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Abstract

The goal of this article is that of understanding how the oscillation and
concentration effects developed by a sequence of functions in R

d are modified
by the action of Sampling and Reconstruction operators on regular grids.
Our analysis is performed in terms of Wigner and defect measures, which
provide a quantitative description of the high frequency behavior of bounded
sequences in L2

(
R

d
)
. We actually present explicit formulas that make pos-

sible to compute such measures for sampled/reconstructed sequences. As a
consequence, we are able to characterize sampling and reconstruction oper-
ators that preserve or filter the high-frequency behavior of specific classes
of sequences. The proofs of our results rely on the construction and manip-
ulation of Wigner measures associated to sequences of discrete functions.
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1 Introduction

1.1 Statement of the problem: oscillation and concentra-
tion under the effect of sampling and reconstruction

A central problem in Numerical Analysis and Signal Theory is that of reconstruct-
ing a function u (x) defined in Rd from a discrete set of measurements taken on an
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uniform grid of step size h. This discrete values are typically obtained by applying
to the function u a sampling operator Sh

ϕ of the following type:

Sh
ϕu (n) :=

1

hd

∫

Rd

u (x) ̞
(x

h
− n

)
dx,

for some sampling function ̞. One then tries to recover u by means of a
reconstruction (or interpolation) operator T h

ψ through the formula:

T h
ψSh

ϕu (x) :=
∑

n∈Zd

Sh
ϕu (n) ̑

(x

h
− n

)
, (1)

where ̑ is some fixed reconstruction function. This process usually only pro-
vides an approximation of the original function u, with an error that vanishes as h
tends to zero. Such reconstruction schemes have been the object of intensive study
both from the point of view of Approximation Theory and Numerical Analysis.

Here we shall be concerned with the high-frequency approximation properties
of those operators, that is, we shall study how a reconstruction scheme such as (1)
is able to capture (or filter) oscillation and concentration-like phenomena on the
functions it is intended to approximate. More generally, me shall be interested in
clarifying how the high frequency behavior of a sequence of reconstructed functions
depends on the profiles ̞, ̑ and the sampling rate h chosen.

Before giving a more precise statement of our objectives, let us first illustrate
the above discussion with two specific examples: consider fk (x) := kd/2̊ (k (x − x0))
and gk (x) := ̊ (x) eikx⋅ξ0

with ̊ ∈ L2
(
Rd

)
; the sequence (fk) concentrates around

the point x0 as k ջ ∞, whereas (gk) oscillates in the direction ̇0. The results we
shall present in this paper are aimed to understand to what extent the sequences(
T hk

ψ Shk
ϕ fk

)
and

(
T hk

ψ Shk
ϕ gk

)
reproduce the same behavior as (fk) and (gk) (i.e.,

if concentration and oscillation persist), for a given sequence (hk) of positive reals
that tends to zero (the sampling steps) and some choice of ̞ and ̑.

Perhaps, the simplest convenient setting to formulate our results is provided
by the notion of defect measure, an object that gives a quantitative description
of what we shall understand by concentration and oscillation effects and whose
definition we next recall. Let (uk) be a weakly converging sequence in the space
L2

(
Rd

)
; denote by u its weak limit and remark that the densities |uk − u|2 are uni-

formly bounded in L1
(
Rd

)
. Helly’s compactness Theorem then ensures that some

subsequence
(
|ukn

− u|2
)

weakly converges in the set of positive Radon measures;1

1From now on, we shall use the term measure as an abbreviation of the longer Radon measure.
Recall that the space of Radon measures M

(
R

d
)

is identified, by Riesz’s Theorem, with the space

of continuous linear functionals on Cc

(
R

d
)
.
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or, in other words, that there exists a positive measure ̆ on Rd such that
∫

Rd

̏ (x) |ukn
(x) − u (x)|2 dx ջ

∫

Rd

̏ (x) d̆ (x) as n ջ ∞,

for every ̏ ∈ Cc

(
Rd

)
. When the above convergence takes place without extracting

a subsequence we say that ̆ is the defect measure of the sequence (uk).
Immediately from this definition one deduces the following general principle:

if ̆ is the defect measure of a sequence (uk) and ̒ ⊂ Rd is a bounded Borel set,
then there is an equivalence between ̆ (̒) = 0 and the fact that uk|ω converges
strongly to u|ω in L2 (̒). Thus, the support of ̆ is precisely the set where strong
convergence fails, that is, the set where oscillations and concentrations take place.

But defect measures are also able to detect concentration and oscillatory phe-
nomena and give quantitative information about them. Consider the sequences
(fk), (gk) previously defined; they both weakly converge to zero in L2

(
Rd

)
and

it is easy to check that their respective defect measures are ‖̊‖2
L2(Rd) ˽x0

and

|̊ (x)|2 dx. Notice that, in the first case, the defect measure actually captures the
concentration of the sequence around the point x = x0. In the complementary of
that point, where the sequence converges strongly to zero, the measure vanishes.
In the second example, the defect measure is uniformly distributed on Rd, this
being consistent with the fact that strong convergence does not take place in any
subset of Rd.

Let us point out that the analysis of concentration and oscillation effects devel-
oped by a sequence of functions is a central issue in many problems of the Calculus
of Variations and Partial Differential Equations. A number of applications of de-
fect measures may be found in the analysis of variational problems with loss of
compactness performed by P.-L. Lions in [11, 12].2

Consider a sequence (uk), weakly converging to zero in L2
(
Rd

)
; sample it using

a profile ̞ and form the reconstructed sequence

vk := T hk

ψ Shk
ϕ uk,

for some given ̑ and some sequence (hk) of positive reals tending to zero. The
functions vk are bounded in L2

(
Rd

)
and tend weakly to zero provided ̞ and ̑ sat-

isfy suitable hypotheses (see Lemma 3.1 in Section 3 below). Suppose furthermore
that the densities |vk|2 weakly converge to the defect measure ̆ϕ,ψ.

One of the main issues addressed in this article is that of understanding the
relations existing between the defect measure ̆ϕ,ψ, the profiles ̞, ̑ and the se-
quences (uk), (hk). Among these, we point out:

2We also refer to L.C. Evans’ notes [4] for an exposition of some additional applications as
well as a discussion of other measure-theoretical objects (such as, for example, Young measures)
designed to study the failure of strong convergence.
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A. Is there a formula, valid for any sequence (uk), relating ̆ϕ,ψ to the defect
measure ̆ only in terms of the profiles ̞ and ̑?

B. Given (uk), characterize the profiles ̞ and ̑ such that ̆ϕ,ψ = 0. This is
the problem of filtering since, as we have discussed before, ̆ϕ,ψ = 0 is equivalent

to the strong convergence to zero of the sequence
(
T hk

ψ Shk
ϕ uk

)
.

C. Similarly, characterize the profiles ̞ and ̑ such that ̆ϕ,ψ = ̆ for a given
(uk).

D. Finally, characterize the profiles that give ̆ϕ,ψ = ̆ for every (uk).

We shall prove that the answer to question A is negative. This is due to the fact
that the measure ̆ϕ,ψ is sensitive to the characteristic directions of oscillation of
the sequence (uk), whereas ̆ is unable to distinguish them. As we have seen above,
the defect measure of the oscillating sequence (gk) equals |̊ (x)|2 dx independently
of the vector ̇0; that is not the case for ̆ϕ,ψ. Indeed, under additional assumptions
on ̞ and ̑ we prove (see Theorem 1.3 and Corollary 1.4):

̆ϕ,ψ (x) =
∑

k∈Zd

∣∣∣̂̑
(
̇0 + 2̉k

)∣∣∣
2 ∣∣̞̂

(
̇0

)∣∣2 |̊ (x)|2 dx.

Thus the measure ̆ϕ,ψ is ̇0-dependent and cannot be expressed solely in terms of ̆,

̞ and ̑. Note that ̆ϕ,ψ is identically zero as soon as any of
∑

k∈Zd

∣∣∣̂̑
(
̇0 + 2̉k

)∣∣∣
2

or ̞̂
(
̇0

)
is null. Analogously, the profiles that give ̆ϕ,ψ = ̆ are precisely those

which satisfy ∑

k∈Zd

∣∣∣̂̑
(
̇0 + 2̉k

)∣∣∣
2 ∣∣̞̂

(
̇0

)∣∣2 = 1.

Therefore, in order to understand how ̆ϕ,ψ is built, we must have at our dis-
posal an object that is able to distinguish between oscillatory phenomena at dif-
ferent directions.

1.2 Wigner measures

This refinement is provided by the theory of Wigner measures.3 Given a
bounded sequence in L2

(
Rd

)
one associates to it a measure ̅ (x, ̇) on Rd · Rd

which describes the concentration and oscillation effects (these are the respective

3This object is present in the work of E.P. Wigner on semiclassical quantum mechanics [20].
Recently, Wigner measures have gained interest since the works of P. Gérard [6], P.-L. Lions &
Th. Paul [13], P. Markowich, N. Mauser & F. Poupaud [14] among others. Related objects are
the Microlocal defect measures or H-measures, introduced independently by P. Gérard [5]
and L. Tartar [18].
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roles of the variables x and ̇) occurring at some characteristic length-scale. This
measure takes into account the characteristic speeds as well as the directions of
propagation of oscillations. One way of defining them consists in replacing the
density |u (x)|2 involved in the definition of the defect measure by the phase space
(microlocal) density:

mε [u] (x, ̇) :=
1

(2̉˾)d
u (x)û (̇/˾) eix⋅ξ/ε, (2)

where û is the Fourier transform of u and ˾ is a positive constant. The (2̉)−d

factor in the definition of mε [u] is placed to have:

∫

Rd

mε [u] (x, ̇) ḋ = |u (x)|2 ,

∫

Rd

mε [u] (x, ̇) dx =
|û (̇/˾)|2

(2̉˾)d
. (3)

Thus, the function mε [u] may be looked at as joint physical space-Fourier space
“density”, in spite of the fact that mε [u] is not positive in general. However, limits
of these quantities are positive measures:

Theorem 1.1 Let (uk) be a bounded sequence in L2
(
Rd

)
and let (˾k) be a sequence

of positive numbers tending to zero. Then it is possible to extract a subsequence
(ukn

) such that, for every test function a ∈ S
(
Rd · Rd

)
,

lim
nջ∞

∫

Rd·Rd

a (x, ̇) mεkn [ukn
] (x, ̇) dxḋ =

∫

Rd·Rd

a (x, ̇) d̅ (x, ̇) , (4)

where ̅ is a finite positive measure on Rd · Rd.

A measure ̅ ∈ M+

(
Rd · Rd

)
is called the Wigner measure of the sequence

(uk) at scale (˾k) whenever the limit (4) holds without extracting a subsequence.
Different proofs of Theorem 1.1 may be found in [8, 13, 7]. Let us point out that
other quadratic densities may used to define Wigner measures. For instance, in
[13] ̅ is obtained by replacing mε [u] in the limit (4), by the more familiar Wigner
transform:

wε [u] (x, ̇) :=

∫

Rd

u
(
x − ˾

p

2

)
u

(
x + ˾

p

2

)
eip⋅ξ dp

(2̉)d
. (5)

It is also possible to consider Wave-packet (Husimi) transforms. Of course,
all this methods are equivalent (the same limit is obtained), cf. the discussion in
[8].

The Wigner measure encodes all the information contained in the defect mea-
sure provided the sequence (uk) oscillates at frequencies of the order of ˾−1

k . More
precisely (see [8, 13]):
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Proposition 1.2 If ̅ is the Wigner measure at scale (˾k) of a sequence (uk) and
̆ is the measure obtained as the weak limit in M+

(
Rd

)
of the densities |uk|2 dx,

then the identity

̆ (x) =

∫

Rd

̅ (x, ḋ)

holds provided (uk) is εk-oscillatory:

lim sup
kջ∞

∫

|ξ|>R/εk

|ûk (̇)|2 ḋ ջ 0 as R ջ ∞. (6)

Notice that condition (6) actually expresses that the energy of the Fourier
transform of uk is concentrated in a ball of radius R/˾k, which should be under-
stood as the requirement that the sequence (uk) does not oscillate at length scales
finer than ˾k.

To illustrate this discussion it may be helpful to look at explicit computations.
The Wigner measure at scale (˾k) of the concentrating sequence (fk) defined at
the beginning of this section is given by:

̅ (x, ̇) =





‖̊‖2
L2(Rd) ˽x0

(x) ⊗ ˽0 (̇) if ˾kk ջ 0,

˽x0
(x) ⊗ |̂̊ (̇)|2 ḋ

(2̉)d
if ˾k = k−1,

0 if ˾kk ջ ∞,

(7)

while for the oscillating sequence (gk) it can be checked to be:

̅ (x, ̇) =





|̊ (x)|2 dx ⊗ ˽0 (̇) if ˾kk ջ 0,

|̊ (x)|2 dx ⊗ ˽ξ0 (̇) if ˾k = k−1,

0 if ˾kk ջ ∞.

(8)

These examples show the importance of the choice of the scale (˾k). When this
scale is taken to be coarser than the characteristic length-scale k−1 of oscilla-
tion/concentration, it is no longer true that the projection on the first component
of their Wigner measures coincides with the defect measure. On the other hand,
in the case ˾kk ջ 0 (the scale chosen is much smaller than the actual oscilla-
tion scale) the Wigner measure is not able to capture the direction of oscillation.
Hence, to obtain a complete description, the scale (˾k) must be taken of the same
order than that of the oscillations.

Wigner measures turn out to be the correct tool for comparing the high fre-

quency behavior of the sequences (uk) and
(
T hk

ψ Shk
ϕ uk

)
.
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1.3 Computation of Wigner and defect measures

Given a sequence of sampling steps (hk), it is clear that the functions T hk

ψ Shk
ϕ uk will

not develop oscillation and concentration effects of characteristic sizes asymptoti-
cally smaller that hk. Most commonly, these functions will form an hk-oscillatory
sequence;4 consequently, only Wigner measure at scales coarser or of the same
order than (hk) will be considered.

