Lagrangian submanifolds foliated by (n-1)-spheres in \mathbb{R}^{2n}

Henri Anciaux, Ildefonso Castro and Pascal Romon

Abstract

We study Lagrangian submanifolds foliated by (n-1)-spheres in \mathbb{R}^{2n} for $n \geq 3$. We give a parametrization valid for such submanifolds, and refine that description when the submanifold is special Lagrangian, self-similar or Hamiltonian stationary. In all these cases, the submanifold is *centered*, i.e. invariant under the action of SO(n). It suffices then to solve a simple ODE in two variables to describe the geometry of the solutions.

Keywords: Lagrangian submanifold, special Lagrangian, self-similar, Hamiltonian stationary.

2000 MSC: 53D12 (Primary) 53C42 (Secondary).

Introduction

Lagrangian submanifolds constitute a distinguished subclass in the set of *n*-dimensional submanifolds of \mathbb{R}^{2n} : a submanifold is *Lagrangian* if it has dimension *n* and is isotropic with respect to the symplectic form ω of \mathbb{R}^{2n} identified with \mathbb{C}^n . Such submanifolds are locally characterized as being graphs of the gradient of a real map on a domain of \mathbb{R}^n , however to give a general classification of them is not an easy task.

In the case of surfaces i.e. n = 2, powerful techniques such as Weierstrass representation formulas may be used to gain some insight into this question (*cf* [HR]). In higher dimension, some work has been done in the direction of characterizing Lagrangian submanifolds with various intrinsic and extrinsic geometric assumptions, see [Ch] for a general overview and more references.

Recently, D. Blair has studied in [Bl] Lagrangian submanifolds of \mathbb{C}^n which are foliated by (n-1)-planes. In the present paper, we are devoted to study those Lagrangian submanifolds of \mathbb{R}^{2n} , which are foliated by Euclidean (n-1)-spheres. In the following, we shall for brevity denote them by σ -submanifolds. We first observe that any isotropic round (n-1)-sphere spans a *n*-dimensional Lagrangian subspace, a condition which breaks down in dimension 2. Hence we restrict our attention to the case $n \geq 3$ and we give a characterization of σ -submanifolds as images of an immersion of a particular form involving as data a planar curve and a \mathbb{R}^n -valued curve (see Theorem 1).

Next, we focus our attention on several curvatures equations and characterize those among which are σ -submanifolds. The most classical of these equations is the minimal submanifold equation, involving the mean curvature vector \vec{H}

$$\dot{H} = 0$$

A Lagrangian submanifold which is also minimal satisfies in addition a very striking property: it is calibrated (*cf* [HL]) and therefore a minimizer; these submanifolds are called *special Lagrangian*. Many special Lagrangian submanifolds with homogeneity properties have been described in [CU2, Jo]. In this context we recover the characterization of the Lagrangian catenoid as the only (non flat) special Lagrangian σ -submanifold (see [CU1]).

We shall call *self-similar* a submanifold satisfying

$$\vec{H} + \lambda X^{\perp} = 0,$$

where X^{\perp} stands for the projection of the position vector X of the submanifold on its normal space and λ is some real constant (*cf* [An2]). Such a submanifold has the property that its evolution under the mean curvature flow is a homothecy (shrinking to a point if $\lambda > 0$ and expanding to infinity if $\lambda < 0$). Here we shall show that there are no more self-similar σ -submanifolds than the ones described in [An2].

The third curvature equation we shall be interested in deals with the Lagrangian angle β (cf [Wo] for a definition), a $\mathbb{R}/2\pi\mathbb{Z}$ -valued function which is defined up to an additive constant on any Lagrangian submanifold and satisfies $J\nabla\beta = n\vec{H}$, where J is the complex structure in \mathbb{C}^n and ∇ is the gradient of the induced metric on the submanifold. Following [Oh], we call Hamiltonian stationary a Lagrangian submanifold which is critical for the volume functional under Hamiltonian deformations (generated by vector fields V such that $V \sqcup \omega$ is exact). It turns out that the corresponding Euler-Lagrange equation is

$$\Delta \beta = 0.$$

In others words a Lagrangian submanifold is Hamiltonian stationary if and only if its Lagrangian angle function is harmonic (for the induced metric). Many Hamiltonian stationary surfaces in \mathbb{C}^2 have been described in [HR] and [An1], but in higher dimensions, very few examples were known so far (for example the Cartesian product of round circles $a_1 \mathbb{S}^1 \times \ldots \times a_n \mathbb{S}^1$). In this paper we shall describe all Hamiltonian stationary σ -submanifolds.

The paper is organized as follows: the first section gives the proof of characterization of σ -submanifolds (Theorem 1). In the second one, we compute for this kind of submanifold the Lagrangian angle and the mean curvature vector. In Section 3, we obtain as a corollary the fact that special Lagrangian or self-similar σ -submanifolds are centered (i.e. invariant under the standard action of the special orthogonal group SO(n), see Example 1 in Section 1 for a precise definition), thus the only examples of such submanifolds are those described in [CU1] (for special Lagrangian ones) and in [An2] (for self-similar ones). In Section 4, we show that the only Hamiltonian stationary σ -submanifolds are also centered (Theorem 3), and in Section 5 we describe them in details (Corollary 1).

Acknowledgments: The authors would like to thank Francisco Urbano for his numerous valuable comments and suggestions and Bruno Fabre for the proof of Lemma 5.

1 Characterization of Lagrangian submanifolds foliated by (n-1)-spheres

On $\mathbb{C}^n \simeq \mathbb{R}^{2n}$, $n \geq 3$, with coordinates $\{z_j = x_j + iy_j, 1 \leq j \leq n\}$ equipped with the standard Hermitian form $\langle ., . \rangle_{\mathbb{C}^n}$ and its associated symplectic form $\omega :=$ $\sum_{j=1}^n dx_j \wedge dy_j = \text{Im} \langle ., . \rangle_{\mathbb{C}^n}$, we consider submanifolds of dimension n foliated by round spheres \mathbb{S}^{n-1} . Locally, they can be parameterized by immersions

$$\ell: I \times \mathbb{S}^{n-1} \to \mathbb{C}^n \simeq \mathbb{R}^{2n} (s, x) \mapsto r(s)M(s)x + V(s)$$

where

- *I* is some interval,
- $\forall s \in I, r(s) \in \mathbb{R}^+, M(s) \in SO(2n), V(s) \in \mathbb{C}^n,$
- $x \in \mathbb{S}^{n-1} \subset \mathbb{R}^n \subset \mathbb{C}^n$, where we note $\mathbb{R}^n = \{y_j = 0, 1 \le j \le n\}$.

Lemma 1 A necessary condition for the immersion ℓ to be Lagrangian is that for any s in I, the (affine) n-plane containing the leaf $\ell(s, \mathbb{S}^{n-1})$ is Lagrangian; in other words, $M \in U(n)$, where U(n) is embedded as a subgroup of SO(2n).

Proof. For a fixed $s \in I$, the leaf $\ell(s, \mathbb{S}^{n-1})$ spans exactly the affine *n*-plane $V + M\mathbb{R}^n$. So we have to show that for two independent vectors $W, W' \in \mathbb{R}^n$, $\omega(MW, MW') = 0$. Since $n \geq 3$, there exists $x \in \mathbb{S}^{n-1}$ such that W and W' are tangent to \mathbb{S}^{n-1} at x. Thus rMW and rMW' are tangent to the leaf $\ell(s, \mathbb{S}^{n-1})$ at $\ell(s, x)$. The tangent space to this leaf is isotropic (being included in the tangent space to $\ell(I \times \mathbb{S}^{n-1})$). Therefore $\omega(MW, MW') = 0$. Finally, M is an isometry mapping a Lagrangian n-plane to another Lagrangian n-plane, hence a unitary transformation.

Remark 1 This crucial lemma does not hold in dimension two: we can produce examples of Lagrangian surfaces foliated by circles such that the planes containing the circular leaves are not Lagrangian (cf Example 3). Now, we know that for any $\xi \in \mathbb{R}^n$ orthogonal to $x, M\xi$ is tangent to the submanifold at $\ell(s, x)$ (because it is tangent to the leaf) so we have:

$$\omega(\ell_s, M\xi) = 0$$

where $\ell_s = \partial \ell / \partial s = \dot{r} M x + r \dot{M} x + \dot{V}$. Along the paper the dot ' ', will be a shorthand notation for the derivative with respect to s. We compute:

$$\omega(\dot{r}Mx, M\xi) + \omega(r\dot{M}x, M\xi) + \omega(\dot{V}, M\xi) = 0$$

$$\Leftrightarrow \operatorname{Im} \langle \dot{r}Mx, M\xi \rangle_{\mathbb{C}^n} + \operatorname{Im} \langle r\dot{M}x, M\xi \rangle_{\mathbb{C}^n} + \operatorname{Im} \langle \dot{V}, M\xi \rangle_{\mathbb{C}^n} = 0$$

$$\Leftrightarrow \dot{r}\operatorname{Im} \langle x, \xi \rangle_{\mathbb{C}^n} + r\operatorname{Im} \langle M^{-1}\dot{M}x, \xi \rangle_{\mathbb{C}^n} + \operatorname{Im} \langle M^{-1}\dot{V}, \xi \rangle_{\mathbb{C}^n} = 0$$

$$\Leftrightarrow r \langle \operatorname{Im} (M^{-1}\dot{M})x, \xi \rangle_{\mathbb{C}^n} + \langle \operatorname{Im} (M^{-1}\dot{V}), \xi \rangle_{\mathbb{C}^n} = 0,$$

because ξ is real.

