insulating phase. I have briefly reviewed the DMFT
description of these effects in these lectures, in comparison to experiments, as well as
the detailed theory of the Mott transition which has been oneof the early successes
of this approach. I have also provided an (admittedly quite succinct) introduction to the
recent combination of DMFT with electronic structure calculations. These developments
have been made possible by researchers from two communitiesjoining forces towards a
common goal. It provides us with a powerful quantitative tool for investigating material-
dependent aspects of strong electron correlations.

Despite these successes, some key open questions in the physics of strongly correlated
electron systems remain out of reach of the simplest versionof DMFT. Indeed, in
materials like cuprates, short-range spatial correlations play a key role (in particular
magnetic correlations due to superexchange, leading to a strong tendency towards the
formation of singlet bonds, as well as pair correlations). These correlations deeply
affect the nature of quasiparticles. There is compelling experimental evidence that the
quasiparticle coherence scale has thus a strong variation as the momentumk is varied
along the Fermi surface, leading to the formation of “cold spots” and “hot regions”.
Extending the DMFT framework in order to take these effects into account may well be
the most important frontier in the field.

ACKNOWLEDGMENTS

The content of these lecture notes has been greatly influenced by all the colleagues
with whom I recently collaborated in this field, both theorists and experimentalists: B.
Amadon, O.K. Andersen, F. Aryasetiawan, S. Biermann, S. Burdin, T.A. Costi, L. de
Medici, S. Florens, T. Giamarchi, M. Grioni, S.R. Hassan, M.Imada, D. Jérome, G.
Kotliar, H.R. Krishnamurthy, F. Lechermann, P. Limelette,A. Lichtenstein, S. Pankov,
O. Parcollet, C. Pasquier, E. Pavarini, L. Perfetti, A. Poteryaev, M. Rozenberg, S.
Sachdev, R. Siddharthan, P. Wzietek, as well as by all other colleagues with whom I
have had profitable discussions over the last few years. I would like to thank particularly
the members of the Ecole Polytechnique group for the friendly and stimulating atmo-

Dynamical Mean-Field Theory March 3, 2004 66



sphere, and for the lively daily discussions. I am grateful to F. Mila for the invitation to
lecture on this subject in the “Troisième cycle de la Suisse Romande” in may, 2002, to
C. Berthier, G. Collin, C. Simon and the other organizers of the school on “Oxydes à pro-
priétés remarquables” (GDR 2069) at Aussois in june, 2002 [160], to W.Temmermann
and D.Szotek for organizing lectures in Daresbury in june, 2003, to F.Mancini and A.
Avella for the organisation of the training course at Vietriin october, 2003, and to C. Or-
tiz and A. Ványolos for help with the notes of my lectures at Vietri. Hospitality of the
KITP (Santa Barbara) and of ICTP (Trieste) is acknowledged.Support for research has
been provided by CNRS, Ecole Polytechnique, the European Union (through the Marie
Curie and RTN programs), and the Indo-French program of IFCPAR.

REFERENCES

1. Mott, N. F.,Proc. Phys. Soc. A, 62, 416 (1949).
2. Mott, N. F.,Metal-insulator transitions, Taylor and Francis, London, 1990.
3. Georges, A., Kotliar, G., Krauth, W., and Rozenberg, M. J., Reviews of Modern Physics, 68, 13–125

(1996).
4. T.Pruschke, M.Jarrell, and J.Freericks,Adv. Phys., 42, 187 (1995).
5. Springer, M., and Aryasetiawan, F.,Phys. Rev. B, 57, 4364–4368 (1998).
6. Aryasetiawan, F., Imada, M., Georges, A., Kotliar, G., Biermann, S., and Lichtenstein, A. I.,ArXiv

Condensed Matter e-prints(2004), cond-mat/0401620.
7. Hubbard, J.,Proc. Roy. Soc. (London), A 276, 238 (1963).
8. Hubbard, J.,Proc. Roy. Soc. (London), A 277, 237 (1964).
9. Hubbard, J.,Proc. Roy. Soc. (London), A281, 401 (1964).
10. Varma, C. M., and Giamarchi, T.,Model for oxide metals and superconductors, Elsevier, 1991, les

