Lagrangian submanifolds foliated by $(n-1)$-spheres in $\mathbb{R}^{2 n}$

Henri Anciaux, Ildefonso Castro and Pascal Romon

Abstract

We study Lagrangian submanifolds foliated by $(n-1)$-spheres in $\mathbb{R}^{2 n}$ for $n \geq 3$. We give a parametrization valid for such submanifolds, and refine that description when the submanifold is special Lagrangian, self-similar or Hamiltonian stationary. In all these cases, the submanifold is centered, i.e. invariant under the action of $S O(n)$. It suffices then to solve a simple ODE in two variables to describe the geometry of the solutions.

Keywords: Lagrangian submanifold, special Lagrangian, self-similar, Hamiltonian stationary.

2000 MSC: 53D12 (Primary) 53C42 (Secondary).

Introduction

Lagrangian submanifolds constitute a distinguished subclass in the set of n-dimensional submanifolds of $\mathbb{R}^{2 n}$: a submanifold is Lagrangian if it has dimension n and is isotropic with respect to the symplectic form ω of $\mathbb{R}^{2 n}$ identified with \mathbb{C}^{n}. Such submanifolds are locally characterized as being graphs of the gradient of a real map on a domain of \mathbb{R}^{n}, however to give a general classification of them is not an easy task.

In the case of surfaces i.e. $n=2$, powerful techniques such as Weierstrass representation formulas may be used to gain some insight into this question ($c f$ [HR]). In higher dimension, some work has been done in the direction of characterizing Lagrangian submanifolds with various intrinsic and extrinsic geometric assumptions, see [Ch] for a general overview and more references.

Recently, D. Blair has studied in [Bl] Lagrangian submanifolds of \mathbb{C}^{n} which are foliated by $(n-1)$-planes. In the present paper, we are devoted to study those Lagrangian submanifolds of $\mathbb{R}^{2 n}$, which are foliated by Euclidean $(n-1)$-spheres. In the following, we shall for brevity denote them by σ-submanifolds. We first observe that any isotropic round $(n-1)$-sphere spans a n-dimensional Lagrangian subspace, a condition which breaks down in dimension 2. Hence we restrict our attention to
the case $n \geq 3$ and we give a characterization of σ-submanifolds as images of an immersion of a particular form involving as data a planar curve and a \mathbb{R}^{n}-valued curve (see Theorem 1).

Next, we focus our attention on several curvatures equations and characterize those among which are σ-submanifolds. The most classical of these equations is the minimal submanifold equation, involving the mean curvature vector \vec{H}

$$
\vec{H}=0
$$

A Lagrangian submanifold which is also minimal satisfies in addition a very striking property: it is calibrated (cf [HL]) and therefore a minimizer; these submanifolds are called special Lagrangian. Many special Lagrangian submanifolds with homogeneity properties have been described in [CU2, Jo]. In this context we recover the characterization of the Lagrangian catenoid as the only (non flat) special Lagrangian σ-submanifold (see [CU1]).

We shall call self-similar a submanifold satisfying

$$
\vec{H}+\lambda X^{\perp}=0
$$

where X^{\perp} stands for the projection of the position vector X of the submanifold on its normal space and λ is some real constant (cf [An2]). Such a submanifold has the property that its evolution under the mean curvature flow is a homothecy (shrinking to a point if $\lambda>0$ and expanding to infinity if $\lambda<0$). Here we shall show that there are no more self-similar σ-submanifolds than the ones described in [An2].

The third curvature equation we shall be interested in deals with the Lagrangian angle β (cf [Wo] for a definition), a $\mathbb{R} / 2 \pi \mathbb{Z}$-valued function which is defined up to an additive constant on any Lagrangian submanifold and satisfies $J \nabla \beta=n \vec{H}$, where J is the complex structure in \mathbb{C}^{n} and ∇ is the gradient of the induced metric on the submanifold. Following [Oh], we call Hamiltonian stationary a Lagrangian submanifold which is critical for the volume functional under Hamiltonian deformations (generated by vector fields V such that $V\lrcorner \omega$ is exact). It turns out that the corresponding Euler-Lagrange equation is

$$
\Delta \beta=0 .
$$

In others words a Lagrangian submanifold is Hamiltonian stationary if and only if its Lagrangian angle function is harmonic (for the induced metric). Many Hamiltonian stationary surfaces in \mathbb{C}^{2} have been described in [HR] and [An1], but in higher dimensions, very few examples were known so far (for example the Cartesian product of round circles $a_{1} \mathbb{S}^{1} \times \ldots \times a_{n} \mathbb{S}^{1}$). In this paper we shall describe all Hamiltonian stationary σ-submanifolds.

The paper is organized as follows: the first section gives the proof of characterization of σ-submanifolds (Theorem 1). In the second one, we compute for this kind of submanifold the Lagrangian angle and the mean curvature vector. In Section 3, we
obtain as a corollary the fact that special Lagrangian or self-similar σ-submanifolds are centered (i.e. invariant under the standard action of the special orthogonal group $S O(n)$, see Example 1 in Section 1 for a precise definition), thus the only examples of such submanifolds are those described in [CU1] (for special Lagrangian ones) and in [An2] (for self-similar ones). In Section 4, we show that the only Hamiltonian stationary σ-submanifolds are also centered (Theorem 3), and in Section 5 we describe them in details (Corollary 1).

Acknowledgments: The authors would like to thank Francisco Urbano for his numerous valuable comments and suggestions and Bruno Fabre for the proof of Lemma 5.

1 Characterization of Lagrangian submanifolds foliated by ($n-1$)-spheres

On $\mathbb{C}^{n} \simeq \mathbb{R}^{2 n}, n \geq 3$, with coordinates $\left\{z_{j}=x_{j}+i y_{j}, 1 \leq j \leq n\right\}$ equipped with the standard Hermitian form $\langle., .\rangle_{\mathbb{C}^{n}}$ and its associated symplectic form $\omega:=$ $\sum_{j=1}^{n} d x_{j} \wedge d y_{j}=\operatorname{Im}\langle., .\rangle_{\mathbb{C}^{n}}$, we consider submanifolds of dimension n foliated by round spheres \mathbb{S}^{n-1}. Locally, they can be parameterized by immersions

$$
\begin{aligned}
\ell: I \times \mathbb{S}^{n-1} & \rightarrow \quad \mathbb{C}^{n} \simeq \mathbb{R}^{2 n} \\
(s, x) & \mapsto
\end{aligned} r(s) M(s) x+V(s)
$$

where

- I is some interval,
- $\forall s \in I, r(s) \in \mathbb{R}^{+}, M(s) \in S O(2 n), V(s) \in \mathbb{C}^{n}$,
- $x \in \mathbb{S}^{n-1} \subset \mathbb{R}^{n} \subset \mathbb{C}^{n}$, where we note $\mathbb{R}^{n}=\left\{y_{j}=0,1 \leq j \leq n\right\}$.

Lemma 1 A necessary condition for the immersion ℓ to be Lagrangian is that for any s in I, the (affine) n-plane containing the leaf $\ell\left(s, \mathbb{S}^{n-1}\right)$ is Lagrangian; in other words, $M \in U(n)$, where $U(n)$ is embedded as a subgroup of $S O(2 n)$.
Proof. For a fixed $s \in I$, the leaf $\ell\left(s, \mathbb{S}^{n-1}\right)$ spans exactly the affine n-plane $V+M \mathbb{R}^{n}$. So we have to show that for two independent vectors $W, W^{\prime} \in \mathbb{R}^{n}, \omega\left(M W, M W^{\prime}\right)=$ 0 . Since $n \geq 3$, there exists $x \in \mathbb{S}^{n-1}$ such that W and W^{\prime} are tangent to \mathbb{S}^{n-1} at x. Thus $r M W$ and $r M W^{\prime}$ are tangent to the leaf $\ell\left(s, \mathbb{S}^{n-1}\right)$ at $\ell(s, x)$. The tangent space to this leaf is isotropic (being included in the tangent space to $\ell\left(I \times \mathbb{S}^{n-1}\right)$). Therefore $\omega\left(M W, M W^{\prime}\right)=0$. Finally, M is an isometry mapping a Lagrangian n-plane to another Lagrangian n-plane, hence a unitary transformation.

Remark 1 This crucial lemma does not hold in dimension two: we can produce examples of Lagrangian surfaces foliated by circles such that the planes containing the circular leaves are not Lagrangian (cf Example 3).