In the following, we shall note $b := \text{Im}(M^{-1}\dot{V}) \in \mathbb{R}^n$ and $B := \text{Im}(M^{-1}\dot{M})$. The complex matrix $M^{-1}\dot{M}$ is skew-Hermitian so B is symmetric. Then we have the following equation:

(*)
$$\langle b,\xi \rangle_{\mathbb{R}^n} + r \langle Bx,\xi \rangle_{\mathbb{R}^n} = 0$$
, for all $(x,\xi) \in \mathbb{S}^{n-1} \times \mathbb{R}^n$ such that $\langle x,\xi \rangle_{\mathbb{R}^n} = 0$

From now on, we denote the real scalar product $\langle ., . \rangle_{\mathbb{R}^n}$ by $\langle ., . \rangle$. Next we have three steps:

Step 1: *b* vanishes or is an eigenvector for B.

If $b \neq 0$, take x collinear to b, so that $x = \lambda b$ for some real non zero constant λ . From (*), we have

$$\forall \xi \in b^{\perp}, \langle B\lambda b, \xi \rangle = 0.$$

Therefore Bb is collinear to b, so there exists μ such that $Bb = \mu b$.

Step 2: *b* vanishes.

Suppose $b \neq 0$, then set $\xi = b$ and x orthogonal to b, so $\langle b, x \rangle = 0$ and $\langle Bb, x \rangle = 0$ (using step 1). Using the fact that B is symmetric, we write:

$$\langle b, Bx \rangle = 0,$$

 \mathbf{SO}

$$\langle \xi, Bx \rangle = 0.$$

From (*) we deduce that $\langle b, \xi \rangle = ||b||^2 = 0$. So b vanishes.

Step 3: *B* is a homothecy.

Now, (*) becomes

$$\langle Bx,\xi\rangle = 0, \quad \forall x,\xi \in \mathbb{S}^{n-1} \text{ such that } \langle x,\xi\rangle = 0.$$

This implies that any vector x is an eigenvector for B, so B is a homothecy.

We deduce that $M^{-1}\dot{V} \in \mathbb{R}^n$, and that $M^{-1}\dot{M} \in \mathfrak{so}(n) \oplus i\mathbb{R}Id$. This implies that $M \in SO(n).U(1)$. In other words, we may write $M = e^{i\phi}N$, where $N \in SO(n)$. Moreover, we observe that N can be fixed to be Id: this does not change the image of the immersion. Then $M = e^{i\phi}Id$, so $\dot{V} = e^{i\phi}W$, where $W \in \mathbb{R}^n$.

Finally, we have shown:

Theorem 1 Any Lagrangian submanifold of \mathbb{R}^{2n} , $n \geq 3$, which is foliated by round (n-1)-spheres is locally the image of an immersion of the form:

$$\begin{array}{cccc} \ell : & I \times \mathbb{S}^{n-1} & \longrightarrow & \mathbb{C}^n \simeq \mathbb{R}^{2n} \\ & (s,x) & \longmapsto & r(s)e^{i\phi(s)}x + \int_{s_0}^s e^{i\phi(t)}W(t)dt, \end{array}$$

where

- $s \mapsto \gamma(s) := r(s)e^{i\phi(s)}$ is a planar curve,
- W is a curve from I into \mathbb{R}^n ,
- $s_0 \in I$.

Geometrically, r(s) is the radius of the spherical leaf and $V(s) := \int_{s_0}^{s} e^{i\phi(t)} W(t) dt$ its center. The fiber lies in the Lagrangian plane $e^{i\phi(s)} \mathbb{R}^n$.

Example 1 If V = W = 0, the center of each leaf is fixed. In the following, we shall simply call these submanifolds *centered*. In this case, the submanifold is SO(n)-equivariant (for the following action $z \mapsto Az, A \in SO(n)$ where SO(n) is seen as a subgroup of U(n), itself a subgroup of SO(2n)).

Example 2 Assume the curve γ is a straight line passing through the origin. Then up to reparametrization we can write $\gamma(s) = se^{i\phi_0}$, where ϕ_0 is some constant. This implies that

$$\ell(x,s) = e^{i\phi_0} \left[sx + \int_{s_0}^s W(t)dt \right],$$

thus the immersion is totally geodesic and the image is simply an open subset of the Lagrangian subspace $e^{i\phi_0}\mathbb{R}^n$.

Example 3 Assume the centers of the leaves lie on some straight line. Then there exists some function u(s) such that V(s) = u(s)a + c with $a, c \in \mathbb{C}^n$. Differentiating, we obtain

$$\dot{u}(s)a = e^{i\phi(s)}W(s).$$

As a is constant and W real, it implies that ϕ is constant, so we have $a = e^{i\phi}b$, where $b \in \mathbb{R}^n$. Then

$$\ell(x,s) = e^{i\phi}(r(s)x + u(s)b) + c$$

so again the immersion is totally geodesic. We notice that this situation is in contrast with the case of dimension 2, where there exists a Lagrangian flat cylinder, which is foliated by round circles whose centers lie on a line. **Example 4** Epicycloids: Assume the centers of the leaves lie on a circle contained in a complex line. Then there exists some function u(s) such that $V(s) = e^{iu(s)}a + c$ with $a, c \in \mathbb{C}^n$. Differentiating, we obtain

$$W(s) = i\dot{u}(s)e^{i(u(s)-\phi(s))}a$$

As in the previous example, it implies that $\phi - u$ is constant; without loss of generality, we can take $u = \phi$ and a = -ib, where $b \in \mathbb{R}^n$. Then

$$\ell(x,s) = e^{i\phi(s)}(r(s)x - ib) + c$$

2 Computation of the Lagrangian angle and of the mean curvature vector

2.1 The Lagrangian angle

We may assume, and we shall do so from now on, that γ is parameterized by arclength, so there exists θ such that $\dot{\gamma} = e^{i\theta}$, and the curvature of γ is $k = \dot{\theta}$. We also introduce, as in [An2], $\alpha := \theta - \phi$, so that $\dot{r} = \cos \alpha$ and $\dot{\phi} = \frac{\sin \alpha}{r}$.

Let $(v_2, ..., v_n)$ be an orthonormal basis of $T_x \mathbb{S}^{n-1}$. Here and in the following, the indices j, k and l (and the sums) run from 2 to n, unless specified. We have:

$$\ell_s = e^{i\theta}x + e^{i\phi}W$$
 and $\ell_*v_j = re^{i\phi}v_j$.

The induced metric g on $I \times \mathbb{S}^{n-1}$ has the following components with respect to the basis $(\partial_s, v_2, ..., v_n)$:

$$g_{11} = 1 + |W|^2 + 2\cos\alpha \langle W, x \rangle,$$
$$g_{1j} = g_{j1} = r \langle W, v_j \rangle,$$
$$g_{jk} = g_{kj} = \delta_{jk} r^2.$$

We consider the orthonormal basis (for g) $(e_1, ..., e_n)$ defined as follows:

$$e_j := \frac{v_j}{r}, \quad e_1 := A\partial_s + \sum B_j v_j,$$

where the real numbers A and B_j are uniquely determined by the orthonormality condition:

$$A = \left(1 + 2\cos\alpha \langle W, x \rangle + \langle W, x \rangle^2\right)^{-1/2} \text{ and } B_j = -\frac{A \langle W, v_j \rangle}{r},$$

 \mathbf{SO}

$$e_1 = A\left(\partial_s - \sum \frac{\langle W, v_j \rangle}{r} v_j\right).$$

This yields an orthonormal basis of the tangent space to the submanifold and we may compute the Lagrangian angle by means of the following formula: $e^{i\beta} = \det_{\mathbb{C}}(\ell_*e_1, ..., \ell_*e_n)$. Indeed we have

$$\ell_* e_j = e^{i\phi} v_j,$$

and

$$\begin{aligned} \ell_* e_1 &= A(\ell_s - \sum \frac{\langle W, v_j \rangle}{r} \ell_* v_j) = A(e^{i\theta} x + e^{i\phi} W - \sum \langle W, v_j \rangle e^{i\phi} v_j) \\ &= A(e^{i\theta} + e^{i\phi} \langle W, x \rangle) x. \end{aligned}$$

From the above remarks we deduce that:

$$\beta = \operatorname{Arg}(e^{i\theta} + e^{i\phi}\langle W, x \rangle) + (n-1)\phi$$
$$= \operatorname{Arg}(e^{i\alpha} + \langle W, x \rangle) + n\phi.$$

In the centered case W = 0 (Example 1), we find that $\beta = n\phi + \alpha$. This is the only case where the Lagrangian angle is constant on the leaves. We recall that a necessary and sufficient condition for a Lagrangian submanifold to be a special Lagrangian one is that the Lagrangian angle be locally constant. So our computation shows that a special Lagrangian σ -submanifold must be centered. Moreover, it has been shown in [An2] that the only such submanifolds are pieces of the Lagrangian catenoid (*cf* [CU1] for a complete description), so we recover one of the theorems of [CU1]:

Theorem A (non flat) special Lagrangian submanifold which is foliated by (n-1)-spheres is congruent to a piece of the Lagrangian catenoid.

