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Abstract

We present a model of melt segregation in a mush submitted to both compaction and shear. It

applies to a granitic melt imbedded within a partially molten continental crust, able to sustain 

large stress values. The rheology of the melt and of the matrix constitute the external 

constraints. Time and length considerations also provide a posteriori constraints on the 

results. The mathematical derivation starts with the equations for melt and plastic flow in a 

mush. They are manipulated to obtain equations for the mean flow field and for the 

separation velocity. Assuming that the mean flow field is simple shear, a specific set of 

equations for the melt flow in a shear field is obtained. After simplifying the equations, they 

finally reduce to two systems of coupled equations. One is the well-known equation for 

compaction. The other is new and describes melt channelling during shear in a mush with a 

constant viscosity plastic matrix. Three free parameters are observed. One is the usual 

compaction length, and the two others are functions of the stress and strain amplitude during 

shear. Compaction instabilities lead to the development of spherical pockets rich in melt 

while shear channelling instability segregates melt in parallel veins. The size of the pockets 

and the distance between veins remain close to the compaction length. The two types of 
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instability segregate melt. But the compaction process is generally so sluggish that it cannot 

compete with the channelling one. The shape of the initial porosity perturbation has little 

influence on the final amplitude and wavelength of the generated structures. Scaling the 

equations provides insight on the dependence of the solutions on the initial parameters. 

Actually, the viscosity ratio between the matrix and its melt controls the compaction length, 

i.e. the distance that separates the main veins of segregated melts. The channelling time is 

controlled by the amount of inter-granular melt present in the system and of the amplitude of 

the shear stresses. During channelling the inter-granular melt is completely squeezed out 

from the volume in between veins. As melting progresses, the successive batches of melt, as 

well as the residual solid matrix, are increasingly more dehydrated. As a result, both phases 

progressively stiffen without changing their viscosity contrast and the associated compaction 

length. The segregation process stops when the tdehydration process clamps the deformation 

of the solid matrix. Our model is surprisingly constrained to a narrow window of the 

parameters. This suggests that the compaction length L is metric or sub-metric, as is the 

distance between veins. Each channelling cycle leads to the segregation of a small amount of 

melt (about 5%) and lasts for about 30 ka to 300 ka. Those cycles are driven by the melting 

resulting from the heating due to diffusion of a deep heat source. The heat source must be 

located at some distance (about 10 km) from the melting zone, so segregation has time to 

develop as melting progresses. Few cycles may develop, but they restrict the amount of melt 

to about 20 % in total to be extracted from the matrix.  
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 1. Introduction 

 Large amounts of magma result from enhanced melting joint with melt segregation. 

Whereas melting is controlled by the available heat, melt segregation is controlled by the 

external stress field. The source rock at the onset of melting has the appearance of a mush, a 

mixture of a weak phase within a stronger matrix. Melt segregates and migrates owing to a 

competition between compaction and channelling under shear. Compaction results from the 

buoyancy forces due to the difference of density between the melt and the solid grains. Melt 

channelling is induced by the stress gradient due to the plastic flow of the solid framework.  

 In the late 80’s a mathematical formalism describing both melt compaction and 

channelling under shear of a mush emerged from several studies [Sleep, 1978; Scott and 

Stevenson, 1984; McKenzie, 1984, Stevenson, 1989]. Applications mostly considered melt 

migration within the mantle. Compaction spontaneously leads to melt concentration into 

spherical pockets [Scott and Stevenson, 1984; Richter and McKenzie, 1984; Scott and 

Stevenson, 1986; Wiggins and Spiegelman, 1995]. The melt pockets are soliton waves, called 

magmons [Scott and Stevenson, 1984] in Earth Sciences. They propagate as solitary waves, 

i.e. they can travel long distances without distortion [Drazin and Johnson, 1989].

Field data from ophiolite and lherzolite massifs partly support soliton development 

in the mantle [Ceuleneer and Rabinowicz, 1992; Ceuleneer et al., 1996; Rabinowicz et al., 

2001; 2002]. Indeed, melt concentrates in the mantle owing to segregation under shearing at 

the interface between the lithosphere and the plastic mantle [Ceuleneer and Rabinowicz, 

1992; Ceuleneer et al., 1996]. However, the relative scarcity of shear related impregnations 

proves that compaction dominates over channelling in the mantle in most cases. This can be 

explained by the weak amplitude of the stress gradient generated by mantle convection 

and/or plate drift compared to those of the melt buoyancy forces in the mantle.  
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 Granitic magmas form in the intermediate to lower continental crust by dehydration 

melting of micas and/or amphiboles combined with quartz and plagioclases [Thompson, 

1982; Clemens, 1990]. Biotite starts melting above a temperature of 800°C and the reaction 

is completed at 900°C [Patiño Douce and Johnston, 1991]. Melting requires additional heat, 

for instance provided by underplating mafic magmas from the mantle. At those temperatures, 

the continental crust is still able to sustain relatively high shear stress values in addition to a 

vertical load. Both stress systems should lead to competition between compaction and melt 

channelling by shear in case of a granitic mush. It represents a basic difference with melt 

segregation within mantle conditions. 

Recent investigations on the rheology of partially molten rocks (PMR) point to non-

linear feedback loops that interact during incipient melting [Vigneresse et al., 1996; Burg and 

Vigneresse, 2002]. They result from the large viscosity contrast, the random distribution of 

melt and the non linear amount of melt produced with increasing temperature. In addition, 

when the viscosity contrast becomes large enough, instabilities develop, leading to sudden 

jumps from the viscosity of the melt to that of the matrix, and the other way around 

[Vigneresse and Burg, 2003]. Discontinuous bursts of melt are expelled out of its matrix. 

Analogue and numerical models using a cellular automaton also document such irregular 

extraction of melt [Barraud et al., 2001; Bons et al., 2001; Vigneresse and Burg, 2000; 

Holtzman et al., 2003]. However the exact nature of such instabilities is not yet fully 

understood.

Direct applications of models derived from mantle conditions do not lead to expected 

discontinuities [Brown et al., 1995], nor to metric compaction length [McKenzie, 1984; 

Wiggins and Spiegelman, 1995] as observed for granitic melts in the field. Indeed, melt 

pockets are metric or sub-metric in size [Mehnert, 1968; Brown et al., 1999] as observed in 

migmatites (Figure 1). The time that leads to granite plutons formation is of the order of 1 
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Ma or less, as documented by isotopic ages or thermochronometry [Harayama, 1992; Harris 

et al., 2000]. We consequently consider a model that takes into account both compaction and 

shear in a strong continental crust with a weak molten phase. A careful manipulation of the 

equations reveals three possible driving terms for melt channelling during shear. The first one 

results from the softening of the viscosity of the solid matrix in presence of inter-granular 

melt films [Stevenson, 1989; Hirth and Kohlstedt, 1995]. The second results from interfacial 

stress gradients and damage [Ricard, at al., 2001]. At last, in the present article, we show that 

the proportionality of the deviatoric forces with the solid concentration causes channelling. 

This last effect is purely geometric and thus independent of the physical interaction between 

melt and solid. Being proportional to the amplitude of the shear stress, it is important only in 

case of a stiff mush submitted to large shear stresses as it is the case within granite bodies. As 

a consequence, this effect is systematically studied in the present paper. In the models, the 

scaling of the parameters allows direct variation and examination of their respective 

influence. The selected ones fit within constraints imposed by observations in granitic fields. 

 The article is organised as follows. In section 2, we discuss and adapt the equations 

governing melt motion within a deforming matrix. The whole system is submitted to vertical 

compaction and horizontal shear. In section 3, we fully detail the mathematical formalism. 

The basic equations of mass conservation and flow equations for the melt and the matrix 

describe compaction and melt channelling. When coupled, they form a set of dimensionless 

equations. This allows one to separately examine and resolve the horizontal melt migration 

triggered by the horizontal shear and the vertical migration due to compaction. In section 4, 

numerical results from 1D models describe melt redistribution due to shear instabilities. They 

are compared to 1D compaction models. In sections 5 and 6, we use the models to explain 

melt segregation in granite bodies. 
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2. Equations of state 

We consider a mush composed of a highly viscous granular rock in which melt forms an 

interconnected network of tubes and surfaces at wetted grain boundaries. When subjected to 

stress, both the fluid and the solid phases flow, but strain preferentially partitions into the 

fluid. Two factors control the differential motion. The first factor results from the difference 

in pressure and the surface tension between the fluid and the solid. The second factor 

depends on the permeability of the matrix.  

2.1 Rheology of the melt and its matrix 

 We consider partial melting in the continental crust under the action of a distant 

stationary source of heat. Granitic melts result from dehydration melting of muscovite and 

biotite [Thompson, 1982; Patiño Douce, 1999]. The former reaction starts above 700°C, but 

results in a smaller amount of melt, because of the restricted abundance of muscovite. We 

can neglect it in a first approach, though it does not provide enough melt to reach connection. 

