P. Aczel, The type theoretic interpretation of constructive set theory. Logic colloquium 77, 1977.

L. , A. Tarríotarrío, A. Jeremíasjeremías-lópez, and J. Lipman, Studies in duality on Noetherian formal schemes and non-Noetherian ordinary schemes, Contemporary Mathematics, vol.244, p.AMS, 1999.

T. Altenkirch and C. Mcbride, Generic Programming within Dependently Typed Programming, 2002.
DOI : 10.1007/978-0-387-35672-3_1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Barras, T. Coquand, and B. Werner, Paradoxes in Set Theory and Type Theory. User-contribution of Coq

H. Boom, Message on, 2001.

A. Bundy, A Survey of Automated Deduction, Lecture Notes in Computer Science, vol.5, issue.1, pp.153-174, 1999.
DOI : 10.1016/0004-3702(80)90015-6

V. Capretta, Universal Algebra in Coq

L. Chicli, Sur la formalisation des mathématiques dans le Calcul des Constructions Inductives. Thesis, 2003.

L. Chicli, L. Pottier, and C. Simpson, Mathematical Quotients and Quotient Types in Coq, Types for Proofs and Programs, pp.95-107, 2003.
DOI : 10.1007/3-540-39185-1_6

T. Coquand, An analysis of Girard's paradox, Proceedings of LICS, 1985.

J. Courant, Explicit Universes for the Calculus of Constructions, Theorem Proving in Higher Order Logics, pp.115-130, 2002.
DOI : 10.1007/3-540-45685-6_9

A. Cuihtlauac, Reflexion pour la reecriture dans le calcul de constructions inductives. Thesis, 2002.

L. Cruz-filipe, A Constructive Formalization of the Fundamental Theorem of Calculus, Types for Proofs and Programs, pp.108-126, 2003.
DOI : 10.1007/3-540-39185-1_7

P. Deligne, J. S. Milne, A. Ogus, and K. Shih, Hodge Cycles, Motives, and Shimura Varieties, p.900, 1982.
DOI : 10.1007/978-3-540-38955-2

S. Feferman, Typical ambiguity: trying to have your cake and eat it too, 2001.

M. Fiore and G. Rosolini, Two models of synthetic domain theory, Journal of Pure and Applied Algebra, vol.116, issue.1-3, pp.151-162, 1997.
DOI : 10.1016/S0022-4049(96)00164-8

B. Fitelson, D. Ulrich, and L. Wos, XCB, the last of the shortest single axioms for the classical equivalential calculus, cs.LO/0211015, and Vanquishing the XCB question: the methodology discovery of the last shortest single axiom for the equivalential calculus, cs, 211014.

H. Friedman, Finite Functions and the Necessary Use of Large Cardinals, The Annals of Mathematics, vol.148, issue.3, pp.803-893, 1998.
DOI : 10.2307/121032

D. Gabai, G. R. Meyerhoff, and N. Thurston, Homotopy hyperbolic 3-manifolds are hyperbolic, Annals of Mathematics, vol.157, issue.2, pp.335-431, 2003.
DOI : 10.4007/annals.2003.157.335

URL : http://arxiv.org/abs/math/9609207

H. Geuvers, Inconsistency of classical logic in type theory. http://www.cs.kun.nl/~herman/note.ps.gz See also other publications at http

H. Geuvers and H. Barendregt, Proof Assistants using Dependent Type Systems, Handbook of Automated Reasoning, pp.1149-1238, 2001.

H. Geuvers, F. Wiedijk, J. Zwanenburg, R. Pollack, and H. Barendregt, A formalized proof of the Fundamental Theorem of Algebra in the theorem prover Coq, Contributions to Coq V, 2001.

J. Girard, Interpretation fonctionnelle etéliminationetélimination des coupures de l'arithmétique d'ordre supérieure, Thèse d'Etat, 1972.

T. Hales, The Flyspeck Project Fact Sheet

J. Harrison, Formalized mathematics http://www.cl.cam.ac.uk/users/jrh/papers/form-math3.html, see also an html version at http, 1996.