2.2 Computation of the mean curvature vector

We first calculate the second derivatives of the immersion.

$$\ell_{ss} = ike^{i\theta}x + \left(\frac{i\sin\alpha}{r}W + \dot{W}\right)e^{i\phi},$$
$$v_j(\ell_s) = e^{i\theta}v_j,$$
$$\ell_{v_jv_k} = -\delta_{jk}re^{i\phi}x.$$

Then we obtain the following expressions:

$$\langle \ell_{ss}, J\ell_s \rangle = k + k \cos \alpha \langle W, x \rangle + \frac{\sin \alpha \cos \alpha}{r} \langle W, x \rangle + \sin \alpha \langle \dot{W}, x \rangle + \frac{\sin \alpha}{r} |W|^2, \\ \langle \ell_{ss}, J\ell_* v_j \rangle = \langle v_j(\ell_s), J\ell_s \rangle = \sin \alpha \langle W, v_j \rangle,$$

$$\begin{aligned} \langle \ell_{v_j v_j}, J \ell_s \rangle &= \langle v_j(\ell_s), J \ell_* v_j \rangle = r \sin \alpha, \\ \langle \ell_{v_j v_k}, J \ell_* v_k \rangle &= 0. \end{aligned}$$

Thus we have, using the property that the tensor $C := \langle h(.,.), J \rangle$ is totally symmetric for any Lagrangian immersion:

$$C_{111} = \langle h(e_1, e_1), J\ell_* e_1 \rangle$$

$$= A^3 \left\langle h\left(\partial_s - \frac{1}{r} \sum \langle W, v_j \rangle v_j, \partial_s - \frac{1}{r} \sum \langle W, v_j \rangle v_j \right), J\ell_s - \frac{\sum \langle W, v_j \rangle J\ell_* v_j}{r} \right\rangle$$

$$= A^3 \left(k + k \cos \alpha \langle W, x \rangle + \frac{\sin \alpha \cos \alpha}{r} \langle W, x \rangle + \sin \alpha \langle \dot{W}, x \rangle + \frac{\sin \alpha}{r} |W|^2 + \frac{\sin \alpha}{r} \sum \langle W, v_j \rangle^2 - 2 \frac{\sin \alpha}{r} \sum \langle W, v_j \rangle^2 \right)$$

$$= A^3 \left(k + k \cos \alpha \langle W, x \rangle + \frac{\sin \alpha \cos \alpha}{r} \langle W, x \rangle + \sin \alpha \langle \dot{W}, x \rangle + \frac{\sin \alpha}{r} \langle W, x \rangle^2 \right),$$

$$C_{jj1} = \langle h(e_j, e_j), J\ell_* e_1 \rangle = \frac{A}{r^2} \left\langle h(v_j, v_j), J\ell_s - \frac{1}{r} \sum \langle W, v_k \rangle J\ell_* v_k \right\rangle = \frac{A \sin \alpha}{r},$$

$$C_{11j} = \langle h(e_1, e_1), J\ell_* e_j \rangle = \frac{A^2}{r} \left(\sin \alpha \langle W, v_j \rangle - \frac{2}{r} \sum_k \langle W, v_k \rangle r \sin \alpha \delta_{jk} \right)$$

$$= -\frac{A^2 \sin \alpha \langle W, v_j \rangle}{r},$$

$$C_{jjk} = \langle h(e_j, e_j), J\ell_* e_k \rangle = 0.$$

So finally we have the following:

$$n\vec{H} = A \left[A^2 \left(k + k \cos \alpha \langle W, x \rangle + \frac{\sin \alpha \cos \alpha}{r} \langle W, x \rangle \right. \\ \left. + \sin \alpha \langle \dot{W}, x \rangle + \frac{\sin \alpha}{r} \langle W, x \rangle^2 \right) + \frac{(n-1) \sin \alpha}{r} \right] J\ell_* e_1 \\ \left. - \sum \frac{A^2 \sin \alpha \langle W, v_j \rangle}{r} J\ell_* e_j.$$

In Section 5, we shall use the following notations: $nJ\vec{H} = ae_1 + \sum a_j e_j$, where $(H_0) \quad a = -A^3 \left(k + \left(k\cos\alpha + \frac{\sin\alpha\cos\alpha}{r}\right)\langle W, x \rangle + \sin\alpha\langle \dot{W}, x \rangle + \frac{\sin\alpha}{r}\langle W, x \rangle^2\right) - (n-1)\frac{A\sin\alpha}{r}$

$$(H_j) a_j = A^2 \frac{\sin \alpha \langle W, v_j \rangle}{r}.$$

3 Application to self-similar equations

Theorem 2 In the class of Lagrangian submanifolds which are foliated by (n-1)-spheres, there are no self-translators and the only self-shrinkers/expanders are the centered ones described in [An2].

Proof. The self-translating equation is $\vec{H} = V^{\perp}$ for some fixed vector $V \in \mathbb{C}^n$. In particular,

$$\langle H, J\ell_* e_j \rangle = \langle V, J\ell_* e_j \rangle$$
$$\iff -\frac{A^2 \sin \alpha}{nr} \langle W, v_j \rangle = \langle V, Jr e^{i\phi} e_j \rangle$$
$$\iff -\frac{A^2 \sin \alpha}{nr} \langle W, v_j \rangle = \langle V, Je^{i\phi} v_j \rangle$$
$$\iff -\frac{\sin \alpha}{nr} \langle W, v_j \rangle = \left(1 + 2\cos \alpha \langle W, x \rangle + \langle W, x \rangle^2\right) \langle V, Je^{i\phi} v_j \rangle$$

Differentiating this last equation with respect to v_k , $k \neq j$ (this is possible since $n \geq 3$), we obtain

$$0 = \left(1 + 2\langle W, v_k \rangle (\cos \alpha + \langle W, x \rangle)\right) \langle V, Je^{i\phi} v_j \rangle.$$

We now observe that the set of points (x, v_k) for which the first factor in the r.h.s. term of the above equation vanishes is of codimension 1 at most in the unit sphere bundle over \mathbb{S}^{n-1} and apart from this set, $\langle V, Je^{i\phi}v_j \rangle$ vanishes. Coming back to the third equality of the above equivalences, this yields that either $\sin \alpha$ vanishes or $\langle W, v_j \rangle$ does. In the first case the curve γ is a line passing through the origin. Then we know by Example 2 that the immersion is totally geodesic so the image is a Lagrangian subspace. In the other case, we know that for $j \neq k$, $\langle W, v_j \rangle$ vanishes on some dense open subset of points (x, v_k) in the unit sphere bundle over \mathbb{S}^{n-1} . This shows that W vanishes identically. Then it is clear that so does V^{\perp} . This implies that the only solution of the equation is for vanishing \vec{H} , which is the trivial, minimal case.

The self-shrinking/expanding equation is $\vec{H} + \lambda X^{\perp} = 0$, where λ is some real constant. This implies

$$\langle H, J\ell_* e_j \rangle + \lambda \langle \ell, J\ell_* e_j \rangle = 0 \Leftrightarrow -\frac{A^2 \sin \alpha}{nr} \langle W, v_j \rangle + \lambda \left\langle \int e^{i\phi} W, J e^{i\phi} v_j \right\rangle = 0 \Leftrightarrow \frac{A^2 \sin \alpha}{nr} \langle W, v_j \rangle = \lambda \left\langle \operatorname{Im} \left(e^{-i\phi} \int e^{i\phi} W \right), v_j \right\rangle.$$

The quantity $\operatorname{Im} (e^{-i\phi} \int e^{i\phi} W)$ depends only on s, so the same argument as above holds, and we deduce that either γ is a line passing through the origin (totally geodesic case) or W vanishes, which is the centered case treated in [An2].