The biotite breakdown reaction produces melt. It starts just above 800°C and is nearly 

completed at 900°C. A rough estimate is that 1% of melt should result from an increase of 

1°C in temperature. The melt, which has a granitic composition, has a viscosity commonly 

ranging from 104 to 106 Pa.s, depending on its temperature, water content and degree of 

polymerisation when it starts cooling [Scaillet et al., 1997; Holtz et al., 1999]. It has a 

Newtonian viscosity, with a linear relationship between strain rate c0 and stress . In 

contrast, the matrix has a power law dislocation creep rheology [Kirby and Kronenberg, 

1987]:

  c0 = A  exp (-Q/RT)       (1a) 

In this expression, the exponential constant  = 3, A is a pre-exponential constant (-11.2), Q 

an activation energy (150 kJ/mole) and R designates the Boltzmann constant. We adopt 
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experimentally derived values for quartz-bearing rocks [Kirby and Kronenberg, 1987; Wilks 

and Carter, 1990], at about 800°C because the melting conditions require those minerals to 

enter reactions. Hence, they also control rheology. Transforming the strain rate-stress relation 

into logarithmic coordinates yields a linear equation: 

  Log c0 = 3 Log  - 26        (1b) 

in which the pre-exponential and the temperature-dependant terms are combined into the 

initial strain rate. In the same coordinates, and for comparison, the rheology of the melt 

reads, adopting an average viscosity of 105 Pa.s: 

  Log c0 = Log  - 5        (1c) 

 However, crustal-derived melting is also the source of water exchange between the 

matrix and its melt. It influences the viscosity of both phases (Figure 2). At incipient melting, 

the melt presents its lowest viscosity (104 Pa.s) whereas the water content is the highest 

(about 5%) [Pichavant et al., 1992]. Conversely, when melting reaches about 50%, the water 

content stabilises at about 1% and viscosity is the highest at 106 Pa.s [Scaillet et al., 1997; 

Petford et al., 2000]. Simultaneously, the viscosity of the solid phase also varies. It decreases 

by about 3 orders of magnitude when temperature increases by 100°C to complete melting. 

The two effects modifies the viscosity, depending on the bulk percentage of melt. First, the 

mineral change in the solid phase strengthens it, replacing quartz and micas by plagioclase 

and sucking water. At present, there is no formal data on the strengthening of the crust under 

dehydration melting. We use an estimate derived from experimental deformation of wet and 

dry anorthite [Rybacki and Dresen, 2000], which considers only the strongest mineral, and 

thus provides an upper bound for crustal strengthening. The pre-exponential term (Equation 

1) drastically decreases, whereas the activation energy increases by a factor of 3. We estimate 

that the viscosity of the solid phase linearly varies during melting as wet amphibolite is 

replaced by dry granulite. About 1% melting stiffens the crust by about a factor of 2 (100.33).
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Therefore, 5 % melting stiffens the matrix by a factor of 32 (101.6), i.e. more than one order 

of magnitude. It is certainly an upper estimate for the stiffening of the matrix. Second, when 

the amount of melt is high (above 20-30%), the matrix partially looses its cohesion, and the 

mush behaves as a suspension [Lejeune and Richet, 1995; Vigneresse et al., 1996, Burg and 

Vigneresse, 2002]. The viscosity of the bulk material drops by more than about 10 orders of 

magnitude. Consequently, with ongoing melting, the melt and the matrix increase their 

viscosity in nearly the same proportion. This implies that their ratio does not change during 

melting.

2.2 Pressure

In a first approach, the resistance of the solid to deformation under isotropic stresses 

results from its bulk plastic viscosity [McKenzie, 1984]. However, this is not enough to 

account for the resistance to flow. Introducing the difference in pressure P = Pm - Pf

between both phases partly explains the differential flow [Scott and Stevenson, 1984; 

Bercovici et al., 2001a]. According to Bercovici et al., [2001a], such a difference, or 

“effective pressure”, relates to the rate of porosity change

Dt
DP m

1        (2a)

in which m is the instantaneous viscosity of the matrix and Dt
D  is the total derivative of

melt concentration .

mftDt
D vv 1      (2b)

where vm and vf designate the melt and solid velocities, and t is the time.
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2.3 Surface tension and permeability

The surface tension ST that develops between the two phases [Bercovici et al., 

2001a] must also be estimated [Ricard et al., 2001]: 

        (3)TS

where  designates the reduced surface tension between the solid and liquid phases, and 

d
16  is the variation of interfacial area per unit volume during deformation.

Melt migration and melt channelling essentially result from the non-linear 

relationship between porosity  and permeability of the connected melt network k( ).

Laboratory experiments suggest that a mush with millimeter grain size and melt

concentration of 1% has a permeability of 10-15 m2 [Maaloe and Scheie, 1982]. A power law 

relationship between permeability and melt concentration  is usually expected [McKenzie, 

1984]

        (4)ndk 2

where n is a dimensionless constant and d designates the characteristic size of the solid 

grains. The power law coefficient n depends on the topology of the melt network. A 

commonly used value is about 2 or 3 in the case of a flow confined to tubes and films,

respectively. The geometry of the melt depends on the value of the dihedral angle of wetting. 

When the surface tension  is small, the dihedral angle is also small (20 – 30°) [Minarik and 

Watson, 1995]. In migmatites, a thin film of melt impregnates grain boundaries, leading to an 

interconnected network of melt [Mehnert et al., 1973; Brown et al., 1999; Swayer, 2001]. 

Conversely, at higher surface tension, the dihedral angle larger than 60° leads to restricted 

melt pockets stuck at grain triple junctions [Laporte and Provost, 2001]. 
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Dihedral angles measurements in melts of granitic composition show that the 

surface tension between the two phases is large, but the angles remain smaller than 60° 

[Mehnert et al., 1973; Laporte, 1994]. Melts circulate within channels, yielding a power law 

coefficient close to 2. In static conditions, melt is connected only above a critical melt

fraction c and melt starts segregating only when porosity is larger. The threshold decreases 

in dynamic conditions and may even become almost negligible when strain acts on the mush

[Vigneresse and Burg, 2003]. This implies that the melt content  in the permeability law 

k( ) (Equation 4) represents the excess of melt concentration. This value is the free 

parameter in our system. In what follows, the excess melt concentration is simply called melt

concentration or mush porosity. It differs from the total melt percentage of the source m(t).

When successive cycles of melting and segregation develop, the melt percentage m(t) is the 

sum of the  of all cycles. 

3. Mathematical formalism 

3.1 Basic equations 

The formulation developed involves the simultaneous solution of two sets of 

equations. They describe the vertical motion of the melt due to compaction and the horizontal 

motion due to shear. Both must be stated for the melt and the solid phase. For the sake of 

simplicity, these equations are finally non-dimensionalized. The governing equations to 

model two phase flows are: mass conservation, porous flow for the melt and plastic flow for 

its matrix. To this point our formulation is similar to previous work [Bercovici and Ricard, 

2003].

Mass conservation for the melt and the solid 

0. ft v        (5a)
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01.1
mt v       (5b)

In Equations 5a and 5b, the density of both the fluid f and the solid m is assumed to be 

uniform, owing to the very small compressibility of both the melt and the solid (10-9 to 10-11

Pa-1) [Agee and Walker, 1993].

Darcy equation

It expresses the stress balance that acts on the melt fraction  of the porous media:

PkgzP fm
f

ff vv0   (5c)

with f and f are the melt viscosity and density; g is the gravity acceleration and z is the 

vertical coordinate. The function  designates the surface energy partitioning between the 

melt and the solid [Bercovici and Ricard, 2003]. The right hand side terms respectively 

designate the pressure gradient, the viscous stress gradient due to melt percolation, the stress 

gradient due to the pressure jump between the two phases P, and finally the stress gradient 

due to the variation of the interfacial area during deformation.

Plastic flow equation

It controls the stress balance acting on the solid fraction (1 – ) of the porous media

PkgzP fm
f

mmm 11.10
2

vv (5d)

Here, m is the solid density and m the deviatoric stress tensor. The successive terms of the 

equation correspond to the effective pressure gradient in the solid, the viscous stress 

generated by the deformation of the solid, the stress due to the friction generated by melt

percolation, the stress due to the pressure step between the solid and the liquid and the one 

due to surface tension.

The elastic stresses resulting from the compressibility of both the melt and the solid 

phases have been neglected. Indeed, they play a role during compaction only if the Deborah 
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numbers of either the fluid or the solid exceed unity [Sumita et al., 1996; Vasiliev et al., 

1998, Fontaine et al., 2003]. The Deborah number is the product of the compressibility

(about <10-9 Pa-1) by the amplitude of the deviatoric stress due to shear (about 107 Pa, see 

Table 1). Under such assumptions, the Deborah numbers for both phases are very small (< 

10-2) and may be neglected. 

3.2 Equations for melt segregation and shear

We introduce the mean flow velocity field C and the separation field S:

       (6a)mf vvC 1

       (6b)mf vvS

Combined, both equations determine the differential velocity between the melt and its matrix

        (6c)mvSC

The respective densities of the solid and of the melt can be considered uniform, implying

        (6d)0.C

Hence, the Darcy equation (Equation 5c) becomes

PgzPk ff
f S     (7a)

in which we decompose the first term as follows

gPgzPgzP mmff    (7b) 

where  = m– f and g is the gravity vector. We then use Equation 5d to estimate

. It results that Equation 7a writes gzP mm1

PPk m
f 11..1 gS (7c)

The stress deviator verifies 

mmtmmmm vvv .13
2)(1.1.   (7d) 
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Considering Equation 6, together with Equations 2 to 7, we obtain the following set of 

equations:

Porosity

01. CSt       (8a)

Mean flow motion 

SC 1.11
mm .tP    (8b) 

 .         (8c)0.C

tmmm gzP )(11 CC

Pk
f

mtm 1.1
3
2)(1. SSSS (8d)

Modified Darcy flow for the melt motion: 

SSSS .13
2)(1. mtm

f

k

PP tm 1)(1..1 CCg (8e)

The successive terms of the last equation (Equation 8e) relate the separation velocity S to the 

effective pressure gradient, the buoyancy force, the gradient of deviatoric stresses induced by 

the mean flow field C, and the surface stresses. Those equations (Equations 8a to 8e) 

constitute a complete set of coupled equations for , Pm, C and S. The surface energy 

partitioning function  varies with melt concentration . Bercovici et al. [2001a] suggested 

that the surface stresses are equally balanced by the fluid and the solid. This hypothesis is 

verified when . An alternative to this hypothesis is , because of the drastic contrast 

in viscosity between the melt and the solid [Bercovici and Ricard., 2003].