In order to establish explicit formulas, we shall require additional hypotheses
on ̞, ̑ and on the Wigner measures involved. Nevertheless, in order to simplify
the statement of our results, in this introduction we shall impose the following
(more restrictive) condition on the admissible profiles:

|˼ (x)| ≤ C (1 + |x|)−d−ε , for every x ∈ Rd and some C, ˾ > 0. (9)

More general results may be found in Section 7.
We prove the following:

Theorem 1.3 Let ̞, ̑ satisfy (9). Suppose (uk) is a bounded sequence in L2
(
Rd

)

and that ̅ is its Wigner measure at scale (hk). Suppose moreover that the measures

|̞̂ (̇ + 2̉n)|2 ̅ (x, ̇ + 2̉n) (10)

are mutually singular for n ∈ Zd.

Then the Wigner measure at scale (hk) of the sequence
(
T hk

ψ Shk
ϕ uk

)
is given

by:

̅ϕ,ψ (x, ̇) =
∣∣∣̂̑ (̇)

∣∣∣
2 ∑

k∈Zd

|̞̂ (̇ + 2̉n)|2 ̅ (x, ̇ + 2̉n) .

From this, one deduces:

Corollary 1.4 If, moreover,
∣∣∣T hk

ψ Shk
ϕ uk

∣∣∣
2

dx weakly converges to a measure ̆ϕ,ψ

then:

̆ϕ,ψ (x) =

∫

Rd

∑

k∈Zd

∣∣∣̂̑ (̇ + 2̉k)
∣∣∣
2

|̞̂ (̇)|2 ̅ (x, ḋ) .

This shows, in particular, that a formula relating ̆ϕ,ψ and the weak limit ̆ of
|uk|2 dx does not exist unless (uk) is hk-oscillatory and ̅ is of the form ̆ (x)⊗̌ (̇).

It also shows that ̆ = ̆ϕ,ψ if and only if
∑

k∈Zd

∣∣∣̂̑ (̇ + 2̉k)
∣∣∣
2

|̞̂ (̇)|2 = 1 for ̅-

almost every ̇ ∈ Rd. Consequently, there do not exist profiles ̞, ̑ satisfying (9)
such that ̆ equals ̆ϕ,ψ for every hk-oscillatory sequence (uk).

4However, this may fail for some pathological examples (see paragraph 5.3).
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On the other hand, Theorem 1.3 implies that question A above does have
a positive answer in terms of Wigner measures, at least when restricted to the
class of sequences which satisfy (10). That condition, roughly speaking, imposes
a restriction on the size of the region in frequency space where an admissible
sequence fails to converge strongly to zero. Below, we shall compare it with that
appearing in Shannon’s sampling Theorem.

The above results will be obtained as corollaries of the more general Theorems
7.1 and 7.3. Profiles that belong to negative-order Sobolev spaces or that fail to
satisfy the localization hypothesis (9) are allowed. However, this will require to
impose compatibility conditions on the Wigner measure ̅.

As an illustration of the range of results that will be obtained in this more
general setting, we present an asymptotic version of Shannon’s sampling
Theorem.5 It corresponds to taking as sampling profile ̞ = ˽0, the Dirac delta
at the origin, and as reconstruction function ̂̑ := 1Q, where Q := [−̉, ̉)d. Notice
that Sh

δ0
u (n) = u (hn) is the discretization operator, whereas the T h

ψ corresponds
to band-limited reconstruction.

Theorem 1.5 Let (uk) be a bounded sequence in L2
(
Rd

)
and denote by ̅ its

Wigner measure at scale (hk). Suppose, in addition, that uk ∈ Hs
(
Rd

)
for some

s > d/2 and

i) (1 − h2
k∆x)

s/2
uk are uniformly bounded in L2

(
Rd

)
.

ii) ̅
(
Rd · (∂Q + 2̉n)

)
= 0 for n ∈ Zd.

iii) ̅ (x, ̇ + 2̉n) , n ∈ Zd, are mutually singular measures.

(11)

Then, the Wigner measure at scale (hk) of
(
T hk

ψ Shk

δ0
uk

)
is

̅δ0,ψ (x, ̇) = 1Q (̇)
∑

n∈Zd

̅ (x, ̇ + 2̉n) . (12)

Moreover, if
∣∣∣T hk

ψ Shk

δ0
uk

∣∣∣
2

dx and |uk|2 dx weakly converge to ̆S and ̆, respectively,

then

̆S (x) =

∫

Rd

̅ (x, ḋ) = ̆ (x) .

Thus, unlike the operators considered in Theorem 1.3, the composition of dis-
cretization and band-limited reconstruction preserves the defect measure for a large
class of sequences.

Notice that, by the Sobolev imbedding Theorem, Shk

δ0
uk is well-defined. Actu-

ally, (11.i) ensures that the sequence of discretizations is square-summable and,

5See paragraph 3.1 for a statement of Shannon’s original sampling Theorem.
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consequently, that
(
T hk

ψ Shk

δ0
uk

)
is bounded in L2

(
Rd

)
and hk-oscillatory (for a

more complete result, we refer to Lemma 3.1). Condition (11.ii) appears because
̂̑ is not continuous; we shall discuss its necessity in paragraph 4.4. Finally, (11.iii)
should be understood as the analog of Shannon’s original band-limited condition
in this context.

To conclude this short description, let us present how the above results may be
refined when the sequence (uk) is known to be ˾k-oscillatory and the sampling rate
(hk) is taken to satisfy hk/˾k ջ 0. As it can be expected, much more precision is
gained:

Theorem 1.6 Suppose ̞, ̑ satisfy (9) and (uk) is an ˾k-oscillatory, bounded
sequence in L2

(
Rd

)
. If ̅ is its Wigner measure at scale (˾k) then the corresponding

measure of the sequence
(
T hk

ψ Shk
ϕ uk

)
is

̅ϕ,ψ =
∣∣∣̂̑ (0)

∣∣∣
2

|̞̂ (0)|2 ̅.

Moreover, if the densities a
∣∣∣T hk

ψ Shk
ϕ uk

∣∣∣
2

dx and |uk|2 dx weakly converge to ̆ϕ,ψ

and ̆ respectively then

̆ϕ,ψ (x) =
∑

n∈Zd

∣∣∣̂̑ (2̉n)
∣∣∣
2

|̞̂ (0)|2 ̆ (x) .

This Theorem holds under much more general conditions on ̞ and ̑ (see
Theorem 7.6) and gives a positive answer to question A provided we consider only
˾k-oscillatory sequences.

An immediate consequence of the above result is that zero-mean sampling
profiles ̞ (i.e. with ̞̂ (0) = 0, as a wavelet, for instance) completely filter any
oscillations that occur at scales much coarser than the sampling rate hk. For such
a profile, ̆ϕ,ψ = 0 for every ˾k-oscillatory sequence. An analogous phenomenon

occurs for reconstruction profiles satisfying ̂̑ (2̉n) = 0 for every n ∈ Zd.
On the other hand, a sufficient condition to have equality between ̆ϕ,ψ and ̆

is that |̞̂ (0)| =
∣∣∣̂̑ (0)

∣∣∣ = 1 and
∣∣∣̂̑ (2̉n)

∣∣∣ = 0 for n 6= 0.

1.4 Strategy of proof: Wigner measures in the discrete
setting

The proof of the results we have presented above will be achieved by analyzing
separately the sampling and reconstruction operators Sh

ϕ and T h
ψ . In order to

develop, it is necessary to deal with a concept of Wigner measure associated to

10



a sequence of discrete functions. We shall introduce it by means of a discrete
analogous of the transform mε [⋅]. We detail this in the following paragraph.

To a discrete square-summable function U ∈ L2
(
hZd

)
, where L2

(
hZd

)
stands

for the space of the functions U defined on Zd with values in C such that the norm

‖U‖h :=

(
hd

∑

n∈Zd

|Un|2
)1/2

is finite, we associate:

M ε [U ] (x, ̇) :=
h2d

(2̉˾)d

∑

m∈Zd

UmÛ

(
h

˾
̇

)
eim⋅(h/ε)ξ˽hm (x) . (13)

Here, ˽hm is the Dirac mass centered at the point hm and Û denotes the discrete
Fourier transform:

Û (̇) :=
∑

n∈Zd

Une−in⋅ξ,

which, as is well known, is a 2̉Zd-periodic function in L2
loc

(
Rd

)
. The discrete

transform M ε [U ] may be related to the continuous mε [u] by noticing that

M ε [U ] = mε
[
T h

δ0
U

]
, where T h

δ0
U (x) = hd

∑

k∈Zd

Uh
n˽hn (x) . (14)

This is meaningful, since mε [u] is well-defined for any tempered distribution u ∈
S ′ (Rd

)
.

In order to simplify our language we make the following definition:

Definition 1.7 Let h = (hk) be a scale. We shall call a sequence
(
Uhk

)
hk-

bounded if and only if Uhk ∈ L2
(
hkZ

d
)

and
∥∥Uhk

∥∥
hk

≤ C for every k ∈ N.

One has the following convergence result (which is not a direct consequence of
Theorem 1.1):

Proposition 1.8 Let (hk), (˾k) be scales such that (hk/˾k) is bounded and let(
Uhk

)
be an hk-bounded sequence of discrete functions. Then

(
M εk

[
Uhk

])
is

bounded in S ′ (Rd · Rd
)

and given any of its convergent subsequences
(
Uhkn

)
there

exists a positive measure ̅ such that,

lim
nջ∞

〈
M εkn

[
Uhkn

]
, a

〉
S′·S =

∫

Rd·Rd

a (x, ̇) d̅ (x, ̇) , (15)

for every a ∈ S
(
Rd · Rd

)
.
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This will be proved as a Corollary of the more general Proposition 3.4, which
in turn follows from the analysis of Wigner measures in negative-order Sobolev
spaces that is performed in Section 8. As in the continuous setting, we say that
a measure ̅ is the Wigner measure at scale (˾k) of a sequence of discrete
functions

(
Uhk

)
if the limit (15) holds for the whole sequence.

Remark 1.9 i) When (hk/˾k) is unbounded, it may happen that M εkn

[
Uhkn

]
is

not bounded in S ′ (Rd · Rd
)
.

ii) If hk/˾k ջ c > 0 then ̅ is not finite. Indeed, it is periodic (with respect to
the lattice (2̉/c) Zd) in the ̇ variable.

iii) However, when hk/˾k ջ 0, the Wigner measure ̅ is finite, as in the
continuous case.

With this tool at our disposal, we are able to compare the Wigner measure
of a sequence of discrete functions

(
Uhk

)
with that of a reconstructed sequence(

T hk

ψ Uhk

)
. Analogously, we may compute the Wigner measures of sequences of

sampled discrete functions
(
Shk

ϕ uk

)
in terms of those corresponding to the original

sequence (uk). These are respectively the contents of Theorems 4.6 and 4.2.

1.5 Plan of the article

Results and assumptions concerning the operators Sh
ϕ and T h

ψ are collected in
Section 3.

In Section 4, the problem of computing Wigner measures for sequences of
sampled or reconstructed functions is addressed. Formulas for Wigner measures at
scales of the same order than the sampling/reconstruction step (hk) are presented
in Theorems 4.6 and 4.2. Theorems 1.3 and 1.5 then easily follow from those
two results. We also point out the relationships existing between these Wigner
measures and the concept of Wigner series introduced in [14, 9].

The problem of the computation of defect measures of sequences of the from(
T hk

ψ Uhk

)
is considered in Section 5; the main results are presented in Proposition

5.8 and Corollary 5.9.
In Section 6 we investigate Wigner measures at scales (˾k) satisfying hk/˾k ջ 0.

Explicit formulas are presented in Theorems 6.1 and 6.2, from which Theorem 1.6
immediately follows.

The composition of sampling and reconstruction is studied in Section 7, the
main results of this article are proven there.

Finally, Section 8 contains the elements from the Theory of Wigner measures
on which the proofs of most of the results of this article are based on. Propositions
8.1 and 8.3, which extend the Theory of Wigner measures to sequences in Sobolev
spaces of negative order, are systematically used throughout this paper.
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2 Notations and conventions

We briefly present some notation that will be used throughout this article.
B (x; R) will denote the open ball with radius R of Rd centered at the point x.

We shall set
Q := [−̉, ̉)d ,

and 1A will denote the characteristic function of a set A ⊆ Rd.
We write Γ to denote de lattice 2̉Zd. A function f defined on Rd is Γ-periodic

if f (x + ˼) = f (x) for every ˼ ∈ Γ and every x ∈ Rd.
We adopt the following convention for the Fourier transform:

û (̇) :=

∫

Rd

u (x) e−ix⋅ξdx.

Given a measurable function ̞ (̇), the Fourier multiplier of symbol ̞ is the
operator ̞ (Dx) formally defined by

̞ (Dx) u (x) :=

∫

Rd

̞ (̇) û (̇) eix⋅ξ ḋ

(2̉)d
= ˇ̞ ∗ u (x) ,

ˇ̞ being the inverse Fourier transform of ̞.
A particularly important Fourier multiplier is the Bessel potential 〈Dx〉, of

symbol

〈̇〉 :=
(
1 + |̇|2

)1/2
.

Next, we recall the definition of some function spaces.
As usual, S

(
Rd

)
denotes the space of rapidly decreasing functions and

S ′ (Rd
)

stands for its dual, the space of tempered distributions.
Given r ∈ R, Hr

(
Rd

)
, the Sobolev space of order r, consists of the distribu-

tions u ∈ S ′ (Rd
)

such that 〈Dx〉r u ∈ L2
(
Rd

)
.

The weighted space L2
(
Rd; 〈x〉r

)
is that of the functions u ∈ L1

loc

(
Rd

)
such

that

‖u‖L2(Rd;〈x〉r) :=

(∫

Rd

|u (x)|2 〈x〉r dx

)1/2

< ∞.

The analogous definition is understood for L∞ (
Rd; 〈x〉r

)
.