4 Hamiltonian stationary σ -submanifolds

The purpose of this section is to prove the following

Theorem 3 Any Hamiltonian stationary Lagrangian submanifold foliated by (n-1)-spheres must be centered.

Proof. Let ℓ be a parametrization of such a submanifold. We follow the same notations than in Section 2. We are going to show that if $\Delta\beta$ vanishes, then either γ is a straight line, so as we have seen in Example 2, we are in the totally geodesic case, which is in particular centered, or W vanishes (centered case). The proof is based on an analysis of the quantity $f(x) := A^{-6}\Delta\beta$ which turns to be polynomial. Its expression is given in the next lemma and the computation is detailed in Appendix.

Lemma 2 For any fixed s, $f := A^{-6}\Delta\beta$ is a polynomial in the three variables $\langle W, x \rangle, \langle \dot{W}, x \rangle$ and $\langle \ddot{W}, x \rangle$. Indeed we have: f = (I) + (II) + (III) + (IV) with

$$\begin{split} (I) &:= 3B\Big(\cos\alpha\langle\dot{W},x\rangle - \dot{\alpha}\sin\alpha\langle W,x\rangle + \langle W,x\rangle\langle\dot{W},x\rangle\Big) \\ &-A^{-2}\left[\dot{B} - (n-1)\frac{\sin\alpha}{r}\Big(\cos\alpha\langle\dot{W},x\rangle - \dot{\alpha}\sin\alpha\langle W,x\rangle + \langle W,x\rangle\langle\dot{W},x\rangle\Big)\Big] \\ &-A^{-4}(n-1)\partial_s\left(\frac{\sin\alpha}{r}\right), \\ (II) &:= -3B\frac{\cos\alpha + \langle W,x\rangle}{r}(|W|^2 - \langle W,x\rangle^2) \\ &+ \frac{A^{-2}}{r}\bigg[\left(k\cos\alpha - (n-2)\frac{\sin\alpha\cos\alpha}{r} - (n-3)\frac{\sin\alpha}{r}\langle W,x\rangle\right)(|W|^2 - \langle W,x\rangle^2) \\ &+ \sin\alpha\Big(\langle\dot{W},W\rangle - \langle\dot{W},x\rangle\langle W,x\rangle\Big)\bigg], \\ (III) &:= -A^{-2}\frac{\sin\alpha}{r^2}(\cos\alpha + \langle W,x\rangle)\Big(|W|^2 - \langle W,x\rangle^2\Big) - A^{-4}(n-1)\frac{\sin\alpha}{r^2}\langle W,x\rangle, \\ (IV) &:= -A^{-2}B\frac{n-1}{r}(\cos\alpha + \langle W,x\rangle) - A^{-4}\frac{(n-1)^2\sin\alpha}{r^2}(\cos\alpha + \langle W,x\rangle) \end{split}$$

and

$$B := k + \left(k\cos\alpha + \frac{\sin\alpha\cos\alpha}{r}\right)\langle W, x\rangle + \sin\alpha\langle \dot{W}, x\rangle + \frac{\sin\alpha}{r}\langle W, x\rangle^2.$$

Proof. See Appendix.

Lemma 3

$$f(x) = -\left(\sin\alpha + 2\sin\alpha\cos\alpha\langle W, x \rangle + \sin\alpha\langle W, x \rangle^2\right)\langle \ddot{W}, x \rangle + R\left(\langle W, x \rangle, \langle \dot{W}, x \rangle\right),$$

where $R(.,.)$ is a polynomial in its two variables.

Proof. In the previous expression of f, we see that there are no contributions to the terms in $\langle \ddot{W}, x \rangle$ apart from the \dot{B} term in (I). Then we compute

$$\dot{B} = \sin \alpha \langle \ddot{W}, x \rangle + S(\langle W, x \rangle, \langle \dot{W}, x \rangle),$$

where S(.,.) is a polynomial in its two variables. We deduce that the only term of $\langle \ddot{W}, x \rangle$ in f is the following:

$$-A^{-2}\sin\alpha\langle\ddot{W},x\rangle,$$

so we have our claim.

Lemma 4 The polynomial f has total degree at most 5, and in that case its leading term is $\frac{-n^2+n+2}{r^2}\sin\alpha \langle W,x\rangle^5$.

Proof. Remembering that A^{-2} , B and \dot{B} are polynomials of degree at most 2 in $\langle W, x \rangle$ and $\langle \dot{W}, x \rangle$, we first observe that there are no terms of order 5 in (I). Then we check that in (II), (III) and (IV) there are no terms in $\langle \ddot{W}, x \rangle \langle W, x \rangle^4$ (this has already been observed in the previous lemma) or in $\langle \dot{W}, x \rangle \langle W, x \rangle^4$. Finally, the coefficient of $\langle W, x \rangle^2$ in A^{-2} and B are respectively 1 and $\frac{\sin \alpha}{r}$, so summing up, we obtain that the coefficients of $\langle W, x \rangle^5$ in (II), (III) and (IV) are respectively

$$3\frac{\sin\alpha}{r^2} + (n-3)\frac{\sin\alpha}{r^2}$$
$$\frac{\sin\alpha}{r^2} - (n-1)\frac{\sin\alpha}{r^2}$$
$$(n-1)\frac{\sin\alpha}{r^2} - (n-1)^2\frac{\sin\alpha}{r^2},$$

from which we conclude the proof.

Lemma 5 Let $P(x_1, x_2, x_3)$ be an irreducible polynomial with real coefficients. Assume the set of zeroes of P is non empty and that $f \in \mathbb{R}[x_1, x_2, x_3]$ vanishes on it. Then f is of the form PQ with $Q \in \mathbb{R}[x_1, x_2, x_3]$.

Proof. We embed \mathbb{R}^3 into \mathbb{C}^3 . Assume by contradiction that f is not of the form PQ with $Q \in \mathbb{R}[x_1, x_2, x_3]$. Then also f is of not the form PQ with $Q \in \mathbb{C}[x_1, x_2, x_3]$, so the set $Y := \{x/f(x) = P(x) = 0\} = \{f(x) = 0\} \cap \{P(x) = 0\}$ has complex codimension 2, so real dimension 6 - 4 = 2. Now our assumption is that $Y \cap \mathbb{R}^3$ contains $\{P = 0\} \cap \mathbb{R}^3$, so in particular, Y which has real dimension 2 contains $\{P = 0\} \cap \mathbb{R}^3$, also of real dimension 2. We conclude that it is an irreducible component of Y, a contradiction because \mathbb{R}^3 does not contain any complex curve. \Box

11

End of the proof of Theorem 3.

First case: the three vectors W, \dot{W} and \ddot{W} do not span \mathbb{R}^n (it is in particular always the case when n > 3).

In this case, there exist coordinates (y_1, \ldots, y_n) on \mathbb{R}^n such that f does not depend on y_n . In particular $\{y, f(y) = 0\}$ contains some straight line $\{y_j = \text{Const}, 1 \leq j \leq n-1\}$. However by assumption $\{y, f(y) = 0\}$ contains also the hypersphere \mathbb{S}^{n-1} . As it is an algebraic set, it is necessarily the whole \mathbb{R}^n , thus f vanishes identically. This implies that either W vanishes (this is the centered case), or that so does f as a polynomial of *independent* variables of \mathbb{R}^n : the vectors W, \dot{W} and \ddot{W} might be non independent and in this case we should rewrite f as a polynomial of less variables. Anyway, we know from Lemma 4 that the only term of order 5 in f is $\sin \alpha$ times a non negative constant, thus we deduce in any case that $\sin \alpha$ should vanish, which means that the curve γ would be a line passing through the origin. Then we know that by Example 2 the immersion is totally geodesic.

Second case: n = 3 and $\text{Span}(W, \dot{W}, \ddot{W}) = \mathbb{R}^3$.

Here we apply the algebraic Lemma 5 with $P(x_1, x_2, x_3) = |x|^2 - 1$, thus obtaining that either f is a multiple of $|x|^2 - 1$, or it vanishes. In the first case, there should be at least one term of degree 2 in $\langle \ddot{W}, x \rangle$, which is not the case (*cf* Lemma 3). So we deduce again that f vanishes and the conclusion is the same as above.