Houches Summer School.
11. Imada, M., Fujimori, A., and Tokura, Y.,Rev. Mod. Phys., 70, 1039 (1998).
12. Tsuda, N., Nasu, K., Fujimori, A., and Siratori, K.,Electronic Conduction in Oxides, Springer

Series in Solid-State Sciences 94, Springer, Berlin, 2000,2nd edn., ISBN 3-540-66956-6.
13. Harrison, W. A.,Electronic structure and the properties of solids, Dover Pub., New York, 1989.
14. Friedel, J.,The physics of metals, Cambridge University Press, New York, 1969, pp. 494–525.
15. McMahan, A. K., Huscroft, C., Scalettar, R. T., and Pollock, E. L.,J. Comput.-Aided Mater. Des.,

5, 131 (1998), cond-mat/9805064.
16. Wills, J., and Eriksson, O.,Los Alamos Science, 26, 128 (2000).
17. Anisimov, V. I., and Gunnarsson, O.,Phys. Rev. B, 43, 7570–7574 (1991).
18. Maiti, K., Ph.D. thesis, IISC, Bangalore (1997).
19. Fujimori, A., and Minami, F.,Phys. Rev. B, 30, 957 (1984).
20. Zaanen, J., Sawatzky, G. A., and Allen, J. W.,Phys. Rev. Lett., 55, 418 (1985).
21. Kotliar, G., and Savrasov, S. Y.,International Journal of Modern Physics B, 17, 5101–5109 (2003).
22. Coleman, P.,Lectures on the Physics of Highly Correlated Electron Systems, American Institute

of Physics, New York, 2002, vol. VI, chap. Local moment physics in heavy electron systems, pp.
79–160, cond-mat/0206003.

23. Hewson, A. C.,The Kondo problem to heavy fermions, Cambridge University Press, 1993.
24. Burdin, S., Georges, A., and Grempel, D. R.,Physical Review Letters, 85, 1048–1051 (2000).
25. Metzner, W., and Vollhardt, D.,Phys. Rev. Lett., 62, 324 (1989).
26. Georges, A., and Kotliar, G.,Phys. Rev. B, 45, 6479–6483 (1992).
27. Jarrell, M.,Phys. Rev. Lett., 69, 168–171 (1992).
28. Georges, A., “Exact functionals, effective actions anddynamical mean-field theories: some re-

marks.,” in Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems,
edited by I. et al., Kluwer Acad., 2002, vol. 72 ofNATO Science Series-II: Mathematics, Physics
and Chemistry.

29. Rozenberg, M. J., Zhang, X. Y., and Kotliar, G.,Phys. Rev. Lett., 69, 1236 (1992).

Dynamical Mean-Field Theory March 3, 2004 67



30. Georges, A., and Krauth, W.,Phys. Rev. Lett., 69, 1240–1243 (1992).
31. Hirsch, J. E., and Fye, R. M.,Phys. Rev. Lett., 25, 2521 (1986).
32. Bulla, R., Costi, T. A., and Vollhardt, D.,Phys. Rev. B, 64, 45103 (2001).
33. Kajueter, H., and Kotliar, G.,Phys. Rev. Lett., 77 (1996).
34. Florens, S., and Georges, A.,Phys. Rev. B, 66, 165111–+ (2002).
35. Oudovenko, V., Haule, K., Savrasov, S. Y., Villani, D., and Kotliar, G.,ArXiv Condensed Matter

e-prints(2004), cond-mat/0401539.
36. Schiller, A., and Ingersent, K.,Phys. Rev. Lett., 75, 113 (1996).
37. Hettler, M. H., Tahvildar-Zadeh, A. N., Jarrell, M., Pruschke, T., and Krishnamurthy, H. R.,Phys.