Now, we know that for any $\xi \in \mathbb{R}^{n}$ orthogonal to $x, M \xi$ is tangent to the submanifold at $\ell(s, x)$ (because it is tangent to the leaf) so we have:

$$
\omega\left(\ell_{s}, M \xi\right)=0
$$

where $\ell_{s}=\partial \ell / \partial s=\dot{r} M x+r \dot{M} x+\dot{V}$. Along the paper the dot ${ }^{6}$, will be a shorthand notation for the derivative with respect to s. We compute:

$$
\begin{gathered}
\omega(\dot{r} M x, M \xi)+\omega(r \dot{M} x, M \xi)+\omega(\dot{V}, M \xi)=0 \\
\Leftrightarrow \operatorname{Im}\langle\dot{r} M x, M \xi\rangle_{\mathbb{C}^{n}}+\operatorname{Im}\langle r \dot{M} x, M \xi\rangle_{\mathbb{C}^{n}}+\operatorname{Im}\langle\dot{V}, M \xi\rangle_{\mathbb{C}^{n}}=0 \\
\Leftrightarrow \dot{r} \operatorname{Im}\langle x, \xi\rangle_{\mathbb{C}^{n}}+r \operatorname{Im}\left\langle M^{-1} \dot{M} x, \xi\right\rangle_{\mathbb{C}^{n}}+\operatorname{Im}\left\langle M^{-1} \dot{V}, \xi\right\rangle_{\mathbb{C}^{n}}=0 \\
\Leftrightarrow r\left\langle\operatorname{Im}\left(M^{-1} \dot{M}\right) x, \xi\right\rangle_{\mathbb{C}^{n}}+\left\langle\operatorname{Im}\left(M^{-1} \dot{V}\right), \xi\right\rangle_{\mathbb{C}^{n}}=0,
\end{gathered}
$$

because ξ is real.
In the following, we shall note $b:=\operatorname{Im}\left(M^{-1} \dot{V}\right) \in \mathbb{R}^{n}$ and $B:=\operatorname{Im}\left(M^{-1} \dot{M}\right)$. The complex matrix $M^{-1} \dot{M}$ is skew-Hermitian so B is symmetric. Then we have the following equation:
$\langle b, \xi\rangle_{\mathbb{R}^{n}}+r\langle B x, \xi\rangle_{\mathbb{R}^{n}}=0, \quad$ for all $(x, \xi) \in \mathbb{S}^{n-1} \times \mathbb{R}^{n}$ such that $\langle x, \xi\rangle_{\mathbb{R}^{n}}=0$

From now on, we denote the real scalar product $\langle., .\rangle_{\mathbb{R}^{n}}$ by $\langle.,$.$\rangle . Next we have$ three steps:

Step 1: b vanishes or is an eigenvector for B.
If $b \neq 0$, take x collinear to b, so that $x=\lambda b$ for some real non zero constant λ. From (*), we have

$$
\forall \xi \in b^{\perp},\langle B \lambda b, \xi\rangle=0
$$

Therefore $B b$ is collinear to b, so there exists μ such that $B b=\mu b$.

Step 2: b vanishes.

Suppose $b \neq 0$, then set $\xi=b$ and x orthogonal to b, so $\langle b, x\rangle=0$ and $\langle B b, x\rangle=0$ (using step 1). Using the fact that B is symmetric, we write:

$$
\langle b, B x\rangle=0,
$$

so

$$
\langle\xi, B x\rangle=0 .
$$

From $(*)$ we deduce that $\langle b, \xi\rangle=\|b\|^{2}=0$. So b vanishes.
Step 3: B is a homothecy.
Now, (*) becomes

$$
\langle B x, \xi\rangle=0, \quad \forall x, \xi \in \mathbb{S}^{n-1} \text { such that }\langle x, \xi\rangle=0
$$

This implies that any vector x is an eigenvector for B, so B is a homothecy.

We deduce that $M^{-1} \dot{V} \in \mathbb{R}^{n}$, and that $M^{-1} \dot{M} \in \mathfrak{s o}(n) \oplus i \mathbb{R} I d$. This implies that $M \in S O(n) \cdot U(1)$. In other words, we may write $M=e^{i \phi} N$, where $N \in S O(n)$. Moreover, we observe that N can be fixed to be $I d$: this does not change the image of the immersion. Then $M=e^{i \phi} I d$, so $\dot{V}=e^{i \phi} W$, where $W \in \mathbb{R}^{n}$.

Finally, we have shown:
Theorem 1 Any Lagrangian submanifold of $\mathbb{R}^{2 n}, n \geq 3$, which is foliated by round ($n-1$)-spheres is locally the image of an immersion of the form:

$$
\begin{array}{rcc}
\ell: I \times \mathbb{S}^{n-1} & \longrightarrow & \mathbb{C}^{n} \simeq \mathbb{R}^{2 n} \\
(s, x) & \longmapsto r(s) e^{i \phi(s)} x+\int_{s_{0}}^{s} e^{i \phi(t)} W(t) d t,
\end{array}
$$

where

- $s \mapsto \gamma(s):=r(s) e^{i \phi(s)}$ is a planar curve,
- W is a curve from I into \mathbb{R}^{n},
- $s_{0} \in I$.

Geometrically, $r(s)$ is the radius of the spherical leaf and $V(s):=\int_{s_{0}}^{s} e^{i \phi(t)} W(t) d t$ its center. The fiber lies in the Lagrangian plane $e^{i \phi(s)} \mathbb{R}^{n}$.

Example 1 If $V=W=0$, the center of each leaf is fixed. In the following, we shall simply call these submanifolds centered. In this case, the submanifold is $S O(n)$-equivariant (for the following action $z \mapsto A z, A \in S O(n)$ where $S O(n)$ is seen as a subgroup of $U(n)$, itself a subgroup of $S O(2 n)$).

Example 2 Assume the curve γ is a straight line passing through the origin. Then up to reparametrization we can write $\gamma(s)=s e^{i \phi_{0}}$, where ϕ_{0} is some constant. This implies that

$$
\ell(x, s)=e^{i \phi_{0}}\left[s x+\int_{s_{0}}^{s} W(t) d t\right]
$$

thus the immersion is totally geodesic and the image is simply an open subset of the Lagrangian subspace $e^{i \phi_{0}} \mathbb{R}^{n}$.

Example 3 Assume the centers of the leaves lie on some straight line. Then there exists some function $u(s)$ such that $V(s)=u(s) a+c$ with $a, c \in \mathbb{C}^{n}$. Differentiating, we obtain

$$
\dot{u}(s) a=e^{i \phi(s)} W(s) .
$$

As a is constant and W real, it implies that ϕ is constant, so we have $a=e^{i \phi} b$, where $b \in \mathbb{R}^{n}$. Then

$$
\ell(x, s)=e^{i \phi}(r(s) x+u(s) b)+c
$$

so again the immersion is totally geodesic. We notice that this situation is in contrast with the case of dimension 2, where there exists a Lagrangian flat cylinder, which is foliated by round circles whose centers lie on a line.

Example 4 Epicycloids: Assume the centers of the leaves lie on a circle contained in a complex line. Then there exists some function $u(s)$ such that $V(s)=e^{i u(s)} a+c$ with $a, c \in \mathbb{C}^{n}$. Differentiating, we obtain

$$
W(s)=i \dot{u}(s) e^{i(u(s)-\phi(s))} a
$$

As in the previous example, it implies that $\phi-u$ is constant; without loss of generality, we can take $u=\phi$ and $a=-i b$, where $b \in \mathbb{R}^{n}$. Then

$$
\ell(x, s)=e^{i \phi(s)}(r(s) x-i b)+c
$$

2 Computation of the Lagrangian angle and of the mean curvature vector

2.1 The Lagrangian angle

We may assume, and we shall do so from now on, that γ is parameterized by arclength, so there exists θ such that $\dot{\gamma}=e^{i \theta}$, and the curvature of γ is $k=\dot{\theta}$. We also introduce, as in [An2], $\alpha:=\theta-\phi$, so that $\dot{r}=\cos \alpha$ and $\dot{\phi}=\frac{\sin \alpha}{r}$.

Let $\left(v_{2}, \ldots, v_{n}\right)$ be an orthonormal basis of $T_{x} \mathbb{S}^{n-1}$. Here and in the following, the indices j, k and l (and the sums) run from 2 to n, unless specified. We have:

$$
\ell_{s}=e^{i \theta} x+e^{i \phi} W \text { and } \ell_{*} v_{j}=r e^{i \phi} v_{j} .
$$

The induced metric g on $I \times \mathbb{S}^{n-1}$ has the following components with respect to the basis $\left(\partial_{s}, v_{2}, \ldots, v_{n}\right)$:

$$
\begin{gathered}
g_{11}=1+|W|^{2}+2 \cos \alpha\langle W, x\rangle, \\
g_{1 j}=g_{j 1}=r\left\langle W, v_{j}\right\rangle, \\
g_{j k}=g_{k j}=\delta_{j k} r^{2} .
\end{gathered}
$$

We consider the orthonormal basis (for $g)\left(e_{1}, \ldots, e_{n}\right)$ defined as follows:

$$
e_{j}:=\frac{v_{j}}{r}, \quad e_{1}:=A \partial_{s}+\sum B_{j} v_{j}
$$

where the real numbers A and B_{j} are uniquely determined by the orthonormality condition:

$$
A=\left(1+2 \cos \alpha\langle W, x\rangle+\langle W, x\rangle^{2}\right)^{-1 / 2} \text { and } B_{j}=-\frac{A\left\langle W, v_{j}\right\rangle}{r}
$$

so

$$
e_{1}=A\left(\partial_{s}-\sum \frac{\left\langle W, v_{j}\right\rangle}{r} v_{j}\right)
$$

This yields an orthonormal basis of the tangent space to the submanifold and we may compute the Lagrangian angle by means of the following formula: $e^{i \beta}=$ $\operatorname{det}_{\mathbb{C}}\left(\ell_{*} e_{1}, \ldots, \ell_{*} e_{n}\right)$. Indeed we have

$$
\ell_{*} e_{j}=e^{i \phi} v_{j}
$$

and

$$
\begin{aligned}
\ell_{*} e_{1} & =A\left(\ell_{s}-\sum \frac{\left\langle W, v_{j}\right\rangle}{r} \ell_{*} v_{j}\right)=A\left(e^{i \theta} x+e^{i \phi} W-\sum\left\langle W, v_{j}\right\rangle e^{i \phi} v_{j}\right) \\
& =A\left(e^{i \theta}+e^{i \phi}\langle W, x\rangle\right) x
\end{aligned}
$$

From the above remarks we deduce that:

$$
\begin{aligned}
\beta & =\operatorname{Arg}\left(e^{i \theta}+e^{i \phi}\langle W, x\rangle\right)+(n-1) \phi \\
& =\operatorname{Arg}\left(e^{i \alpha}+\langle W, x\rangle\right)+n \phi
\end{aligned}
$$

In the centered case $W=0$ (Example 1), we find that $\beta=n \phi+\alpha$. This is the only case where the Lagrangian angle is constant on the leaves. We recall that a necessary and sufficient condition for a Lagrangian submanifold to be a special Lagrangian one is that the Lagrangian angle be locally constant. So our computation shows that a special Lagrangian σ-submanifold must be centered. Moreover, it has been shown in [An2] that the only such submanifolds are pieces of the Lagrangian catenoid (cf [CU1] for a complete description), so we recover one of the theorems of [CU1]:

Theorem A (non flat) special Lagrangian submanifold which is foliated by $(n-1)$ spheres is congruent to a piece of the Lagrangian catenoid.

