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Screening by composite charged particles: the case of quantum well trions
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(Dated: February 13, 2004)

We study the screening of an external potential produced by a two-dimensional gas of charged ex-
citons (trions). We determine the contribution to the dielectric function induced by these composite
charged particles within a random phase approximation. In mixtures of free electrons and trions,
the trion response is found dominant. In the long wave-length limit, trions behave as point charges
with mass equal to the sum of the three particle components. For finite wave-vectors, we show
how the dielectric response is sensitive to the composite nature of trions and the internal degrees
of freedom. Predictions are presented for the screening of a Coulomb potential, the scattering by
charged impurities and the properties of trionic plasmons.

A major breakthrough in our understanding of the
optical response of doped semiconductor quantum wells
(QWs) was achieved when the existence of trions was
demonstrated experimentally both in II-VI and III-V
semiconductors [1, 2, 3]. These composite particles ap-
pear as the weakly bound state of an exciton (a bound
electron-hole pair) to an electron or a hole depending on
the n-type or p-type doping of the QW. For the sake
of clarity, in the following we will deal with negatively
charged excitons (X−). The physics of these composite
charged particles in the low excitation regime has at-
tracted a considerable interest, especially concerning the
metal-insulator transition [2, 4], the intrinsic radiative re-
combination efficiency [5, 6], the singlet-triplet crossover
under strong magnetic field[7], the role of phonons in the
diffusion properties [8], and the remarkable drift trans-
port induced by an applied electric bias[9, 10].

More recently, the first investigations of a dense trion
gas have been performed by resonant optical pump-
probe[11]. In principle, by optical pumping of the trion
resonance, it should be possible to ”convert” partially or
even completely the background electron gas into a trion
gas. Hence, it can be possible to study the many-body
properties of a gas of composite charged particles. One
interesting issue to be addressed is the screening response
of such a peculiar gas to an external potential, such as
the Coulomb field generated by a charged impurity. In
this respect, the description of a trion gas as point par-
ticles (like electrons) should be only a long wave-length
approach, while at shorter wave-length the trion granu-
larity should show up. Since the impurity-induced scat-
tering, the dc mobility and the collective excitations are
sensitive to different wave-lengths, it is desirable to de-
termine the complete response of a dense trion gas to
external disturbances and to check whether and when
the internal structure can be important. In this letter,
we will present a Random Phase Approximation (RPA)
treatment of the trion gas response. We will show the role
of the composite nature of trions in the determination of
the dielectric response.

To simplify our description, we shall present results for
a purely two-dimensional system, omitting the form fac-

tors due to the finite extension of the quantum well wave-
functions of electrons and holes along the QW growth di-
rection. An X− trion state is represented by a three-body
wave-function, in which the center of mass, the relative
motion and the spin part can be factorized, namely

Ψk,η,Se,Shz
=

eik·R

√
A

φη,Se
(λ1, λ2) χSe,Shz

(s1z, s2z, shz),

(1)
where k and R are the center of mass wave-vector and
position respectively, A is the sample area, η is the rel-
ative motion quantum number, while Se and Shz denote
the spin state. The relative motion part depends on the
variables λ1 = ρ1 − ρh and λ2 = ρ2 − ρh, where ρ1,
ρ2, ρh are the in-plane positions of the first, second elec-
tron and the hole respectively, while s1z , s2z, shz are
the spin components along the perpendicular direction
z. In semiconductor quantum wells, heavy-hole trions
have eight spin states, where Se ∈ {0, 1} represents the
total spin of the two electrons and Shz ∈ {±3/2} is the
heavy-hole band angular momentum projection. The two
states with Se = 0 are called singlet trions, while the six
states with Se = 1 are triplet trions. To fulfil the Pauli
exclusion principle, for a singlet (triplet) spin state, the
relative motion wave-function φη,Se

is symmetric (anti-
symmetric) under exchange of the positions of the two
electrons. The X− charge density operator reads

n̂(ρ) = −e
(

δ(2)(ρ − ρ1) + δ(2)(ρ − ρ2) − δ(2)(ρ − ρh)
)

.