Rev. B, 58, 7475– (1998).
38. Kotliar, G., Savrasov, S., Palsson, G., and Biroli, G.,Phys. Rev. Lett., 87, 186401 (2001).
39. Biermann, S., Georges, A., Lichtenstein, A., and Giamarchi, T., Physical Review Letters, 87,

276405 (2001).
40. Biroli, G., Parcollet, O., and Kotliar, G. (2003), cond-mat/0307587.
41. Onoda, S., and Imada, M. (2003), cond-mat/0304580.
42. Si, Q., and Smith, J. L.,Phys. Rev. Lett., 77, 3391 (1996).
43. Kajueter, H.,PhD thesis, Rutgers University(1996).
44. Sengupta, A. M., and Georges, A.,Phys. Rev. B, 52, 10295–10302 (1995).
45. Smith, J. L., and Si, Q.,Phys. Rev. B, 61, 5184 (2000).
46. Fukuda, R., Kotani, T., and Yokojima, S.,Prog. Theor. Phys. Suppl., 121, 1 (1996).
47. Chitra, R., and Kotliar, G.,Phys. Rev. B, 63, 115110 (2001).
48. Plefka, T.,J. Phys. A, 15, 1971 (1982).
49. Georges, A., and Yedidia, J. S.,Journal of Physics A Mathematical General, 24, 2173–2192 (1991).
50. Polchinsky, J.,Nucl. Phys. B, 231, 269 (1984).
51. Schehr, G., and Doussal, P. L.,preprint cond-mat/030486(2003).
52. Chauve, P., and Doussal, P. L.,Phys. Rev. E, 64, 051102 (2001).
53. Thouless, D., Anderson, P., and Palmer, R.,Phil. Mag., 35, 593 (1977).
54. Mermin, N.,Phys. Rev., 137, A1441 (1965).
55. Hohenberg, P., and Kohn, W.,Phys. Rev., 136, B864 (1964).
56. Kohn, W., and Sham, L.,Phys. Rev., 140, A1133 (1965).
57. Fukuda, R., Kotani, T., Suzuki, Y., and Yokojima, S.,Prog. Theor. Phys., 92, 833 (1994).
58. Valiev, M., and Fernando, G.,Phys. Lett. A, 227, 265 (1997).
59. Argaman, N., and Makov, G.,Am. J. Phys., 68, 69 (2000), preprint physics/9806013.
60. Dreizler, R., and Gross, E.,Density Functional Theory, Springer-Verlag, 1990.
61. Jones, R., and Gunnarsson, O.,Rev. Mod. Phys., 61, 689 (1989).
62. Chayes, J., and Chayes, L.,J. Stat. Phys., 36, 471 (1984).
63. Chayes, J., Chayes, L., and Ruskai, M. B.,J. Stat. Phys., 38, 497 (1985).
64. Harris, J.,Phys. Rev. A, 29, 1648 (1984).
65. Khodel, V. A., Shaginyan, V. R., and Khodel, V. V.,Physics Reports, 249, 1 (1994).
66. Amusia, M. Y., Msezane, A. Z., and Shaginyan, V. R. (2003), arXiv cond-mat/0312162.
67. Chitra, R., and Kotliar, G.,Phys. Rev. B, 62, 12715 (2000).
68. Kotliar, G.,Eur. J. Phys. B, 27, 11 (1999).
69. Johansson, B.,Phil. Mag., 30, 469 (1974).
70. Skriver, H. L., Andersen, O. K., and Johansson, B.,Physical Review Letters, 41, 42–45 (1978).
71. Skriver, H. L., Andersen, O. K., and Johansson, B.,Physical Review Letters, 44, 1230–1233 (1980).
72. Savrasov, S. Y., and Kotliar, G.,Physical Review Letters, 84, 3670–3673 (2000).
73. Savrasov, S. Y., Kotliar, G., and Abrahams, E.,Nature, 410, 793 (2001).
74. Fujimori, A.,J. Phys. Chem. Solids, 53, 1595 (1992).
75. McWhan, D. B., Menth, A., Remeika, J. P., Brinckman, W. F., and Rice, T. M.,Phys. Rev. B, 7,