0

3.3 Equations for melt segregation within an uniform shear field
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We assume that the mean flow C results from the shearing movement along the 

fault. As long as the fluctuations of melt inside the fault are small, we can approximate C by 

C         (9a)
0
0
0xc

In the above expression, the coordinates x and y designate the horizontal coordinate normal

and parallel to the fault axis, respectively (Figure 3). The parameter c0 represents the shear 

induced strain rate of the solid framework (Equation 1b). Hence, c0 relates to the shear 

velocity

c0 = V/h         (9b)

in which h is the thickness of the shear zone and V its tangential velocity. In the present 

study, we are concerned with the early development of melt impregnation structures. 

Following Stevenson [1989], we assume that these structures result from the development of 

the separation field S while at the same time the mean flow C remains essentially unchanged. 

Consequently, in the following we assume that C is independent of time and verifies 

Equation 9a. This hypothesis is likely verified as long as the generated melt impregnations

have not been shifted along the plastic flow lines (see sections 5 and 6). Due to the shear, we 

rotate the two horizontal axis by 45°. The new coordinates X and Y correspond to the 

direction of maximum stretching 3 and maximum compression 1 respectively (Figure 3). 

The following expressions for the flow and stress fields are deduced 

C
0

2
1
2
1

0

0

YXc

YXc

       (9c)

     (9d)
000
00
00

)( 0

0

c
c

m

m
tm CC
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0
)(1. 0

0

Yc
Xc

m

m

tm CC     (9e)

To derive Equation 9e, we assume that m is a constant. This is consistent with the 

assumption of a constant strain rate c0 (see Equation 9b). Introducing Equation 9b into 

Equation 8d, we assume that  is small, simplifying (1 - ) to 1 and m(1 + 1/ ) to m/ . The 

simplified form for Equations 8a, 8b and 8d writes

02
1. 0 YXYXct S      (10a)

S.mP        (10b) 

Pzg

PYYc

PXXc

k m

m

mf

1

1

1

. 0

0

SS (10c)

When is infinitesimal, the right-hand-side term of equation (10c), P1 , is small in 

comparison with the left-hand-side term, S.m , because S.mP , see 

equation (10b), and SS .. 2
mm . Hence, it is justified to drop the P1

term in equation (10c). This simplification is important, because it shows that the surface 

stresses triggered by the pressure difference between the solid and the liquid have no effect 

on the melt movement provided the melt concentration is infinitesimal. Moreover, it allows 

for the direct computation of S based upon the melt distribution .
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The three equations (10) form the core of our model. They respectively state the 

basic equation of melt conservation (Equation 10a), melt movement (Equation 10c), and 

effective melt pressure (Equation 10b). As shown in Bercovici and Ricard [2003], the 

equations of melt migration derived with Bercovici and Ricard [2003]’s formalism and with 

McKenzie [1984]’s formalism are similar provided: i) the melt concentration is infinitesimal,

ii) the bulk viscosity of the mush introduced by McKenzie [1984] equals m . According to 

Scott and Stevenson [1984], the expression of the bulk viscosity is valid when the melt flows 

in cylindrical conduits. It applies to melt migration in granite because it occurs in inter-

granular channels (see section 2.2). These developments show that the modified Darcy flow 

equation (equation 10c) is independent of the surface stresses when they are equally balanced 

between the fluid and the solid, i.e. when . This is clearly not the case, since the drastic 

contrast in viscosity between liquid and solid cancels .

The different possible formulations of solid and melt flow equations in a mush

differ only by the terms describing the effects due to surface tension. In the present study, we 

assume that surface tension is negligible, which is an over-simplification. Bercovici et al. 

[2001b] derived the equations of melt migration during shear. Their method requires an 

explicit resolution of the coupling between melt segregation flow S and shear flow C, but it 

also takes into account the effects due to surface tension (Equation 8d), emphasising very

important effects due to the surface tension generated during melt migration (see section 7). 

In the present study the model is based on a simplified but reasonable version of the flow 

equations.

To derive Equations 10, we use the same framework as Stevenson, [1989]. 

However, this author makes a distinct evaluation of the stress gradient generated by the shear 

movement tm )(1. CC compared to the one used in the present study. Because 
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is infinitesimal, Stevenson, [1989] assumes that , but considers that the matrix

viscosity  is not a constant but rather a function that depends on . This explains why the 

respective terms

mm1

m

Xcm 0  and Ycm 0  are replaced, in the right hand side of the Darcy 

equation, by terms that are proportional to Xcm
0  and Ycm

0

0

 (compared to our 

Equation 10c). The resulting equations are mathematically similar to ours. But they differ in 

their physical meaning. With our formalism, the segregation during shear results from the 

reduction of the resistive forces as the volume of the solid fraction decreases. Under 

Stevenson [1989]’s formulation, segregation is due to the softening of the matrix caused by 

the viscosity drop of increased interstitial melt fraction.

3.4 Simplified dimensionless equations for melt channelling and compaction 

In the previous section, we have shown how to reduce the melt segregation problem

to the resolution of a non-linear system that involves coupling between melt concentration 

and separation velocity S (Equations 10). To nondimensionalize the equations, we choose 

scales for melt concentration, length, time, and consequently for velocity. The melt

concentration  inside the mush results from the balance between melting production and 

melt segregation. The mean inter-granular melt concentration during segregation , noted 

here as the bulk melt concentration, is a quantity closely related to the coupling between 

segregation and melting. In case of melt segregation in the lower crust,  ranges from a few 

percent up to the critical rate for mush deconsolidation (around 20 %). In section 5, we show 

how to relate  to the heating rate of the crust and to the fault thickness h. From these 

remarks, it appears useful to scale the melt concentration  by the bulk melt concentration 

. The compaction length L is a good candidate to calibrate the lengths [Stevenson, 1989].

0

0

0
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0

0

f

mkL         (11a)

This considers the viscosity ratio between the matrix and the fluid, as well as the ratio 

between the mush permeability k0 = k( 0) and the bulk melt concentration 0. The scaling for 

the Darcy velocity vd is

f
d

gk0v         (11b) 

The scaling for time  is 

d

L
v

0 .         (11c)

The ratio vd/ 0 corresponds to the magma velocity during compaction inside the mush.  is 

the time needed by the magma to move by a distance equal to the compaction length L. 

Under such assumptions and scaling, Equations 10 become

0. YXYXNt vS      (12a)

S.P         (12b) 

1
.1

YN
XN

1
s

s

n SS      (12c)

in which two dimensionless numbers Nv and Ns are introduced. The first, Nv is the shear 

velocity divided by the compaction velocity. We call it the velocity number:

d
v

LcN v2
00 .         (13a)
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In contrast, Ns is the ratio between the stress gradient and the buoyancy gradient. This 

expression is called the shear number:

gL
cN m

s
00 (13b)

The set of Equations (12) allows us to compute the 3-D melt flow driven by shear and 

compaction. It is still too complicated to be resolved easily. To further simplify the problem,

we assume: (i) that YXYXNv  = 0, and (ii) that each X, Y and z component of the 

separation velocity S depends only on X, Y and z respectively: i.e. S verifies: 

S
zS
Y
XS

z

Y

X

S        (14)

The YXYXNv  term represents the mass flow parallel to the fault plane transported 

by the shear field C: i.e. along the y-direction. The drop of this term in the equation (12a) can 

be justified if one assumes that the reference frame X, Y, z moves with the shear field C 

(Figure 3). C being not uniform along the x direction, the velocity of the reference frame

should vary with x. In a geological context, see section 5, the horizontal separation of the 

melt during shear is small, and remains smaller than the compaction length L. Besides, the 

length h of the fault is large compared to the compaction length L. Hence, at the scale of the 

spot where melt channelling develops, the shear flow velocity C can be considered as locally 

uniform. It justifies that the melt redistribution at the compaction length scale can be studied 

assuming an uniform shear, and thus assuming that YXYXNv =0. The shear 

number  for the cases of geological interest is large: about 100. It results that the flow vN
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velocity during shear is very large compared with the velocity at which melt is segregated. 

Accordingly, the melt impregnations themselves are strongly deformed by shear. This point 

is discussed in sections 5, 6 and 7.

We show in section 4 that the shear does not concentrate melt in the Y- direction, 

while in the X-direction melt spontaneously concentrates into several discrete places. 

Consequently, melt accumulates in planes parallel to Yz. Hence, the melt flow S driven by 

the shear occurs only in the X-direction, and the one driven by compaction only in the 

vertical direction z.

To sum up, with the formalism used for melt compaction and shear melt

channelling, two independent set of 1-D equations have to be resolved. The two sets are 

respectively called compaction and channelling equations. They write as follows: 

i) A couple of scalar equations describes the vertical movement of the melt under compaction

0z
S

t
z         (15a)

111
2 z

S
zS z

z      (15b) 

They are similar to those found for 1D compaction in a mush with a small (  <<1) porosity 

[Scott and Stevenson, 1984; Wiggins and Spiegelman, 1995; Rabinowicz et al., 2002]. 

ii) A couple of equations describes the horizontal flow of melt induced by shear (melt

channelling)

0X
S

t
X         (16a)

XNX
S

XS s
X

X 11
2      (16b) 

Both sets of equations only differ by one term. The source term XNs  on the right hand side 

of Equation 16b is replaced by a constant in Equation 15b. We call this term the “channelling 
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factor”. Scaling used to make the equations non-dimensional is the same for both the 

compaction and the channelling equations. Indeed, when the time scale  (see Equation 11c) 

is divided by Ns, the new dimensionless channelling equations are not modified except that 

the source term of Equation 16b, XNs is also divided by the same value, leading to X .

This means that the stress amplitude induced by shear accelerates the channelling process, 

but does not modify the spatial redistribution of melt during melt channelling. Accordingly, 

we can restrict the computation to the case of Ns = 1 (see next section). 