5 Centered Hamiltonian stationary σ -submanifolds

5.1 The differential system

In this case, the induced metric is diagonal: $g = \text{diag}(1, r^2, ..., r^2)$, and $\det g = r^{2(n-1)}$. Moreover, β depends only on $s : \beta = \alpha + n\phi$, thus

$$\Delta\beta = -\frac{1}{\sqrt{\det g}}\frac{\partial}{\partial s}\left(\sqrt{\det g}\,\frac{\partial\beta}{\partial s}\right).$$

Hence the submanifold is Hamiltonian stationary if and only if

$$\sqrt{\det g} \, \frac{\partial \beta}{\partial s} = C,$$

which amounts to

$$r^{n-1}(n\dot{\phi} + \dot{\alpha}) = C,$$

for some non vanishing constant C (the case of vanishing C implies β to be constant, so this is the special Lagrangian case). We add that we could have used the computations of the previous section as well with W = 0 to find the same equation.

Thus we are reduced to studying the following differential system (using that $\dot{\phi} = \frac{\sin \alpha}{r}$):

$$\begin{cases} \dot{\alpha} = \frac{C}{r^{n-1}} - \frac{n \sin \alpha}{r} \\ \dot{r} = \cos \alpha. \end{cases}$$

There are fixed points $(\bar{\alpha} = \pm \frac{\pi}{2} \mod 2\pi, \bar{r} = \left(\frac{|C|}{n}\right)^{1/(n-2)})$, corresponding to the case of γ being a circle centered at the origin. Up to a sign change of parameter s, we may assume that C is non negative and then $\bar{\alpha} = \frac{\pi}{2} \mod 2\pi$. Moreover, the system admits a first integral: $E = 2r^n \sin \alpha - Cr^2$, so we can draw the phase portrait easily. As the system is periodic in the variable α , it is sufficient to study integral lines in a strip of length 2π . Moreover integral lines are symmetric with respect to the vertical lines $\alpha = \pi/2 \mod \pi$. The energy of the fixed points is $E_0 := \left(\frac{C}{n}\right)^{n/(n-2)} (2-n)$. There is a critical integral line of energy E_0 with bounded pieces connecting two fixed points and unbounded pieces starting from (or ending to) a fixed point and having a branch asymptotic to a vertical line $\alpha = k\pi, k \in \mathbb{Z}$. We observe that the

Figure 1: Phase diagram

integral lines corresponding to a non negative energy (resp. strictly less than E_0) are unbounded, we call them *type I* (resp. *type II*) curves. On the other hand, integral lines of energy $E \in (E_0, 0)$ have two connected components (up to periodicity), one of them being bounded in the variable r; this will be called in the following a *type III* curve. As the unbounded component shares the same features as the curves of non negative energy, it is also called a *type I* curve.

In order to have a better picture of the corresponding curves γ and of Hamiltonian stationary Lagrangian submanifolds they generate, we shall discuss in the next two paragraphs the inflection points of γ and the quantity $\Phi(E) := \int \dot{\phi} = \int \frac{\sin \alpha}{r}$ that we call total variation of phase.

5.2 Inflection points of γ

They correspond to the vanishing of the curvature $k = \dot{\theta} = \frac{C}{r^{n-1}} - \frac{(n-1)\sin\alpha}{r}$. This implies the relation $r = \left(\frac{C}{(n-1)\sin\alpha}\right)^{1/(n-2)}$.

We observe that in the case of dimension 3, this is exactly the equation of the integral curve of level E = 0: so in this dimension there is a solution which is of curvature zero, i.e. a straight line, and the other ones don't have any inflection point and are locally convex.

In higher dimension, let us compute the energy E at points of vanishing curvature. At such a point (α, r) , we have $r^{n-2} = \frac{C}{(n-1)\sin\alpha}$ so we deduce that $E = Cr^2(\frac{2}{n-1}-1)$, which has range $(-\infty, E_1)$ where E_1 is the energy level defined by $E_1 = 2r_1^n - Cr_1^2$ $(r_1$ is the least radius on the curve of points (α, r) corresponding to vanishing curvature: $r_1 = \left(\frac{C}{(n-1)}\right)^{1/(n-2)}$. As $r \mapsto E(r) = 2r^n - Cr^2$ is increasing when $r > \overline{r}$, E_1 belongs to the interval $(E_0, 0)$. We conclude that when n > 3 every type II curve has two (symmetric) inflection points. This is also the case of some type I curves, while the remaining ones are locally convex.

5.3 Study of the total variation of phase

We first compute $\Phi(E)$ for type I curves. Let r_0 be the minimal value taken by r. We have the relation $E = 2r_0^n - Cr_0^2$. We shall use the fact that on the curve $\sin \alpha > 0$; moreover, by symmetry we may restrict ourselves to half of the curve, thus we may also assume that $\cos \alpha > 0$. Thus

$$\Phi = \int \frac{\dot{\phi}}{\dot{r}} dr = 2 \int_{r_0}^{\infty} \frac{\sin \alpha}{r \cos \alpha} dr = 2 \int_{r_0}^{\infty} \frac{dr}{r} \left(\frac{1}{\sin^2 \alpha} - 1 \right)^{-1/2}$$
$$= 2 \int_{r_0}^{\infty} \frac{dr}{r} \left(\left(\frac{2r^n}{Cr^2 + E} \right)^2 - 1 \right)^{-1/2}$$
$$= 2 \int_{r_0}^{\infty} \frac{dr}{r} \left(\left(\frac{2r^n}{C(r^2 - r_0^2) + 2r_0^n} \right)^2 - 1 \right)^{-1/2}$$

Making the change of variable $r = xr_0$, we infer

$$\Phi = 2 \int_{1}^{\infty} \frac{dx}{x} \left(\left(\frac{x^n}{\lambda(x^2 - 1) + 1} \right)^2 - 1 \right)^{-1/2},$$

where $\lambda = \frac{C}{2r_0^{n-2}}$. We observe that this integral equals π/n when λ vanishes, is divergent for $\lambda = n/2$, *i.e.* for $E = E_0$ and is decreasing in the variable r_0 , so $\Phi(E)$ has range $(\pi/n, +\infty)$. Notice that the sign of $\dot{\phi} = \sin \alpha/r$ does not change, so that $\gamma = re^{i\phi}$ is embedded whenever the total variation of phase is small enough, i.e. whenever E is large enough.

On the other hand a unbounded piece of the integral curve of energy level E_0 is singular, with an infinite spiral branch asymptotic to the unit circle.

We now look at the case of type II integral curves. Let r_1 be the value of r at $\alpha = 0 \mod \pi$, so that $E = -Cr_1^2$. We shall calculate separately the contributions of the curve when the integrand is positive (resp. negative), corresponding to the part of the curve lying in the region $\{\sin \alpha > 0\}$ (resp. $\{\sin \alpha < 0\}$).

$$\Phi_{+} := 2 \int_{r_{1}}^{\infty} \frac{\sin \alpha}{r \cos \alpha} dr = 2 \int_{r_{1}}^{\infty} \frac{dr}{r} \left(\frac{1}{\sin^{2} \alpha} - 1 \right)^{-1/2}$$
$$= 2 \int_{r_{1}}^{\infty} \frac{dr}{r} \left(\left(\frac{2r^{n}}{Cr^{2} + E} \right)^{2} - 1 \right)^{-1/2}$$
$$= 2 \int_{r_{1}}^{\infty} \frac{dr}{r} \left(\left(\frac{2r^{n}}{C(r^{2} - r_{1}^{2})} \right)^{2} - 1 \right)^{-1/2}$$

Making the change of variable $r = xr_1$, we obtain

$$\Phi_{+} = 2 \int_{1}^{\infty} \frac{dx}{x} \left(\left(\frac{x^{n}}{\lambda(x^{2} - 1)} \right)^{2} - 1 \right)^{-1/2},$$

where $\lambda = \frac{C}{2r_1^{n-2}}$.

One calculates that Φ_+ is increasing in the variable E and that $\lim_{E\to-\infty} = \pi/n$. In the computation of Φ_- , we may use α as a parameter:

$$\Phi_{-} := \int_{\pi}^{2\pi} \frac{\dot{\phi}}{\dot{\alpha}} d\alpha = \int_{\pi}^{2\pi} \frac{\frac{\sin \alpha}{r}}{\frac{C}{r^{n-1}} - \frac{n \sin \alpha}{r}} d\alpha$$
$$= \int_{\pi}^{2\pi} \frac{r^{n-2} \sin \alpha}{C - nr^{n-2} \sin \alpha} d\alpha$$

It is an easy computation to show that $-\pi/n < \Phi_- < 0$ and that $\lim_{E\to-\infty} \Phi_- = -\pi/n$.

