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Invariant multidimensional matrices

Jean Vallès

“On se persuade mieux, pour l’ordinaire , par les raisons qu’on a soi-même trouvées que par celles

qui sont venues dans l’esprit des autres”(Pascal).

Abstract : In [AO] the authors study Steiner bundles via their unstable hyperplanes and proved

that (see [AO], Tmm 5.9) :

A rank n Steiner bundle on Pn which is SL(2, C) invariant is a Schwarzenberger bundle.

In this note we give a very short proof of this result based on Clebsch-Gordon problem for SL(2, C)-

modules.

1 Introduction

Let A, B, and C three vector spaces over C and φ : A ⊗ B → C∗ a linear surjective map.
We consider the sheaf Sφ on P(A) × P(B) defined by,

0 −−−−→ Sφ −−−−→ C ⊗ OP(A)×P(B)

tφ
−−−−→ OP(A)×P(B)(1, 1)

with fibers Sφ(a ⊗ b) = {c ∈ C | φ(a ⊗ b)(c) = 0}.

Remark 1. If dimCC < dimCA + dimCB − 1 then ker(φ) meets the set of decomposable
tensors, so there exist a ∈ A , a 6= 0 and b ∈ B, b 6= 0 such that φ(a ⊗ b) = 0.

Remark 2. When Sφ is a vector bundle it gives two “associated” Steiner bundles SA on
P(A) and SB on P(B) after projections (see [DK], prop. 3.20).

We denote by (P(A) × P(B) × P(C))∨ the variety of hyperplanes tangent to the Segre
P(A) × P(B)× P(C) and by ({a} × {b} × P(C))∨ the set of hyperplanes in P(A⊗ B ⊗ C)
containing {a} × {b} × P(C).

The next proposition is a reformulation of many results from, [GKZ] (see for instance Thm
3.1’ page 458, prop 1.1 page 445), [AO] (see thm page 1) and [DO] (see cor.3.3).

Proposition 1.1. Let A, B, and C three vector spaces over C with dimCA = n + 1,
dimCB = m + 1 and dimCC ≥ n + m + 1 and φ : A ⊗ B → C∗ a surjective linear map.
Then the following propositions are equivalent :
1) Sφ is a vector bundle over P(A) × P(B).
2) φ(a ⊗ b) 6= 0 for all a ∈ A, a 6= 0 and b ∈ B, b 6= 0.
3) φ /∈ ({a} × {b} × P(C))∨ for all a ∈ A, a 6= 0 and b ∈ B, b 6= 0.
4) φ /∈ (P(A) × P(B) × P(C))∨

Remark 3. When dimCC = dimCA + dimCB − 1 the variety (P(A) × P(B) × P(C))∨ is
an hypersurface in P((A⊗B ⊗C)∨). This hypersurface is defined by the vanishing of the
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hyperdeterminant, say Det(Φ) where Φ is the generic tridimensional matrix (see [GKZ],
chapter 1 and 14).

Proof. It is clear that 1) 2) and 3) are equivalent. It remains to show that 3) and 4) are
equivalent too.
Since ∂(abc) = (∂(a))bc + a(∂(b))c + ab(∂(c)) an hyperplane H is tangent to the Segre
in a point (a, b, c) if and only if it contains P(A) × {b} × {c} and {a} × P(B) × {c} and
{a} × {b} × P(C). We prove here that the third condition implies the two others. Let
H an hyperplane containing {a} × {b} × P(C), we show that there exists c ∈ C such
that H contains P(A) × {b} × {c} and {a} × P(B) × {c}. Let φ the trilinear application
corresponding to H. Since φ(a⊗b)(C) = 0 we have a dimCC-dimensional family of bilinear
forms vanishing on (a, b). Now finding a bilinear form of the above family (i.e. finding
c ∈ C) which verify φ(A⊗b)(c) = 0 and φ(a⊗B)(c) = 0 imposes at most n+m conditions.
Since dimCC ≥ n + m + 1, this point c exists. �

2 Invariant tridimensional matrix under SL(2, C)-action

In the second part of this note we will consider the boundary case

dimCC = dimCA + dimCB − 1

Then, instead of writing φ induces a vector bundle or φ /∈ (P(A)× P(B)× P(C))∨ we will
write equivalently Det(φ) 6= 0.