(2)
The matrix elements of n̂(ρ) on the basis of the trion
states are diagonal with respect to the spin indexes. They
can be written as

〈k′, η′, Se, Shz|n̂|k, η, Se, Shz〉 = − e

A
ei(k−k′)·ρ T η′,η,Se

k−k′ ,

(3)
where the trion ”granularity” factor T η′,η,Se

q accounting
for the composite nature is

T η′,η,Se

q = αη′,η,Se

e,q + αη′,η,Se

e,−q − αη′,η,Se

h,q , (4)
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where the electron contribution reads

αη′,η,Se

e,q =

∫

d2λ1d
2λ2 φ ⋆

η′,Se
φη,Se

e
iq·

(

me

M
λ2−

me+m
h

M
λ1

)

,

(5)
and the hole part is

αη′,η,Se

h,q =

∫

d2λ1d
2λ2 φ ⋆

η′,Se
φη,Se

eiq·(me

M
(λ1+λ2)) , (6)

with me, mh, M = 2me + mh the electron, hole
and trion masses respectively. If an external poten-

tial Vext(ρ, t) =
(

∑

q
1
2Vext(q, ω)ei(q·ρ−ωt) + h.c.

)

acts

on the system, then the trionic wave-functions are per-
turbed. The perturbation of the trion wave-function gen-
erates a non-homogeneous charge density, which creates
a local Hartree potential and an exchange-correlation
correction (we neglect it here). Hence, the screened
potential is given by the self-consistent equation Vs =
Vext +Vloc, where Vloc(ρ, t) =

∫

d2ρ′ e
κ|ρ−ρ′| δn(ρ′, t), be-

ing δn(ρ, t) the induced charge density and κ is the static
dielectric constant of the semiconductor quantum well.
The self-consistent potential energy felt by a trion is

U tr
s (ρ1, ρ2, ρ3, t) = −e (Vs(ρ1, t) + Vs(ρ2, t) − Vs(ρh, t)) .

(7)
The matrix elements of the perturbation energy on the
trion states at t = 0 are

〈k′, η′, Se, Shz|U tr
s |k, η, Se, Shz〉 = −e Vs(k−k′, ω) T η′,η,Se

k−k′ .
(8)

By calculating the lowest-order perturbation theory
for the trion wave-functions and summing incoherently
the contribution from all the populated trion states
(RPA), we get the the screened potential Vs(q, ω) =
Vext(q, ω)/ǫX−(q, ω), where the trion-induced dielectric
function reads

ǫX−(q, ω) = 1 − 2πe2

κqA
ΠX−(q, ω) . (9)

The trion RPA-polarization contribution is

ΠX−(q, ω) =
∑ (fk+q,η′,Se,Shz

− fk,η,Se,Shz
)|T η,η′,Se

q |2
Ek+q,η′,Se

− Ek,η,Se
− h̄ω − i0+

,

(10)
where the sum is meant over k, η, η′, Se, Shz. The
quantity fk,η,Se,Shz

is the trion occupation number (not
necessarily at equilibrium) and Ek,η,Se

the orbital energy
of the unperturbed trion state. Note that for a (spin-
unpolarized) electron gas

Πe−(q, ω) = 2
∑

k

f
(e)
k+q − f

(e)
k

h̄2|k+q|2

2me
− h̄2k2

2me
− h̄ω − i0+

(11)

and ǫe−(q, ω) = 1 − 2πe2

κqA Πe−(q, ω). In presence of a
mixed gas of trions and electrons, the linear susceptibil-
ities of the two components add up, i.e. the polarization
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FIG. 1: Solid line: normalized static screening wave-vector
qs(q, 0)/qs(0, 0) versus dimensionless wave-vector qa∗ for a
pure gas of trions. Dashed line: same quantity, but with-
out accounting for the trion granularity. Stars: the gran-
ularity factor |T (q)|2 = |2αe(q) − αh(q)|2. Parameters:
T = 10 K, a∗ = 8 nm, me = 0.1 m0, mh = 0.2 m0,
ntrions = 1 × 1010cm−2, κ = 9.

of the mixture is Πmix(q, ω) = ΠX−(q, ω) + Πe−(q, ω).
Considering only the contribution of the ground trion
state, the general expression in Eq. (10) can be consid-
erably simplified. This approximation holds when only
the ground state is populated and in the limit of small
h̄ω. In the case of zero magnetic field, the ground state
is a singlet 1s-like state, which is twice degenerate (due
to the hole spin degree of freedom). By considering only
the contribution of the 1s-state, we get

ΠX−(q, ω) ≃ 2
∑

k

(fk+q,1s − fk,1s)|T (q)|2
h̄2|k+q|2

2M − h̄2k2

2M − h̄ω − i0+
. (12)

In the following, we will consider the following trial func-
tion

φ1s(λ1, λ2) =
1

2π(a⋆)2
exp

(

−λ1 + λ2

2a⋆

)