4. Resolution of the coupled equations

As stated above, the formulation of the melt channelling under uniform shear introduced in 

this article is new, though aspects are very similar to Stevenson [1989]. We first present in 

section 4.1, a linear stability analysis of the channelling equations (Equations 16). In 4.2, 

solutions of the linearised version of the equations are compared to the full solutions of

Equations 16. Because many studies present solutions of the compaction equations 

(Equations 15), we only present some typical solutions of these equations (see 4.3). They are 

later compared to those of the channelling equations. 

4.1 Linear stability analysis of the channelling equations

We assume that instability develops when the porosity profile (X,t=0) departs 

from the value of 1 only by an infinitesimally small perturbation. Then as long as the 

variations of (X,t) remain small, we can assume that  = 1 in the left hand side of Equation 

16b. Hence, the linear equations ruling the evolution of porosity verify

0X
S

t
X  (17a)

XNX
S

XS s
X

X  (17b) 
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The solutions of the linear set of Equations 17 are the superposition of sinusoidal functions 

with different waves numbers k. Therefore a mono-chromatic solution k is represented by 

       (18))sin()(1 kXtkk

in which k(t) is given by

tk
k

Nt sk 2

2

0 1exp)(       (19)

with 0 the initial amplitude of the periodic perturbation. It is inferred that, the melt

distribution along the X-axis is linearly unstable. The growth rate of the periodic perturbation 

is 22 1/ kkNs , which is equal to Ns for large values of k. Note that Stevenson [1989] found 

a similar dependence of the growth rates on the wave numbers k.

The linearised version of the melt channelling equations along the Y-direction 

verifies

YNY
S

YS s
Y

Y      (20) 

Therefore, the growth rate of any porosity perturbation along the Y-direction is negative and 

dampens with time. It demonstrates that melt channelling occurs only in the X-direction: the 

direction of maximum stretching 3.

4.2 Numerical solutions of the channelling equations 

The equations (Equations 16a, 16b) are solved in a periodic domain of length H. 

The channelling number Ns is chosen equal to 1. The finite difference method we use is 

based upon a second order scheme in time and a fourth order in space [Barcilon and Richter, 

1986]. The region is discretized based upon a grid of 4000 points with a time step of 2 10-4.

The model starts with a porosity distribution that includes a small perturbation.
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Reference model 

We select a mono-chromatic porosity field  to initiate a numerical solution to 

Equations 16. It verifies Equations 18 with the parameters

0k

0 = 0.2, k0 = / , and the 

dimensionless wavelength  = 0.625. The porosity waves are plotted at successive periods of 

time (Figure 4) over the domain of length H = 2.5. The model initiates at time t = 0, but soon, 

at time t = 0.5, instabilities develop with a relatively strong amplitude (± 0.34). However, 

their shape and amplitude look very similar to those computed using the linearised version of 

the melt channelling equations (Equations 17), both values being within 1%. From time 0.5 

to 1.5, the growth rate of the instability remains very close to one. The maximal and minimal

values of the perturbation stand at their initial position along the X axis. However, the bulk 

shape of the profile departs from a purely sinusoidal shape. The minimum values flatten, 

whereas their associated maximum becomes acute (Figure 4). At time 1.5, the amplitude of 

the porosity wave reaches 2.24 at its maximum and 0.38 at its minimum. Thereafter, the 

growth rate of the wave increases exponentially and leads to a runaway. Maximum values as 

4.21, 8.22, 13.54, and 100 are reached at time 2, 2.25, 2.35 and 2.5 respectively. The 

corresponding minimum values decrease accordingly to 0.18, 0.09, 0.054, and 0.009 (Figure 

4).

Preliminary conclusions 

Instability develops in our reference model, leading to periodic porosity waves that 

exponentially increase in amplitude while they stretch in width (Figure 4). Conversely, 

porosity strongly decreases in between the spikes and shortly induces a complete drying out 

of the model. Such observations are consistent with the fact that melt migrates more easily 

when the porosity values are at their maximum. Therefore, when instability starts, it induces 

a feedback loop that increases porosity whereas melt extraction is facilitated. This reflects the 

influence of both the permeability, that varies as 2, and the bulk viscosity of the mush, that 
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varies as -1 (see section 2). The sign of the right-hand side term XNs , in Equations 16b or 

17b, controls the direction of the separation velocity Sx. When negative, the melt moves

downward. Alternatively, melt moves upward when the sign is positive. The change of sign 

explains melt accumulation close to the maxima and its drying out near the minima. Hence, 

between two successive minima of the initial porosity profile, all the melt that can freely

migrate is expelled from the mush and is stored close to the maximum. In other words, when 

melt can percolate within the mush, it soon segregates into veins whose positions correspond 

to the maximum of the initial porosity profile. Since those veins are composed of 100 % of 

melt, their dimensionless width is 0 and their spacing is .

Porosity-permeability dependence 

To check the dependence between permeability and porosity (Equation 4) we run 

the same reference model assuming a cubic relationship instead of the square one. The 

runaway development is quite indistinguishable in both cases. It suggests that the variation of 

the effective viscosity of the mush with -1 in the left-hand-side of Equation 16b promotes

and controls the development of the runaway. The variation of the effective viscosity of the 

mush with -1 also promotes the drastic amplification of the compaction waves (section 4.2) 

[Rabinowicz et al., 2002]. 

Amplitude and spacing of the initial instabilities 

We run several cases to examine the evolution of the porosity wave when either its 

initial amplitude 0 or its wavelength  is modified. With a smaller value of 0, the onset of 

the non linear regime is delayed in time until the maximum amplitude of the wave fluctuation 

reaches 0.2, the initial amplitude before instabilities surge. Thereafter, the evolution of the 

wave mimics our reference model. This demonstrates that the development of the instability 

is insensitive to the initial amplitude of the wave. When halving or doubling the initial 

wavelength, the porosity profile is no more purely sinusoidal shape beyond time 0.5 while 



26

the fluctuation of the wave exceeds ±0.35, the growth rate is still close to one up to time 1.5. 

Beyond that time, the runaway starts. For instance, at time 2, the maximum amplitude of the 

wave is equal to 4.27 and 3.95, respectively when the wavelength is halved or doubled. 

Nevertheless, both values remain close to the value of 4.21 observed for the initial 

wavelength 0. As a consequence, the runaway process is synchronous for waves initiated 

with a sinusoidal profile with the same amplitude 0 and a wavelength  of about one or less. 

When  = 5 and t 1.5, the growth rate of the wave (0.61) equals that of the linear regime.

Beyond that time, the growth rate increases, leading to a runaway. However, the acceleration 

of the growth rate with time is much slower than that observed for an initial wavelength close 

to one. For instance, at time 2, the maximal amplitude of the wave is halved (2.11 instead of 

4.21).

Initial shape of the instability

In our reference model, the initial instability is introduced through a sinusoidal 

perturbation (Equation 18). We already examined the wavelength dependence of the 

instability. We now focus on its bulk shape, and present tests run with a porosity profile

with a very flat minimum (Figure 5). It verifies: 

)2sin(cosh
1 0

H
XA

      (21)

where H denotes the length of the computational domain, 0 = 0.2 and A is a constant. The 

smaller are the values of A, the smoother the initial instability. 

In a first set with smooth profile (H = 5 and A = 4 in Equation 21) the porosity 

profile initiates with two small maxima at a relative distance of 2.5. Instabilities develop in 

the vicinity of the local maximum of the initial perturbation (Figure 5a, b). Runaway starts 

after a time around 2. The triggered transient melt flow induces a nearly uniform depletion of 

melt in the region between the instability spikes. In the second test, the spikes of the initial 
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perturbation are strongly reinforced (H = 50 and A = 40). Two local maxima develop at a 

respective distance of 25 but the instability absorbs melt only over a distance comparable to 

the width of the peak of the initial porosity profile (Figure 5c).

A complete drying out of melt between the two spikes results from the 

superposition of two highly non-linear instabilities. The first instability expels all the melt

from the region close to the local minima. The second concentrates the available melt toward 

the region of the local maxima of the initial porosity profile. The two instabilities have an 

different cause, but cooperate to concentrate melt.

Competition between instabilities with different wavelength 

The linear stability analysis does not allow to determine the characteristic distance 

 of the dikes generated during melt channelling. As long as the amplitude of the waves 

remains small, the linear-instability-regime prevails. All wavelengths with  [0, 1] develop 

with the same growth rate. During the runaway development, the growth rate of the 

instabilities with a small  is similar to that with 1, but a bit faster. We show below the 

predominance of the instability with a wavelength close to  during the runaway.

To control the predominance of such a wavelength, we tested models in which the 

initial porosity profile  is the superposition of two sinusoidal functions with the same

amplitude 0 but with a different wavelength, with 1 > 2. In this test case,  verifies

)2sin()2sin(1
21

0 XaX     (22) 

in which a phase-shift a is introduced to prevent tuning. We use the values of 0 = 0.1 and a

= 0.1 as initial instability parameters. We test four different wavelet couples: 1 = 5 and 2 =

0.625, 1 = 2.5 and 2 = 0.625, 1 = 1.25 and 2 = 0.625, 1 = 0.625 and 2 = 0.3125. 

Snapshots of melt channelling experiments at time t = 2 are displayed in Figure 6. They 
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allow for direct comparison with the reference model (Figure 4), and in between them 

(Figure 6a to 6d).