2.2 Computation of the mean curvature vector

We first calculate the second derivatives of the immersion.

$$
\begin{gathered}
\ell_{s s}=i k e^{i \theta} x+\left(\frac{i \sin \alpha}{r} W+\dot{W}\right) e^{i \phi} \\
v_{j}\left(\ell_{s}\right)=e^{i \theta} v_{j} \\
\ell_{v_{j} v_{k}}=-\delta_{j k} r e^{i \phi} x .
\end{gathered}
$$

Then we obtain the following expressions:

$$
\begin{gathered}
\left\langle\ell_{s s}, J \ell_{s}\right\rangle=k+k \cos \alpha\langle W, x\rangle+\frac{\sin \alpha \cos \alpha}{r}\langle W, x\rangle+\sin \alpha\langle\dot{W}, x\rangle+\frac{\sin \alpha}{r}|W|^{2}, \\
\left\langle\ell_{s s}, J \ell_{*} v_{j}\right\rangle=\left\langle v_{j}\left(\ell_{s}\right), J \ell_{s}\right\rangle=\sin \alpha\left\langle W, v_{j}\right\rangle
\end{gathered}
$$

$$
\begin{gathered}
\left\langle\ell_{v_{j} v_{j}}, J \ell_{s}\right\rangle=\left\langle v_{j}\left(\ell_{s}\right), J \ell_{*} v_{j}\right\rangle=r \sin \alpha, \\
\left\langle\ell_{v_{j} v_{k}}, J \ell_{*} v_{k}\right\rangle=0 .
\end{gathered}
$$

Thus we have, using the property that the tensor $C:=\langle h(.,), J.$.$\rangle is totally sym-$ metric for any Lagrangian immersion:

$$
\begin{aligned}
& C_{111}=\left\langle h\left(e_{1}, e_{1}\right), J \ell_{*} e_{1}\right\rangle \\
&= A^{3}\left\langle h\left(\partial_{s}-\frac{1}{r} \sum\left\langle W, v_{j}\right\rangle v_{j}, \partial_{s}-\frac{1}{r} \sum\left\langle W, v_{j}\right\rangle v_{j}\right), J \ell_{s}-\frac{\sum\left\langle W, v_{j}\right\rangle J \ell_{*} v_{j}}{r}\right\rangle \\
&= A^{3}\left(k+k \cos \alpha\langle W, x\rangle+\frac{\sin \alpha \cos \alpha}{r}\langle W, x\rangle+\sin \alpha\langle\dot{W}, x\rangle\right. \\
&\left.+\frac{\sin \alpha}{r}|W|^{2}+\frac{\sin \alpha}{r} \sum\left\langle W, v_{j}\right\rangle^{2}-2 \frac{\sin \alpha}{r} \sum\left\langle W, v_{j}\right\rangle^{2}\right) \\
&= A^{3}\left(k+k \cos \alpha\langle W, x\rangle+\frac{\sin \alpha \cos \alpha}{r}\langle W, x\rangle+\sin \alpha\langle\dot{W}, x\rangle+\frac{\sin \alpha}{r}\langle W, x\rangle^{2}\right), \\
& C_{j j 1}=\left\langle h\left(e_{j}, e_{j}\right), J \ell_{*} e_{1}\right\rangle=\frac{A}{r^{2}}\left\langle h\left(v_{j}, v_{j}\right), J \ell_{s}-\frac{1}{r} \sum\left\langle W, v_{k}\right\rangle J \ell_{*} v_{k}\right\rangle=\frac{A \sin \alpha}{r}, \\
& C_{11 j}=\left\langle h\left(e_{1}, e_{1}\right), J \ell_{*} e_{j}\right\rangle=\frac{A^{2}}{r}\left(\sin \alpha\left\langle W, v_{j}\right\rangle-\frac{2}{r} \sum_{k}\left\langle W, v_{k}\right\rangle r \sin \alpha \delta_{j k}\right) \\
&=-\frac{A^{2} \sin \alpha\left\langle W, v_{j}\right\rangle}{r}, \\
& \quad C_{j j k}=\left\langle h\left(e_{j}, e_{j}\right), J \ell_{*} e_{k}\right\rangle=0 .
\end{aligned}
$$

So finally we have the following:

$$
\begin{aligned}
n \vec{H}= & A\left[A ^ { 2 } \left(k+k \cos \alpha\langle W, x\rangle+\frac{\sin \alpha \cos \alpha}{r}\langle W, x\rangle\right.\right. \\
& \left.\left.+\sin \alpha\langle\dot{W}, x\rangle+\frac{\sin \alpha}{r}\langle W, x\rangle^{2}\right)+\frac{(n-1) \sin \alpha}{r}\right] J \ell_{*} e_{1} \\
& -\sum \frac{A^{2} \sin \alpha\left\langle W, v_{j}\right\rangle}{r} J \ell_{*} e_{j} .
\end{aligned}
$$

In Section 5, we shall use the following notations: $n J \vec{H}=a e_{1}+\sum a_{j} e_{j}$, where
$\left(H_{0}\right) \quad a=-A^{3}\left(k+\left(k \cos \alpha+\frac{\sin \alpha \cos \alpha}{r}\right)\langle W, x\rangle+\sin \alpha\langle\dot{W}, x\rangle+\frac{\sin \alpha}{r}\langle W, x\rangle^{2}\right)$

$$
-(n-1) \frac{A \sin \alpha}{r}
$$

$\left(H_{j}\right)$

$$
a_{j}=A^{2} \frac{\sin \alpha\left\langle W, v_{j}\right\rangle}{r}
$$

3 Application to self-similar equations

Theorem 2 In the class of Lagrangian submanifolds which are foliated by $(n-1)$ spheres, there are no self-translators and the only self-shrinkers/expanders are the centered ones described in [An2].

Proof. The self-translating equation is $\vec{H}=V^{\perp}$ for some fixed vector $V \in \mathbb{C}^{n}$. In particular,

$$
\begin{gathered}
\left\langle\vec{H}, J \ell_{*} e_{j}\right\rangle=\left\langle V, J \ell_{*} e_{j}\right\rangle \\
\Longleftrightarrow-\frac{A^{2} \sin \alpha}{n r}\left\langle W, v_{j}\right\rangle=\left\langle V, J r e^{i \phi} e_{j}\right\rangle \\
\Longleftrightarrow-\frac{A^{2} \sin \alpha}{n r}\left\langle W, v_{j}\right\rangle=\left\langle V, J e^{i \phi} v_{j}\right\rangle \\
\Longleftrightarrow-\frac{\sin \alpha}{n r}\left\langle W, v_{j}\right\rangle=\left(1+2 \cos \alpha\langle W, x\rangle+\langle W, x\rangle^{2}\right)\left\langle V, J e^{i \phi} v_{j}\right\rangle
\end{gathered}
$$

Differentiating this last equation with respect to $v_{k}, k \neq j$ (this is possible since $n \geq 3$), we obtain

$$
0=\left(1+2\left\langle W, v_{k}\right\rangle(\cos \alpha+\langle W, x\rangle)\right)\left\langle V, J e^{i \phi} v_{j}\right\rangle
$$

We now observe that the set of points $\left(x, v_{k}\right)$ for which the first factor in the r.h.s. term of the above equation vanishes is of codimension 1 at most in the unit sphere bundle over \mathbb{S}^{n-1} and apart from this set, $\left\langle V, J e^{i \phi} v_{j}\right\rangle$ vanishes. Coming back to the third equality of the above equivalences, this yields that either $\sin \alpha$ vanishes or $\left\langle W, v_{j}\right\rangle$ does. In the first case the curve γ is a line passing through the origin. Then we know by Example 2 that the immersion is totally geodesic so the image is a Lagrangian subspace. In the other case, we know that for $j \neq k,\left\langle W, v_{j}\right\rangle$ vanishes on some dense open subset of points $\left(x, v_{k}\right)$ in the unit sphere bundle over \mathbb{S}^{n-1}. This shows that W vanishes identically. Then it is clear that so does V^{\perp}. This implies that the only solution of the equation is for vanishing \vec{H}, which is the trivial, minimal case.

The self-shrinking/expanding equation is $\vec{H}+\lambda X^{\perp}=0$, where λ is some real constant. This implies

$$
\begin{gathered}
\left\langle\vec{H}, J \ell_{*} e_{j}\right\rangle+\lambda\left\langle\ell, J \ell_{*} e_{j}\right\rangle=0 \\
\Leftrightarrow-\frac{A^{2} \sin \alpha}{n r}\left\langle W, v_{j}\right\rangle+\lambda\left\langle\int e^{i \phi} W, J e^{i \phi} v_{j}\right\rangle=0 \\
\Leftrightarrow \frac{A^{2} \sin \alpha}{n r}\left\langle W, v_{j}\right\rangle=\lambda\left\langle\operatorname{Im}\left(e^{-i \phi} \int e^{i \phi} W\right), v_{j}\right\rangle .
\end{gathered}
$$

The quantity $\operatorname{Im}\left(e^{-i \phi} \int e^{i \phi} W\right)$ depends only on s, so the same argument as above holds, and we deduce that either γ is a line passing through the origin (totally geodesic case) or W vanishes, which is the centered case treated in [An2].