H. Herbelin, A program from an A-translated impredicative proof of Higman's Lemma. User-contribution in [63], see http://coq.inria.fr/contribs/higman.html [29] R. Holmes. Undefined terms, and the thread of messages following it (in particular J. Harrison's reply), 1995.

A. Hohti, Recursive synthesis and the foundations of mathematics. math, p.208184

L. S. Van-bentham and . Jutting, Checking Landau's " Grundlagen " in the AU- TOMATH system. Thesis, 1977.

M. Kaufmann and J. Strother-moore, A Computational Logic for Applicative Common LISP. A Companion to Philosophical Logic, pp.724-741, 2002.

H. Kitoda, Is mathematics consistent? math, p.306007

C. Lam, L. Thiel, and S. Swiercz, The nonexistence of finite projective planes of order $10$, Journal canadien de math??matiques, vol.41, issue.6, pp.41-1117, 1989.
DOI : 10.4153/CJM-1989-049-4

C. Lam, L. Thiel, S. Swiercz, and J. Mckay, The nonexistence of ovals in a projective plane of order 10, Discrete Mathematics, vol.45, issue.2-3, pp.45-319, 1983.
DOI : 10.1016/0012-365X(83)90049-3

L. Lamport, Types considered harmful, or Types are not harmless This appeared under the first title in a posting by P. Rudnicki on A revised version with the second title appeared as a technical report. A balanced discussion presenting both points of view is in the next reference, 1994.

L. L. Lamport and . Paulson, Should your specification language be typed, ACM Transactions on Programming Languages and Systems, vol.21, issue.3, pp.502-526, 1999.
DOI : 10.1145/319301.319317

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Z. Luo, An extended calculus of constructions. Thesis, 1990.

M. Maggesi, Proof of JMeq_eq, see posting on, 2002.

P. Martin-löf, Intuitionistic Type Theory, Studies in Proof Theory, Bibliopolis, 1984.

W. Mccune and R. Veroff, A short Sheffer axiom for Boolean algebra

J. Mckinna, Reply to thread How to prove two constructors are different, 2003.

A. Neeman, A counterexample to a 1961 "theorem" in homological algebra, Inventiones Mathematicae, vol.148, issue.2, pp.397-420, 2002.
DOI : 10.1007/s002220100197

D. Nowak, Ensembles and the axiom of choice, on [82], 1998.

R. O. Connor, Proof of Gödel's first incompleteness theorem http://math.berkeley.edu/~roconnor/godel.html [47] B. Plotkin. Algebraic geometry in First Order Logic

Q. Manifesto, www-unix.mcs.anl.gov/qed/manifesto.html [49] C. Schmidhuber. Strings from logic, pp.hep-th, 11065.

D. Scott, Domains for denotational semantics. Automata, languages and programming (Aarhus, LNCS, vol.140, pp.577-613, 1982.

I. Shimada, Vanishing cycles, the generalized Hodge conjecture, and Gröbner bases. math, 311180.

A. Simpson, Computational Adequacy in an Elementary Topos, Proceedings CSL '98, pp.323-342, 1998.
DOI : 10.1007/10703163_22

C. Simpson, Set-theoretical mathematics in Coq. Preprint with attached proof files, math, p.402336
URL : https://hal.archives-ouvertes.fr/hal-00118006

T. Streicher, Lifting Grothendieck universes (with M. Hofmann); and Universes in toposes

M. Wenzel and F. Wiedijk, A comparison of Mizar and Isar, Journal of Automated Reasoning, vol.29, issue.3/4, pp.389-411, 2002.
DOI : 10.1023/A:1021935419355

B. B. Werner and . Werner, Types in Sets Theoretical aspects of computer software An encoding of Zermolo-Fraenkel Set Theory in Coq: see http, Springer LNCS 1281, pp.530-546, 1997.

B. Werner, Une théorie des constructions inductives, Thèse d'Etat, 1994.

D. J. Melville, Sumerian metrological numeration systems

A. Alfa, http://www.math.chalmers.se/~hallgren/Alfa/ [63] Coq system: http://coq.inria.fr/, especially the reference manual

F. Pfenning, Bibliography on logical frameworks (449 entries!) http

C. Laboratoire and J. A. Dieudonné, The Google search engine