By C∞ (
Rd; 〈x〉r

)
we intend the space of functions u ∈ C∞ (

Rd
)

such that

‖∂α
x u‖L∞(Rd;〈x〉r) < ∞ for every multiindex ˺ ∈ Nd.

C0

(
Rd

)
denotes the spaces of continuous functions on Rd vanishing at infinity.

Given an open set Ω ⊆ Rd, M+ (Ω) is the set of positive Radon measures
on Ω, which can be identified through Riesz’s Theorem to the set of positive func-
tionals on Cc (Ω), the space of continuous functions on Ω with compact support.

Finally, in order to lighten our writing,
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we shall write S and S ′ instead of S
(
Rd

x · Rd
ξ

)
and S ′ (Rd

x · Rd
ξ

)
respectively.

For a measurable function f : Rd ջ C, we use the notation

Df :=
{
x ∈ Rd : f is not continuous at x

}
.

An important, perhaps non-standard, definition is that of a scale:

Definition 2.1 A scale (˾k) is a sequence of positive numbers that tends to zero
as k ջ ∞.

Given two scales (hk) and (˾k), the notations hk ≪ ˾k and hk ∼ ˾k will be used
to indicate that limkջ∞ hk/˾k = 0 and limkջ∞ hk/˾k = c > 0 respectively.

3 Sampling and reconstruction

3.1 Definitions and examples

The sampling and reconstruction operators we are going to consider are next de-
scribed. Given a distribution ̞ ∈ S ′ (Rd

)
we set for every n ∈ Zd and h > 0,

̞h
n (x) := ̞

(x

h
− n

)
.

The reconstruction (or synthesis) operator T h
ϕ , acting on discrete functions

U of Zd is defined to be

T h
ϕU (x) :=

∑

n∈Zd

Un̞h
n (x) . (16)

This expression is well-defined for finitely supported discrete functions. When ̞
is a continuous function such that ̞ (0) = 1 and ̞ (k) = 0 for k ∈ Zd \ {0} then
T h

ϕU is actually a function that interpolates the discrete values Un on the grid
hZd, i.e. T h

ϕU (hn) = Un for all n ∈ Zd.
Analogously, the sampling (or analysis) operator Sh

ϕ, a priori only acting

on functions u ∈ S
(
Rd

)
, is defined as follows: Sh

ϕu is the discrete function given
by

Sh
ϕu (n) := h−d

〈
̞h

n, u
〉
S′(Rd)·S(Rd)

.

When ̞ = ˽0, we obtain the usual discretization operator: Sh
δ0

u (n) = h−du (hn)
for every n ∈ Zd.

Indeed, these sampling/reconstruction schemes include several well-known such
procedures on regular grids. Among many others we may cite:

14



• Cardinal B-Splines. The B-spline of order zero is the function ̞ (x) :=
1[−1/2,1/2]d (x); the function T h

ϕU is just the piecewise constant interpolation of the

discrete function U on the grid hZd. The B-spline of order 1,

̞ (x) = 1[−1/2,1/2]d ∗ 1[−1/2,1/2]d =
d∏

j=1

(1 − |xj|)+ ,

gives rise to the piecewise linear interpolation operator. Analogously, B-splines of
order r ∈ N are defined iterating this convolution r times. These are Cr−1

(
Rd

)

functions supported in [−r/2, r/2]d, taking the value 1 at the origin. More details
may be found, for instance, in [1].

• Band-limited sampling/reconstruction. This corresponds to the profile

̞ (̇) :=
d∏

j=1

sinc
(
̇j

)
,

where the cardinal sine function is defined by

sinc (t) :=
sin ̉t

̉t
.

It is easy to check that ̞̂ (̇) = 1Q (̇). This profile is relevant because of Shan-
non’s sampling Theorem: a function u belongs to the space

V h :=
{

u ∈ L2
(
Rd

)
: supp û ⊂ [−̉/h, ̉/h)d

}
= range

(
T h

ϕ

)

if and only if

u =
∑

n∈Zd

u (hn) ̞h
n.

In particular, such functions are determined by their values on the grid hZd.

• Wavelets. Take again hk := 2−k for every k ∈ Z. A function ̑ ∈ L2
(
Rd

)
is

a wavelet provided
{
̑hk

n : n ∈ Zd, k ∈ Z
}

is an orthonormal basis of L2
(
Rd

)
. For

more details on wavelets and the closely related MultiResolution Analyses, the
reader may see [10, 16].

Additional examples and references (from the viewpoint of Signal Theory), may
be found in the survey [19].
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3.2 Boundedness properties

In order to ensure that the sampling and reconstruction operators are bounded,
we shall make the assumption (BP) below:

There exist s ∈ R and B > 0 such that ̞ ∈ Hs (R) and

̍ 〈Dx〉sϕ (̇) :=
∑

k∈Zd

|〈̇ + 2̉k〉s ̞̂ (̇ + 2̉k)|2 ≤ B for a.e. ̇ ∈ Rd. (BP)

Lemma 3.1 Suppose ̞ ∈ S ′ (Rd
)
. Then the following are equivalent:

i) ̞ satisfies (BP).

ii) There exists B > 0 such that

∥∥〈hDx〉s T h
ϕU

∥∥
L2(Rd)

≤
√

B ‖U‖L2(hZd) (17)

holds uniformly for h > 0 and U ∈ L2
(
hZd

)
.

iii) There exists B > 0 such that

∥∥Sh
ϕu

∥∥
L2(hZd)

≤
√

B
∥∥〈hDx〉−s u

∥∥
L2(Rd) (18)

holds uniformly for h > 0 and u ∈ H−s
(
Rd

)
.

Moreover, whenever i), ii) or iii) is fulfilled, the smallest constant B for which
any of the above assertion holds is precisely

∥∥̍ 〈Dx〉sϕ

∥∥
L∞(Q)

.

Proof. To see why i) and ii) are equivalent, first observe that, given any
̞ ∈ Hs

(
Rd

)
the following identity holds

T h
ϕ = 〈hDx〉−s T h

〈Dx〉sϕ. (19)

To check this, simply notice that

T̂ h
ϕU (̇) = hd ̞̂ (ḣ)

∑

n∈Zd

Une−ihn⋅ξ = ̞̂ (ḣ) hdÛ (ḣ) ,

hence

T̂ h
ϕU (̇) = 〈ḣ〉−s 〈ḣ〉s ̞̂ (ḣ) hdÛ (ḣ) = ̂〈hDx〉−s T h

〈Dx〉sϕU (̇) .
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Since 〈Dx〉s ̞ ∈ L2
(
Rd

)
and

∥∥〈hDx〉s T h
ϕU

∥∥
L2(Rd)

=
∥∥∥T h

〈Dx〉−sϕ
U

∥∥∥
L2(Rd)

it suffices to deal with the case s = 0. But it is a well-known result (see for instance
[2, 17]) that for ̞ ∈ L2

(
Rd

)
, i) and ii) are equivalent and that

∥∥T h
ϕ

∥∥ = ‖̍ϕ‖L∞(Rd)
whenever T h

ϕ is bounded.
Statements ii) and iii) are equivalent because of the following duality relation:

(
〈hDx〉s T h

ϕU, 〈hDx〉−s u
)

L2(Rd)
=

(
U, Sh

ϕu
)

L2(hZd)
,

which holds for every u ∈ H−s
(
Rd

)
and U ∈ L2

(
hZd

)
. This is simple to check:

(
〈hDx〉s T h

ϕU, 〈hDx〉−s u
)

L2(Rd)
=

∑

n∈Zd

Un

∫

Rd

〈hDx〉s ̞h
n (x) 〈hDx〉−s u (x)dx

=
∑

n∈Zd

Un

〈
̞h

n, u
〉

Hs(Rd)·H−s(Rd)

= hd
∑

n∈Zd

Uh
nSh

ϕu (n).

Remark 3.2 For s ≤ 0, estimate (17) implies that

∥∥〈˾Dx〉s T h
ϕUh

∥∥
L2(Rd)

≤
√

B
∥∥Uh

∥∥
L2(hZd) , (20)

a soon as h/˾ ≤ 1, as it can be easily checked taking Fourier transforms.

A sufficient condition for (BP) in terms of decay on ̞ is next given:

Lemma 3.3 Suppose ̞ ∈ Hs
(
Rd

)
satisfies, for some ˾ > 0,

∫

Rd

|〈Dx〉s ̞ (x)|2 (1 + |x|)d+ε dx < ∞ (21)

Then ̞̂ and ̍ 〈Dx〉sϕ are continuous functions. In particular, (BP) always holds
for such a ̞.
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Proof. It follows the lines of [16], Lemma II.7. Under condition (21), 〈̇〉s ̞̂ ∈
Hd/2+ε/2

(
Rd

)
; Sobolev’s imbedding Theorem then ensures that 〈̇〉s ̞̂ is a contin-

uous function and hence so is ̞̂. The continuity of ̍ 〈Dx〉sϕ is a consequence of the
fact that, whenever ̐ ∈ C∞

c

(
Rd

)
satisfies

∑
n∈Zd |̐ (̇ + 2̉n)| ≥ 1, the expression

[∑

n∈Zd

‖u̐ (⋅ + 2̉n)‖2
Hs(Rd)

]1/2

defines an equivalent norm in Hs
(
Rd

)
, s ≥ 0. This actually proves that

∑

n∈Zd

sup
ξ∈Rd

|〈̇〉s ̞̂ (̇) ̐ (̇ + 2̉n)|2 < ∞.

In particular, the series defining ̍ 〈Dx〉sϕ is uniformly convergent and the claim then
follows.

Condition (21) automatically holds for profiles ̞ such that

|〈Dx〉s ̞ (x)| ≤ C (1 + |x|)−d−ε , for every x ∈ Rd and some C, ˾ > 0; (22)

in particular, the hypothesis (9) we assumed in the introduction implies (BP) for
s = 0.

Now we can prove a general result from which Proposition 1.8 immediately
follows:

Proposition 3.4 Suppose ̞ satisfies (BP) and we are given scales (hk), (˾k) such
that (hk/˾k) is bounded. If

(
Uhk

)
is an hk-bounded sequence of discrete functions

then the distributions mεk
[
T hk

ϕ Uhk
]

are uniformly bounded in S ′. Moreover, the
limit of any weakly convergent subsequence is a positive measure.

The proof this is a direct consequence of Remark 3.2 and the general result
established in Proposition 8.1.

3.3 Bases and projections

Below, we recall some results from Approximation Theory that will be needed in
the sequel. These results deal with the range in Hs

(
Rd

)
of the reconstruction

operator T h
ϕ , which we denote V h

ϕ .
The space V h

ϕ is a Principal Shift Invariant (PSI) space. When any of

the conditions of Lemma 3.1 are satisfied, the family
{
h−d/2̞h

n : n ∈ Zd
}

is said to
form a Bessel system for V h

ϕ .
The next Lemma clarifies how the function ̍ 〈Dx〉sϕ characterizes further basis

properties of the functions ̞h
n.
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Lemma 3.5 Let ̞ ∈ S ′ (Rd
)

satisfy (BP). Then

i)
{
h−d/2̞h

n : n ∈ Zd
}

is an orthonormal basis of V h
ϕ if and only if

̍ 〈Dx〉sϕ (̇) = 1 for a.e. ̇ ∈ Rd.

ii)
{
h−d/2̞h

n : n ∈ Zd
}

is a Riesz basis 6 of V h
ϕ if and only if there exist

constants A,B > 0 such that

A ≤ ̍ 〈Dx〉sϕ (̇) ≤ B for a.e. ̇ ∈ Rd.

Proof. The operator 〈Dx〉s : Hs
(
Rd

)
ջ L2

(
Rd

)
is unitary. Hence

{
h−d/2̞h

n : n ∈ Zd
}

is an orthonormal (resp. Riesz) basis of V h
ϕ if and only if

{
h−d/2 (〈Dx〉s ̞)

h
n : n ∈ Zd

}

is an orthonormal (resp. Riesz) basis of the range of T h
〈Dx〉sϕ. Thus, the Lemma

needs only to be proved for profiles ̞ ∈ L2
(
Rd

)
and this is a well-known result

(see, for instance, [17]).

We shall also need the following expression for the orthogonal projection onto
V h

ϕ :

Lemma 3.6 Let ̞ ∈ S ′ (Rd
)

satisfy (BP). The orthogonal projection P h
ϕ :

Hs
(
Rd

)
ջ V h

ϕ equals P h
ϕ = T h

ϕSh
˜〈Dx〉sϕ

〈hDx〉s, where, for f ∈ L2
(
Rd

)
, f̃ ∈ L2

(
Rd

)

is defined by:

̂̃f (̇) :=





f̂ (̇)

̍ f (̇)
, if ̍ f (̇) 6= 0,

0 otherwise.

Proof. The proof of the result for s = 0 may be found in [2], Theorem 2.9.
We can reduce ourselves to this case by noticing that

P h
ϕ = 〈hDx〉−s P h

〈hDx〉sϕ 〈hDx〉s ,

since, as we have seen in (19), the range of T h
ϕ equals that of 〈hDx〉−s T h

〈hDx〉sϕ and

〈hDx〉s is an orthogonal mapping. Using the L2-result we obtain:

P h
ϕ = 〈hDx〉−s T h

〈hDx〉sϕSh
˜〈Dx〉sϕ

〈hDx〉s = T h
ϕSh

˜〈Dx〉sϕ
〈hDx〉s ,

as claimed.

6This means that there exist constants A,B > 0 such that

A ‖U‖2
L2(hZd) ≤

∥∥Th
ϕU

∥∥2

Hs(Rd)
≤ B ‖U‖2

L2(hZd)

for all U ∈ L2
(
hZ

d
)
. This is equivalent to the existence of a linear isomorphism R : V h ջ

V h such that
{
h−d/2Rϕh

n : n ∈ Z
d
}

forms an orthonormal basis of Hs
(
R

d
)
. This property is

sometimes also referred as that
(
ϕh

n

)
n∈Zd

form a stable frame in Hs
(
R

d
)
.
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4 High frequency analysis: h ∼ ε

4.1 Reduction to the case h = ε

In this section we analyze the effect of sampling and reconstruction on Wigner
measures at scales (˾k), of the same order of the sampling/reconstruction rate (hk)
(i.e., such that (hk/˾k) is bounded).