 In a first run (Figure 6a), the two wavelengths are significantly different, ( 1 / 2 = 

8). The runaway development associated with the 1 = 5 wavelet is delayed in time. During 

the delay, the available melt is dried up by the exponentially growing wavelets associated to 

2. When the two superimposed instabilities have similar wavelengths ( 1 / 2 close to 1), 

melt runs out only from the instability associated to 2 (Figures 6b, 6c and 6d). The 

associated spikes are damped, while the remaining ones collect a large volume of melt from 

their neighbourhood. The characteristic spacing of the generated veins is close to 1, and 

their thickness is 1 0. This corresponds to the spacing and thickness associated with the 

largest wavelength. Although the development of the runaway associated to 2 is delayed in 

time, it still occurs. But, during the time lag, a large volume of melt has already been stored 

into veins of 1-type. It is thus expected that 2-type veins are very thin: i.e. they have a 

thickness representing only a fraction of 2 0.

 To summarize, an instability with a large wavelength (e.g.  = 5) should never 

develop in competition with a wavelength close to 1 because its growth rate is too small. 

Conversely, the development of a 2-type instability is inhibited (Figures 6b-d, in which 2 is

less than 1) because the instability associated with  close to 1 absorbs the largest amount of 

melt. Therefore melt channelling distributes melt in veins with a characteristic distance close 

to 1 and thickness of about 0 (Figure 3). Indeed, their distribution is certainly very irregular 

because of the development of numerous thin and closely-packet vertical veins (as in models 

of Figures 6). The time needed to generate the major veins depends on the amplitude of the 

initial perturbation 0. When its amplitude is large, i.e. 0 = 0.2, a delay in time of 2.5 is 

necessary to reach runaway (Figure 4). Because of the growth rate of 1 of the instability 
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during the period of linear growth of the wave (Equation19), a time delay of 6 is expected to 

reach the runaway provided c0 = 6 10-3. The perturbation that is expected to trigger the 

instability results from local viscosity and permeability variations due to fluctuations of the 

melting rate, gain size distribution, and mineralogy of the solid phase. Henceforth, the 

“noise” during melt channelling is probably strong. This leads us to suggest that a lapse of 

time of 6 before reaching runaway is probably a maximum estimate.

4.3 Solutions of the compaction equations

This part of the process has already been investigated by several authors 

[McKenzie, 1984; Scott and Stevenson, 1984; Ricard et al., 2001; Wiggins and Spiegelman,

1995; Rabinowicz et al., 2001 and 2002]. Consequently, we do not examine it in details, but 

in relation with the preceding melt channelling process. We focus on the effects compaction

has on melt motion.

 The XNs  term, at the right hand side of Equations 16b or 18b has a predominant

role (see section 4.2). Its sign controls the motion of the melt, which is upward when the term

is positive and downward when the term is negative. Melt motion stops when this term

becomes null. In the compaction equations (Equations 15), this term is always equal to 1. 

This signifies that melt is always pushed upward by the buoyancy forces. In contrast, the 

melt motion slows down when 0z  [Wiggins and Spiegelman, 1995]. This term is 

included in the left hand side of Equation 15b, owing to the power law permeability versus 

porosity dependence (Equation 4). Therefore, when the initial porosity is a decreasing 

function of z, the porosity field splits into discrete waves in which melt concentrates. In the 

case of a granitic mush, the decrease of porosity with z that triggers the development of

waves can result from melt crystallisation in the upper levels of the crust.



30

We study a possible stopping of the melt motion (“obstruction”) by examining the 

relative decrease in porosity values. We label obstruction as weak when the upward drop in 

porosity is less than 5. Conversely, it becomes drastic when the drop ranges from 100 to 

1000. This requires testing the instability model for a long period of time. We tested both 

cases of weak and drastic obstruction with snapshots at time 50 (Figure 7). The initial 

porosity profile  verifies: inF

(23a)1zFin

otherwise

cz
czF 255.0cosh

1       (23b) 

Testing for obstruction, the asymptotic concentration c  is adjusted to 0.5 and to 

0.001 respectively for the weak and drastic cases. We solve the compaction equations 

(Equations 15) based upon the same numerical method as for melt channelling (section 4.2). 

Since gravity forces push the melt upward, there is no stationary solution to the compaction

equations. Accordingly, we assume that melt freely migrates to the top and to the bottom of 

the integration domain: i.e. 0z
S

z
z  at those points.

In case of a weak obstruction, the melt concentrates at the top of the wave train, as 

expected. However, saturation occurs at a value exceeding 0 by a few times the porosity 

drop of the initial porosity profile (1-c ) 0, (see Figure 7a). The dimensionless width of the 

impregnated domain is about 5, and the background melt concentration just exceeds c 0.

Conversely, in case of drastic obstruction, saturation occurs for a concentration a few ten 

times the bulk porosity 0 (Figure 7b). The dimensionless width of the impregnated domain

is about 1, and the background melt concentration becomes negligible. The dimensionless

time to reach the asymptotic regime during compaction is about 50, i.e. an order of 

magnitude larger than that needed to develop veins during shear, at most a dimensionless
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time of 6 though we assume that s =1. The dimensional time needed to squeeze melt into 

veins under shear is s  6 /Ns, whereas the time to generate solitons by compaction is c

50 . The thickness of the impregnated domain ranges between L and 5 L, whereas the 

thickness of the veins is equal to 0L. Compaction perfectly separates the melt free to 

percolate from its solid matrix only when the initial obstruction is drastic. This is always the 

case during melt channelling. Melt pockets generated during compaction migrate upward, 

pushed by the buoyancy forces, while the melt channelling process rapidly leads to a static 

asymptotic regime in which the liquid and solid phases are completely separated. 

5. Conditions for instability development 

Sections 3 and 4 display equations and models observed in the general context of 

geological problems. In the present section, we restrict their application to granitic melt

segregation in the continental crust. We proceed in four steps: i) we estimate the ranges of 

values for the different parameters, ii) we derive precise scaling laws for the different 

variables, iii) we analyse different scenarii for melt segregation in the lower crust, and finally

iv) we constrain the transient evolution of the plastic shear zone in a fault. 

5.1 Parameter values for melt segregation in the lower crust 

Our model uses non-dimensional parameters for length and time (Equations 11 to 

16). Because they are scaled with respect to the other parameters ( f, m, 0 , k0, h, g, V, 

m(t), and ), we examine their variations as the initial values are modified. We first

examine the range of all values as they are introduced in the model. Some are fixed, given in 

textbooks. Some vary within a limited range, the cause of variations being known to vary 

with time during melting m(t) and segregation.
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 Fixed parameters include the gravity constant (g = 10 m2/s), the density contrast 

between the solid and the melt ( = 400 kg/m3), the shear velocity on the fault (V  3cm/yr) 

and the permeability of the mush, according to millimeter grain size and 1% of interstitial 

melt (k0 =10-15 m2) [Maaloe and Scheie, 1982; McKenzie, 1984]. Variable parameters 

include the matrix and fluid viscosities m and f, which increase with decreasing water 

content (section 2.1 and Figure 2), the bulk melt concentration 0 , the melting rate m(t) and 

the width of the fault h.

 The shear zone width of major fractures in the Earth is pluri-kilometric [Leloup et 

al., 2001]. It does not mean that the plastic flow in the deep crust occurs simultaneously 

along the entire width of the shear zone. More likely, the deformation integrates a swarm of 

plastic deformation events confined in quasi-vertical slots whose thickness h represents a 

small fraction of that of the shear zone. If the seismologically active fields in the upper crust 

are described as very localised objects often with a metric thickness, it is expected that the 

plastic deformation slots at the deep crust have a thickness h of about 100 m [Scholz, 1990]. 

Besides, as shown below, shear and melt segregation progressively reduce the thickness of 

the plastic shear zone h with time: hence h=h(t) depends on time t. Consequently, we 

consider h as a free parameter ranging in a 10 m to 10 km interval.  

 The fault activity controls the successive pulses of magma that make a granite 

pluton. Internal chemical variations, discordant fabrics document the successive bursts of 

magma. Isotopic data presently fails to adequately separate the internal time span between 

successive bursts. However, discordant temperatures determined from zircon and monazite 

thermometry document that melt might have been extracted in less than 10 ka for the 

Himalayan granites [Harris et al., 2000]. Several considerations about ascent velocity and 

freezing conditions also bracket the emplacement to less than 100 ka [Petford et al., 2000]. 

These numbers can be used to derive reasonable ranges for the time of generation of veins by 
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shear channelling or melt pockets by compaction  (see section 4). We

assume that the discharge during one magma burst results from one segregation sequence. 

Accordingly, each burst is characterized by the bulk melt concentration 

ss N/6 50c

0 and the effective 

thickness h of the active portion of the fault. As a consequence, the segregation sequence is 

also a function of the melting rate m(t). When melting starts, 0(t) is equal to m(t).

Nevertheless, 0(t) differs from m(t) after the first segregation loop. To summarize, granitic

melt segregation depends on three free parameters h, 0 and m that all evolve with time (see 

below and section 6). 

5.2 Scaling laws for melt segregation in granites 

In order to determine different scenarii for melt segregation in granites (section 

5.3), we use a reference set of parameter values for scaling (denoted by the indices sc) and 

then display the functions relating the different variables to h, 0 and m. In this reference set, 

the shear zone width is hsc = 100m, the bulk melt concentration sc = 1%, and the strain rate 

csc = V/hsc = 3 cm.s-1/100 m 10-11 s-1. The melt viscosity is fixed at  = 10f
sc

4 Pa.s, 

corresponding to a water content of about 1% (see Figure 2). The matrix viscosity is =

10

msc

scc

16 Pa.s, corresponding to an hydrated matrix under a strain rate csc of 10-11 s-1 and a 

temperature of 800°C (see section 2.1). This implies a deviatoric stress scale  of 

0.1 MPa. 

mscsc

Compaction length

The compaction length is a key variable in our problem (Equation 11a). It 

determines the characteristic distance between the main veins and the size of the compaction

pockets. It can be expressed as 
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where Lsc =.3 m.

Channelling number 

A suitable combination of Equations 11 and 13b shows that the channelling number

verifies
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where =1scsN

Velocity number.