1920 (1973).
76. Lefebvre, S., Wzietek, P., Brown, S., Bourbonnais, C., Jérome, D., Mèziére, C., Fourmigué, M.,

and Batail, P.,Phys. Rev. Lett., 85, 5420 (2000).
77. Bao, W., Broholm, C., Aeppli, G., Dai, P., Honig, J. M., and Metcalf, P.,Phys. Rev. Lett., 78, 507

(1997).
78. Kotliar, G.,Physica B, 259-261, 711 (1999).

Dynamical Mean-Field Theory March 3, 2004 68



79. Misguich, G., and Lhuillier, C.,Frustrated spin systems, World Scientific, Singapore, 2003, chap.
Two-dimensional quantum antiferromagnets, cond-mat/0310405.

80. S.Sachdev (2004), cond-mat/0401041.
81. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M., and Saito, G. (2003), cond-mat/0307483.
82. Imada, M., Mizusaki, T., and Watanabe, S.,cond-mat/0307022(2003).
83. Georges, A., and Krauth, W.,Phys. Rev. B, 48, 7167–7182 (1993).
84. Rozenberg, M. J., Kotliar, G., and Zhang, X. Y.,Phys. Rev. B, 49, 10181 (1994).
85. Laloux, L., Georges, A., and Krauth, W.,Phys. Rev. B, 50, 3092–3102 (1994).
86. Florens, S.,Cohérence et localisation dans les systèmes d’électrons fortement corrélés, Ph.D.

thesis, Université Paris 6 and Ecole Normale Supérieure, Paris (2003).
87. Georges, A., Florens, S., and Costi, T. A.,ArXiv Condensed Matter e-prints(2003), cond-

mat/0311520.
88. Fujimori, A., Hase, I., Namatame, H., Fujishima, Y., Tokura, Y., Eisaki, H., Uchida, S., Takegahara,

K., and de Groot, F. M. F.,Phys. Rev. Lett., 69, 1796 (1992).
89. Inoue, I. H., Hase, I., Aiura, Y., Fujimori, A., Haruyama, Y., Maruyama, T., and Nishihara, Y.,

Physical Review Letters, 74, 2539–2542 (1995).
90. Rozenberg, M. J., Inoue, I. H., Makino, H., Iga, F., and Nishihara, Y.,Physical Review Letters, 76,

4781–4784 (1996).
91. Maiti, K., Sarma, D. D., Rozenberg, M., Inoue, I., Makino, H., Goto, O., Pedio, M., and Cimino,

R., Europhys. Lett., 55, 246 (2001).
92. Sekiyama, A., Fujiwara, H., Imada, S., Eisaki, H., Uchida, S. I., Takegahara, K., Harima, H., Saitoh,

Y., and Suga, S.,ArXiv Condensed Matter e-prints(2002), cond-mat/0206471.
93. Sekiyama, A., Fujiwara, H., Imada, S., Suga, S., Eisaki,H., Uchida, S. I., Takegahara, K., Harima,

H., Saitoh, Y., Nekrasov, I. A., Keller, G., Kondakov, D. E.,Kozhevnikov, A. V., Pruschke, T., Held,
K., Vollhardt, D., and Anisimov, V. I.,ArXiv Condensed Matter e-prints(2003), cond-mat/0312429.

94. Nekrasov, I., Keller, G., Kondakov, D., Kozhevnikov, A., Pruschke, T., Held, K., Vollhardt, D., and
Anisimov, V. (2002), cond-mat/0211508.

95. Pavarini, E., Biermann, S., Poteryaev, A., Lichtenstein, A. I., Georges, A., and Andersen, O. K.,
ArXiv Condensed Matter e-prints(2003), cond-mat/0309102.