First notice that it suffices to treat the case ˾k = hk; the more general one can
be obtained by a proper rescaling. This is due to the following identity:

mε [u] (x, ̇) = (h/˾)d mh [u] (x, (h/˾) ̇) ,

which clearly implies:

Lemma 4.1 Suppose hk/˾k ջ c > 0. Then mεk [uk] converges in S ′ if and only
if mhk [uk] does. Their respective limits ̅c and ̅ are related through:

̅c (x, ̇) = cd̅ (x, ċ) . (23)

When hk = ˾k, the transforms Mhk
[
Uhk

]
are Γ-periodic in the variable ̇;

hence, so are their limiting Wigner measures

4.2 Sampling

We start by exploring the effect of sampling on the structure of Wigner measures.
The computation of the Wigner measure at scale (hk) of a sequence of samples(
Shk

ϕ uk

)
is done in the following theorem; it is applicable whenever the hypothesis

(D) below is fulfilled:

essup
ξ∈Q

∑

|n|≥R

|〈̇ + 2̉n〉s ̞̂ (̇ + 2̉n)|2 ջ 0 as R ջ ∞. (D)

Notice that profiles with the property (21) immediately verify (D).
Before stating our result, it is important to notice that the Fourier transform

of a profile ̞ satisfying condition (BP) is an element of L2
loc

(
Rd

)
. In particular, it

is only defined modulo a set of zero Lebesgue measure. Thus, when dealing with
pointwise properties of ̞̂, we shall systematically assume that a precise represen-
tative of the class of ̞̂ has, once for all, been chosen.

For instance, the Wigner measures ̅ of the sequences (uk) in Theorem 4.2
below, will be assumed to satisfy conditions (MS) and (ND):

|̞̂ (̇ + 2̉n)|2 ̅ (x, ̇ + 2̉n) , n ∈ Zd, are mutually singular measures. (MS)
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̅
(
Rd · Dbϕ

)
= 0, (ND)

where, recall, Dbϕ stands for the set of discontinuity points of ̞̂. These conditions
must be understood to hold for the same representative of ̞̂.

Theorem 4.2 Let (hk) be a scale and take ̞ satisfying (BP) and (D). Let (uk)
be a sequence in H−s

(
Rd

)
such that

(
〈hkDx〉−s uk

)
is bounded and suppose that

mhk [uk] converges to a Wigner measure ̅ that fulfills (ND), (MS).
Then Mhk

[
Shk

ϕ uk

]
converges to the Wigner measure ̅ϕ given by:

̅ϕ (x, ̇) =
∑

n∈Zd

|̞̂ (̇ + 2̉n)|2 ̅ (x, ̇ + 2̉n) . (24)

Remark 4.3 i) As pointed out above, formula (28) holds for the same precise
representative of the Fourier transform ̞̂ which was chosen in (ND) and (MS).

ii) The necessity of hypotheses (ND) and (MS) will be discussed in paragraph
4.4.

iii) Condition (D) may be replaced by the assumption that
(
〈hkDx〉−s uk

)
is

hk-oscillatory. This will be made clear in the proof of the Theorem.

iv) The boundedness of 〈hkDx〉−s uk implies that (uk) is hk-oscillatory.

The proof of this Theorem is postponed to the end of this section.
The expression (24) may be related to the concept of Wigner series intro-

duced in [14, 9]. Recall that given u ∈ S ′ (Rd
)
, the Wigner series of u at scale

˾ is defined by:

wε
S [u] (x, ̇) :=

1

(2̉)d

∑

n∈Zd

u (x − ˾̉n) u (x + ˾̉n) ein⋅ξ.

It is easy to check that wε
S [u] (x, ̇) =

∑
n∈Zd wε [u] (x, ̇ + 2̉n).7

When (uk) is bounded in L2
(
Rd

)
, ˾k-oscillatory and possesses a Wigner mea-

sure at scale (˾k) then the following relation holds:

lim
kջ∞

∫

Rd·Rd

a (x, ̇) wεk

S [uk] (x, ̇) dxḋ =

∫

Rd·Rd

∑

n∈Zd

a (x, ̇ + 2̉n) d̅ (x, ̇) , (25)

for a ∈ S, see [3].
Theorem 4.2 has a simple interpretation in terms of Wigner series: the measure

̅ϕ may be obtained as the limit of the Wigner series

whk

S [̞̂ (hkDx) uk] .
7See (5) for the definition of the Wigner transform wε [u].
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This is due to the fact that, under any of the hypotheses (D), (̞̂ (hkDx) uk) is hk-
oscillatory. Besides, as a consequence of Proposition 8.3, the Wigner measure at
scale (hk) of (̞̂ (hkDx) uk) is given by |̞̂ (̇)|2 ̅ (x, ̇). The assertion then follows
from (25).

As was already mentioned in the Introduction, condition (MS) is a restriction
on the support of the measure |̞̂ (̇)|2 ̅ (x, ̇). Two extremal cases in which it is
trivially satisfied are the following:

i) ̞̂|Rd\Q ≡ 0, in this case (MS) holds independently of what ̅ is.

ii) The sequence (uk) is asymptotically band-limited i.e. its Wigner mea-
sures at scale (hk) is concentrated on the cube Q. For those sequences, condition
(MS) only involves the behavior of ̅ on the boundary ∂Q: it essentially expresses
that the restrictions of ̅ to parallel sides of ∂Q do not overlap (i.e. are mutually
singular). A sufficient condition for this is, for instance,

lim sup
kջ∞

∫

Rd\QR

∣∣∣∣ûk

(
̇

hk

)∣∣∣∣
2

ḋ

(2̉hk)
d
ջ 0 as R ջ ∞, (26)

where QR := [−̉, ̉ − 1/R)d.

Remark 4.4 In any of the above cases, we have:

1Q (̇) ̅ϕ (x, ̇) = |̞̂ (̇)|2 ̅ (x, ̇) .

Hence, the restriction of ̅ϕ to Rd · Q coincides with ̅ if and only if |̞̂ (̇)|2 = 1
for ̅-almost every ̇ ∈ Q.

The specific choice ̞ = ˽0 corresponds to the analysis of discretization, for
then Sh

δ0
u (n) = u (hn). Theorem 4.2 takes the following simple form:

Corollary 4.5 Let (hk) be a scale and let (uk) be a sequence in Hs
(
Rd

)
, for some

s > d/2, such that (〈hkDx〉s uk) is bounded. If ̅ is its Wigner measure at scale
(hk) and the measures ̅ (x, ̇ + 2̉n) are mutually singular then Wigner measure
̅δ0 corresponding to the sequence of discretizations is the periodization:

̅δ0 (x, ̇) =
∑

n∈Zd

̅ (x, ̇ + 2̉n) .

In other words, ̅δ0 is the limit of the Wigner series whk

S [uk].

This Corollary is particularly useful in the explicit computation of Wigner
measures for discrete functions. As an example, consider the concentrating and
oscillating sequences we defined in the Introduction, fk (x) = kd/2̊ (k (x − x0))
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and gk (x) := ̊ (x) eikx⋅ξ0

with ̊ ∈ L2
(
Rd

)
. Using identities (7) and (8) we obtain,

for (fk) and (gk) respectively:

̅δ0 (x, ̇) = ˽x0
(x) ⊗

∑

n∈Z

|̂̊ (̇ + 2̉n)|2 ḋ

(2̉)d
,

if, for instance, supp ̂̊ ⊂ Q, and

|̊ (x)|2 dx ⊗
∑

n∈Zd

˽ξ0+2πn (̇) , (27)

with no assumption on ̊.

4.3 Reconstruction

Now we deal with the reconstruction operator T h
ϕ ; it modifies the high-frequency

behavior of a sequence of discrete functions in the following way:

Theorem 4.6 Let (hk) be a scale and
(
Uhk

)
be an hk-bounded sequence; take ̞

satisfying (BP). If Mhk
[
Uhk

]
converges to the Wigner measure ̅ which verifies

(ND) then mhk
[
T hk

ϕ Uhk
]

converges to a Wigner measure ̅ϕ given by:

̅ϕ (x, ̇) = |̞̂ (̇)|2 ̅ (x, ̇) . (28)

The proof of Theorem 4.6 is based on explicit formulas for the Fourier trans-
forms of T h

ϕU . As we have already seen,

T̂ h
ϕU (̇) = ̞̂ (ḣ) hdÛ (ḣ) , (29)

for any U ∈ L2
(
hZd

)
. The following Remark ensures that Proposition 8.3 can be

applied in the proof below.

Remark 4.7 If ̞ ∈ Hs
(
Rd

)
satisfies (BP) then ̞̂ ∈ L∞ (

Rd; 〈̇〉s
)
.

Proof of Theorem 4.6. Just notice that (29) can be rewritten as:

T h
ϕUh = ̞̂ (hDx) T h

δ0
Uh.

The hypotheses made on ̞ and ̅ allow us to apply Proposition 8.3 (see Remark
4.7) and conclude

Identity (28) expresses how the measure ̅ is modulated by the profile ̞; the
necessity of the hypothesis (ND) for this result is discussed in paragraph 4.4 as
well.

Since ̅ is Γ-periodic in ̇, formula (28) suggests that ̅ may be compared to
the periodization of ̅ϕ with respect to the variable ̇.
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Corollary 4.8 Let ̞,
(
Uhk

)
, ̅ and ̅ϕ be as in Theorem 4.6. Then the periodiza-

tion
̅ϕ,s (x, ̇) :=

∑

n∈Zd

〈̇ + 2̉n〉2s ̅ϕ (x, ̇ + 2̉n) (30)

is a well-defined8 measure, Γ-periodic in ̇, that satisfies:

̅ϕ,s (x, ̇) = ̍ 〈Dx〉sϕ (̇) ̅ (x, ̇) . (31)

In particular:

i) If ̍ 〈Dx〉sϕ (̇) = 1 except for ̇ in a set of zero ̅-measure then ̅ϕ,s = ̅.

ii) ̍ 〈Dx〉sϕ ≡ 1 if and only if the identity ̅ϕ,s = ̅ holds for every sequence(
Uhk

)
.

Proof. Since |〈̇〉s ̞̂ (̇)|2 is a nonnegative continuous function, the series defin-
ing ̍ 〈Dx〉sϕ (̇) converges absolutely for every ̇ on the support of ̅ (which consists
of continuity points for ̞̂ (̇)). Thus, by the dominated convergence Theorem:

∫

Rd·Rd

a (x, ̇) ̍ϕ,s (̇) d̅ (x, ̇) =
∑

n∈Zd

∫

Rd·Rd

a (x, ̇) |〈̇ + 2̉n〉s ̞̂ (̇ + 2̉n)|2 d̅ (x, ̇)

for every a ∈ Cc

(
Rd · Rd

)
. Taking now into account (28) and the fact that ̅ is

Γ-periodic in ̇, we find that

∫

Rd·Rd

a (x, ̇) ̍ϕ,s (̇) d̅ (x, ̇) =
∑

n∈Zd

∫

Rd·Rd

a (x, ̇) 〈̇ + 2̉n〉2s d̅ϕ (x, ̇ + 2̉n)

and the first part of the result follows.
Statement i) as well as the “only if” part of ii) are trivial. To obtain the ne-

cessity in ii), just consider sequences of discrete functions whose Wigner measures
are of the form ̅ (x, ̇) = ̆ (x)⊗∑

n∈Zd ˽ξ0+2πn (as (27), for instance). Clearly, for

̅ϕ,s = ̅ to hold for such a measure, we must have ̍ 〈Dx〉sϕ

(
̇0

)
= 1.

Remark 4.9 i) Because of Lemma 3.5, if relation ̅ϕ,s = ̅ holds for every
hk-bounded sequence of discrete functions then the profile ̞ has the property:{
h−d/2̞h

n : n ∈ Zd
}

is an orthonormal family in Hs
(
Rd

)
for every h > 0.

ii) However, the converse is not true, if ̞ gives rise to an orthonormal family
then ̍ 〈Dx〉sϕ (̇) = 1 holds outside a set of null Lebesgue measure. If ̅ is supported
on that set, identity ̅ϕ,s = ̅ may not hold.

8The limit defining the sum (30) is understood to exist for the weak convergence of measures
in M+

(
R

d · R
d
)
.
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As in the preceding section, our result has an interpretation in terms of Wigner
series. Under the conditions of Theorem 4.6, the measure ̅ϕ,s may be obtained as
the limit as k ջ ∞ of the functions

whk

S

[
〈hkDx〉s T hk

ϕ Uhk
]
,

provided
(
〈hkDx〉s T hk

ϕ Uhk
)

is hk-oscillatory. Note however, that this may not be
the case for certain profiles ̞ (see paragraph 5.3).

In particular, Corollary 4.8 shows that the limits of whk

S

[
T hk

ϕ Uhk
]
and Mhk

[
Uhk

]

coincide if we chose, for instance, ̞ := 1[−1/2,1/2)d .

4.4 The necessity of the hypotheses of Theorems 4.2 and
4.6

Formulas (28) and (24) may not hold when ̞̂ is not continuous and the Wigner
measure ̅ does not vanish on the closure of the set of discontinuity points Dbϕ.
We illustrate this with two one-dimensional examples where

̞ (x) =
sin ̉x

̉x
.

We will chose 1Q as the representative of ̞̂ for which the counterexamples will be
built.

1. Necessity of condition (ND) in Theorem 4.6. Take Uh to be the
sequence discrete function of L2

(
hZd

)
given by their Fourier transforms:

Ûh (̇) :=
1

h

∑

n∈Z

1(−1,1)

(
̇ − (2n + 1) ̉

h

)
.