Next we show that γ has always a self-intersection. Let s_0 be the parameter value corresponding to the point of the curve of least radius (in particular $\alpha(s_0) = 3\pi/2 \mod 2\pi$). The fact that $\Phi_+ > |\Phi_-|$ and the intermediate value theorem imply that there exists s_1 such that $\phi(s_1) = \phi(s_0)$; moreover by the symmetry of the phase portrait, there exists $s_2 \neq s_1$ with the same property, the corresponding points in the phase portrait satisfying $r(s_1) = r(s_2)$ and $\frac{1}{2}(\alpha(s_1) + \alpha(s_2)) = 3\pi/2 \mod 2\pi$. Thus $\gamma(s_1) = \gamma(s_2)$.

We end this section by looking at the type III curves. As α is always increasing on the curve, we shall use it as a parameter and consider the piece of curve $\gamma([\pi/2, 2\pi + \pi/2])$.

As ϕ is decreasing on $\alpha \in [\pi, 2\pi]$ and increasing elsewhere, we have:

$$\Phi_+ := \int_{\pi/2}^{\pi} \dot{\phi} + \int_{2\pi}^{2\pi + \pi/2} \dot{\phi} > 0$$

and

$$\Phi_- := \int_\pi^{2\pi} \dot{\phi} < 0.$$

It is easy to show (the calculations are left to the Reader) that $\Phi_+ > |\Phi_-|$ and that $\lim_{E\to 0} \Phi_+ = \lim_{E\to 0} \Phi_- = 0$. Moreover, $\lim_{E\to E_0} \Phi_+ = +\infty$ and $\lim_{E\to E_0} \Phi_$ is finite. This implies that the range of the total variation of phase for type III curves is $(0, \infty)$. In particular, to the limiting case $E = E_0$ corresponds a bounded, complete curve spiraling asymptotically to the unit circle.

With a similar argument as above, we show that here again γ has always selfintersections. We conclude that for a type III curve such that $\Phi(E) \in 2\pi\mathbb{Q}$, the corresponding curve γ is bounded, closed and non-embedded.

5.4 Conclusion (Corollary 1)

We are now in position to describe the whole family of Hamiltonian stationary σ -submanifolds:

Corollary 1 Any Hamiltonian stationary Lagrangian submanifold which is foliated by (n-1)-spheres is locally congruent to one of the following:

• The standard embedding

$$\begin{array}{rcccc} \mathbb{S}^1 \times \mathbb{S}^{n-1} & \to & \mathbb{C}^n \\ (e^{is}, x) & \mapsto & e^{is}x. \end{array}$$

• A singular, bounded immersion of $\mathbb{R} \times \mathbb{S}^{n-1}$ "spiraloid" asymptotic to $\mathbb{S}^1 \times \mathbb{S}^{n-1}$.

- A singular, unbounded "spiraloid" with a smooth end and asymptotic to $\mathbb{S}^1 \times \mathbb{S}^{n-1}$.
- A family of smooth "catenoid-type" immersions of ℝ × Sⁿ⁻¹, some of them being embedded. In dimension 3, one of them takes the particular following form:

$$\begin{array}{rccc} \mathbb{R} \times \mathbb{S}^2 & \to & \mathbb{C}^3 \\ (s, x) & \mapsto & (C+is)x, \end{array}$$

where C is some real constant.

• A family of non-standard smooth immersions of $\mathbb{S}^1 \times \mathbb{S}^{n-1}$. They always have self-intersections.

Appendix: computation of $\Delta\beta$ (proof of Lemma 2)

Here we are going to use the same notations as in Section 2 and 4. We first compute the following

$$\langle \ell_{ss}, \ell_s \rangle = \langle W, \dot{W} \rangle + \left(\frac{\sin \alpha}{r} - k \sin \alpha \right) \langle W, x \rangle + \cos \alpha \langle \dot{W}, x \rangle$$

$$\langle \ell_{ss}, \ell_* v_j \rangle = r \langle \dot{W}, v_j \rangle$$

$$\langle v_j(\ell_s), \ell_s \rangle = \cos \alpha \langle W, v_j \rangle$$

$$\langle v_j(\ell_s), \ell_* v_k \rangle = \delta_{jk} r \cos \alpha$$

$$\langle \ell_{v_j v_k}, \ell_s \rangle = -\delta_{jk} r (\cos \alpha + \langle W, x \rangle)$$

$$\langle \ell_{v_j v_k}, \ell_* v_l \rangle = 0.$$

We shall make use of the following formula:

$$\Delta\beta = \operatorname{div} Jn\vec{H} = \langle \nabla_{e_1} Jn\vec{H}, e_1 \rangle + \sum_{j=2}^n \langle \nabla_{e_j} Jn\vec{H}, e_j \rangle$$

Writing $Jn\vec{H} = ae_1 + \sum_k a_k e_k$, we have

$$\nabla_{e_j} Jn\vec{H} = e_j(a)e_1 + a\nabla_{e_j}e_1 + \sum_k e_j(a_k)e_k + \sum_k a_k\nabla_{e_j}e_k,$$

and an analogous expression for $\nabla_{e_1} Jn \vec{H}$.

Then we obtain

$$\Delta \beta = e_1(a) + a \langle \nabla_{e_1} e_1, e_1 \rangle + \sum_k a_k \langle \nabla_{e_1} e_k, e_1 \rangle$$
$$+ \sum_j \left[a \langle \nabla_{e_j} e_1, e_j \rangle + e_j(a_j) + \sum_k a_k \langle \nabla_{e_j} e_k, e_j \rangle \right]$$

We give the expressions of the coefficients of $J\vec{H}$:

$$a_j = A^2 \frac{\sin \alpha \langle W, v_j \rangle}{r}$$

and

$$a = -A^3B - A(n-1)\frac{\sin\alpha}{r},$$

where

$$A = \left(1 + 2\cos\alpha\langle W, x \rangle + \langle W, x \rangle^2\right)^{-1/2}$$

and

$$B = k + \left(k\cos\alpha + \frac{\sin\alpha\cos\alpha}{r}\right)\langle W, x\rangle + \sin\alpha\langle \dot{W}, x\rangle + \frac{\sin\alpha}{r}\langle W, x\rangle^2.$$

We start with some easy computations:

Lemma 6 a)
$$\dot{A} = -A^3 \left(\cos \alpha \langle \dot{W}, x \rangle - \dot{\alpha} \sin \alpha \langle W, x \rangle + \langle W, x \rangle \langle \dot{W}, x \rangle \right),$$

b) $\langle \partial_s, e_1 \rangle = A^{-1},$
c) $v_j(A) = -A^3 \left(\cos \alpha + \langle W, x \rangle \right) \langle W, v_j \rangle,$
d) $v_j(B) = \left(k \cos \alpha + \frac{\sin \alpha \cos \alpha}{r} + \frac{2 \sin \alpha}{r} \langle W, x \rangle \right) \langle W, v_j \rangle + \sin \alpha \langle \dot{W}, v_j \rangle,$
e) $\nabla_{v_j} v_k = -\delta_{jk} Ar(\cos \alpha + \langle W, x \rangle) e_1,$
f) $\nabla_{v_j} \partial_s = \cos \alpha e_j.$

Proof. **a**),**b**),**c**) and **d**) are easy and left to the reader.

e) We write $\nabla_{v_j} v_k = b_1 \partial_s + \sum_m b_m v_m$. In particular, we have

$$0 = \langle \nabla_{v_j} v_k, v_l \rangle = b_1 \langle \partial_s, v_l | > + \sum_m b_m \langle v_m, v_l | > = b_1 g_{1l} + \sum_m b_m g_{ml} = b_1 g_{1l} + b_l r^2,$$

so we obtain the relation $b_l = -\frac{\langle W, v_l \rangle}{r} b_1$. When $j \neq k$, it yields

$$0 = \langle \nabla_{v_j} v_k, \partial_s \rangle = b_1 \left(g_{11} - \sum_l \frac{\langle W, v_l \rangle}{r} g_{1l} \right),$$

so all the coefficients b_1, b_l vanish, and we obtain **e**). If j = k, we have

$$-r(\cos\alpha + \langle W, x \rangle) = \langle \nabla_{v_j} v_j, \partial_s \rangle = b_1 \left(g_{11} - \sum_l \frac{\langle W, v_l \rangle}{r} g_{1l} \right),$$

so $b_1 = -A^2 r(\cos \alpha + \langle W, x \rangle)$. We deduce that

$$\nabla_{v_j} v_j = b_1 \left(\partial_s - \sum_l \frac{\langle W, v_l \rangle}{r} v_l \right) = b_1 \frac{e_1}{A} = -Ar(\cos \alpha + \langle W, x \rangle) e_1,$$

which implies e).

f) We write $\nabla_{v_j} \partial_s = b_1 \partial_s + \sum_l b_l v_l$. Then we have

$$\delta_{jk}r\cos\alpha = \langle \nabla_{v_j}\partial_s, v_k \rangle = b_1g_{1k} + \sum_l b_lg_{kl}$$

When $j \neq k$, we deduce that

$$b_k = -\frac{g_{1k}}{g_{kk}}b_1 = -\frac{\langle W, v_k \rangle}{r}b_1$$

When j = k, we obtain

$$r\cos\alpha = b_1 r \langle W, v_j \rangle + r^2 b_j,$$

 \mathbf{SO}

$$b_j = r^{-2}(r\cos\alpha - b_1r\langle W, v_j\rangle) = r^{-1}(\cos\alpha - b_1\langle W, v_j\rangle).$$

From these relations we can write

$$\cos \alpha \langle W, v_k \rangle = \langle \nabla_{v_k} \partial_s, \partial_s \rangle = b_1 g_{11} + \sum_j b_j g_{1j}$$
$$= b_1 \left(g_{11} - \sum_j r \langle W, v_j \rangle \frac{\langle W, v_j \rangle}{r} \right) + r \langle W, v_k \rangle r^{-1} \cos \alpha = b_1 A^{-2} + \cos \alpha \langle W, v_k \rangle$$

We deduce that b_1 vanishes and also b_l for $l \neq k$, and finally $b_k = \frac{\cos \alpha}{r}$, so we obtain **f**).