It verifies (Equations 11 and 13a) 
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where =37.scvN

Time.

The times needed to generate veins by shear channelling and to generate 

melt pockets by compaction result from the manipulation of Equations 11 and 25:
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where = 1.5 Ma and = 12.5 Ma. In the above expressions, time to generate veins by 

shear

scs scc

s(h, 0) is independent on the viscosity of both the melt and the solid. From Equations 

27, 28, we deduce that s << c, for most of the reasonable parameter values of h, 0 and m
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(see Table 1). It is thus expected that melt channelling is generally the dominant mode of 

melt segregation in the continental crust. Consequently, veins with a characteristic spacing of 

L and a thickness of L 0 should be generated inside 1-planes.

Shear strain.

The displacement of each fault edge l during the vein generation s equals:

hN
Nhl

s

v6, 0 = h
sc

1
0220      (29)

This expression is independent on the viscosity of both the solid and the melt. Its value is 

always greater than h, which is itself much greater that L (see Table 1). Consequently, the 

horizontal displacement of the mush is much larger than that of the matrix. The horizontal 

motion of the melt is the superposition of the flow during channelling and the shear flow C 

(Equation 9a). The vertical veins trend along the direction of maximum compression during 

shear (section 4.1). Those planes rotate under the shear field C and progressively take a S-

shape (Figure 3). In particular, those S-shape surfaces become parallel to the shear direction, 

approaching the edges of the shear zone. When deformation localises into such planes, it 

favours melt channelling, but also decreases the effective pressure inside the mush (Equation 

10b), damping the melt channelling process. This suggests that melt channelling acts has a 

stop and go process. 

Shear Stress.

Because water content decreases with total melting m, the viscosity of the matrix

m is a function of both the melting m and the constant applied strain rate c0=V/h during 

shear (Equation 9b). Its value increases by about one order of magnitude when melting

increases by about 5%. As a consequence, the stiffness of the matrix increases accordingly. 

The stress level SH required to initiate fractures writes: 
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SH(h, m)= sc

1
53

1

10 sc

m

sch
h 40 MPa    (30) 

For instance when h = 100 m, a maximum of 20% of melt can segregate before the mush

becomes too stiff to be deformable, and thus become brittle (see Table 1 and section 5.3) 

5.3 Various scenarii for melt segregation in a partially molten region of the crust

Though melting is relatively constrained, continuous melting requires a heat source 

that could keep the source zone able to generate more melt after a first burst of melt has been 

segregated. This point addresses melt evolution with time m(t). It depends on heat transport 

between a deeper hot intrusion and the melting region. We assume that heat is transported by 

conduction over the distance D, resulting in a scaling of the melt variation with time m(t)/ t

= /D2, in which  is the thermal diffusivity (10-6 m2s-1). Full melting is reached within a 

time D2/ , and partial melting to  reached in t  = D2/

Melting and segregation are synchronous. As bulk melt concentration 0 increases 

in the mush with melting, a fraction of it segregates, establishing a balance between the rate 

of melting and the rate of segregation. A stationary inter-granular melt concentration during 

shear 0 is reached when both rates are identical. From a physical point of view, it seems that 

the time needed to produce a 0 quantity of melt fraction equals the time s(h, 0) required to 

segregate the same melt fraction. Hence, using Equation 27 and the scaling value scscs =

670 m, we find: 

=Dh,0
2
1

sc

scscs

h
h

D (31a)

This expression allows us to relate the bulk melt concentration 0 to a couple of geometrical

parameters: the thickness h of the shear zone and its distance to the heat source D. As a 
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consequence, the whole problem of melt migration under shear depends on three parameters

with clear geological meaning: h(t), D(t), and m(t).

Three distinct situations should be separately considered : i) the heat source is so 

close to the lower crust interface that the bulk melt concentration 0 exceeds 20%; ii) the heat 

source is far enough so that the heating rate is low and the bulk melt concentration 0 is low, 

about 1%. iii) the heat source favours development of a mush with a bulk melt concentration 

0 of about 5 % to 10% (Table 1).

High melting conditions – heat source close to the segregation zone 

According to Equation 31a, the bulk melt concentration 0 exceeds 20% when the 

heating source is located at a distance D beneath the lower crust that verifies: 

D < 2.15 km
2
1

sch
h .    (31b) 

Melting is fast and leads progressively to matrix de-cohesion [Vigneresse et al., 1996]. In 

several steps, the viscosity of the matrix viscosity drops by more than 10 orders of 

magnitude. Each step reduces, by two or three orders of magnitude, the compaction length 

L(h, 0,m) and the compaction time c (Equations 24, 28). The corresponding compaction

length L ranges from mm to few cm. The time needed to generate melt pockets by 

compaction c decreases accordingly. It becomes lower than the melt channelling time s

since the later is invariant with the matrix viscosity (Equation 27). Therefore, melt

compaction becomes faster than melt channelling. The growth rate of the melt pockets is 

proportional to the amplitude of the initial porosity “obstruction” (section 4, Equation 23). 

Melt pockets are small, owing to the small compaction length, except in a very narrow 

boundary layer. Thus, compaction concentrates only a very small volume of melt.

Accordingly, shear channelling localises the essential amount of melt to produce thin veins 
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spaced from mm to cm. Eventually, close to the boundary layer, melt pockets as wide as 5 L

are generated. Besides, the matrix viscosity softening during deconsolidation is known to 

modify compaction [Rabinowicz et al., 2001], and channelling [Stevenson,1989]. These 

studies show that the intergranular melt volume in excess of the critical rate for 

deconsolidation flows in pockets or veins. As a consequence, flow stops when the interstitial 

melt volume equals the critical rate. 

Very slow melting conditions

When both the melting rate m(t) and the bulk melt concentration 0 are around 1%, 

the compaction length L increases from about 15 cm to up to 3 m as the thickness of the 

shear zone h varies from 0.01 to 10 km (Equation 24). The time required for compaction

increases from 5.8 to 58 Ma and is comparable to the time for shear channelling that ranges 

0.15 to 150 Ma. (Equations 27 and 28). These numbers attest that channelling is the 

dominant mode of melt segregation for a shear zone about 1 km in width. But the time

required, even for melt channelling, is large compared to observations. It rules out efficient 

melt segregation when melting is slow. 

Moderate melting conditions 

We now consider segregation acting on a moderate bulk melt concentration: 0

about 5-10% (see cases illustrated in Table 1). The situation corresponds to a source in the 

temperature range of 810-820 °C. The heating source is distant from 2 to 40 km and the shear 

zone width h varies from 10 m to 10 km interval (Equation 31). Compaction length decreases 

in size compared to low melting conditions (Equation 24). It ranges from 0.33 m to 3.5 m

provided the shear zone varies from 0.01 to 10 km in thickness. The time necessary for 

segregation under shear channelling reduces to 30 ka for a 10 m thick shear zone and to 15 

Ma for the extreme case of a 10 km thick shear zone. Compaction time is still larger than 

shear channelling, competition now develops between melt segregation and melt production. 
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Several successive cycles of melting and segregation may develop. However, a 

supplementary constraint operates, owing to the increase in strength of the matrix when 

magma is extracted. One consequence of melt extraction is that it leaves dehydrated minerals

in the source zone, stiffening the source rocks. However, the parallel evolution of the matrix

and melt viscosity leaves the shear channelling conditions unchanged (Equation 27). The 

stress amplitude increases with ongoing melting (SH in table 1). It soon becomes close to the 

yield for mechanical rupture: about 40 MPa [Renner et al., 2000], which limits the number of 

successive cycles to be achieved (Equation 30).

We examine four situations with different couples of values D and h. According to 

Equation 31a, three couples lead for each cycle of segregation to a bulk melt concentration 0

of 5%: (D = 2.7 km, h = .01 km), (D = 8.7 km, h = .1 km) and (D = 27 km, h=1 km). The last 

couple (D = 43 km, h = 10 km) leads to a bulk concentration 0 of 10 %.

When the distance to the heat source is relatively large (D = 43 km), with a thick 

shear zone (h = 10 km), channelling and compaction develop during the first cycle of 

melting. Both compaction and segregation times are similar, though they remain shorter than 

the time for heat to diffuse and to warm the source region. Compaction time increases by one 

order of magnitude after the first cycle. We therefore suggest that compaction does not stay 

any longer competitive. When m = 30% is completed, that is after about 3 cycles, the shear 

stress is 10 MPa, still well below the possible yield for fracturing (40 MPa) [Renner et al., 

2000]. This value is computed using the matrix viscosity value at 800°C, but it drops by 

about a factor of 6 if temperature is changed to 830°C (section 2). When taking into account 

this viscosity drop, the shear stress may be as low as 1.5 MPa. Thus 40 % of melt can 

segregate during a last segregation cycle. However, the total time required for extracting this 

volume of melt is 4 15 Ma = 60 Ma. Obviously this value is inconsistent with observed time

data.
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 In case of smaller values for the two distances (D = 27 km; h = 1km), four 

segregation cycles may develop, yielding a total melting m = 20%. The shear stress 

amplitude after four cycles is 46 MPa. However, this value is computed using the viscosity 

value at 800°C. When changed to 815°C, it drops by a factor of about 2.5 (section 2), 

resulting in a shear stress well within the yield for mechanical rupture. The time needed to 

complete the four cycles reduces to about 12 Ma, which is an upper limit for generating 

magmas. 

In situations where the shear zone is thin (h = 0.1 km) and at moderate distance 

from the heat source (D = 8.7 km), complete melting is achieved in about D2/  = 2.5 Ma. A 

melting increment of 5% requires only 0.3 Ma. Several sequences of melt segregation can 

develop. Compaction time takes 20 times longer than in the case of shear channelling, even 

during the first compaction cycle. Only vertical veins can be generated. They are spaced by 

compaction length (0.7 m) and they thicken by about 3.5 cm after each channelling sequence. 