Then, denoting by ̅ the Wigner measure at scale h of
(
Uh

)
,

|̞̂ (̇)|2 ̅ (x, ̇) =
sin2 (x)

̉2x2
dx ⊗ ˽−π (̇) .

This measure differs from ̅ϕ, which is given by:

̅ϕ (x, ̇) =
sin2 (x/2)

̉2x2
dx ⊗ [˽π (̇) + ˽−π (̇)] .

Remark 4.10 i) The particular choice of the representative of ̞̂ does not play
a role. Theorem 4.6 still fails if we take as representative of ̞̂ the characteristic
functions of (−̉, ̉)d or [−̉, ̉]d.
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ii) In particular, this example shows that even the two projections on x and ̇
of the measures ̅ and ̅ϕ may differ.

iii) This also shows that the periodization in ̇ of ̅ϕ does not necessarily coin-
cide with ̅, even when ̍ϕ = 1 as is the case here. Thus the conclusion of Corollary
4.8 may fail when ̞̂ is not continuous.

Our counterexample to Theorem 4.2 is essentially the same as the previous
one:

2. Necessity of condition (ND) in Theorem 4.2. Define

v̂h (̇) := 1(−1,1) (̇ + ̉/h) .

Then, denoting by ̅ the Wigner measure at scale h of
(
vh

)
,

∑

n∈Z

|̞̂ (̇ + 2̉n)|2 ̅ (x, ̇ + 2̉n) =
sin2 (x)

̉2x2
dx ⊗

∑

n∈Z

˽(2n+1)π (̇)

and this is different from ̅ϕ, which is precisely:

̅ϕ (x, ̇) =
sin2 (x/2)

̉2x2
dx ⊗

∑

n∈Z

˽(2n+1)π (̇) .

Finally, we investigate hypothesis (MS). Now we set ̞ := ˽0.

3. Necessity of condition (MS) in Theorem 4.2. Define

v̂h (̇) := 1Q (ḣ)
∑

n∈Z

1(−1,1) (̇ − (2n + 1) ̉) .

Clearly, as in our first example, the periodization of the Wigner measure of
(
vh

)

is: ∑

k∈Zd

̅ (x, ̇ + 2̉n) =
sin2 (x/2)

̉2x2
dx ⊗

∑

k∈Z

˽(2n+1)π (̇) .

However, the sequence of discretizations
(
Sh

δ0
vh

)
has the following one:

̅δ0 (x, ̇) =
sin2 (x)

̉2x2
dx ⊗

∑

n∈Z

˽(2n+1)π (̇) .

The proof of these counterexamples easily follows from (7), identity (55) and
Lemma 8.13.
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4.5 A Poisson summation formula and proof of Theorem
4.2

The computation of the Fourier transform of Sh
ϕu is given by the following identity:

Lemma 4.11 Let ̞ satisfy (BP) and u ∈ H−s
(
Rd

)
. Then the Fourier transform

of Sh
ϕu is:

hd
∑

n∈Zd

Sh
ϕu (n) e−ihn⋅ξ =

∑

n∈Zd

̞̂ (ḣ + 2̉n)û

(
̇ +

2̉

h
n

)
, (32)

the convergence of the first series being in L2
loc

(
Rd

)
while the second takes place

in L1
loc

(
Rd

)
.

Proof. Begin by noticing that ̞̂û ∈ L1
(
Rd

)
and thus

Πh (̇) :=
∑

n∈Zd

̞̂ (ḣ + 2̉n)û (̇ + 2̉/hn)

is a well-defined (2̉/h) Zd-periodic L1
loc

(
Rd

)
function, the series defining it being

absolutely convergent in L1
loc

(
Rd

)
. We can compute its Fourier coefficients:

∫

[−π/h,π/h)d

Πh (̇) eihn⋅ξ hdḋ

(2̉)d
=

∑

k∈Zd

∫

Q

̞̂ (̇ + 2̉k)û

(
̇ + 2̉k

h

)
ein⋅ξ ḋ

(2̉)d

=

∫

Rd

̞̂ (̇)û

(
̇

h

)
ein⋅ξ ḋ

(2̉)d

=

∫

Rd

hd ̞̂ (ḣ) e−ihn⋅ξû (̇)
ḋ

(2̉)d

=
〈
̞h

n, u
〉
S′·S

= hdSh
ϕu (n) .

Lemma 3.1 proves that Sh
ϕu is square-summable and, consequently,

Πh (̇) =
∑

n∈Zd

hdSh
ϕu (n) e−ihn⋅ξ,

the sum being understood in the L2-sense. This is precisely formula (32).

Remark 4.12 Identity (32) may be viewed as a generalization of Poisson sum-

mation formula. Taking as ̞ the Dirac delta ˽0, we obtain:

hd
∑

n∈Zd

u (hn) e−ihn⋅ξ =
∑

n∈Zd

û

(
̇ +

2̉

h
n

)
,

for every u ∈ Hs
(
Rd

)
with s > d/2.
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Proof of Theorem 4.2. The proof will be done in two steps:

Step 1: We first establish the result for sequences such that ̞̂ (̇) ûk (̇/hk) has
support in a ball B (0; R) for every k ∈ N. We claim that the following formula
holds:

T hk

δ0
Shk

ϕ uk (x) =
∑

|n|≤R+π
√

d

e−2πin⋅x/hk ̞̂ (hkDx) uk (x) .

This is obtained by applying the inverse Fourier transform at both sides of iden-
tity (32), and remarking that only summands satisfying |n| ≤ R + ̉

√
d must be

considered because of the condition on the support of ̞̂ûk (⋅/hk). The Wigner
measures of the functions

e−2πin⋅x/hk ̞̂ (hkDx) uk (x)

are precisely (cf. Proposition 8.3 and Remark 4.7):

|̞̂ (̇ + 2̉n)|2 ̅ (x, ̇ + 2̉n) .

By hypothesis, they are mutually singular so, by Lemma 8.13, we deduce that the

measure ̅ϕ obtained as the limit of mhk

[
T hk

δ0
Shk

ϕ uk

]
is given by (24).

Step 2: We prove the result in the general case by taking advantage of hy-
pothesis (D). Let ̐ ∈ C∞

c

(
Rd

)
be a cut-off function identically equal to one in

the unit ball B (0; 1) . Denote by Shk

ϕ,Ruk the truncation given by:

̂Shk

ϕ,Ruk (̇) :=
̂

Shk
ϕ ̐

(
hkDx

R

)
uk (̇)

=
1

(hk)
d

∑

n∈Zd

̞̂ (̇ + 2̉n)̐

(
̇ + 2̉n

R

)
ûk

(
̇ + 2̉n

hk

)
;

Then, by the first step we have just proved, Mhk

[
Shk

ϕ,Ru
]

converges to

̅ϕ
R (x, ̇) :=

∑

n∈Zd

∣∣∣∣̞̂ (̇ + 2̉n) ̐

(
̇ + 2̉n

R

)∣∣∣∣
2

̅ (x, ̇ + 2̉n) . (33)

We claim that (D) implies the following:

lim sup
kջ∞

∥∥∥Shk
ϕ uk − Shk

ϕ,Ruk

∥∥∥
2

L2(hkZd)
ջ 0 as R ջ ∞. (34)

It is sufficient to realize that

Shk
ϕ uk − Shk

ϕ,Ruk = Shk

ψR
uk
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for ̂̑
R := ̐ (⋅/R)̞̂. The norm of Shk

ψR
is precisely (cf. Lemma 3.1)

essup
ξ∈Q

∑

n∈Zd

∣∣∣∣〈̇ + 2̉n〉s ̞̂ (̇ + 2̉n) ̐

(
̇ + 2̉n

R

)∣∣∣∣
2

which tends to zero as R ջ 0.
Lemma 8.12 then ensures that ̅ϕ

R weakly converge to ̅ϕ. Identity (33) means
that

∫

Rd·Rd

a (x, ̇) d̅ϕ
R (x, ̇) =

∫

Rd·Rd

∑

k∈Zd

a (x, ̇ + 2̉n) |̞̂ (̇)|2 |̐ (̇/R)|2 d̅ (x, ̇)

for every test function a ∈ S. Passing to limits as R ջ ∞ in the above identity
we obtain the claimed result.

Notice that the same argument may be applied if, instead of condition (D), we
have that

(
〈hkDx〉−s uk

)
is hk-oscillatory. This is because (34) may be estimated

from above by

lim sup
kջ∞

∥∥∥∥〈hkDx〉−s

(
1 − ̐

(
hkDx

R

))
uk

∥∥∥∥
2

L2(Rd)
ջ 0 as R ջ ∞

because of Lemma 3.1 and the hk-oscillation hypothesis.

5 Computation of defect measures

5.1 Relations between defect and Wigner measures in the
discrete setting

In this paragraph, we establish the analog of Proposition 1.2 in the discrete setting.
In particular, we present conditions that ensure that the projection on the x-
component of a Wigner measure may be obtained as the limit of quadratic densities
of the type:

Eh
[
Uh

]
(x) := hd

∑

n∈Zd

∣∣Uh
n

∣∣2 ˽hn (x) .

Proposition 5.1 Let (hk) be a scale and
(
Uhk

)
be an hk-bounded sequence. Sup-

pose that
(
Mhk

[
Uhk

])
converges to ̅ as k ջ ∞. Then, for every ̏ ∈ Cc

(
Rd

)
,

∫

Rd·Q

̏ (x) d̅ (x, ̇) = lim
kջ∞

(hk)
d

∑

n∈Zd

̏ (hkn)
∣∣Uhk

n

∣∣2 . (35)
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If (˾k) is a scale such that hk ≪ ˾k and the transforms M εk
[
Uhk

]
converge to ̅,

then (35) holds provided
(
Uhk

)
is εk-oscillatory, i.e.:

lim sup
kջ∞

(hk)
d

∫

Q\B(0;hk/εkR)

∣∣∣Ûhk (̇)
∣∣∣
2

ḋ ջ 0 as R ջ ∞. (36)

In view of Proposition 5.1, one could think that Wigner measures at scales
coarser than hk are unnecessary. However, as the next result shows, if

(
Uhk

)
is

˾k-oscillatory for such a scale then the Wigner measure at scale (hk) does not give
any information about the oscillation effects.

Proposition 5.2 Let (hk) and (˾k) be scales such that hk ≪ ˾k. For every ˾k-
oscillatory, hk-bounded sequence

(
Uhk

)
such that Mhk

[
Uhk

]
⇀ ̅ as k ջ ∞ we

have
̅ (x, ̇) = ̆ (x) ⊗

∑

k∈Zd

˽2πk (̇)

where ̆ is the weak limit in M+

(
Rd

)
of the measures Ehk

[
Uhk

]
.

The Wigner measure also gathers the information on the densities
∣∣F εkUhk (̇)

∣∣2;
indeed, these converge to the projection on ̇ of the Wigner measure provided that
no energy is lost at infinity.

Proposition 5.3 Let (hk) and (˾k) be scales such that hk/˾k is bounded. Suppose
that

(
Uhk

)
is compact at infinity:

lim sup
kջ∞

(hk)
d

∑

|hkn|>R

∣∣Uhk
n

∣∣2 ջ 0, as R ջ ∞, (37)

and that M εk
[
Uhk

]
⇀ ̅ as k ջ ∞. Then

∫

Rd·Rd

̑ (̇) d̅ (x, ̇) = lim
kջ∞

∫

Rd

̑ (̇)
∣∣F εkUhk (̇)

∣∣2 ḋ

for every ̑ ∈ Cc

(
Rd

)
.

The proof of Propositions 5.1 and 5.3 requires the following preliminary re-
sult, which explains how the transform M ε

[
Uh

]
of a discrete function Uh can be

localized:

Lemma 5.4 Let Uh ∈ L2
(
hZd

)
and ̞, ̏ ∈ C∞

c

(
Rd

)
. Then for every a ∈

S
(
Rd · Rd

)
the following holds:

lim
kջ∞

∣∣∣∣∣
〈
M εk

[
Uhk

]
, |̏ (x)|2 ̞ (̇)

〉
S′·S − (hk)

d

∫

Rd

∣∣∣̂̏Uhk (̇)
∣∣∣
2

̞

(
˾k

hk

̇

)
ḋ

(2̉)d

∣∣∣∣∣ = 0.
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Proof. First remark that, as a consequence of relation (14) and Lemma 8.5
we have

lim
kջ∞

∣∣∣
〈
M εk

[
Uhk

]
, |̏ (x)|2 ̞ (̇)

〉
S′·S −

〈
M εk

[
̏Uhk

]
, ̑ (x) ̞ (̇)

〉
S′·S

∣∣∣ = 0 (38)

for every test function ̑ ∈ C∞
c

(
Rd

)
such that ̑ (x) = 1 for x ∈ supp ̏. Now,

(52.i) and (14) together with Plancherel’s formula for the discrete Fourier transform
yield:

〈
M εk

[
̏Uhk

]
, ̑ (x) ̞ (̇)

〉
S′·S =

〈
̏ (x) T hk

δ0
Uhk , ̞ (˾kDx) ̏ (x) T hk

δ0
Uhk

〉
S′·S

= (hk)
2d

∫

Rd

∣∣∣̂̏Uhk (hk̇)
∣∣∣
2

̞ (˾k̇)
ḋ

(2̉)d

and the result follows.

Proof of Proposition 5.1. Identity (35) in the case hk = ˾k is a direct
consequence of the identity

∫

Q

Mh [U ] (x, ̇) ḋ = Eh
[
Uh

]
(x)

and that, due to the Γ-periodicity in ̇ of Mhk
[
Uhk

]
and ̅, one has

lim
kջ∞

∫

Rd·Q

̏ (x) Mhk
[
Uhk

]
(x, ̇) dxḋ =

∫

Rd·Q

̏ (x) d̅ (x, ̇)

for every ̏ ∈ C∞
c

(
Rd

)
.