We now compute the different terms of $\Delta\beta$:

Lemma 7 a)

$$e_1(a) = A\dot{a} - \sum_j \frac{A\langle W, v_j \rangle}{r} v_j(a)$$

with

$$A\dot{a} = 3A^{6}B\Big(\cos\alpha\langle\dot{W},x\rangle - \dot{\alpha}\sin\alpha\langle W,x\rangle + \langle W,x\rangle\langle\dot{W},x\rangle\Big)$$

$$-A^{4}\left[\dot{B}-(n-1)\frac{\sin\alpha}{r}\left(\cos\alpha\langle\dot{W},x\rangle-\dot{\alpha}\sin\alpha\langle W,x\rangle+\langle W,x\rangle\langle\dot{W},x\rangle\right)\right]$$
$$-A^{2}(n-1)\partial_{s}\left(\frac{\sin\alpha}{r}\right)$$

and

$$\sum_{j} \frac{A\langle W, v_j \rangle}{r} v_j(a) = 3A^6 B \frac{\cos \alpha + \langle W, x \rangle}{r} (|W|^2 - \langle W, x \rangle^2)$$
$$-\frac{A^4}{r} \left[\left(k \cos \alpha - (n-2) \frac{\sin \alpha \cos \alpha}{r} - (n-3) \frac{\sin \alpha}{r} \langle W, x \rangle \right) (|W|^2 - \langle W, x \rangle^2) + \sin \alpha \left(\langle \dot{W}, W \rangle - \langle \dot{W}, x \rangle \langle W, x \rangle \right) \right],$$

b)

$$\langle \nabla_{e_1} e_1, e_1 \rangle = 0,$$

c)

$$\sum_{k} a_k \langle \nabla_{e_1} e_k, e_1 \rangle + \sum_{j} e_j(a_j) = -\frac{\sin \alpha}{r^2} \left(A^4(\cos \alpha + \langle W, x \rangle)(|W|^2 - \langle W, x \rangle^2) + A^2(n-1)\langle W, x \rangle \right),$$

$$\sum_{j} \langle \nabla_{e_j} e_1, e_j \rangle = \frac{A(n-1)}{r} \left(\cos \alpha + \langle W, x \rangle \right),$$

e)

$$\langle \nabla_{e_j} e_k, e_j \rangle = 0, \quad \forall j, k.$$

Proof.

a) We compute

$$\dot{a} = -3A^{2}\dot{A}B - A^{3}\dot{B} - \dot{A}(n-1)\frac{\sin\alpha}{r} - A\partial_{s}\left((n-1)\frac{\sin\alpha}{r}\right)$$
$$= A^{3}\left(3A^{2}B + (n-1)\frac{\sin\alpha}{r}\right)\left(\cos\alpha\langle\dot{W},x\rangle - \dot{\alpha}\sin\alpha\langle W,x\rangle + \langle W,x\rangle\langle\dot{W},x\rangle\right)$$
$$-A^{3}\dot{B} - A(n-1)\partial_{s}\left(\frac{\sin\alpha}{r}\right)$$

from which we deduce the first equality. Next we have

$$\begin{split} v_{j}(a) &= -3A^{2}v_{j}(A)B - A^{3}v_{j}(B) - v_{j}(A)(n-1)\frac{\sin\alpha}{r} \\ &= A^{3}\left(3A^{2}B + (n-1)\frac{\sin\alpha}{r}\right)\left(\cos\alpha + \langle W, x \rangle\right)\langle W, v_{j} \rangle \\ &\quad -A^{3}\left[\left(k\cos\alpha + \frac{\sin\alpha\cos\alpha}{r} + \frac{2\sin\alpha}{r}\langle W, x \rangle\right)\langle W, v_{j} \rangle + \sin\alpha\langle \dot{W}, v_{j} \rangle\right] \\ &= 3A^{5}(\cos\alpha + \langle W, x \rangle)B\langle W, v_{j} \rangle \\ &\quad -A^{3}\left[\left(k\cos\alpha + \frac{\sin\alpha\cos\alpha}{r} - (n-1)\frac{\sin\alpha\cos\alpha}{r} + \left(\frac{2\sin\alpha}{r} - (n-1)\frac{\sin\alpha}{r}\right)\langle W, x \rangle\right)\langle W, v_{j} \rangle + \sin\alpha\langle \dot{W}, v_{j} \rangle\right] \\ &= 3A^{5}(\cos\alpha + \langle W, x \rangle)B\langle W, v_{j} \rangle \\ &\quad -A^{3}\left[\left(k\cos\alpha - (n-2)\frac{\sin\alpha\cos\alpha}{r} - (n-3)\frac{\sin\alpha}{r}\langle W, x \rangle\right)\langle W, v_{j} \rangle + \sin\alpha\langle \dot{W}, v_{j} \rangle\right] \end{split}$$

Thus

$$\begin{split} A\sum \frac{v_j(a)\langle W, v_j \rangle}{r} &= 3A^6 B \frac{\cos \alpha + \langle W, x \rangle}{r} \sum \langle W, v_j \rangle^2 \\ &- \frac{A^4}{r} \bigg[\left(k \cos \alpha - (n-2) \frac{\sin \alpha \cos \alpha}{r} - (n-3) \frac{\sin \alpha}{r} \langle W, x \rangle \right) \sum \langle W, v_j \rangle^2 \\ &+ \sin \alpha \sum \langle W, v_j \rangle \langle \dot{W}, v_j \rangle \bigg] \end{split}$$

b) We first compute

$$\begin{aligned} \nabla_{e_1} e_1 &= A \left[\nabla_{\partial_s} \left(A \partial_s - \frac{A}{r} \sum \langle W, v_j \rangle v_j \right) \\ &- \sum \frac{\langle W, v_j \rangle}{r} \nabla_{v_j} \left(A \partial_s - \frac{A}{r} \sum \langle W, v_k \rangle v_k \right) \right] \\ &= A \left[A \nabla_{\partial_s} \partial_s + \dot{A} \partial_s - \sum \partial_s \left(\frac{A \langle W, v_j \rangle}{r} \right) v_j - \frac{A}{r} \sum \langle W, v_j \rangle \nabla_{\partial_s} v_j \right. \\ &- \sum \frac{\langle W, v_j \rangle}{r} A \nabla_{v_j} \partial_s - \sum \frac{\langle W, v_j \rangle v_j (A)}{r} \partial_s \\ &+ \frac{1}{r^2} \sum_{j,k} \langle W, v_j \rangle \left(v_j (A) \langle W, v_k \rangle v_k + A (-\delta_{jk} \langle W, x \rangle v_k + A \langle W, v_k \rangle \nabla_{v_j} v_k \right) \right] \end{aligned}$$

Making the scalar product with e_1 , many terms vanish and we obtain

$$\begin{split} \langle \nabla_{e_1} e_1, e_1 \rangle &= A^2 \langle \nabla_{\partial_s} \partial_s, e_1 \rangle + A\dot{A} \langle \partial_s, e_1 \rangle - \frac{A}{r} \left(\sum \langle W, v_j \rangle v_j(A) \right) \langle \partial_s, e_1 \rangle \\ &\quad - \frac{A^3}{r} \left(\cos \alpha + \langle W, x \rangle \right) \sum \langle W, v_j \rangle^2 \\ &= A^3 \left(\dot{\alpha} \sin \alpha \langle W, x \rangle + \frac{\sin^2 \alpha \langle W, x \rangle}{r} - k \sin \alpha \langle W, x \rangle \right) \\ &\quad + \frac{1}{r} \left(\sum \langle W, v_j \rangle^2 A^3 (\cos \alpha + \langle W, x \rangle) \right) \\ &\quad - \frac{A^3}{r} \left(\cos \alpha + \langle W, x \rangle \right) \sum \langle W, v_j \rangle^2. \end{split}$$