4 Hamiltonian stationary σ-submanifolds

The purpose of this section is to prove the following
Theorem 3 Any Hamiltonian stationary Lagrangian submanifold foliated by $(n-1)$ spheres must be centered.

Proof. Let ℓ be a parametrization of such a submanifold. We follow the same notations than in Section 2. We are going to show that if $\Delta \beta$ vanishes, then either γ is a straight line, so as we have seen in Example 2, we are in the totally geodesic case, which is in particular centered, or W vanishes (centered case). The proof is based on an analysis of the quantity $f(x):=A^{-6} \Delta \beta$ which turns to be polynomial. Its expression is given in the next lemma and the computation is detailed in Appendix.

Lemma 2 For any fixed $s, f:=A^{-6} \Delta \beta$ is a polynomial in the three variables $\langle W, x\rangle,\langle\dot{W}, x\rangle$ and $\langle\ddot{W}, x\rangle$. Indeed we have: $f=(I)+(I I)+(I I I)+(I V)$ with

$$
\begin{aligned}
(I):= & 3 B(\cos \alpha\langle\dot{W}, x\rangle-\dot{\alpha} \sin \alpha\langle W, x\rangle+\langle W, x\rangle\langle\dot{W}, x\rangle) \\
& -A^{-2}\left[\dot{B}-(n-1) \frac{\sin \alpha}{r}(\cos \alpha\langle\dot{W}, x\rangle-\dot{\alpha} \sin \alpha\langle W, x\rangle+\langle W, x\rangle\langle\dot{W}, x\rangle)\right] \\
& -A^{-4}(n-1) \partial_{s}\left(\frac{\sin \alpha}{r}\right), \\
(I I):= & -3 B \frac{\cos \alpha+\langle W, x\rangle}{r}\left(|W|^{2}-\langle W, x\rangle^{2}\right) \\
& +\frac{A^{-2}}{r}\left[\left(k \cos \alpha-(n-2) \frac{\sin \alpha \cos \alpha}{r}-(n-3) \frac{\sin \alpha}{r}\langle W, x\rangle\right)\left(|W|^{2}-\langle W, x\rangle^{2}\right)\right. \\
& +\sin \alpha(\langle\dot{W}, W\rangle-\langle\dot{W}, x\rangle\langle W, x\rangle)], \\
(I I I):= & -A^{-2} \frac{\sin \alpha}{r^{2}}(\cos \alpha+\langle W, x\rangle)\left(|W|^{2}-\langle W, x\rangle^{2}\right)-A^{-4}(n-1) \frac{\sin \alpha}{r^{2}}\langle W, x\rangle, \\
(I V):= & -A^{-2} B \frac{n-1}{r}(\cos \alpha+\langle W, x\rangle)-A^{-4} \frac{(n-1)^{2} \sin \alpha}{r^{2}}(\cos \alpha+\langle W, x\rangle)
\end{aligned}
$$

and

$$
B:=k+\left(k \cos \alpha+\frac{\sin \alpha \cos \alpha}{r}\right)\langle W, x\rangle+\sin \alpha\langle\dot{W}, x\rangle+\frac{\sin \alpha}{r}\langle W, x\rangle^{2} .
$$

Proof. See Appendix.

Lemma 3

$$
f(x)=-\left(\sin \alpha+2 \sin \alpha \cos \alpha\langle W, x\rangle+\sin \alpha\langle W, x\rangle^{2}\right)\langle\ddot{W}, x\rangle+R(\langle W, x\rangle,\langle\dot{W}, x\rangle),
$$

where $R(.,$.$) is a polynomial in its two variables.$

Proof. In the previous expression of f, we see that there are no contributions to the terms in $\langle\ddot{W}, x\rangle$ apart from the \dot{B} term in (I). Then we compute

$$
\dot{B}=\sin \alpha\langle\ddot{W}, x\rangle+S(\langle W, x\rangle,\langle\dot{W}, x\rangle),
$$

where $S(.,$.$) is a polynomial in its two variables. We deduce that the only term of$ $\langle\ddot{W}, x\rangle$ in f is the following:

$$
-A^{-2} \sin \alpha\langle\ddot{W}, x\rangle,
$$

so we have our claim.
Lemma 4 The polynomial f has total degree at most 5, and in that case its leading term is $\frac{-n^{2}+n+2}{r^{2}} \sin \alpha\langle W, x\rangle^{5}$.

Proof. Remembering that A^{-2}, B and \dot{B} are polynomials of degree at most 2 in $\langle W, x\rangle$ and $\langle\dot{W}, x\rangle$, we first observe that there are no terms of order 5 in (I). Then we check that in $(I I),(I I I)$ and $(I V)$ there are no terms in $\langle\ddot{W}, x\rangle\langle W, x\rangle^{4}$ (this has already been observed in the previous lemma) or in $\langle\dot{W}, x\rangle\langle W, x\rangle^{4}$. Finally, the coefficient of $\langle W, x\rangle^{2}$ in A^{-2} and B are respectively 1 and $\frac{\sin \alpha}{r}$, so summing up, we obtain that the coefficients of $\langle W, x\rangle^{5}$ in $(I I),(I I I)$ and $(I V)$ are respectively

$$
\begin{gathered}
3 \frac{\sin \alpha}{r^{2}}+(n-3) \frac{\sin \alpha}{r^{2}} \\
\frac{\sin \alpha}{r^{2}}-(n-1) \frac{\sin \alpha}{r^{2}} \\
-(n-1) \frac{\sin \alpha}{r^{2}}-(n-1)^{2} \frac{\sin \alpha}{r^{2}},
\end{gathered}
$$

from which we conclude the proof.
Lemma 5 Let $P\left(x_{1}, x_{2}, x_{3}\right)$ be an irreducible polynomial with real coefficients. Assume the set of zeroes of P is non empty and that $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ vanishes on it. Then f is of the form $P Q$ with $Q \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$.

Proof. We embed \mathbb{R}^{3} into \mathbb{C}^{3}. Assume by contradiction that f is not of the form $P Q$ with $Q \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$. Then also f is of not the form $P Q$ with $Q \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$, so the set $Y:=\{x / f(x)=P(x)=0\}=\{f(x)=0\} \cap\{P(x)=0\}$ has complex codimension 2, so real dimension $6-4=2$. Now our assumption is that $Y \cap \mathbb{R}^{3}$ contains $\{P=0\} \cap \mathbb{R}^{3}$, so in particular, Y which has real dimension 2 contains $\{P=0\} \cap \mathbb{R}^{3}$, also of real dimension 2 . We conclude that it is an irreducible component of Y, a contradiction because \mathbb{R}^{3} does not contain any complex curve.

End of the proof of Theorem 3.
First case: the three vectors W, \dot{W} and \ddot{W} do not span \mathbb{R}^{n} (it is in particular always the case when $n>3$).

In this case, there exist coordinates $\left(y_{1}, \ldots, y_{n}\right)$ on \mathbb{R}^{n} such that f does not depend on y_{n}. In particular $\{y, f(y)=0\}$ contains some straight line $\left\{y_{j}=\right.$ Const, $1 \leq$ $j \leq n-1\}$. However by assumption $\{y, f(y)=0\}$ contains also the hypersphere \mathbb{S}^{n-1}. As it is an algebraic set, it is necessarily the whole \mathbb{R}^{n}, thus f vanishes identically. This implies that either W vanishes (this is the centered case), or that so does f as a polynomial of independent variables of \mathbb{R}^{n} : the vectors W, \dot{W} and \ddot{W} might be non independent and in this case we should rewrite f as a polynomial of less variables. Anyway, we know from Lemma 4 that the only term of order 5 in f is $\sin \alpha$ times a non negative constant, thus we deduce in any case that $\sin \alpha$ should vanish, which means that the curve γ would be a line passing through the origin. Then we know that by Example 2 the immersion is totally geodesic.
Second case: $n=3$ and $\operatorname{Span}(W, \dot{W}, \ddot{W})=\mathbb{R}^{3}$.
Here we apply the algebraic Lemma 5 with $P\left(x_{1}, x_{2}, x_{3}\right)=|x|^{2}-1$, thus obtaining that either f is a multiple of $|x|^{2}-1$, or it vanishes. In the first case, there should be at least one term of degree 2 in $\langle\ddot{W}, x\rangle$, which is not the case (cf Lemma 3). So we deduce again that f vanishes and the conclusion is the same as above.

5 Centered Hamiltonian stationary σ-submanifolds

5.1 The differential system

In this case, the induced metric is diagonal: $g=\operatorname{diag}\left(1, r^{2}, \ldots, r^{2}\right)$, and $\operatorname{det} g=$ $r^{2(n-1)}$. Moreover, β depends only on $s: \beta=\alpha+n \phi$, thus

$$
\Delta \beta=-\frac{1}{\sqrt{\operatorname{det} g}} \frac{\partial}{\partial s}\left(\sqrt{\operatorname{det} g} \frac{\partial \beta}{\partial s}\right) .
$$

Hence the submanifold is Hamiltonian stationary if and only if

$$
\sqrt{\operatorname{det} g} \frac{\partial \beta}{\partial s}=C
$$

which amounts to

$$
r^{n-1}(n \dot{\phi}+\dot{\alpha})=C
$$

for some non vanishing constant C (the case of vanishing C implies β to be constant, so this is the special Lagrangian case). We add that we could have used the computations of the previous section as well with $W=0$ to find the same equation.