Next we analyze the case hk/˾k ջ 0. Given functions ̏, ̐ ∈ C∞
c

(
Rd

)
, using

Lemma 5.4 and periodization in the variable ̇ we find:

∫

Rd·Rd

|̏ (x)|2 ̐ (̇) d̅ (x, ̇) = lim
kջ∞

(hk)
d

∫

Q

∣∣∣̂̏Uhk (̇)
∣∣∣
2 ∑

n∈Zd

̐

(
˾k

hk

(̇ + 2̉n)

)
ḋ

(2̉)d
.

(39)
Choose a function ̐ ∈ C∞

c

(
Rd

)
such that

̐ (̇) = 1 for |̇| ≤ 1,

̐ (̇) = 0 for |̇| ≥ 2,

0 ≤ ̐ (̇) ≤ 1 for ̇ ∈ Rd,

and set ̐R (̇) := ̐ (̇/R) for every R > 0. With such a test function and hk/˾k <

̉/R we have ̐R

(
εk

hk
(̇ + 2̉n)

)
= ̐R

(
εk

hk
̇
)
≤ 1 for every ̇ ∈ Q. Then, taking
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this into account in (39) and using Plancherel’s formula, the following is obtained:

lim
kջ∞

∣∣∣∣∣(hk)
d

∫

Q

∣∣∣̂̏Uhk (̇)
∣∣∣
2 ḋ

(2̉)d
−

∫

Rd·Rd

|̏ (x)|2 ̐R (̇) d̅ (x, ̇)

∣∣∣∣∣ ≤ M (R) ,

where

M (R) := lim sup
kջ∞

(hk)
d

∫

Rd

(
1 − ̐R

(
˾k

hk

(̇ + 2̉n)

)) ∣∣∣̂̏Uhk (̇)
∣∣∣
2 ḋ

(2̉)d
.

Identity (35) is obtained by letting R tend to ∞, noticing that (36) implies that
M (R) ջ 0 as R ջ ∞.

Proof of Proposition 5.2. Since
(
Uhk

)
k∈N

is ˾k-oscillatory, we have

lim sup
kջ∞

∫

Q\B(0;δ)

∣∣∣̂̏Uhk (̇)
∣∣∣
2

ḋ = 0

for every ˽ > 0 and ̏ ∈ C∞
c

(
Rd

)
. Using Lemma 5.4 below, we obtain, for every

̞ ∈ C∞
c (Q \ {0}),

0 = lim
kջ∞

∫

Q

̞ (̇)
∣∣∣̂̏Uhk (̇)

∣∣∣
2 ḋ

(2̉)d
=

∫

Rd·Q

|̏ (x)|2 ̞ (̇) d̅ (x, ̇) .

In particular, ̅ is concentrated on the set Rd · {0}. Since ̅ (⋅ · Q) = ̆ (x) by
Proposition 5.1 we find that, because of the periodicity, ̅

(
Rd · ⋅

)
= ̆

(
Rd

) ∑
k∈Zd ˽2πk (̇);

and this restricts ̅ to be equal to ̆ ⊗ ∑
k∈Zd ˽2πk.

Proof of Proposition 5.3. Since the densities
∣∣F εkUhk

∣∣2 are uniformly
bounded in L1

(
Rd

)
(and consequently in M

(
Rd

)
) it suffices to prove the result

for test functions ̑ ∈ C∞
c

(
Rd

)
. Let ̐ and ̐R be defined as in the proof of

Proposition 5.1. Because of Lemma 5.4 the following holds for every ̑ ∈ S
(
Rd

)
:

∫

Rd·Rd

|̐R (x)|2 ̑ (̇) d̅ (x, ̇) = lim
kջ∞

∫

Rd

̑ (̇)
∣∣F εk̐RUhk (̇)

∣∣2 ḋ.

Since |̐R (x)|2 ջ 1 as R ջ ∞ for every x ∈ Rd we only have to show that

lim
Rջ∞

∫

Rd·Rd

|̐R (x)|2 ̑ (̇) d̅ (x, ̇) = lim
kջ∞

∫

Rd

̑ (̇)
∣∣F εkUhk (̇)

∣∣2 ḋ.

This appears as a consequence of the identity
∫

Rd

̑ (̇)
(∣∣F εkUhk (̇)

∣∣2 −
∣∣F εk̐RUhk (̇)

∣∣2
)

ḋ =

∫

Rd

̑ (̇)
[
F εk

(
Uhk − ̐RUhk

)
(̇)

]
F εkUhk (̇)ḋ

+

∫

Rd

̑ (̇)F εk̐RUhk (̇) [F εk (Uhk − ̐RUhk) (̇)]ḋ
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which implies

lim sup
kջ∞

∣∣∣∣
∫

Rd

̑ (̇)
(∣∣F εkUhk (̇)

∣∣2 −
∣∣F εk̐RUhk (̇)

∣∣2
)

ḋ

∣∣∣∣ ≤ Cψ lim sup
kջ∞

∥∥Uhk − ̐RUhk
∥∥2

L2(hZd) .

Since the Uhk are compact at infinity, the second term in the above estimate tends
to zero as R tends to infinity and thus:
∣∣∣∣lim sup

kջ∞

∫

Rd

̑ (̇)
∣∣F εkUhk (̇)

∣∣2 −
∫

Rd·Rd

|̐R (x)|2 ̑ (̇) d̅ (x, ̇)

∣∣∣∣ ջ 0 as R ջ ∞.

One easily deduces from this that the measures
∣∣F εkUhk (̇)

∣∣2 ḋ converge in M+

(
Rd

)

to the measure
∫

Rd ̅ (dx, ⋅) as claimed.

5.2 Defect measures of reconstructed sequences

Let
(
Uhk

)
be hk-bounded and ̞ ∈ Hs

(
Rd

)
some profile satisfying (BP). As a

consequence of Lemma 3.1, the sequence of densities
∣∣〈hkDx〉s T hk

ϕ Uhk
∣∣2

is uniformly bounded in L1
(
Rd

)
. Hence, Helly’s compactness Theorem ensures

that, extracting a subsequence if necessary, there exists a measure ̆ϕ ∈ M+

(
Rd

)

such that

lim
kջ∞

∫

Rd

̏ (x)
∣∣〈hkDx〉s T hk

ϕ Uhk (x)
∣∣2 dx =

∫

Rd·Q

̏ (x) d̆ϕ (x) .

The main issue addressed in this section is that of clarifying how ̆ϕ depends of
the sequence

(
Uhk

)
and the profile ̞. We shall see that a formula relating ̆ϕ and

the limit of Ehk
[
Uhk

]
does not exist in general. However such a formula may be

established in terms of the Wigner measure of
(
Uhk

)
.

Suppose that Mhk
[
Uhk

]
converges to ̅. Then, Theorem 4.6 may be applied

to obtain that, provided ̅
(
Rd · Dbϕ

)
= 0, one has

mhk
[
T hk

ϕ Uhk
]

⇀ |̞̂ (̇)|2 ̅ (x, ̇) .

In general, we are only able to ensure (see Proposition 1.7 in [9]):

̆ϕ (x) ≥
∫

Rd

|〈̇〉s ̞̂ (̇)|2 ̅ (x, ḋ) ,

but equality holds whenever
(
〈hkDx〉s T hk

ϕ Uhk
)

is hk-oscillatory. However, this is

not immediate since there exist profiles ̞ for which
(
〈hkDx〉s T hk

ϕ Uhk
)

may fail

to be hk-oscillatory for some
(
Uhk

)
(an example is provided at the end of this

section). Nevertheless,
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Proposition 5.5
(
〈hkDx〉s T hk

ϕ Uhk
)

is hk-oscillatory whenever (D) holds.

This immediately follows from:

Lemma 5.6
(
〈hkDx〉s T hk

ϕ Uhk
)

is hk-oscillatory if and only if

lim sup
kջ∞

(hk)
d

∫

Q

̌R
ϕ (̇)

∣∣∣Ûhk (̇)
∣∣∣
2

ḋ ջ 0 as R ջ ∞,

where
̌R

ϕ (̇) :=
∑

|n|≥R

|〈̇ + 2̉n〉s ̞̂ (̇ + 2̉n)|2 .

Proof. Start by noticing that:

∫

|ξ|≥R/hk

∣∣∣∣
̂〈hkDx〉s T hk

ϕ Uhk (̇)

∣∣∣∣
2

ḋ =

∫

|ξ|≥R

(hk)
d
∣∣∣〈̇〉s ̞̂ (̇) Ûhk (̇)

∣∣∣
2

ḋ.

Periodizing in ̇ we get:

∫

Q

̌R+
√

dπ
ϕ (̇)

∣∣∣Ûhk (̇)
∣∣∣
2

ḋ ≤
∫

|ξ|≥R

∣∣∣〈̇〉s ̞̂ (̇) Ûhk (̇)
∣∣∣
2

ḋ ≤
∫

Q

̌R−
√

dπ
ϕ (̇)

∣∣∣Ûhk (̇)
∣∣∣
2

ḋ,

and the claim follows.

Hence, hk-oscillation is obtained if ̞ decays at infinity at an uniform rate. For
more general ̞, it is still possible to obtain sufficient conditions; however, these
depend on the particular sequence of discrete functions to be reconstructed.

Proposition 5.7 Suppose

i) ̅
(
Rd · Dτ 〈Dx〉sϕ

)
= 0,

ii)
(
Uhk

)
is compact at infinity.

(40)

Then
(
〈hkDx〉s T hk

ϕ Uhk
)

is hk-oscillatory.

Proof. For the sake of simplicity, we prove the result for s = 0; the proof in the
general case being identical. Taking into account the periodicity of the densities
involved, Proposition 5.3 ensures that

lim
kջ∞

(hk)
d

∫

Q

̑ (̇)
∣∣∣Ûhk (̇)

∣∣∣
2

ḋ =

∫

Rd·Q

̑ (̇) d̅ (x, ̇) (41)
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for every ̑ ∈ Cc

(
Rd

)
and the claim follows. Since ̅

(
Rd · Dτϕ

)
= 0, necessarily

̅
(
Rd · DσR

ϕ

)
is null for every R > 0. From classical results on weak convergence

of measures, one deduces that relation (41) also holds for ̑ = ̌R
ϕ . Hence, by the

dominated convergence Theorem,

lim
Rջ∞

lim
kջ∞

(hk)
d

∫

Q

̌R
ϕ (̇)

∣∣∣Ûhk (̇)
∣∣∣
2

ḋ = lim
Rջ∞

∫

Rd·Q

̌R
ϕ (̇) d̅ (x, ̇) = 0,

and the result follows.

What we have proved so, combined with Proposition 1.2 far is gathered in the
next proposition.

Proposition 5.8 Suppose at least one of (D) or (40) is satisfied and that ̅
(
Rd · Dbϕ

)
=

0. Then

lim
kջ∞

∫

Rd

̏ (x)
∣∣〈hkDx〉s T hk

ϕ Uhk
∣∣2 dx =

∫

Rd·Rd

̏ (x) |〈̇〉s ̞̂ (̇)|2 d̅ (x, ̇) (42)

for every ̏ ∈ Cc

(
Rd

)
.

As anticipated above, (42) shows that the knowledge of the weak limit of the
measures Ehk

[
Uhk

]
and the profile ̞ are not enough, in general, to reconstruct the

weak limit of the densities
∣∣〈hkDx〉s T hk

ϕ Uhk

∣∣2 dx. However, when the sequence of
discrete functions under consideration is ˾k-oscillatory for some scale coarser than
the reconstruction step hk, there does exist a formula that relates both limits:

Corollary 5.9 Let
(
Uhk

)
be an hk-bounded, ˾k-oscillatory sequence such that

(
Ehk

[
Uhk

])

weakly converges to a measure ̆. Suppose moreover that ̞̂ is continuous at Γ and

that any of (D) or (40) is satisfied. Then the densities
∣∣〈hkDx〉s T hk

ϕ Uhk

∣∣2 weakly
converge to the measure

̆ϕ (x) =

(∑

n∈Zd

|〈2̉n〉s ̞̂ (2̉n)|2
)

̆ (x) .

Proof. Using Proposition 5.2, we find that any Wigner measure at scale hk of(
Uhk

)
equals

̅ (x, ̇) = ̆ (x) ⊗
∑

n∈Zd

˽2πn (̇) .

Since ̅
(
Rd · Dbϕ

)
= 0, Proposition 5.8 is applicable and gives:

∣∣〈hkDx〉s T hk
ϕ Uhk

∣∣2 dx ⇀ ̍ 〈Dx〉sϕ (0) ̆ (x) as k ջ ∞,

as claimed.

Remark that condition (40.i) reduces in this setting to the requirement that
̍ 〈Dx〉sϕ is continuous at ̇ = 0.
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5.3 A counterexample to h-oscillation

Here we exhibit a function ̞ ∈ L2 (R) satisfying (BP) with ̞̂ is continuous but

∥∥̌R
ϕ

∥∥
L∞(Q)

= 1 for every R > 0.

With such a profile, we show that there exist a sequence of discrete functions
(
Uh

)

such that
(
T h

ϕUh
)

is not h-oscillatory
To construct ̞, define tn := e−n for n = 0, 1, 2... and let ̑n be the piecewise

linear function given for n ≥ 1 by

̑n (t) =





t − tn+1

tn − tn+1

if t ∈ (tn+1, tn) ,

t − tn−1

tn − tn−1

if t ∈ (tn, tn−1) ,

0 otherwise.

Clearly
∑∞

n=1 ̑n (t) = 1 for t ∈ (0, t1), and the sum vanishes for t ≤ 0. Defining

̞̂ (̇) :=

√√√√
∞∑

n=1

̑n (̇ − 2̉n)

we obtain ̞ ∈ L2
(
Rd

)
, ̞̂ ∈ C

(
Rd

)
and ̍ϕ (̇) =

∑∞
n=1 ̑n (̇).

Moreover

̌n
ϕ (̇) =

{
1 if ̇ ∈ (0, xn+1) ,

0 if ̇ ≤ 0.

Thus
∥∥̌R

ϕ

∥∥
L∞(Q)

= 1 for every R > 0.