Using the fact that $\dot{\alpha} = \dot{\theta} - \dot{\phi} = k - \frac{\sin \alpha}{r}$ we see that the first term in the last sum vanishes, and so does the last two ones together, so we obtain **b**).

c) It will be a consequence of the fact that $|W|^2 = \langle W, x \rangle^2 + \sum \langle W, v_j \rangle^2$ and of the two following equalities:

(1)
$$\sum e_j(a_j) = -\frac{\sin\alpha}{r^2} \left(2A^4(\langle W, x \rangle + \cos\alpha \rangle) \sum \langle W, v_j \rangle^2 + (n-1)A^2 \langle W, x \rangle \right),$$

(2)
$$\sum a_k \langle \nabla_{e_1} e_k, e_1 \rangle = \frac{A^4}{r^2} \sin \alpha (\cos \alpha + \langle W, x \rangle) \sum \langle W, v_k \rangle^2.$$

To prove (1) and (2) we proceed as follows:

$$e_j(a_j) = \frac{1}{r} v_j \left(A^2 \frac{\sin \alpha \langle W, v_j \rangle}{r} \right) = \frac{\sin \alpha}{r^2} \left(2Av_j(A) \langle W, v_j \rangle - A^2 \langle W, x \rangle \right)$$

$$= -\frac{\sin\alpha}{r^2} \left(2A^4(\langle W, x \rangle + \cos\alpha \rangle) \langle W, v_j \rangle^2 + A^2 \langle W, x \rangle \right),$$

from which we obtain (1). Then we compute

$$\nabla_{e_1} e_k = A \left(\nabla_{\partial_s} e_k - \sum_l \frac{\langle W, v_l \rangle}{r} \nabla_{v_l} e_k \right)$$
$$= A \left(\frac{1}{r} \nabla_{\partial_s} v_k + \partial_s (r^{-1}) v_k + \sum_l \frac{\langle W, v_l \rangle}{r^2} \nabla_{v_l} v_k \right)$$
$$= A \left(\frac{\cos \alpha}{r} e_k - \frac{\cos \alpha}{r^2} v_k + \sum_l \frac{\langle W, v_l \rangle}{r^2} \nabla_{v_l} v_k \right).$$

The first two terms of the last expression vanish and thanks to the \mathbf{e}) of Lemma 6, we deduce

$$\langle \nabla_{e_1} e_k, e_1 \rangle = -\frac{A^2 \langle W, v_j \rangle}{r} (\cos \alpha + \langle W, x \rangle),$$

which implies (2).

d) We have

$$\begin{aligned} \nabla_{e_j} e_1 &= \frac{1}{r} \nabla_{v_j} \left(A \partial_s - \sum_k \frac{A \langle W, v_k \rangle}{r} v_k \right) \\ &= \frac{1}{r} \left[v_j(A) \partial_s + A \nabla_{v_j} \partial_s - \sum_k v_j \left(\frac{A \langle W, v_k \rangle}{r} \right) v_k - \sum_k \frac{A \langle W, v_k \rangle}{r} \nabla_{v_j} v_k \right] \\ &= \frac{1}{r} v_j(A) \partial_s + A \frac{\cos \alpha}{r} e_j - \frac{1}{r} \sum_k v_j \left(\frac{A \langle W, v_k \rangle}{r} \right) v_k \\ &+ \frac{A \langle W, v_j \rangle}{r^2} r(\cos \alpha + \langle W, x \rangle) e_1 \end{aligned}$$

 \mathbf{SO}

$$\begin{aligned} \langle \nabla_{e_j} e_1, e_j \rangle &= \frac{1}{r} v_j(A) \langle \partial_s, e_j \rangle + A \cos \alpha - v_j \left(\frac{A \langle W, v_j \rangle}{r} \right) \\ &= \frac{1}{r} v_j(A) \langle W, v_j \rangle + A \cos \alpha - v_j(A) \frac{\langle W, v_j \rangle}{r} + \frac{A \langle W, x \rangle}{r} \end{aligned}$$

The first and the third terms cancel out, and we obtain **d**).

e) This is an obvious consequence of part e) the Lemma 6.

Summing these computations, and using the formula for $\Delta\beta$ given at the beginning of this Appendix, we conclude that $f := A^{-6}\Delta\beta = (I) + (II) + (III) + (IV)$ with

$$(I) := A^{-5}\dot{a} = 3B\left(\cos\alpha\langle\dot{W}, x\rangle - \dot{\alpha}\sin\alpha\langle W, x\rangle + \langle W, x\rangle\langle\dot{W}, x\rangle\right) - A^{-2}\left[\dot{B} - (n-1)\frac{\sin\alpha}{r}\left(\cos\alpha\langle\dot{W}, x\rangle - \dot{\alpha}\sin\alpha\langle W, x\rangle + \langle W, x\rangle\langle\dot{W}, x\rangle\right)\right] - A^{-4}(n-1)\partial_s\left(\frac{\sin\alpha}{r}\right)$$

$$(II) := -A^{-6} \sum_{r} \frac{\langle W, v_j \rangle v_j(a)}{r}$$

$$= -3B \frac{\cos \alpha + \langle W, x \rangle}{r} (|W|^2 - \langle W, x \rangle^2)$$

$$+ \frac{A^{-2}}{r} \left[\left(k \cos \alpha - (n-2) \frac{\sin \alpha \cos \alpha}{r} - (n-3) \frac{\sin \alpha}{r} \langle W, x \rangle \right) (|W|^2 - \langle W, x \rangle^2) + \sin \alpha \left(\langle \dot{W}, W \rangle - \langle \dot{W}, x \rangle \langle W, x \rangle \right) \right]$$

$$(III) := A^{-6} \left(\sum_{k} a_k \langle \nabla_{e_1} e_k, e_1 \rangle + \sum_{j} e_j(a_j) \right)$$
$$= -A^{-2} \frac{\sin \alpha}{r^2} (\cos \alpha + \langle W, x \rangle) \left(|W|^2 - \langle W, x \rangle^2 \right) - A^{-4} (n-1) \frac{\sin \alpha}{r^2} \langle W, x \rangle$$

$$(IV) := A^{-6}a \sum \langle \nabla_{e_j} e_1, e_j \rangle$$

= $-A^{-2}B \frac{n-1}{r} (\cos \alpha + \langle W, x \rangle) - A^{-4} \frac{(n-1)^2 \sin \alpha}{r^2} (\cos \alpha + \langle W, x \rangle).$

References

- [An1] H. Anciaux, Construction of many Hamiltonian stationary Lagrangian surfaces in Euclidean four-space, Calc. of Var. **17**(2003), 105–120.
- [An2] H. Anciaux, Construction of Lagrangian self-similar solutions to the Mean Curvature Flow in \mathbb{C}^n , submitted.
- [BI] D. Blair, *Lagrangian helicoids*, Michigan Math. J. **50**(2002), no. 1, 187–200.
- [Ch] B.-Y. Chen, *Riemannian geometry of Lagrangian submanifolds*, Taiwan J. Math. **5**(2001), 681–723.

- [CU1] I. Castro, F. Urbano, On a Minimal Lagrangian Submanifold of \mathbb{C}^n Foliated by Spheres, Michigan Math. J. **46**(1999), 71–82.
- [CU2] I. Castro, F. Urbano, On a new construction of special Lagrangian immersions in complex Euclidean space, to appear in Quart. Math. J. (Oxford).
- [HL] R. Harvey, H. B. Lawson, *Calibrated geometries*, Acta Math. **148**(1982), 47–157.
- [HR] F. Hélein, P. Romon, Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions, Comment. Math. Helv. **75**(2000), 668–680.
- [Jo] D. Joyce, Special Lagrangian m-folds in \mathbb{C}^m with symmetries, Duke Math. J. **115**(2002), 1–51.
- [Oh] Y.G. Oh, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Z. **212**(1993), 175–192.
- [Wo] J. Wolfson, *Minimal Lagrangian diffeomorphisms and the Monge-Ampère* equation, J. Differential Geom. **46**(1997), 335–373.

Henri Anciaux, IMPA, Estrada Dona Castorina, 110 22460–320 Rio de Janeiro, Brasil email address: henri@impa.br

Ildefonso Castro Departamento de Matemáticas Universidad de Jaén, 23071 Jaén, Spain email address: icastro@ujaen.es

Pascal Romon Université de Marne-la-Vallée 5, bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée cedex 2, France email address: romon@univ-mlv.fr