Thus we are reduced to studying the following differential system (using that $\left.\dot{\phi}=\frac{\sin \alpha}{r}\right)$:

$$
\left\{\begin{array}{l}
\dot{\alpha}=\frac{C}{r^{n-1}}-\frac{n \sin \alpha}{r} \\
\dot{r}=\cos \alpha .
\end{array}\right.
$$

There are fixed points $\left(\bar{\alpha}= \pm \frac{\pi}{2} \bmod 2 \pi, \bar{r}=\left(\frac{|C|}{n}\right)^{1 /(n-2)}\right)$, corresponding to the case of γ being a circle centered at the origin. Up to a sign change of parameter s, we may assume that C is non negative and then $\bar{\alpha}=\frac{\pi}{2} \bmod 2 \pi$. Moreover, the system admits a first integral: $E=2 r^{n} \sin \alpha-C r^{2}$, so we can draw the phase portrait easily. As the system is periodic in the variable α, it is sufficient to study integral lines in a strip of length 2π. Moreover integral lines are symmetric with respect to the vertical lines $\alpha=\pi / 2 \bmod \pi$. The energy of the fixed points is $E_{0}:=\left(\frac{C}{n}\right)^{n /(n-2)}(2-n)$. There is a critical integral line of energy E_{0} with bounded pieces connecting two fixed points and unbounded pieces starting from (or ending to) a fixed point and having a branch asymptotic to a vertical line $\alpha=k \pi, k \in \mathbb{Z}$. We observe that the

Figure 1: Phase diagram
integral lines corresponding to a non negative energy (resp. strictly less than E_{0}) are unbounded, we call them type I (resp. type II) curves. On the other hand, integral lines of energy $E \in\left(E_{0}, 0\right)$ have two connected components (up to periodicity), one
of them being bounded in the variable r; this will be called in the following a type $I I I$ curve. As the unbounded component shares the same features as the curves of non negative energy, it is also called a type I curve.

In order to have a better picture of the corresponding curves γ and of Hamiltonian stationary Lagrangian submanifolds they generate, we shall discuss in the next two paragraphs the inflection points of γ and the quantity $\Phi(E):=\int \dot{\phi}=\int \frac{\sin \alpha}{r}$ that we call total variation of phase.

5.2 Inflection points of γ

They correspond to the vanishing of the curvature $k=\dot{\theta}=\frac{C}{r^{n-1}}-\frac{(n-1) \sin \alpha}{r}$. This implies the relation $r=\left(\frac{C}{(n-1) \sin \alpha}\right)^{1 /(n-2)}$.

We observe that in the case of dimension 3, this is exactly the equation of the integral curve of level $E=0$: so in this dimension there is a solution which is of curvature zero, i.e. a straight line, and the other ones don't have any inflection point and are locally convex.

In higher dimension, let us compute the energy E at points of vanishing curvature. At such a point (α, r), we have $r^{n-2}=\frac{C}{(n-1) \sin \alpha}$ so we deduce that $E=$ $C r^{2}\left(\frac{2}{n-1}-1\right)$, which has range $\left(-\infty, E_{1}\right)$ where E_{1} is the energy level defined by $E_{1}=2 r_{1}^{n}-C r_{1}^{2}\left(r_{1}\right.$ is the least radius on the curve of points (α, r) corresponding to vanishing curvature: $\left.r_{1}=\left(\frac{C}{(n-1)}\right)^{1 /(n-2)}\right)$. As $r \mapsto E(r)=2 r^{n}-C r^{2}$ is increasing when $r>\bar{r}, E_{1}$ belongs to the interval $\left(E_{0}, 0\right)$. We conclude that when $n>3$ every type II curve has two (symmetric) inflection points. This is also the case of some type I curves, while the remaining ones are locally convex.

5.3 Study of the total variation of phase

We first compute $\Phi(E)$ for type I curves. Let r_{0} be the minimal value taken by r. We have the relation $E=2 r_{0}^{n}-C r_{0}^{2}$. We shall use the fact that on the curve $\sin \alpha>0$; moreover, by symmetry we may restrict ourselves to half of the curve, thus we may also assume that $\cos \alpha>0$. Thus

$$
\begin{gathered}
\Phi=\int \frac{\dot{\phi}}{\dot{r}} d r=2 \int_{r_{0}}^{\infty} \frac{\sin \alpha}{r \cos \alpha} d r=2 \int_{r_{0}}^{\infty} \frac{d r}{r}\left(\frac{1}{\sin ^{2} \alpha}-1\right)^{-1 / 2} \\
=2 \int_{r_{0}}^{\infty} \frac{d r}{r}\left(\left(\frac{2 r^{n}}{C r^{2}+E}\right)^{2}-1\right)^{-1 / 2} \\
=2 \int_{r_{0}}^{\infty} \frac{d r}{r}\left(\left(\frac{2 r^{n}}{C\left(r^{2}-r_{0}^{2}\right)+2 r_{0}^{n}}\right)^{2}-1\right)^{-1 / 2}
\end{gathered}
$$

LaGRangian submanifolds foliated by ($n-1$)-SPHERES

Making the change of variable $r=x r_{0}$, we infer

$$
\Phi=2 \int_{1}^{\infty} \frac{d x}{x}\left(\left(\frac{x^{n}}{\lambda\left(x^{2}-1\right)+1}\right)^{2}-1\right)^{-1 / 2}
$$

where $\lambda=\frac{C}{2 r_{0}^{n-2}}$. We observe that this integral equals π / n when λ vanishes, is divergent for $\lambda=n / 2$, i.e. for $E=E_{0}$ and is decreasing in the variable r_{0}, so $\Phi(E)$ has range $(\pi / n,+\infty)$. Notice that the sign of $\dot{\phi}=\sin \alpha / r$ does not change, so that $\gamma=r e^{i \phi}$ is embedded whenever the total variation of phase is small enough, i.e. whenever E is large enough.

On the other hand a unbounded piece of the integral curve of energy level E_{0} is singular, with an infinite spiral branch asymptotic to the unit circle.

We now look at the case of type II integral curves. Let r_{1} be the value of r at $\alpha=0 \bmod \pi$, so that $E=-C r_{1}^{2}$. We shall calculate separately the contributions of the curve when the integrand is positive (resp. negative), corresponding to the part of the curve lying in the region $\{\sin \alpha>0\}$ (resp. $\{\sin \alpha<0\}$).

$$
\begin{aligned}
\Phi_{+}:= & 2 \int_{r_{1}}^{\infty} \frac{\sin \alpha}{r \cos \alpha} d r=2 \int_{r_{1}}^{\infty} \frac{d r}{r}\left(\frac{1}{\sin ^{2} \alpha}-1\right)^{-1 / 2} \\
& =2 \int_{r_{1}}^{\infty} \frac{d r}{r}\left(\left(\frac{2 r^{n}}{C r^{2}+E}\right)^{2}-1\right)^{-1 / 2} \\
& =2 \int_{r_{1}}^{\infty} \frac{d r}{r}\left(\left(\frac{2 r^{n}}{C\left(r^{2}-r_{1}^{2}\right)}\right)^{2}-1\right)^{-1 / 2}
\end{aligned}
$$

Making the change of variable $r=x r_{1}$, we obtain

$$
\Phi_{+}=2 \int_{1}^{\infty} \frac{d x}{x}\left(\left(\frac{x^{n}}{\lambda\left(x^{2}-1\right)}\right)^{2}-1\right)^{-1 / 2}
$$

where $\lambda=\frac{C}{2 r_{1}^{n-2}}$.
One calculates that Φ_{+}is increasing in the variable E and that $\lim _{E \rightarrow-\infty}=\pi / n$.
In the computation of Φ_{-}, we may use α as a parameter:

$$
\begin{aligned}
\Phi_{-}:= & \int_{\pi}^{2 \pi} \frac{\dot{\phi}}{\dot{\alpha}} d \alpha=\int_{\pi}^{2 \pi} \frac{\frac{\sin \alpha}{r}}{\frac{C}{r^{n-1}}-\frac{n \sin \alpha}{r}} d \alpha \\
& =\int_{\pi}^{2 \pi} \frac{r^{n-2} \sin \alpha}{C-n r^{n-2} \sin \alpha} d \alpha
\end{aligned}
$$

It is an easy computation to show that $-\pi / n<\Phi_{-}<0$ and that $\lim _{E \rightarrow-\infty} \Phi_{-}=$ $-\pi / n$.

Next we show that γ has always a self-intersection. Let s_{0} be the parameter value corresponding to the point of the curve of least radius (in particular $\alpha\left(s_{0}\right)=$ $3 \pi / 2 \bmod 2 \pi)$. The fact that $\Phi_{+}>\left|\Phi_{-}\right|$and the intermediate value theorem imply that there exists s_{1} such that $\phi\left(s_{1}\right)=\phi\left(s_{0}\right)$; moreover by the symmetry of the phase portrait, there exists $s_{2} \neq s_{1}$ with the same property, the corresponding points in the phase portrait satisfying $r\left(s_{1}\right)=r\left(s_{2}\right)$ and $\frac{1}{2}\left(\alpha\left(s_{1}\right)+\alpha\left(s_{2}\right)\right)=3 \pi / 2 \bmod 2 \pi$. Thus $\gamma\left(s_{1}\right)=\gamma\left(s_{2}\right)$.

We end this section by looking at the type III curves. As α is always increasing on the curve, we shall use it as a parameter and consider the piece of curve $\gamma([\pi / 2,2 \pi+$ $\pi / 2]$).