We denote by Si the irreducible SL(2, C)-representations of degree i and by (xi−kyk)k=0,··· ,i

a basis of Si.

Theorem 2.1. Let A, B and C be three non trivial SL(2, C)-modules with dimension
n+1, m+1 and n+m+1 and φ ∈ P(A⊗B⊗C) an invariant hyperplane under SL(2, C).
Then,

Det(φ) 6= 0 ⇔ φ is the multiplication Sn ⊗ Sm → Sn+m

Proof. When φ ∈ P(Sn ⊗ Sm ⊗ Sn+m) is just the multiplication Sn ⊗ Sm → Sn+m it is
well known that it corresponds to Schwarzenberger bundles (see [DK], prop 6.3).

Conversely, let A = ⊕i∈ISi ⊗ Ui, B = ⊕j∈JSj ⊗ Vj where Ui, Vj are trivial SL(2, C)-
representations of dimension ni and mj . Let xi ∈ Si, xj ∈ Sj be two highest weight
vectors and u ∈ Ui, v ∈ Vj. Since Det(φ) 6= 0, φ((xi ⊗ u)⊗ (xj ⊗ v)) 6= 0 and by SL(2, C)-
invariance φ((xi⊗u)⊗ (xj ⊗v)) = xi+jφ(u⊗v) ∈ Si+j ⊗Wi+j. By hypothesis φ(u⊗v) 6= 0
for all u ∈ Ui and v ∈ Vj so, by the Remark 1, it implies that dimWi+j ≥ ni +mj − 1, and

S
ni+mj−1
i+j ⊂ C∗.

Assume now that B contains at least two distinct irreducible representations. Let i0 and j0

the greatest integers in I and J . We consider the submodule B1 such that B1⊕S
mj0

j0
= B.

Then the restricted map A⊗B1 → C∗ is not surjective because the image is concentrated

in the submodule C∗

1 of C∗ defined by C∗

1 ⊕ S
ni0

+mj0
−1

i0+j0
= C∗. Now since

dimC(C1) < dimC(A) + dimC(B1) − 1

there exist a ∈ A, b ∈ B1 ⊂ B such that φ(a⊗ b) = 0. A contradiction with the hypothesis
Det(φ) 6= 0.
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So A = Sni

i , B = S
mj

j and S
ni+mj−1
i+j ⊂ C∗. Since dimCC = dimCA + dimCB − 1, we have

(i + 1)ni + (j + 1)mj − 1 = dimCC ≥ (i + j + 1)(ni + mj − 1) which is possible if and only
if ni = mj = 1 and C = Si+j. �

Corollary 2.2. A rank n Steiner bundle on P
n which is SL(2, C) invariant is a Schwarzen-

berger bundle.

Proof. Let S a rank n Steiner bundle on P
n, i.e S appears in an exact sequence

0 −−−−→ S −−−−→ C ⊗ OP(A) −−−−→ B∗ ⊗ OP(A)(1) −−−−→ 0

where P(A) = P
n, P(B) = P

m and P(C) = P
n+m. If SL(2, C) acts on S the vector spaces

A, B and C are SL(2, C)-modules since A is the basis, B∗ = H1S(−1) and C∗ = H0(S∗).
If S is SL(2, C)-invariant the linear surjective map

A ⊗ (H1S(−1))∗ → H0(S∗)

is SL(2, C)-invariant too. �

Remark. The proofs of the theorem and the proposition, given in this paper, are still
valid for more than three vector spaces when the format is the boundary format.

I would like to thank L.Gruson, M.Meulien and N.Perrin for their help.
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