If we chose discrete functions Uh ∈ L2 (hZ) such that

Ûh (̇) = h−1
∑

n∈Z

1(0,h) (̇ + 2̉n)

then for the ̞ above constructed we obtain

lim
hջ0

∫

Q

̌R
ϕ (̇) h

∣∣∣Ûh (̇)
∣∣∣
2

ḋ = 1 for every R > 0.

This proves that
(
T h

ϕUh
)

is not h-oscillatory.
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6 High frequency analysis: h ≪ ε

Here we shall investigate the structure of Wigner measures at scales (˾k) asymp-
totically coarser than the sampling/reconstruction rate (hk).

In the next two Theorems, we suppose that ̞ satisfies (BP) and ̞̂ is continuous
in a neighborhood of ̇ = 0. Moreover, (hk) and (˾k) will be scales such that
hk ≪ ˾k.

Theorem 6.1 Suppose that
(
Uhk

)
is hk-bounded and M εk

[
Uhk

]
converges to the

Wigner measure ̅. Then mεk
[
T hk

ϕ Uhk
]

converges to a measure ̅ϕ given by:

̅ϕ (x, ̇) = |̞̂ (0)|2 ̅ (x, ̇) . (43)

The proof of this result is completely analogous to that of Theorem 4.6.
Concerning the sampling operators, the situation is much similar:

Theorem 6.2 Let (uk) be a sequence in H−s
(
Rd

)
such that

(
〈hkDx〉−s uk

)
is

bounded in L2
(
Rd

)
and ˾k-oscillatory.

i) Then
(
Shk

ϕ uk

)
is ˾k-oscillatory.

ii) Suppose moreover that mεk [uk] converges to a Wigner measure ̅. Then
M εk

[
Shk

ϕ uk

]
converges to the Wigner measure ̅ϕ given by:

̅ϕ = |̞̂ (0)|2 ̅. (44)

Proof. To prove the first part of the Theorem, begin by noticing that, by the
Cauchy-Schwarz inequality and Lemma 4.11, for almost every ̇ ∈ Rd:

∣∣∣∣
̂Shk

ϕ uk (̇)

∣∣∣∣
2

=

∣∣∣∣∣
1

(hk)
d

∑

n∈Zd

̞̂ (̇ + 2̉n)ûk

(
̇ + 2̉n

hk

)∣∣∣∣∣

2

≤
∥∥̍ 〈Dx〉sϕ

∥∥
L∞(Q)

(hk)
2d

∑

n∈Zd

∣∣∣∣〈̇ + 2̉n〉−s ûk

(
̇ + 2̉n

hk

)∣∣∣∣
2

.

Thus

∫

Q\B(0;hk/εkR)

(hk)
d

∣∣∣∣
̂Shk

ϕ uk (̇)

∣∣∣∣
2

ḋ ≤
∥∥̍ 〈Dx〉sϕ

∥∥
L∞(Q)

∫

Q\B(0;R/εk)

∑

n∈Zd

∣∣〈hk̇ + 2̉n〉−s ûk (̇ + 2̉n)
∣∣2 ḋ

≤
∥∥̍ 〈Dx〉sϕ

∥∥
L∞(Q)

∫

Rd\B(0;R/εk)

∣∣〈hk̇〉−s ûk (̇)
∣∣2 ḋ,

and this clearly proves that
(
Shk

ϕ uk

)
is ˾k-oscillating as soon as

(
〈hkDx〉−s uk

)
is.
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The proof of identity (44) is essentially identical to that of Theorem 4.2. A
completely analogous argument to that used in the step 2 of that proof allows
us to consider only sequences such that ̞̂ (hk/˾k⋅) ûk (⋅/˾k) is supported in a ball
B (0; R). This hypothesis together with Lemma 4.11 implies that, for hk/˾k small
enough,

(hk)
d ̂Shk

ϕ uk

(
hk

˾k

̇

)
= ̞̂

(
hk

˾k

̇

)
ûk (̇/˾k) ,

that is, only one summand is involved. Then the result follows from Proposition
8.3 exactly as in the proof of Theorem 4.2.

We conclude with a simple remark:

Corollary 6.3 Under the assumptions and notations of Theorems 6.1 and 6.2:

i) If ̞ has zero mean (i.e. ̞̂ (0) = 0) then the Wigner measure at scale (˾k) of
any sequence

(
T hk

ϕ Uhk
)

or
(
Shk

ϕ uk

)
vanishes identically. In particular, this is the

case if ̞ is a wavelet.9

ii) ̅ϕ = ̅ϕ = ̅ always holds for profiles such that |̞̂ (0)| = 1.

7 Wigner measures of Sampled/Reconstructed

sequences

Now we are able to describe Wigner measures of sequences of the form T h
ψSh

ϕu.
In its full generality, our result requires several compatibility hypothesis, that we
describe below. First of all,

i) ̑ and ̞ satisfy (BP) with exponents s′ and s respectively.

ii) ̞ satisifes (D).
(45)

The admissible sequences will be assumed to be such that:

uk ∈ H−s
(
Rd

)
and

(
〈hkDx〉−s uk

)
is bounded in L2

(
Rd

)
, (46)

and their Wigner measures must satisfy the following compatibility conditions for
some precise representatives of ̂̑ and ̞̂:

i) ̅ fulfills (ND).

ii)

∫

Rd·Rd

1Dbψ
(̇ + 2̉n) |̞̂ (̇)|2 d̅ (x, ̇) = 0, n ∈ Zd.

iii) ̅ satisfies (MS).

(47)

Combining Theorems 4.6 and 4.2 we obtain:
9See, for instance, [10], Proposition 2.1.

38



Theorem 7.1 Let ̑ and ̞ be functions satisfying (45); let (hk) be a scale and
(uk) be a sequence satisfying (46). Suppose moreover that mhk [uk] converges to a
Wigner measure ̅ that satisfies (47).

Then mhk

[
T hk

ψ Shk
ϕ uk

]
converges to the measure ̅ϕ,ψ given by:

∫

Rd·Rd

a (x, ̇) d̅ϕ,ψ (x, ̇) =

∫

Rd·Rd

∑

n∈Zd

a (x, ̇ + 2̉n)
∣∣∣̂̑ (̇ + 2̉n)

∣∣∣
2

|̞̂ (̇)|2 d̅ (x, ̇)

(48)
for every a ∈ Cc

(
Rd · Rd

)
.

Proof. Hypothesis (47.ii) expresses that the closure of the set of discontinuity

points of ̂̑, is a null set for the Wigner measure of Shk
ϕ uk,

∑
k∈Zd |̞̂ (̇ + 2̉n)|2 ̅ (x, ̇ + 2̉n).

Hence, Theorem 4.6 is applicable and we conclude that the distributions mhk

[
T hk

ψ Shk
ϕ uk

]

converge to the measure
∣∣∣̂̑ (̇)

∣∣∣
2 ∑

n∈Zd

|̞̂ (̇ + 2̉n)|2 ̅ (x, ̇ + 2̉n) .

Since
∣∣∣̂̑ (̇)

∣∣∣
2

is integrable with respect to the finite measure |̞̂|2 ̅ (this is again

due to (47.ii)), its periodization is integrable as well and formula (48) follows.

Remark 7.2 i) When ̂̑ and ̞̂ verify (21) hypotheses (45), (47.i) and (47.ii) are
immediately satisfied.

ii) (45.ii) may be replaced by the requirement that
(
〈hkDx〉−s uk

)
is hk-oscillatory.

From formula (48) one sees at once that, taking ̑ = ̞ = ˽0 one has that ̅ϕ,ψ

is the periodization in ̇ of the Wigner measure ̅. Hence, ̅ϕ,ψ coincides with the
limit of the Wigner series corresponding to (uk).

When ̂̑ and |̞̂|2 ̅ vanish off Q it is easy to check that formula (48) takes the
simple form:

̅ϕ,ψ (x, ̇) =
∣∣∣̂̑ (̇)

∣∣∣
2

|̞̂ (̇)|2 ̅ (x, ̇) .

It is also clear that, as soon as |̞̂ (̇)|2 ̅ (x, ̇) is not null outside Q, the measures
̅ϕ,ψ and ̅ will in general differ.

Concerning defect measures, combining Proposition 5.8 and the previous the-
orem, we obtain:

Theorem 7.3 Under the notations of Theorem 7.1 the following holds: if
∣∣∣〈hkDx〉s

′

T hk

ψ Shk
ϕ uk

∣∣∣
2

dx weakly converges to a measure ̆ϕ,ψ
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and ̑ verifies (D) then:

̆ϕ,ψ (x) =

∫

Rd
ξ

∑

n∈Zd

∣∣∣〈̇ + 2̉n〉s′ ̂̑ (̇ + 2̉n)
∣∣∣
2

|̞̂ (̇)|2 ̅ (x, ḋ) . (49)

Remark 7.4 i) The conclusion of the Theorem still holds if condition “̑ satisfies
(D)” is replaced by (40).

ii) Theorems 1.3 and 1.5 follow immediately from Theorems 7.1 and 7.3.

With formula (49) at our disposal, we are now able to answer, in a quite general
way, the questions A-D addressed in the introduction. Of course, the answer to
A is negative, since, in general, ̅ is not trivial in its ̇ component; concerning the
problem of filtering, we immediately get the necessary and sufficient condition:

cϕ,ψ (̇) := |̞̂ (̇)|2
∑

n∈Zd

∣∣∣〈̇ + 2̉n〉s′ ̂̑ (̇ + 2̉n)
∣∣∣
2

= 0 for ̅-a.e. ̇ ∈ Rd.

Analogously, cϕ,ψ (̇) = 1 for ̅-a.e. ̇ ∈ Rd characterizes the profiles that give
̆ϕ,ψ = ̆. To answer D, we must, of course, assume that ̞̂ and ̍ 〈Dx〉s

′
bψ

are

continuous (which, as we know, is the case if (21) holds). In that case, we have
and equality ̆ϕ,ψ = ̆ for every admissible sequence if and only if

|̞̂ (̇)|2 =
1

̍ 〈Dx〉s
′
ψ

(̇)
for every ̇ ∈ Rd with ̍ 〈Dx〉s

′
ψ

(̇) 6= 0.

The sampling profile ̞, cannot be an L2
(
Rd

)
function, since |̞̂|2 is necessarily

periodic. When ̞ = ˽0 and ̑ generates an orthonormal basis in the sense of
Lemma 3.5 we always have ̆ϕ,ψ = ̆. If ̑ merely generates a Riesz basis, Ă ≤
̆ϕ,ψ ≤ B̆ holds instead.

The above results may be used to compute Wigner measures of the orthogonal
projections P hk

ψ uk of a given sequence (uk) on the shift-invariant space defined

by the range of T hk

ψ . As we have seen in Lemma 3.6, P h
ψ may be written as the

composition of T h
ψ with Sh

ϕ 〈hDx〉s for a sampling profile ̞ := ˜〈Dx〉s ̑. Hence,
Theorem 7.1 gives:

Corollary 7.5 For ̑ satisfying (21) and (uk) such that (46) and (MS) holds, the

defect measures of the sequence
(
P hk

ψ uk

)
is given by:

̆Pψ
(x) =

∫

Rd

1ψ (̇)

̍ 〈Dx〉sψ (̇)

∣∣∣〈̇〉s ̂̑ (̇)
∣∣∣
2

̅ (x, ḋ) ,

where 1ψ (̇) denotes the characteristic function of the set of ̇ ∈ Rd such that
̍ 〈Dx〉sψ (̇) 6= 0.
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In particular, when ̑ gives rise to an orthonormal family, we obtain the simple
formula (cf. Lemma 3.5):

̆Pψ
(x) =

∫

Rd

∣∣∣〈̇〉s ̂̑ (̇)
∣∣∣
2

̅ (x, ḋ) .

To conclude, we shall see how the above results may be refined when the
sequence

(
〈hkDx〉−s uk

)
is assumed to be ˾k-oscillatory at some scale hk ≪ ˾k.

The assumptions of ̞ and ̑ are weaker:

i) ̑ and ̞ satisfy (BP) with exponents s′ and s respectively.

ii) ̂̑, ̞̂ are continuous in a neighborhood of ̇ = 0.

iii) ̍ 〈Dx〉s
′
ψ

is continuous at ̇ = 0.

(50)

Theorems 6.1, 6.2 and Corollary 5.9 give then:

Theorem 7.6 Let ̑ and ̞ be functions satisfying (50); let (hk), (˾k) be scales
with hk ≪ ˾k and let (uk) be a sequence such that (46) holds and

(
〈hkDx〉−s uk

)
is

˾k-oscillatory. Suppose moreover that mεk [uk] converges to a Wigner measure ̅.

Then mεk

[
T hk

ψ Shk
ϕ uk

]
converges to the measure ̅ϕ,ψ given by:

̅ϕ,ψ (x, ̇) =
∣∣∣̂̑ (0)

∣∣∣
2

|̞̂ (0)|2 ̅ (x, ̇) .

Moreover, if
∣∣∣〈hkDx〉s

′

T hk

ψ Shk
ϕ uk

∣∣∣
2

dx weakly converges to a measure ̆ϕ,ψ then:

̆ϕ,ψ (x) =
∑

n∈Zd

∣∣∣〈2̉n〉s′ ̂̑ (2̉n)
∣∣∣
2

|̞̂ (0)|2 ̆ (x) ,

where ̆ is the weak limit of the densities
∣∣〈hkDx〉−s uk

∣∣2 dx.

Hence, when a sequence possesses a characteristic oscillation scale (˾k) (that is
the meaning of the ˾k-oscillation condition), choosing a sampling/reconstruction
rate (hk) asymptotically finer than (˾k) allows to completely capture its oscilla-
tion/concentration behavior (modulo a constant that only depends on ̑ and ̞).