As ϕ is decreasing on $\alpha \in[\pi, 2 \pi]$ and increasing elsewhere, we have:

$$
\Phi_{+}:=\int_{\pi / 2}^{\pi} \dot{\phi}+\int_{2 \pi}^{2 \pi+\pi / 2} \dot{\phi}>0
$$

and

$$
\Phi_{-}:=\int_{\pi}^{2 \pi} \dot{\phi}<0
$$

It is easy to show (the calculations are left to the Reader) that $\Phi_{+}>\left|\Phi_{-}\right|$and that $\lim _{E \rightarrow 0} \Phi_{+}=\lim _{E \rightarrow 0} \Phi_{-}=0$. Moreover, $\lim _{E \rightarrow E_{0}} \Phi_{+}=+\infty$ and $\lim _{E \rightarrow E_{0}} \Phi_{-}$ is finite. This implies that the range of the total variation of phase for type III curves is $(0, \infty)$. In particular, to the limiting case $E=E_{0}$ corresponds a bounded, complete curve spiraling asymptotically to the unit circle.

With a similar argument as above, we show that here again γ has always selfintersections. We conclude that for a type III curve such that $\Phi(E) \in 2 \pi \mathbb{Q}$, the corresponding curve γ is bounded, closed and non-embedded.

5.4 Conclusion (Corollary 1)

We are now in position to describe the whole family of Hamiltonian stationary σ submanifolds:

Corollary 1 Any Hamiltonian stationary Lagrangian submanifold which is foliated by $(n-1)$-spheres is locally congruent to one of the following:

- The standard embedding

$$
\begin{array}{clc}
\mathbb{S}^{1} \times \mathbb{S}^{n-1} & \rightarrow \mathbb{C}^{n} \\
\left(e^{i s}, x\right) & \mapsto e^{i s} x .
\end{array}
$$

- A singular, bounded immersion of $\mathbb{R} \times \mathbb{S}^{n-1}$ "spiraloid" asymptotic to $\mathbb{S}^{1} \times \mathbb{S}^{n-1}$.
- A singular, unbounded "spiraloid" with a smooth end and asymptotic to $\mathbb{S}^{1} \times$ \mathbb{S}^{n-1}.
- A family of smooth "catenoid-type" immersions of $\mathbb{R} \times \mathbb{S}^{n-1}$, some of them being embedded. In dimension 3, one of them takes the particular following form:

$$
\begin{array}{clc}
\mathbb{R} \times \mathbb{S}^{2} & \rightarrow & \mathbb{C}^{3} \\
(s, x) & \mapsto & (C+i s) x
\end{array}
$$

where C is some real constant.

- A family of non-standard smooth immersions of $\mathbb{S}^{1} \times \mathbb{S}^{n-1}$. They always have self-intersections.

Appendix: computation of $\Delta \beta$ (proof of Lemma 2)

Here we are going to use the same notations as in Section 2 and 4. We first compute the following

$$
\begin{gathered}
\left\langle\ell_{s s}, \ell_{s}\right\rangle=\langle W, \dot{W}\rangle+\left(\frac{\sin \alpha}{r}-k \sin \alpha\right)\langle W, x\rangle+\cos \alpha\langle\dot{W}, x\rangle \\
\left\langle\ell_{s s}, \ell_{*} v_{j}\right\rangle=r\left\langle\dot{W}, v_{j}\right\rangle \\
\left\langle v_{j}\left(\ell_{s}\right), \ell_{s}\right\rangle=\cos \alpha\left\langle W, v_{j}\right\rangle \\
\left\langle v_{j}\left(\ell_{s}\right), \ell_{*} v_{k}\right\rangle=\delta_{j k} r \cos \alpha \\
\left\langle\ell_{v_{j} v_{k}}, \ell_{s}\right\rangle=-\delta_{j k} r(\cos \alpha+\langle W, x\rangle) \\
\left\langle\ell_{v_{j} v_{k}}, \ell_{*} v_{l}\right\rangle=0
\end{gathered}
$$

We shall make use of the following formula:

$$
\Delta \beta=\operatorname{div} J n \vec{H}=\left\langle\nabla_{e_{1}} J n \vec{H}, e_{1}\right\rangle+\sum_{j=2}^{n}\left\langle\nabla_{e_{j}} J n \vec{H}, e_{j}\right\rangle
$$

Writing $J n \vec{H}=a e_{1}+\sum_{k} a_{k} e_{k}$, we have

$$
\nabla_{e_{j}} J n \vec{H}=e_{j}(a) e_{1}+a \nabla_{e_{j}} e_{1}+\sum_{k} e_{j}\left(a_{k}\right) e_{k}+\sum_{k} a_{k} \nabla_{e_{j}} e_{k}
$$

and an analogous expression for $\nabla_{e_{1}} J n \vec{H}$.
Then we obtain

$$
\begin{aligned}
\Delta \beta= & e_{1}(a)+a\left\langle\nabla_{e_{1}} e_{1}, e_{1}\right\rangle+\sum_{k} a_{k}\left\langle\nabla_{e_{1}} e_{k}, e_{1}\right\rangle \\
& +\sum_{j}\left[a\left\langle\nabla_{e_{j}} e_{1}, e_{j}\right\rangle+e_{j}\left(a_{j}\right)+\sum_{k} a_{k}\left\langle\nabla_{e_{j}} e_{k}, e_{j}\right\rangle\right] .
\end{aligned}
$$

We give the expressions of the coefficients of $J \vec{H}$:

$$
a_{j}=A^{2} \frac{\sin \alpha\left\langle W, v_{j}\right\rangle}{r}
$$

and

$$
a=-A^{3} B-A(n-1) \frac{\sin \alpha}{r},
$$

where

$$
A=\left(1+2 \cos \alpha\langle W, x\rangle+\langle W, x\rangle^{2}\right)^{-1 / 2}
$$

and

$$
B=k+\left(k \cos \alpha+\frac{\sin \alpha \cos \alpha}{r}\right)\langle W, x\rangle+\sin \alpha\langle\dot{W}, x\rangle+\frac{\sin \alpha}{r}\langle W, x\rangle^{2} .
$$

We start with some easy computations:
Lemma 6 a) $\dot{A}=-A^{3}(\cos \alpha\langle\dot{W}, x\rangle-\dot{\alpha} \sin \alpha\langle W, x\rangle+\langle W, x\rangle\langle\dot{W}, x\rangle)$,
b) $\left\langle\partial_{s}, e_{1}\right\rangle=A^{-1}$,
c) $v_{j}(A)=-A^{3}(\cos \alpha+\langle W, x\rangle)\left\langle W, v_{j}\right\rangle$,
d) $v_{j}(B)=\left(k \cos \alpha+\frac{\sin \alpha \cos \alpha}{r}+\frac{2 \sin \alpha}{r}\langle W, x\rangle\right)\left\langle W, v_{j}\right\rangle+\sin \alpha\left\langle\dot{W}, v_{j}\right\rangle$,
e) $\nabla_{v_{j}} v_{k}=-\delta_{j k} \operatorname{Ar}(\cos \alpha+\langle W, x\rangle) e_{1}$,
f) $\nabla_{v_{j}} \partial_{s}=\cos \alpha e_{j}$.

Proof. a), b), c) and d) are easy and left to the reader.
e) We write $\nabla_{v_{j}} v_{k}=b_{1} \partial_{s}+\sum_{m} b_{m} v_{m}$. In particular, we have

$$
0=\left\langle\nabla_{v_{j}} v_{k}, v_{l}\right\rangle=b_{1}\left\langle\partial_{s}, v_{l}\right|>+\sum_{m} b_{m}\left\langle v_{m}, v_{l}\right|>=b_{1} g_{1 l}+\sum_{m} b_{m} g_{m l}=b_{1} g_{1 l}+b_{l} r^{2}
$$

so we obtain the relation $b_{l}=-\frac{\left\langle W, v_{l}\right\rangle}{r} b_{1}$.
When $j \neq k$, it yields

$$
0=\left\langle\nabla_{v_{j}} v_{k}, \partial_{s}\right\rangle=b_{1}\left(g_{11}-\sum_{l} \frac{\left\langle W, v_{l}\right\rangle}{r} g_{1 l}\right)
$$

so all the coefficients b_{1}, b_{l} vanish, and we obtain e).
If $j=k$, we have

$$
-r(\cos \alpha+\langle W, x\rangle)=\left\langle\nabla_{v_{j}} v_{j}, \partial_{s}\right\rangle=b_{1}\left(g_{11}-\sum_{l} \frac{\left\langle W, v_{l}\right\rangle}{r} g_{1 l}\right),
$$

so $b_{1}=-A^{2} r(\cos \alpha+\langle W, x\rangle)$. We deduce that

$$
\nabla_{v_{j}} v_{j}=b_{1}\left(\partial_{s}-\sum_{l} \frac{\left\langle W, v_{l}\right\rangle}{r} v_{l}\right)=b_{1} \frac{e_{1}}{A}=-A r(\cos \alpha+\langle W, x\rangle) e_{1}
$$

which implies e).
f) We write $\nabla_{v_{j}} \partial_{s}=b_{1} \partial_{s}+\sum_{l} b_{l} v_{l}$. Then we have

$$
\delta_{j k} r \cos \alpha=\left\langle\nabla_{v_{j}} \partial_{s}, v_{k}\right\rangle=b_{1} g_{1 k}+\sum_{l} b_{l} g_{k l}
$$

When $j \neq k$, we deduce that

$$
b_{k}=-\frac{g_{1 k}}{g_{k k}} b_{1}=-\frac{\left\langle W, v_{k}\right\rangle}{r} b_{1}
$$

When $j=k$, we obtain

$$
r \cos \alpha=b_{1} r\left\langle W, v_{j}\right\rangle+r^{2} b_{j},
$$

so

$$
b_{j}=r^{-2}\left(r \cos \alpha-b_{1} r\left\langle W, v_{j}\right\rangle\right)=r^{-1}\left(\cos \alpha-b_{1}\left\langle W, v_{j}\right\rangle\right) .
$$

From these relations we can write

$$
\begin{gathered}
\cos \alpha\left\langle W, v_{k}\right\rangle=\left\langle\nabla_{v_{k}} \partial_{s}, \partial_{s}\right\rangle=b_{1} g_{11}+\sum_{j} b_{j} g_{1 j} \\
=b_{1}\left(g_{11}-\sum_{j} r\left\langle W, v_{j}\right\rangle \frac{\left\langle W, v_{j}\right\rangle}{r}\right)+r\left\langle W, v_{k}\right\rangle r^{-1} \cos \alpha=b_{1} A^{-2}+\cos \alpha\left\langle W, v_{k}\right\rangle
\end{gathered}
$$

We deduce that b_{1} vanishes and also b_{l} for $l \neq k$, and finally $b_{k}=\frac{\cos \alpha}{r}$, so we obtain \mathbf{f}).