, (13)

where a⋆ is the effective trion radius. Accurate numerical
solutions for the internal motion of quantum well trions
are reported in the literature (see e.g. Refs. 5, 13). With
our model wave-function, the granularity factor is T (q) =
2αe(q) − αh(q) with

αe(q) =
1

{[

1 +
(

me+mh

M qa⋆
)2

] [

1 +
(

me

M qa⋆
)2

]}3/2

(14)
and

αh(q) =
1

{[

1 +
(

me

M qa⋆
)2

]}3 . (15)
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In the long wave-length limit (q → 0), |T (q)|2 → 1, i.e.
the granularity factor does not play any role. Hence, for
small wave-vectors q, X− trions behave as point particles
with charge−e and mass M = 2me+mh, as expected. As
shown in Fig. 1, the granularity factor decreases mono-
tonically with increasing q and then has a node for the
wave-vector q̄ such that 2αe(q̄) = αh(q̄). This node of the
granularity factor is due to the compensation between
the contributions of two electrons and the hole within
the bound X−. This kind of cancellation effect is absent
in a plasma of uncorrelated electrons and holes, where
the screening contributions of the two components add
up. Note that the value of q̄a⋆ depends on the mass ratio
me/mh and on the shape of the internal motion wave-
function (for our model wave-function q̄a⋆ ≈ 1.1 when
me/mh = 0.5). Finally, in the short wave-length limit
(q >> 1/a⋆), the granularity asymptotically vanishes,
because the perturbing potential oscillates too quickly
in the length scale of the trion internal motion wave-
function.

As a first illustrative example of our theory, we
consider the trion response to a Coulomb potential
induced by a charged impurity, that is Vext(q) =
2πe exp (−qd)/(κAq), where d is the distance between
the remote impurity donor and the quantum well plane
(d 6= 0 for a modulation-doped sample). The screened
potential can be written as

Vs(q, 0) =
2πe exp (−qd)

κA(q + qs(q, 0))
, (16)

being qs(q, 0) = (ǫmix(q, 0) − 1)q and ǫmix the dielec-
tric function for the mixed gas of trions and electrons.
In Fig. 1, we show the relative screening parame-
ter qs(q, 0)/qs(0, 0) versus q (in units of the trion ef-
fective radius a⋆) for a pure trion gas, which can be
obtained by resonant optical pumping. For simplicity,
we have taken an equilibrium Fermi-Dirac distribution
function with temperature T = 10K and with density
ntr = 1010cm−2. We have used typical parameters for
a CdTe-based semiconductor[1], namely me = 0.1 m0,
mh = 0.2 m0, κ = 9 (working in the CGS system) and a
trion radius a⋆ = 8 nm. The thick solid line represents
qs(q, 0)/qs(0, 0) due to the trion gas, while the dashed line
shows the same quantity without including the granular-
ity factor |T (q)|2. Indeed, the composite nature of trions
has a major impact in their screening response, dramat-
ically quenching the response at finite wave-vectors.

One important issue to verify is the behavior of the
static screening in presence of a mixed population of tri-
ons and electrons. In Fig. 2, we show a surface plot
of qs(q, 0)a⋆ as a function of the trion density fraction f ,
which is defined by the relation ntr = f(ne+ntr) = fntot.
Passing from a pure electron gas (f = 0) to a pure
trion gas (f = 1), the static screening changes con-
siderably. For q → 0, the screening wave-vector in-
creases for increasing trion fraction due to the heavier

FIG. 2: Contours of the screening wave-vector qs(q, 0) (units
of 1/a⋆) as a function of qa∗ and the trion density fraction f
(f = 1 corresponds to a pure trion gas, f = 0 is for a pure
electron gas). Parameters: total density (electrons + trions)
ntot = 1010cm−2. Other parameters as in Fig. 1.

mass of the trion. In fact, in the low temperature limit
qs(0, 0) ∝ me for a pure 2D electron gas[12] and there-
fore qs(0, 0) ∝ (2me + mh) for a pure 2D trion gas. Fig.
2 shows that even for small trion fractions, the screen-
ing of the mixture is dominated by the trion component.
Hence, the trion granularity effects at finite wave-vectors
shown in Fig. 1 are important also in the mixture case.