96. Matsuura, A. Y., Watanabe, H., Kim, C., Doniach, S., Shen, Z. X., Thio, T., and Bennett, J. W.,
Phys. Rev. B, 58, 3690 (1998).

97. Mo, S. K., Denlinger, J. D., Kim, H. D., Park, J. H., Allen,J. W., Sekiyama, A., Yamasaki, A.,
Kadono, K., Suga, S., Saitoh, Y., Muro, T., Metcalf, P., Keller, G., Held, K., Eyert, V., Anisimov,
V. I., and Vollhardt, D.,Phys. Rev. Lett., 90, 186403 (2003).

98. Liu, L., Allen, J., Gunnarsson, O., Christansen, N., andAndersen, O.,Phys. Rev. B, 45, 8934 (1992).
99. Rozenberg, M. J., Kotliar, G., Kajueter, H., Thomas, G. A., Rapkine, D. H., Honig, J. M., and

Metcalf, P.,Phys. Rev. Lett., 75, 105 (1995).
100. Eldridge, J., Kornelsen, K., Wang, H., Williams, J., Crouch, A., and Watkins, D.,Sol. State. Comm.,

79, 583 (1991).
101. Merino, J., and McKenzie, R. H.,Phys. Rev. B, 61, 7996 (2000).
102. Majumdar, P., and Krishnamurthy, H.,Phys. Rev. B, 52 (1995).
103. Limelette, P., Wzietek, P., Florens, S., Georges, A., Costi, T. A., Pasquier, C., Jérome, D., Mézière,

C., and Batail, P.,Physical Review Letters, 91, 016401 (2003).
104. Khurana, A.,Phys. Rev. Lett., 64, 1990 (1990).
105. Moeller, G., Si, Q., Kotliar, G., Rozenberg, M., and Fisher, D. S.,Phys. Rev. Lett., 74, 2082 (1995).
106. Pálsson, G., and Kotliar, G.,Phys. Rev. Lett., 80, 4775–4778 (1998).
107. Valla, T., Johnson, P. D., Yusof, Z., Wells, B. O., Loureiro, Li, Q., M., S., Cava, R. J., Mikami, M.,

Mori, Y., Yoshimura, M., and Sasaki, T.,Nature, 417, 627 (2002).
108. Castellani, C., DiCastro, C., Feinberg, D., and Ranninger, J.,Phys. Rev. Lett., 43, 1957 (1979).
109. Jayaraman, A., McWhan, D. B., Remeika, J. P., and Dernier, P. D.,Phys. Rev. B, 2, 3751 (1970).
110. Kotliar, G., Lange, E., and Rozenberg, M. J.,Phys. Rev. Lett., 84, 5180 (2000).
111. Rozenberg, M. J., Chitra, R., and Kotliar, G.,Phys. Rev. Lett., 83, 3498 (1999).
112. Limelette, P., Georges, A., Jérome, D., Wzietek, P., Metcalf, P., and Honig, J. M.,Science, 302,

89–92 (2003).
113. Kagawa, F., Itou, T., Miyagawa, K., and Kanoda, K. (2003), preprint cond-mat/0307304.
114. Majumdar, P., and Krishnamurthy, H.,Phys. Rev. Lett., 73 (1994).

Dynamical Mean-Field Theory March 3, 2004 69



115. Cyrot, M., and Lacour-Gayet, P.,Sol. State Comm., 11, 1767 (1972).
116. Merino, J., and McKenzie, R. H.,Phys. Rev. B, 62, 16442–16445 (2000).
117. Hassan, S. R., Georges, A., and Krishnamurthy, H. R. (2004), preprint.
118. Fournier, D., Poirier, M., Castonguay, M., and Truong,K., Phys. Rev. Lett., 90, 127002 (2003).
119. Parcollet, O., Biroli, G., and Kotliar, G. (2003), cond-mat/0308577.
120. Giamarchi, T., Biermann, S., Georges, A., and Lichtenstein, A., ArXiv Condensed Matter e-prints

(2004), cond-mat/0401268.
121. Anisimov, V. I., Poteryaev, A. I., Korotin, M. A., Anokhin, A. O., and Kotliar, G.,J. Phys. Cond.