We now compute the different terms of $\Delta \beta$:

Lemma 7 a)

$$
e_{1}(a)=A \dot{a}-\sum_{j} \frac{A\left\langle W, v_{j}\right\rangle}{r} v_{j}(a)
$$

with

$$
A \dot{a}=3 A^{6} B(\cos \alpha\langle\dot{W}, x\rangle-\dot{\alpha} \sin \alpha\langle W, x\rangle+\langle W, x\rangle\langle\dot{W}, x\rangle)
$$

$$
\begin{aligned}
-A^{4}\left[\dot{B}-(n-1) \frac{\sin \alpha}{r}\right. & (\cos \alpha\langle\dot{W}, x\rangle-\dot{\alpha} \sin \alpha\langle W, x\rangle+\langle W, x\rangle\langle\dot{W}, x\rangle)] \\
& -A^{2}(n-1) \partial_{s}\left(\frac{\sin \alpha}{r}\right)
\end{aligned}
$$

and

$$
\begin{gathered}
\sum_{j} \frac{A\left\langle W, v_{j}\right\rangle}{r} v_{j}(a)=3 A^{6} B \frac{\cos \alpha+\langle W, x\rangle}{r}\left(|W|^{2}-\langle W, x\rangle^{2}\right) \\
-\frac{A^{4}}{r}\left[\left(k \cos \alpha-(n-2) \frac{\sin \alpha \cos \alpha}{r}-(n-3) \frac{\sin \alpha}{r}\langle W, x\rangle\right)\left(|W|^{2}-\langle W, x\rangle^{2}\right)\right. \\
+\sin \alpha(\langle\dot{W}, W\rangle-\langle\dot{W}, x\rangle\langle W, x\rangle)]
\end{gathered}
$$

b)

$$
\left\langle\nabla_{e_{1}} e_{1}, e_{1}\right\rangle=0,
$$

c)

$$
\begin{array}{r}
\sum_{k} a_{k}\left\langle\nabla_{e_{1}} e_{k}, e_{1}\right\rangle+\sum_{j} e_{j}\left(a_{j}\right)=-\frac{\sin \alpha}{r^{2}}\left(A^{4}(\cos \alpha+\langle W, x\rangle)\left(|W|^{2}-\langle W, x\rangle^{2}\right)\right. \\
\left.+A^{2}(n-1)\langle W, x\rangle\right)
\end{array}
$$

d)

$$
\sum_{j}\left\langle\nabla_{e_{j}} e_{1}, e_{j}\right\rangle=\frac{A(n-1)}{r}(\cos \alpha+\langle W, x\rangle)
$$

e)

$$
\left\langle\nabla_{e_{j}} e_{k}, e_{j}\right\rangle=0, \quad \forall j, k
$$

Proof.
a) We compute

$$
\begin{aligned}
\dot{a}= & -3 A^{2} \dot{A} B-A^{3} \dot{B}-\dot{A}(n-1) \frac{\sin \alpha}{r}-A \partial_{s}\left((n-1) \frac{\sin \alpha}{r}\right) \\
= & A^{3}\left(3 A^{2} B+(n-1) \frac{\sin \alpha}{r}\right)(\cos \alpha\langle\dot{W}, x\rangle-\dot{\alpha} \sin \alpha\langle W, x\rangle+\langle W, x\rangle\langle\dot{W}, x\rangle) \\
& -A^{3} \dot{B}-A(n-1) \partial_{s}\left(\frac{\sin \alpha}{r}\right)
\end{aligned}
$$

from which we deduce the first equality. Next we have

$$
\begin{aligned}
v_{j}(a)= & -3 A^{2} v_{j}(A) B-A^{3} v_{j}(B)-v_{j}(A)(n-1) \frac{\sin \alpha}{r} \\
= & A^{3}\left(3 A^{2} B+(n-1) \frac{\sin \alpha}{r}\right)(\cos \alpha+\langle W, x\rangle)\left\langle W, v_{j}\right\rangle \\
& -A^{3}\left[\left(k \cos \alpha+\frac{\sin \alpha \cos \alpha}{r}+\frac{2 \sin \alpha}{r}\langle W, x\rangle\right)\left\langle W, v_{j}\right\rangle+\sin \alpha\left\langle\dot{W}, v_{j}\right\rangle\right] \\
= & 3 A^{5}(\cos \alpha+\langle W, x\rangle) B\left\langle W, v_{j}\right\rangle \\
& -A^{3}\left[\left(k \cos \alpha+\frac{\sin \alpha \cos \alpha}{r}-(n-1) \frac{\sin \alpha \cos \alpha}{r}\right.\right. \\
& \left.\left.+\left(\frac{2 \sin \alpha}{r}-(n-1) \frac{\sin \alpha}{r}\right)\langle W, x\rangle\right)\left\langle W, v_{j}\right\rangle+\sin \alpha\left\langle\dot{W}, v_{j}\right\rangle\right] \\
= & 3 A^{5}(\cos \alpha+\langle W, x\rangle) B\left\langle W, v_{j}\right\rangle \\
& -A^{3}\left[\left(k \cos \alpha-(n-2) \frac{\sin \alpha \cos \alpha}{r}-(n-3) \frac{\sin \alpha}{r}\langle W, x\rangle\right)\left\langle W, v_{j}\right\rangle\right. \\
& \left.+\sin \alpha\left\langle\dot{W}, v_{j}\right\rangle\right] .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& A \sum \frac{v_{j}(a)\left\langle W, v_{j}\right\rangle}{r}=3 A^{6} B \frac{\cos \alpha+\langle W, x\rangle}{r} \sum\left\langle W, v_{j}\right\rangle^{2} \\
& -\frac{A^{4}}{r}\left[\left(k \cos \alpha-(n-2) \frac{\sin \alpha \cos \alpha}{r}-(n-3) \frac{\sin \alpha}{r}\langle W, x\rangle\right) \sum\left\langle W, v_{j}\right\rangle^{2}\right. \\
& \\
& \left.+\sin \alpha \sum\left\langle W, v_{j}\right\rangle\left\langle\dot{W}, v_{j}\right\rangle\right]
\end{aligned}
$$

b) We first compute

$$
\begin{aligned}
\nabla_{e_{1}} e_{1}= & A\left[\nabla_{\partial_{s}}\left(A \partial_{s}-\frac{A}{r} \sum\left\langle W, v_{j}\right\rangle v_{j}\right)\right. \\
& \left.-\sum \frac{\left\langle W, v_{j}\right\rangle}{r} \nabla_{v_{j}}\left(A \partial_{s}-\frac{A}{r} \sum\left\langle W, v_{k}\right\rangle v_{k}\right)\right] \\
= & A\left[A \nabla_{\partial_{s}} \partial_{s}+\dot{A} \partial_{s}-\sum \partial_{s}\left(\frac{A\left\langle W, v_{j}\right\rangle}{r}\right) v_{j}-\frac{A}{r} \sum\left\langle W, v_{j}\right\rangle \nabla_{\partial_{s}} v_{j}\right. \\
& -\sum \frac{\left\langle W, v_{j}\right\rangle}{r} A \nabla_{v_{j}} \partial_{s}-\sum \frac{\left\langle W, v_{j}\right\rangle v_{j}(A)}{r} \partial_{s} \\
& +\frac{1}{r^{2}} \sum_{j, k}\left\langle W, v_{j}\right\rangle\left(v_{j}(A)\left\langle W, v_{k}\right\rangle v_{k}+A\left(-\delta_{j k}\langle W, x\rangle v_{k}+A\left\langle W, v_{k}\right\rangle \nabla_{v_{j}} v_{k}\right)\right]
\end{aligned}
$$

Making the scalar product with e_{1}, many terms vanish and we obtain

$$
\begin{aligned}
\left\langle\nabla_{e_{1}} e_{1}, e_{1}\right\rangle= & A^{2}\left\langle\nabla_{\partial_{s}} \partial_{s}, e_{1}\right\rangle+A \dot{A}\left\langle\partial_{s}, e_{1}\right\rangle-\frac{A}{r}\left(\sum\left\langle W, v_{j}\right\rangle v_{j}(A)\right)\left\langle\partial_{s}, e_{1}\right\rangle \\
& -\frac{A^{3}}{r}(\cos \alpha+\langle W, x\rangle) \sum\left\langle W, v_{j}\right\rangle^{2} \\
= & A^{3}\left(\dot{\alpha} \sin \alpha\langle W, x\rangle+\frac{\sin ^{2} \alpha\langle W, x\rangle}{r}-k \sin \alpha\langle W, x\rangle\right) \\
& +\frac{1}{r}\left(\sum\left\langle W, v_{j}\right\rangle^{2} A^{3}(\cos \alpha+\langle W, x\rangle)\right) \\
& -\frac{A^{3}}{r}(\cos \alpha+\langle W, x\rangle) \sum\left\langle W, v_{j}\right\rangle^{2} .
\end{aligned}
$$