The scattering induced by charged impurities is the
main interaction process affecting the transport proper-
ties of charge carriers at low temperatures. Within the
Fermi’s golden rule, the wave-vector dependent lifetime
of trions τtr(k) in presence of the mixed gas of trions and
electrons is given by the expression

1

τtr(k)
=

Nimp

A

(

2πMe4

κ2h̄3

)
∫ 2π

0

dθ
exp (−2dq)

(qǫmix(q, 0))2
, (17)

with q = 2k | sin (θ/2)| and Nimp/A is the density of
impurities per unit area. Notice that the electron life-
time is τe(k) = (M/me)τtr(k). The velocity lifetime
τv
tr(k) is given by same expression in Eq. (17), but

with an additional factor (1 − cos θ) within the integral.
In Fig. 3, we plot the scattering integral Iscatt(k) =
∫ 2π

0
dθ exp (−2dq)/(qǫmix(q, 0))2 (in units of a∗2). In the

case of a pure trion gas (f = 1, thick solid line), the
k-dependence of the scattering integral has a resonant
structure. The peak is due to the node of the granu-
larity factor |T (q)|2 (see Fig. 1). Indeed, around the
nodal wave-vector, the trion screening is dramatically
quenched and the scattering efficiency enhanced. This
effect is absent if the granularity of the trion is not taken
into account (thick dashed line) and in the case of a pure
electron gas (thin solid line). Note that in the case of a
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FIG. 3: Impurity scattering rate integral Iint (units of a⋆ 2)
as a function of qa∗. Thick solid line: pure trion gas (f = 1).
Thick dashed line: the same, without granularity. Dotted
line: mixture of trions and electrons (f = 0.3) . Thin solid
line: pure electron gas (f = 0). Distance between impurity
and carrier planes: d = 4nm. Other parameters as in Fig. 2.

mixture of trions and electrons, the contribution of trions
is dominant, as shown by the dotted line, corresponding
to a mixture where the trion fraction is only 30%. The
results for the velocity lifetimes (not shown) are qualita-
tively analogous.

Similarly to the case of electrons, a pure gas of tri-
ons has longitudinal collective excitations (trionic plas-
mons), which are given by the solution of the equation
ǫX−(q, ω(q)) = 0. In the long wave-length limit, the
trionic plasmons behave exactly as the electronic plas-
mons [12], once the electron mass me is replaced by the
trion mass M = 2me + mh. For finite wave-vectors, as
a result of the trion granularity, the plasmon frequency
is decreased, due to the quenching of the screening effi-
ciency. For a finite wave-vector q, when only the trion
ground state is involved, the behavior is that of an elec-
tron gas, once the electron charge e is replaced by the
effective charge e′(q) = e|T (q)| < e, as it can be de-
duced from Eqs. (9) and (12). For excitation energies of
the order of the trion binding energy, the excited states
will give extra plasmon branches corresponding to tran-
sition between internal states. For a mixed gas of trions
and electrons, the plasmon branches are the solutions
of ǫmix(q, ω(q)) = ǫX−(q, ω(q)) + ǫe−(q, ω(q)) − 1 = 0.
Hence, a coupling is present between the trionic and
the electronic branches of plasmons. The complex phe-
nomenology of the collective excitations in presence of a
mixture of electrons and trions will be addressed in detail

in a future publication.

In conclusion, we have investigated the screening re-
sponse of trions, taking into account their composite na-
ture. We have obtained a RPA-dielectric function for a
mixed gas of trions and electrons. This interesting physi-
cal regime is experimentally achievable by resonant opti-
cal pumping of trions in doped QWs. In the static regime,
we have shown the major impact of the trion granular-
ity in determining the dielectric response at finite wave-
vectors. We have calculated the scattering rates of elec-
trons and trions due to the interaction with the charged
impurities. The internal motion of trions is responsi-
ble for a quenching of the screening response for wave-
lengths comparable or smaller than the trion effective
radius. Moreover, the granularity produces resonant fea-
tures in the wave-vector dependence, due to the compen-
sation which can occur between the contribution of the
two electrons and the hole within the X−. We hope that
our study will stimulate the research in the fundamen-
tal properties of trions in the dense regime. We expect
that the effect of trion granularity in the screening re-
sponse will have an impact on the transport properties of
these charged particles, whose investigation is underway
[9, 10]. In particular, the impurity-induced localization
and the onset of the metal-insulator transition[4] should
be considerably modified by the conversion of electrons
into trions through resonant optical pumping.

LPA-ENS (former LPMC-ENS) is ”Unité Mixte de
Recherche Associé au CNRS (UMR 8551) et aux Uni-
versités Paris 6 et 7”.
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