Owing to melting and water exchange between the solid and liquid phases, their respective 

viscosity drops by one order of magnitude at the end of the first segregation event. Hence, the 

compaction length remains invariant, but the effective deviatoric stress equals 0.1 MPa. 

Therefore at the end of the third segregation cycle, the shear stress level is 100 MPa and 

mush becomes stiff enough to reach mechanical rupture. Taking into account the viscosity 

drop for temperature, i.e. 2.5 orders of magnitude (see above), a total of about four cycles of 

segregation is possible. They would take about 1.2 Ma to develop, leading to a total melt 

segregation of 20%.

 When the shear zone is thin (h = .01 km), the compaction length reduces 

accordingly to about 0.33 m. It induces also a much shorter time for melt segregation (30 ka). 

This compares well with the 10 ka time of extraction of the melt in Himalayan granites (see 

5.2). The total time for several cycles of melting remains large in comparison to the time of 
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heating of the mush by a source located at 2.15 km (160 ka). Taking into account of the 

viscosity drop due to temperature increase from 800°C to 815°C, the shear stress SH after 

three channelling sequences is about 100 MPa, indicating that a fourth cycle cannot be 

entirely completed before fracturing. Hence, the maximum melt segregation of this last case 

is just larger than 15 %. 

5.4 Transient evolution of the fault width h and of the segregation process

The progressive increase of melting with time m(t) favours a progressive stiffening 

of the plastic slot in the deep crust. Stiffening ends with definitive locking of the plastic 

deformation. Assuming that the segregation process is uniform with depth, locking is 

expected to also be synchronous with depth. According to Equation 30, it occurs when the 

segregation rate ms verifies: 

1
53
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h 400 0      (32a)

This rate is reached after a segregation time ts of: 

0
0

,hs
s

s
mt       (32b) 

In the above applications, ts increases from 0.1 Ma to 60 Ma when h increases from 0.01 km

to 10 km.

Eventually, if the shear presents a slow rate of expansion, the induced parabolic 

velocity profile in the fracture zone favours a progressive locking of the fault from the walls 

toward the axial region. Hence, the advance of the segregation process is likely to be 

inhomogeneous in time throughout the plastic slot. Assuming that the average time of 

locking inside the slot is still equal to ts, the thinning velocity of the plastic slot t
h  verifies: 
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For the applications considered in Table 1, t
h is about 0.15 mm/yr. Moreover, we 

assume that the upwelling flow balances the flow of the rigidified mush accreted along the 

walls of the shear zone throughout the whole crust thickness dc (dc  35 km). This situation 

happens when the motion of the fault is about 0.15 mm/yr, and when the average upwelling 

velocity is vm = 0.15 mm/yr dc/h. The mean upwelling flow velocity vm decreases from 50 

cm/yr to 0.5 mm/yr when h increases from .01 km to 10 km. During the segregation time ts,

the upwelling flow moves upwards by about 50 km; i.e. a value comparable to the thickness 

of the crust dc. A rate of 0.15 mm/yr is a plausible value for a continental shear zone rate of 

expansion. All these elements indicate that melt can segregate within a plastic deforming

shear zone of nearly constant thickness. Nevertheless, the upwelling flow also generates 

shear. Such stresses are important close to the walls and weak along the axis of the shear 

zone. Thus, a second segregation process may be generated close to the walls of the fault. In 

this situation the plane ( 1, 2) makes an angle of 45° with the vertical. Thus veins should 

also take the same geometry.

6. Geological implications 

Melting represents, along with shear, the main energetic response to orogenic processes 

[Burg, 1999]. It therefore appears obvious that both mechanisms should combine to segregate 

magma. Our model documents several points that reinforce field observations. 

6.1 Magma generation as a combination of non linear interactions 

Magma generation as a self organised interaction between melting and shear has 

already been suggested but not proven [Brown and Solar, 1998]. It would result from



43

nonlinear interactions and feedback loops. Several sources of non linearity were listed as 

melting, irregularly distributed in time and space, as well as the rheology that combines 

linear and non linear behaviours [Burg and Vigneresse, 2002]. On a more general ground, 

large scale interactions have been described between thrusting combined with shear and 

granitic magma emplacement [Brown and Solar, 1998]. Nevertheless, only a qualitative 

description has been issued in both cases, without demonstrating how these non linear effects 

interact.

 Our model suggests solving two coupled non-linear equations in which instabilities 

develop. As in most non-linear systems, the final behaviour cannot be predicted from a 

simple inspection of the equations and it presents irregularities with time. Our model 

consequently profoundly differs from a continuous and regular extraction of the melt out of 

its matrix by single compaction [McKenzie, 1984], or from instabilities numerically induced 

[Brown et al., 1995]. In these models, the geometry of the initial perturbation triggers the 

solution. In contrast, two instabilities generated by different mechanisms cooperate in our 

model. One results from an upward obstruction to melt flow that favours vertical melt 

collection under compaction. At the same time, a second effect due to shear concentrates 

melt horizontally (Figure 3). Both instabilities develop with a wavelength close to the 

compaction length L that proves relatively stable when checked with the variation of 

remaining parameters.  

 The main contribution of our model concerns the estimation of the time needed to 

generate both non-linear instabilities (Equations 27 and 28). Because of the non-linear 

dependence of the matrix viscosity on the strain rate, the times for compaction and for

channelling during shear are strongly dependent on the width of the shear zone. When the 

width of the shear zone is large, here 10 km, the compaction time is close to the time for 

shear, but it is so long that both instabilities are unlikely to develop in real fracture zones. 
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When the width of the shear zone is about 10 m to 100 m, the shear time reaches values 

ranging between 30 ka and 300 ka (Table 1). As a consequence, only veins sub-parallel to the 

( 1, 2) plane are generated. It is therefore inferred that the frequent occurrence of leucosome 

veins in migmatites likely result from such a channelling segregation process (Figure 1). 

6.2 Discontinuous magma extraction with time 

 It is a direct consequence of the non-linear interactions generated by shear and 

compaction. Whereas the porosity waves concentrate and drive the melt vertically, the shear 

effect dries out all melt horizontally in the interval between two spikes. Deformation and 

melting consequently interact, which results in a discontinuous melt extraction process. This 

corresponds to observations about the chemical composition of the released melt [Sawyer, 

1994]. When the melting rate is low compared to deformation, melt stays longer in contact 

with its matrix. It consequently has time to re-equilibrate with the matrix. Conversely, when 

the melt is rapidly extracted, it remains in chemical disequilibrium. Bursts in magma 

segregation have also been observed in numerical simulations [Vigneresse and Burg, 2000] 

and analogue models [Barraud et al., 2001; Bons et al., 2001]. Using a cellular automaton to 

describe melt extraction under deformation results in melt extraction by alternates bursts. The 

model, though stationary since it assumes an infinite source and sink for the melt, 

demonstrates that the quantity of extracted melt oscillates around an average value, mainly 

reflecting the initial amount of melt present in the system [Vigneresse and Burg, 2000]. 

However, pure and simple shear do not tend to a spatial organisation of melt extraction. 

Similar bursts of magma, represented by gas [Bons et al., 2001] or by molten paraffin in 

analogue models [Barraud et al., 2001], also show the discontinuous character of magma 

segregation. However this effect could not be quantified in analogue models. We are 

presently able to constrain time for melt extraction. As shown in Section 4, during the 
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runaway ending a segregation cycle, the growth of the channelling instability becomes

exponential: i.e. the melt concentration in the spikes is multiplied by about 20, and the 

remaining interstitial melt concentration is divided by the same amount during a fraction of 

the time needed to perform a complete cycle (Figure 4). Hence, although each segregation 

cycle lasts between 30 ka to 300 ka, the final phase of the segregation process can be fast 

enough to explain the 10 ka melt extraction time of some Himalayan granites [Harris et al., 

2000].

We provide insights on the processes that contribute to the discontinuous character 

of segregation. One is the rotation of the veins during shear. In section 5.2 we show that the 

veins, initially oriented parallel to the ( 1, 2) plane, rotate towards the shear direction. As 

long as the veins remain clearly secant to the shear direction, strain locates inside the bulk of 

the mush. But when the veins and the shear are parallel, strain partitions into the veins and 

the segregation stops. A second reason for a discontinuous segregation results from the non 

linear evolution of the melt extraction velocity during segregation. For instance, at the end of 

a segregation pulse, when all the inter-granular melt has been expelled, the melt extraction is 

reactivated only after about 5 % of melt has been produced (see section 5.3). Melt production 

basically depends on the heating rate, the latter being driven essentially by heat diffusion if it 

gives place to continuous melting. It indirectly points to the time for heat to diffuse through 

the distance to the heat source (section 5.3). Our best estimate is when the heat source is not 

too far (D 10 km) from the melting zone, then 5% of melt is produced in about 0.3 Ma. It is 

only after this period of time that the segregation process accelerates and quickly squeezes 

the remaining melt during the runaway. The last reason for discontinuous melt extraction is 

the stiffening of the matrix because of its dehydration (see section 5.2). As suggested in 

section 5.4, when the mush rises along the fault axis, clamping of plastic deformation starts 

along the limbs of the fault. Thereafter, the clamping front migrates inwards at a velocity of 
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0.075 mm/yr. In case of a fault moving at a full rate of 0.15 mm/yr, its plastic thickness 

remains steady. Otherwise, at any horizontal level, the plastic thickness of the fault increases 

or decreases with time. This triggers discontinuous modifications of the shear stress and thus 

also of the segregation process. All these facts suggest that the determination of the 

orientations and distances between veins in migmatite outcrops can be used to decipher the 

orientation of the ( 1, 2) plane, the time of generation of the veins and the effective thickness 

of the plastic slot during melt segregation. 