Using the fact that $\dot{\alpha}=\dot{\theta}-\dot{\phi}=k-\frac{\sin \alpha}{r}$ we see that the first term in the last sum vanishes, and so does the last two ones together, so we obtain b).
c) It will be a consequence of the fact that $|W|^{2}=\langle W, x\rangle^{2}+\sum\left\langle W, v_{j}\right\rangle^{2}$ and of the two following equalities:
(1) $\sum e_{j}\left(a_{j}\right)=-\frac{\sin \alpha}{r^{2}}\left(2 A^{4}(\langle W, x\rangle+\cos \alpha\rangle\right) \sum\left\langle W, v_{j}\right\rangle^{2}$

$$
\left.+(n-1) A^{2}\langle W, x\rangle\right)
$$

$$
\begin{equation*}
\sum a_{k}\left\langle\nabla_{e_{1}} e_{k}, e_{1}\right\rangle=\frac{A^{4}}{r^{2}} \sin \alpha(\cos \alpha+\langle W, x\rangle) \sum\left\langle W, v_{k}\right\rangle^{2} . \tag{2}
\end{equation*}
$$

To prove (1) and (2) we proceed as follows:

$$
e_{j}\left(a_{j}\right)=\frac{1}{r} v_{j}\left(A^{2} \frac{\sin \alpha\left\langle W, v_{j}\right\rangle}{r}\right)=\frac{\sin \alpha}{r^{2}}\left(2 A v_{j}(A)\left\langle W, v_{j}\right\rangle-A^{2}\langle W, x\rangle\right)
$$

$$
\left.=-\frac{\sin \alpha}{r^{2}}\left(2 A^{4}(\langle W, x\rangle+\cos \alpha\rangle\right)\left\langle W, v_{j}\right\rangle^{2}+A^{2}\langle W, x\rangle\right),
$$

from which we obtain (1). Then we compute

$$
\begin{aligned}
\nabla_{e_{1}} e_{k} & =A\left(\nabla_{\partial_{s}} e_{k}-\sum_{l} \frac{\left\langle W, v_{l}\right\rangle}{r} \nabla_{v_{l}} e_{k}\right) \\
& =A\left(\frac{1}{r} \nabla_{\partial_{s}} v_{k}+\partial_{s}\left(r^{-1}\right) v_{k}+\sum_{l} \frac{\left\langle W, v_{l}\right\rangle}{r^{2}} \nabla_{v_{l}} v_{k}\right) \\
& =A\left(\frac{\cos \alpha}{r} e_{k}-\frac{\cos \alpha}{r^{2}} v_{k}+\sum_{l} \frac{\left\langle W, v_{l}\right\rangle}{r^{2}} \nabla_{v_{l}} v_{k}\right)
\end{aligned}
$$

The first two terms of the last expression vanish and thanks to the \mathbf{e}) of Lemma 6 , we deduce

$$
\left\langle\nabla_{e_{1}} e_{k}, e_{1}\right\rangle=-\frac{A^{2}\left\langle W, v_{j}\right\rangle}{r}(\cos \alpha+\langle W, x\rangle),
$$

which implies (2).
d) We have

$$
\begin{aligned}
\nabla_{e_{j}} e_{1}= & \frac{1}{r} \nabla_{v_{j}}\left(A \partial_{s}-\sum_{k} \frac{A\left\langle W, v_{k}\right\rangle}{r} v_{k}\right) \\
= & \frac{1}{r}\left[v_{j}(A) \partial_{s}+A \nabla_{v_{j}} \partial_{s}-\sum_{k} v_{j}\left(\frac{A\left\langle W, v_{k}\right\rangle}{r}\right) v_{k}-\sum_{k} \frac{A\left\langle W, v_{k}\right\rangle}{r} \nabla_{v_{j}} v_{k}\right] \\
= & \frac{1}{r} v_{j}(A) \partial_{s}+A \frac{\cos \alpha}{r} e_{j}-\frac{1}{r} \sum_{k} v_{j}\left(\frac{A\left\langle W, v_{k}\right\rangle}{r}\right) v_{k} \\
& +\frac{A\left\langle W, v_{j}\right\rangle}{r^{2}} r(\cos \alpha+\langle W, x\rangle) e_{1}
\end{aligned}
$$

so

$$
\begin{aligned}
\left\langle\nabla_{e_{j}} e_{1}, e_{j}\right\rangle & =\frac{1}{r} v_{j}(A)\left\langle\partial_{s}, e_{j}\right\rangle+A \cos \alpha-v_{j}\left(\frac{A\left\langle W, v_{j}\right\rangle}{r}\right) \\
& =\frac{1}{r} v_{j}(A)\left\langle W, v_{j}\right\rangle+A \cos \alpha-v_{j}(A) \frac{\left\langle W, v_{j}\right\rangle}{r}+\frac{A\langle W, x\rangle}{r}
\end{aligned}
$$

The first and the third terms cancel out, and we obtain d).
e) This is an obvious consequence of part e) the Lemma 6 .

LAGRANGIAN SUBMANIFOLDS FOLIATED BY ($n-1$)-SPHERES

Summing these computations, and using the formula for $\Delta \beta$ given at the beginning of this Appendix, we conclude that $f:=A^{-6} \Delta \beta=(I)+(I I)+(I I I)+(I V)$ with

$$
\begin{aligned}
(I):= & A^{-5} \dot{a}=3 B(\cos \alpha\langle\dot{W}, x\rangle-\dot{\alpha} \sin \alpha\langle W, x\rangle+\langle W, x\rangle\langle\dot{W}, x\rangle) \\
- & A^{-2}\left[\dot{B}-(n-1) \frac{\sin \alpha}{r}(\cos \alpha\langle\dot{W}, x\rangle-\dot{\alpha} \sin \alpha\langle W, x\rangle+\langle W, x\rangle\langle\dot{W}, x\rangle)\right] \\
& -A^{-4}(n-1) \partial_{s}\left(\frac{\sin \alpha}{r}\right) \\
(I I):= & -A^{-6} \sum \frac{\left\langle W, v_{j}\right\rangle v_{j}(a)}{r} \\
= & -3 B \frac{\cos \alpha+\langle W, x\rangle}{r}\left(|W|^{2}-\langle W, x\rangle^{2}\right) \\
& +\frac{A^{-2}}{r}\left[\left(k \cos \alpha-(n-2) \frac{\sin \alpha \cos \alpha}{r}-(n-3) \frac{\sin \alpha}{r}\langle W, x\rangle\right)\left(|W|^{2}-\langle W, x\rangle^{2}\right)\right. \\
& +\sin \alpha(\langle\dot{W}, W\rangle-\langle\dot{W}, x\rangle\langle W, x\rangle)] \\
(I I I):= & A^{-6}\left(\sum_{k} a_{k}\left\langle\nabla_{e_{1}} e_{k}, e_{1}\right\rangle+\sum_{j} e_{j}\left(a_{j}\right)\right) \\
= & -A^{-2} \frac{\sin \alpha}{r^{2}}(\cos \alpha+\langle W, x\rangle)\left(|W|^{2}-\langle W, x\rangle^{2}\right)-A^{-4}(n-1) \frac{\sin \alpha}{r^{2}}\langle W, x\rangle \\
(I V):= & A^{-6} a \sum_{e^{2}}\left\langle\nabla_{e_{j}} e_{1}, e_{j}\right\rangle \\
= & -A^{-2} B \frac{n-1}{r}(\cos \alpha+\langle W, x\rangle)-A^{-4} \frac{(n-1)^{2} \sin \alpha}{r^{2}}(\cos \alpha+\langle W, x\rangle) .
\end{aligned}
$$

References

[An1] H. Anciaux, Construction of many Hamiltonian stationary Lagrangian surfaces in Euclidean four-space, Calc. of Var. 17(2003), 105-120.
[An2] H. Anciaux, Construction of Lagrangian self-similar solutions to the Mean Curvature Flow in \mathbb{C}^{n}, submitted.
[Bl] D. Blair, Lagrangian helicoids, Michigan Math. J. 50(2002), no. 1, 187200.
[Ch] B.-Y. Chen, Riemannian geometry of Lagrangian submanifolds, Taiwan J. Math. 5(2001), 681-723.

LaGRangian submanifolds foliated by ($n-1$)-SPHERES
[CU1] I. Castro, F. Urbano, On a Minimal Lagrangian Submanifold of \mathbb{C}^{n} Foliated by Spheres, Michigan Math. J. 46(1999), 71-82.
[CU2] I. Castro, F. Urbano, On a new construction of special Lagrangian immersions in complex Euclidean space, to appear in Quart. Math. J. (Oxford).
[HL] R. Harvey, H. B. Lawson, Calibrated geometries, Acta Math. 148(1982), 47-157.
[HR] F. Hélein, P. Romon, Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions, Comment. Math. Helv. 75(2000), 668-680.
[Jo] D. Joyce, Special Lagrangian m-folds in \mathbb{C}^{m} with symmetries, Duke Math. J. 115(2002), 1-51.
[Oh] Y.G. Oh, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Z. 212(1993), 175-192.
[Wo] J. Wolfson, Minimal Lagrangian diffeomorphisms and the Monge-Ampère equation, J. Differential Geom. 46(1997), 335-373.

Henri Anciaux,
IMPA, Estrada Dona Castorina, 110
22460-320 Rio de Janeiro, Brasil
email address: henri@impa.br
Ildefonso Castro
Departamento de Matemáticas
Universidad de Jaén,
23071 Jaén, Spain
email address: icastro@ujaen.es
Pascal Romon
Université de Marne-la-Vallée
5, bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée cedex 2, France email address: romon@univ-mlv.fr