Matter, 9, 7359–7367 (1997).
122. Lichtenstein, A. I., and Katsnelson, M. I.,Phys. Rev. B, 57, 6884–6895 (1998).
123. Held, K., Nekrasov, I. A., Blümer, N., Anisimov, V. I., and Vollhardt, D.,Int. J. Mod. Phys. B, 15,

2611 (2001), cond-mat/0010395.
124. Held, K., Nekrasov, I. A., Keller, G., Eyert, V., Blümer, N., McMahan, A., Scalettar, R. T., Pr-

uschke, T., Anisimov, V. I., and Vollhardt, D.,The LDA+DMFT Approach to Materials with Strong
Electronic Correlations, J. Grotendorst, D. Marks, and A. Muramatsu (ed.), NIC Series Volume 10,
p. 175-209 (2002), 2001, proceedings of the Winter School on"Quantum Simulations of Complex
Many-Body Systems: From Theory to Algorithms", February 25- March 1, 2002, Rolduc/Kerkrade
(NL); cond-mat/0112079.

125. Kotliar, G., and Savrasov, S. Y.,Dynamical Mean Field Theory, Model Hamiltonians and First
Principles Electronic Structure Calculations, In "New Theoretical Approaches to Strongly Corre-
lated Systems, A.M. Tsvelik Ed., Kluwer Academic Publishers, 2001, proc. of the Nato Advanced
Study Institute on New Theoretical Approaches to Strongly Correlated Systems, Cambridge, UK,
1999; preprint cond-mat/0208241.

126. Lichtenstein, A. I., Katsnelson, M. I., and Kotliar, G., “Spectral density functional approach to elec-
tronic correlations and magnetism in crystals,” inElectron Correlations and Materials Properties
2, edited by A. Gonis, Kluwer, New York, 2002, cond-mat/0211076.

127. Workshop on Realistic Theories of Correlated Electron Materials (online mate-
rial) , Kavli Institute for Theoretical Physics, UCSB, Santa Barbara, USA, 2002,
http://online.itp.ucsb.edu/online/cem02/.

128. Conference on Realistic Theories of Correlated Electron Materials (online mate-
rial) , Kavli Institute for Theoretical Physics, UCSB, Santa Barbara, USA, 2002,
http://online.itp.ucsb.edu/online/cem02/si-conf-schedule.html.

129. Euroconference on Ab-initio Many-Body Theory for Correlated Electron Systems (online ma-
terial), The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, 2003,
http://www.ictp.trieste.it/ smr1512/contributionspage.html.

130. Andersen, O. K.,Phys. Rev. B, 12, 3060–3083 (1975).
131. Skriver, H. L.,The LMTO method, Springer, Berlin, 1984.
132. Andersen, O., Dasgupta, T. S., Ezhov, S., Tsetseris, L., Jepsen, O., Tank, R., Arcangeli, C., and

Krier, G., “Third generation MTOs,” 2000, http://psi-k.dl.ac.uk/newsletters/News45/ (online mate-
rial).

133. Andersen, O. K., Saha-Dasgupta, T., Tank, R. W., Arcangeli, C., Jepsen, O., and Krier, G., “Devel-
oping the MTO Formalism,” inElectronic Structure and Physical Properties of Solids. The Use of
the LMTO Method, Lectures of a Workshop Held at Mont Saint Odile, France, October 2-5, 1998.
Edited by H. Dreyssé, Lecture Notes in Physics, vol. 535, p.3, 2000, p. 3.

