Real algebraic morphisms on 2-dimensional conic bundles

Abstract : Given two nonsingular real algebraicvarieties V and W, we consider the problem of deciding whether a smooth map f: V -> W can beapproximated by regular maps in the space ofsmooth maps from V to W. Our main result is a complete solution to this problem in case W is the usual 2-dimensional sphere and V is a real algebraic surface of negative Kodaira dimension.
Document type :
Journal articles
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00000769
Contributor : Frédéric Mangolte <>
Submitted on : Monday, October 20, 2003 - 7:23:53 PM
Last modification on : Thursday, January 11, 2018 - 6:12:26 AM
Document(s) archivé(s) le : Monday, March 29, 2010 - 5:04:18 PM

Files

Identifiers

Collections

Citation

Frédéric Mangolte. Real algebraic morphisms on 2-dimensional conic bundles. Advances in Geometry, De Gruyter, 2006, 6, pp.199-213. 〈hal-00000769〉

Share

Metrics

Record views

196

Files downloads

119