6.3 A narrow window for instabilities to develop and become stationary 

Our model is also surprisingly well constrained numerically. We insist on the 

validity of these numbers. Owing to the large number and range of parameters, results should 

fit observations within the same order of magnitude. The compaction length should remain

within a metric range (0.33-3.5 m). The compaction time should remain larger than shear 

channelling time, leading to vertical veins. Despite the large number of all parameters, a very 

few of them ultimately control instability development. In fact two parameter values need to 

be evaluated: the instantaneous thickness of the shear zone h and the distance D to the 

heating source. The values of both parameters are not independent because the couple of 

values h and D determines the bulk melt concentration during segregation  (Equation 31a). 

If  > 20 %, the system blows up by loss of cohesion of the solid matrix; in contrast, if

<5 %, or h  km, the segregation of melt is too sluggish to occur within an acceptable 

period of time. In table 1, the thickness of the plastic slot h likely ranges from 10 m up to 1 

km. The distance of the heat source D that maintains an effective inter-granular melt

concentration  of about 5 %, increases from 2.7 km to 27 km. Observations state crustal 

melts production at about 6-7 kbar (17-20 km in depth), that is about 12 km above the mantle

where the hot source could generate heat. Therefore, our preferred value for D is about 10 

0

0 0

10

0
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km, implying also that our preferred thickness of the plastic slot h is about 100 m. This 

couple of values permits about 4 successive cycles of melt segregation before the matrix

becomes too stiff to allow melt extraction (see Equation 30 and section 5.4). Thus in total 

about 20 % of melt can be extracted in about 1.2 Ma (Table 1). Outside those limits, the 

model either blows up or stops. Other scenarii are possible. For instance, some sequences of 

melt segregation with h= 10 m and D= 2.7 km can occur. In that case the maximum rate of 

melt segregation is 15 %, and melt is extracted in less than 90 ka. 

These numbers fit field observations quite well. The compaction length observed in 

migmatites is metric in size (Figure 1). The time to extract melt fits those observed from

isotope chemistry and thermochronometry [Harris et al., 2000]. The quantity of melt roughly 

matches the quantity of granitic magma (about 0.25) that can be generated from an 

amphibolitic rock to produce a granulitic restite (about 0.75) [Wedephol et al., 1991].

7. Conclusions 

We have reviewed the different formulations of the equations for melt segregation 

and showed how they can be simplified to account for both compaction and shear. The 

method used to evaluate the shear stress terms is inspired by that developed by Stevenson 

[1989]. Manipulating with care Bercovici and Ricard [2003]’s basic equations for two-phase

flow, we found that the driving term for melt channelling during shear is proportional to the 

stress due to shear . This shows that the development of channelling or localisation 

processes does not require a dependence on the matrix viscosity  or on the surface stresses 

due to surface tension  with melt concentration  [Stevenson, 1989; Ricard et al., 

2001]. Besides, we propose a set of simplifications giving a physically sound description of 

compaction and channelling with two independent sets of 1-D non-linearly coupled 

equations. Instabilities develop with associated wavelengths and they cooperate to segregate 

0cm

m
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melt. Compaction induces vertical areas in which porosity increases, thus enhancing vertical 

melt transport. Shear channels horizontal flow of melt in veins that rapidly absorb all the 

interstitial melt in between them. The instability wavelength increases with increasing melt 

content, as well as with the thickness of the shear zone. Because the crust is commonly stiff, 

shear channelling is much more efficient compared to compaction. The system of equations 

is calibrated against all varying parameters. We fixed them according to a crustal-derived 

magma generated from dehydration melting of an intermediate, amphibolitic crust. 

Surprisingly, only a few parameters control the times and lengths associated to the 

instabilities. When analysed in terms of time, they show that granitic melt channeling happen 

only within a very restricted window. The initial content of melt must be low. The amount of 

available melt 0 during each cycle is around 5%. Several cycles of melt extraction may 

develop successively, controlled by the possibility of melt to be extracted, but also to be 

generated. Indeed they fix the place where the molten layer may develop according to the 

position of the hot intrusion. The intrusion point may be located at the base of the crust, 

inducing melting in the intermediate crust, about 10 km above it. Successive melt extraction 

pulses occur, as has been observed in analogue and numerical models. They lead to a 

progressive stiffening of the matrix, which severely limits the number of cycles of extraction. 

We suggest a time for channelling of about 0.3 Ma, which implies that several pulses of 

magma can be generated within 1.2 Ma, before the matrix is clamped. This leads to a total of 

about 20 % of melt that can be extracted out of a typical source region.  

 The system of equations used to describe melt segregation is over-simplified and 

assumes equations of state that have not been completely proven. The validity of the results 

of the modelling thus requires confrontation with other models, for instance, those models in 

which the shear instability is generated by the matrix viscosity dependence on porosity or by 

the interfacial tension and a local damage. In these cases, the growth rate amplitude is 
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proportional to the solid viscosity variation with melt concentration or to the amplitude of 

surface tension, whereas in our model it is proportional to the shear stress amplitude. It 

remains that the growth rate of all the models varies with wave number k as 22 1/ kk , (see 

Equation 19 and Stevenson, [1989] or Ricard et al, [2001]). Spiegelman, [2003] found the 

same behaviour for the stability analysis curve when the shear instability develops in a non-

prescribed shear field and is thus coupled with melt segregation. Future work should consider 

the specific effects of interfacial tension, damage, and of the coupling between melt

segregation flow S and shear flow C on the migration of granitic melts. Presently, many

laboratory experiments study fluid migration during shear [Barraud et al., 2001, Holtzman et 

al., 2003, Schmocker et al., 2003]. Careful comparisons between numerical and laboratory 

results can help to validate the equations for two-phase flows. For instance, we hope that the 

true expression of the effective pressure equation of state (Equation 2a) which is equivalent 

to the determination of the true expression for the “bulk viscosity” can be deduced from a 

very precise comparison between laboratory and numerical experiments. However, the 

success of the crosscheck supposes to perfectly control the equation of state for the matrix

rheology, the mush permeability and surface tension of the mush used in laboratory 

experiments. Now that the mathematical formalism to study melt segregation is almost

complete, the proposed cross-check could be worthy.
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Table 1. Parameter values for three distinct channelling experiments: the thickness of the 

fault zone h, the distance between the heat source and the melting zone D, the shear strain 

co, the total melting proportion m, the liquid and solid viscosities f(m) and m(m, csc), the 

shear stress SH = c0 m, the compaction length L, the channelling time s, the compaction 

time c and the horizontal displacement of the fault during l. Values are given at the 

beginning of each segregation loop. 
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Figure captions 

Figure 1 Picture of a migmatitic rock in Curais Novos, Brazil. The scale is 

approximatively two meters horizontally. Clear veins of melt, or leucosomes, segregate 

under a dextral shear, within a non yet totally molten matrix. 

Figure 2  Viscosity values according to H20 content in a peraluminous magma. 

Figure 3  Geometry of melt segregation in a horizontal section of a shear zone, under 

stress field C(x). The horizontal y-axis designates the shear direction, the x-axis the 

direction normal to the fault, of thickness h. The shear velocity along each limbs of the 

fault is V/2 and -V/2, respectively. The X-axis coincide with the direction of maximum 

stretching 3 and the Y-axis the direction of maximum compression 1. In section 4, we 

show that the melt channelling occurs in the stretching direction 3, along the X-

direction. Melt accumulates in veins sub-parallel to the direction of maximum 

compression 1, with a characteristic distance equal to the compaction length L. Straight 

lines T parallel to the Y-direction are thus those veins. In section 5.2, we show that the 

horizontal shear deforms the T lines in S-shape lines. 

Figure 4 Snapshots of the porosity profiles for our reference model. The numerical 

experiment initiates with a sinusoidal profile (Equation 18) with the initial amplitude 0 = 

0.2 and the wavelength 0 = 0.625. 4a) Porosity profiles at time t = 0, 0.5 and 1, 

respectively. Those profiles are undistinguishable to those deduced from the linear 

stability analysis (Equation 19); 4b - 2f) Porosity profiles at the respective time of 1.5, 2, 

2.25, 2.35 and 2.5. The initial porosity distribution is drawn on the different figures to 

scale the evolution of the amplitude of porosity with time. Runaway starts when t > 2. 
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Figure 5 Models displaying a localized instability. The initial profiles initiate according 

to Equation 21. 5a - 5b) The local maxima of the initial porosity profiles are close (A = 4, 

H = 5 in Equation 21). Porosity profile are shown at time t = 2, and t = 2.2 respectively. 

Figures show an uniformly segregation of the melt to built the melt peak  at the top of the 

initial profile. 5c) The initial profile has very distant local maxima (A = 40 H = 50 in 

Equation 21). Snapshot at time t = 2 shows that the tear instability develops only with the 

melt available in its neighbourhood. A local minima initiates at a few compaction length 

from the maxima of the porosity wave.

Figure 6 Competition of instabilities with different wavelength. Experiments initiate 

with the porosity profile of Equation 22 in which two sinusoidal perturbations compete,

each with a different wavelength 1 and 2. The following wavelets couples of wavelets 

are used. 6a) 1 = 5, 2 = 0.625, 6b) 1 = 5, 2 = 2.5, 2 = 0.625: 6c) 1 = 1.25, 2 =

0.625; 6d) 1 = 0.625, 2 = 0.3125 respectively. Each figure displays the porosity 

snapshots at t = 2. Wavelets with 1  1 drain the essential part of the available melt.

Figure 7 Compaction experiments with a different obstruction (Equations 23), with 

snapshots at the time t = 50. 7a) The initial profile presents a weak obstruction ( = 0.5). 

7b) the obstruction is drastic ( c  = 0.001). The generated melt pocket concentrates much

more melt and are smaller when the experiment starts with a drastic obstruction.

c
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