134. Marzari, N., and Vanderbilt, D.,Phys. Rev. B, 56, 12847–12865 (1997).
135. Anisimov, V. I., Zaanen, J., and Andersen, O. K.,Phys. Rev. B, 44, 943–954 (1991).
136. Anisimov, V. I., Aryasetiawan, F., and Lichtenstein, A. I., J. Phys. Condensed Matter, 9, 767–808

(1997).
137. Lichtenstein, A. I., Katsnelson, M. I., and Kotliar, G., Phys. Rev. Lett., 87, 067205 (2001).
138. Kotliar, G., and Savrasov, S. Y. (2001), cond-mat/0106308.
139. Nekrasov, I. A., Held, K., Blümer, N., Poteryaev, A. I.,Anisimov, V. I., and Vollhardt, D.,European

Physical Journal B, 18, 55–61 (2000).
140. Gunnarsson, O., Koch, E., and Martin, R. M.,Phys. Rev. B, 56, 1146–1152 (1997).
141. Koch, E., Gunnarsson, O., and Martin, R. M.,Phys. Rev. B, 60, 15714–15720 (1999).
142. Florens, S., Georges, A., Kotliar, G., and Parcollet, O., Phys. Rev. B, 66, 205102–+ (2002).
143. Manini, N., Santoro, G. E., dal Corso, A., and Tosatti, E., Phys. Rev. B, 66, 115107 (2002).

Dynamical Mean-Field Theory March 3, 2004 70



144. Mochizuki, M., and Imada, M.,Phys. Rev. Lett., 91, 167203 (2003).
145. Cwik, M., Lorenz, T., Baier, J., Müller, R., André, G., Bourée, F., Lichtenberg, F., Freimuth, A.,

Schmitz, R., Müller-Hartmann, E., and Braden, M.,Phys. Rev. B, 68, 060401 (2003).
146. Amadon, A., Biermann, S., and Georges, A. (2003), unpublished, and in preparation.
147. Savrasov, S. Y., and Kotliar, G. (2003), preprint cond-mat/0308053.
148. Held, K., McMahan, A. K., and Scalettar, R. T.,Phys. Rev. Lett., 87, A266404+ (2001).
149. McMahan, A. K., Held, K., and Scalettar, R. T.,Phys. Rev. B, 67, 075108 (2003).
150. Bouchet, J., Siberchicot, B., Jollet, F., and Pasturel, A., J. Phys. Condensed Matter, 12, 1723–1733

(2000).
151. Eriksson, O., Becker, J. D., Balatsky, A. V., and Wills,J. M.,J. Alloys and Comp., 287, 1 (1999).
152. Biermann, S., Aryasetiawan, F., and Georges, A.,Physical Review Letters, 90, 086402 (2003).
153. Sun, P., and Kotliar, G.,Phys. Rev. B, 66, 085120 (2002).
154. Sun, P., and Kotliar, G.,ArXiv Condensed Matter e-prints(2003), cond-mat/0312303.
155. Biermann, S., Aryasetiawan, F., and Georges, A., “Electronic Structure of Strongly Correlated

Materials: towards a First Principles Scheme,” inPhysics of Spin in Solids: Materials, Methods,
and Applications, NATO Science Series II, Kluwer Acad. Pub., 2004, arXiv cond-mat/0401653.

156. Aryasetiawan, F., Biermann, S., and Georges, A., “A First Principles Scheme for Calculating the
Electronic Structure of Strongly Correlated Materials: GW+DMFT,” in Coincidence Studies of
Surfaces,Thin Films and Nanostructures, Wiley, 2003, arXiv cond-mat/0401626.

157. Almbladh, C. O., von Barth, U., and van Leeuwen, R.,Int. J. Mod. Phys. B, 13, 535 (1999).
158. Hedin, L.,Phys. Rev., 139(1965).
159. Aryasetiawan, F., and Gunnarsson, O.,Rep. Prog. Phys., 61, 237 (1998).
160. School on Oxides with remarkable properties (online material), GDR 2069 (CNRS), Aussois,

France, 2002, http://www-lsp.ujf-grenoble.fr/vie_scientifique/gdr/GDROX/.

Dynamical Mean-Field Theory March 3, 2004 71