Filtering in that case can only be achieved by means of a sampling profile ̞
with zero mean (̞̂ (0) = 0) or a reconstruction profile such that ̂̑ vanishes at Γ.
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8 Tools from the theory of Wigner measures

The main tools from the theory of Wigner measures used in this article are Propo-
sitions 8.1 and 8.3 below. The first of these is an extension of Theorem 1.1 to
bounded sequences in Sobolev spaces:

Proposition 8.1 Let (˾k) be a scale and (uk) be a sequence of functions in H−s
(
Rd

)

for some s ≥ 0 satisfying:

∥∥〈˾kDx〉−s uk

∥∥
L2(Rd) are uniformly bounded in k. (51)

Then the sequence of distributions (mεk [uk]) is uniformly bounded in S ′. More-
over, any of its weakly converging subsequences tends to a positive measure.

As we have done so far, a measure ̅ ∈ M+

(
Rd · Rd

)
will be called the

Wigner measure at scale (˾k) of a sequence (uk) (satisfying the hypotheses of
Proposition 8.1) provided mεk [uk] ⇀ ̅ in S ′ as k ջ ∞.

Remark 8.2 i) When s > 0, condition (51) is stronger than just requiring that
(uk) is bounded in H−s

(
Rd

)
.

ii) Let (hk) be a scale such that hk ≪ ˾k. If
∥∥〈hkDx〉−s uk

∥∥
L2(Rd) ≤ C for every

k ∈ N then
∥∥〈˾kDx〉−s uk

∥∥
L2(Rd) is uniformly bounded as well.

iii) The same result holds if mε [⋅] is replaced by the Wigner transform (5).

The second main result of this section a localization formula for Wigner mea-
sures which is used several times in this article:

Proposition 8.3 Let (˾k), (hk) be scales and let (uk) be a sequence in H−s
(
Rd

)
,

s ≥ 0, satisfying (51). Suppose that ̏ is a Borel function such that ̏ ∈ L∞ (
Rd; 〈̇〉r

)

for some r ∈ R. If mεk [uk] converges to ̅ then mεk [̏ (hkDx) uk] converges to a
Wigner measure ̅φ which has the following properties:

i) If hk = ˾k and ̅
(
Rd · Dφ

)
= 0, Dφ being the set of points where ̏ is not

continuous, then
̅φ (x, ̇) = |̏ (̇)|2 ̅ (x, ̇) .

ii) If hk ≪ ˾k and ̏ is continuous in a neighborhood of ̇ = 0 then

̅φ = |̏ (0)|2 ̅.

When applied to ̏ (̇) := 〈̇〉s, this result gives:

42



Remark 8.4 Let (˾k), (hk) and (uk) be as in Proposition 8.3. Suppose mεk [uk]
converges to ̅. Then mεk

[
〈hkDx〉−s uk

]
converges to the measure ̅s given by:

̅s (x, ̇) = 〈̇〉−2s ̅ (x, ̇) , if hk = ˾k,

̅s = ̅, if hk ≪ ˾k.

In particular (cf. Theorem 1.1), 〈̇〉−2s ̅ (resp. ̅) is a finite measure when hk = ˾k

(resp. hk ≪ ˾k).

For the convenience of the reader, we give detailed proofs of both results; they
follow the ideas present in the existing literature on the subject ( [6, 13, 8, 9]).
Proposition 8.1 will be proved in paragraph 8.2. We shall essentially show that
truncation of the high frequencies of a sequence satisfying (51) implies ̇-variable
localization of the corresponding mε [⋅]. Then we conclude by applying Theorem
1.1 to the localized sequence.

Proposition 8.3 is proved in paragraph 8.3; to conclude this section, we describe
two results useful for the computation of Wigner measures (Lemmas 8.12 and 8.13).

8.1 First properties of m
ε [u]

We begin by discussing three alternative ways of computing mε [u] that may be
used when u is merely a tempered distribution. First remark that, given a u ∈
S ′ (Rd

)
, it makes sense to consider the distribution mε [u] given by (2), since the

Fourier transform of u is well-defined. Actually mε [u] ∈ S ′.
1. The action of mε [u] on a test function a ∈ S is given by any of the formulas

(see [7]):

〈mε [u] , a〉S′·S =





〈u, a (x, ˾Dx) u〉S′(Rd)·S(Rd) , (i)

∫

Rd

∫

Rd

1

˾d
ka

(
x,

x − p

˾

)
u (p) u (x)dpdx. (ii)

(52)

where a (x, ˾Dx) is the semiclassical pseudodifferential operator of symbol
a:

a (x, ˾Dx) u (x) =

∫

Rd

a (x, ˾̇) û (̇) eix⋅ξ ḋ

(2̉)d
, (53)

and the kernel ka (x, p) is the inverse Fourier transform of a with respect to ̇:

ka (x, p) :=

∫

Rd

a (x, ̇) eip⋅ξ ḋ

(2̉)d
.
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Formula (52.i) makes sense because the operator a (x, ˾Dx) maps continuously
S ′ (Rd

)
into S

(
Rd

)
whenever a ∈ S (see, for instance, [15]). The integral in (52.ii)

must, of course, be understood in distributional sense.
2. The distribution mε [u] may be computed through the rescaled Fourier

transform

F εu (̇) :=
1

(2̉˾)d/2
û

(
̇

˾

)
, (54)

using the identity:
mε [u] (x, ̇) = mε [F εu] (̇,−x). (55)

This follows from a direct computation from the definition (2).
3. Now we present two localization formulas:

Lemma 8.5 Let u ∈ S ′ (Rd
)
, ̏ ∈ C∞ (

Rd; 〈x〉r
)

for some r ∈ R and a ∈ S. Then
there exists rσ

1 , rσ
2 ∈ S such that:

〈mε [̏u] , a〉S′·S =
〈
|̏ (x)|2 mε [u] , a

〉
S′·S + ˾ 〈mε [u] , rε

1〉S′·S ,

〈mε [̏ (hDx) u] , a〉S′·S =

〈∣∣∣∣̏
(

h

˾
̇

)∣∣∣∣
2

mε [u] , a

〉

S′·S

+
h

˾

〈
mε [u] , r

h/ε
2

〉
S′·S

.

Moreover, the test functions rσ
1 , rσ

2 are uniformly bounded in S for 0 < ̌ ≤ 1.

This holds as a consequence of standard results on symbolic calculus for semi-
classical pseudodifferential operators; see for instance [15]. Remark that Proposi-
tion 8.3 is not a consequence of this result, since the multiplier ̏ (hDx) there may
have a non-smooth symbol.

8.2 Boundedness of the transforms m
ε [u]

The next lemmas are used to establish the boundedness in S ′ of the sequence
(mεk [uk]) provided (uk) satisfies the hypotheses of Proposition 8.1.

Lemma 8.6 For every u ∈ L2
(
Rd; 〈x〉r

)
and a ∈ S the following estimate holds:

∣∣〈mε [u] , a〉S′·S
∣∣ ≤ ‖u‖2

L2(Rd;〈x〉r)

∫

Rd

sup
x∈Rd

∣∣∣ka (x, p) 〈x − ˾p〉−r/2 〈x〉−r/2
∣∣∣ dp,

Proof. Use formula (52.ii) to write

〈mε [u] , a〉S′·S =

∫

Rd

∫

Rd

ka (x, p) u (x − ˾p) u (x)dpdx,
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noticing that this integral makes sense as ka ∈ S. Multiply and divide the inte-
grand above by 〈x − ˾p〉r/2 〈x〉r/2 to obtain, by Hölder’s inequality,

∣∣〈mε [u] , a〉S′·S
∣∣ ≤

∫

Rd

sup
x∈Rd

∣∣∣ka (x, p) 〈x − ˾p〉−r/2 〈x〉−r/2
∣∣∣
∫

Rd

∣∣∣ur (x − ˾p) ur (x)
∣∣∣ dxdp,

where we have set ur (x) := 〈x〉r/2 u (x). The conclusion follows from another
application of Hölder’s inequality.

If u ∈ H−s
(
Rd

)
then F εu ∈ L2

(
Rd; 〈̇〉−2s). Clearly,

∥∥〈˾Dx〉−s u
∥∥2

L2(Rd) = ‖F εu‖2
L2(Rd;〈ξ〉−2s) . (56)

Thus, taking identity (55) into account, we obtain using the preceding lemma:

∣∣〈mε [u] , a〉S′·S
∣∣ ≤

∥∥〈˾Dx〉−s u
∥∥2

L2(Rd)

∫

Rd

sup
ξ∈Rd

|â (q, ̇) 〈̇ + ˾q〉s 〈̇〉s| dq

(2̉)d
, (57)

where â (q, ̇) denotes the Fourier transform in x of the function a (x, ̇).

Lemma 8.7 For every s ≥ 0 there exists a constant Cs,d > 0 such that

∣∣〈mε [u] , a〉S′·S
∣∣ ≤ Cs,d

∥∥〈˾Dx〉−s u
∥∥2

L2(Rd)

∫

Rd

sup
ξ∈Rd

∣∣â (q, ̇) 〈̇〉2s
∣∣ 〈˾q〉s dq, (58)

holds for every u ∈ H−s
(
Rd

)
and every a ∈ S.

Proof. This is obtained through the simple inequality 〈̇ + q〉s ≤ Cs,d 〈̇〉s 〈q〉s,
which holds when s ≥ 0.

Notice that whenever a ∈ S, the integrals
∫

Rd supξ∈Rd

∣∣â (q, ̇) 〈̇〉2s
∣∣ 〈˾q〉s dq are

uniformly bounded for 0 < ˾ ≤ 1. Consequently,

Corollary 8.8 Let (˾k) and (uk) satisfy the hypotheses of Proposition 8.1. Then
the sequence (mεk [uk]) is bounded in S ′.

Estimate (58) gives immediately the following:

Remark 8.9 Lemma 8.7 shows that mε [u] acts continuously on test functions a
in the closure of S for the norm:

[a]s :=

∫

Rd

sup
ξ∈Rd

∣∣â (q, ̇) 〈̇〉2s
∣∣ 〈q〉s dq < ∞. (59)

This closure contains the space

Σs :=
{
〈Dx〉s 〈̇〉2s a ∈ C0

(
Rd · Rd

)
: [a]s < ∞

}
. (60)
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Remark 8.10 Consequently, if (uk) is as in Proposition 8.1 and (mεk [uk]) con-
verges weakly in S ′ then 〈mεk [u] , a〉 converges as well for every a ∈ Σs.

Proof of Proposition 8.1. The boundedness of the sequence (mεk [uk])
was proved in Corollary 8.8. Suppose now that the distributions mεk [uk] weakly
converge to some ̅ ∈ S ′. We next show by means of a localization argument that
̅ is a positive distribution and thus, due to Schwartz’s Theorem, a positive Radon
measure.

Take ̏ ∈ S
(
Rd

ξ

)
; Lemma 8.5 gives

lim
kջ∞

〈mεk [̏ (˾kDx) uk] , a〉S′·S =

∫

Rd·Rd

a (x, ̇) |̏ (̇)|2 d̅ (x, ̇)

for every a ∈ S. Since (̏ (˾kDx) uk) is a bounded sequence in L2
(
Rd

)
, Theorem

1.1 ensures that |̏ (̇)|2 ̅ is a positive Radon measure (and hence a positive dis-
tribution). But ̏ ∈ S

(
Rd

ξ

)
is arbitrary, so ̅ itself is positive and we obtain the

desired result.

Notice that a very similar proof would give a version of Proposition 8.1 in the
context of weighted spaces L2

(
Rd; 〈x〉r

)
.

8.3 Proof of Proposition 8.3

The key ingredient in the proof of the Proposition is the following auxiliary result:

Lemma 8.11 Under the assumptions of Proposition 8.3 and for every a ∈ S, if
any of the following conditions hold:

i) hk = ˾k and a vanishes on the set of discontinuity points of ̏.

ii) hk ≪ ˾k and ̏ is continuous at ̇ = 0.

Then

lim
kջ∞

∣∣∣∣∣

〈
mεk [̏ (hkDx) uk] −

∣∣∣∣̏
(

hk

˾k

̇

)∣∣∣∣
2

mεk [uk] , a

〉∣∣∣∣∣ = 0. (61)

Proof. Take a ∈ S and set Φk (̇) := ̏ (hk/˾k̇). From relations (55), (52.i)
and (57) we obtain:

∣∣∣∣∣

〈
mεk [̏ (hkDx) uk] −

∣∣∣∣̏
(

hk

˾k

̇

)∣∣∣∣
2

mεk [uk] , a

〉∣∣∣∣∣ ≤ Mk (a)
∥∥〈˾kDx〉−s uk

∥∥2

L2(Rd)
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where

Mk (a) :=

∫

Rd

sup
ξ∈Rd

|â (q, ̇) Φk (̇) [Φk (̇ + ˾kq) − Φk (̇)] 〈̇ + ˾kq〉s 〈̇〉s|
dq

(2̉)d
;

(62)
recall that â (q, ̇) stands for the Fourier transform of a (x, ̇) in x.

We now must prove that Mk (a) ջ 0 as k ջ ∞. This will be done by first
checking that for test functions a belonging to the smaller class:

D̂ :=
{
a ∈ S : â ∈ C∞

c

(
Rd · Rd

)}
.

Take R > 0 such that supp a is contained in B (0; R) · B (0; R).
When k ∈ N is sufficiently large, ˾k ≤ 1 and

hk

˾k

(̇ + ˾kq) ∈ B (0; 2R sup hk/˾k) for every q, ̇ ∈ B (0; R) . (63)

Suppose now that i) holds. If Cφ denotes the set of points where ̏ is continuous,
then Φk = ̏ is uniformly continuous over Cφ ∩ B (0; R) and, consequently,

sup
q,ξ∈B(0;R)

1Cφ
(̇) |̏ (̇ + ˾kq) − ̏ (̇)| ջ 0 as k ջ ∞

because of (63).
On the other hand, when hk/˾k ջ 0 and ̏ is continuous at ̇ = 0, again as a

consequence of (63),

sup
ξ,q∈B(0;R)

∣∣∣∣̏
(

hk

˾k

(̇ + ˾kq)

)
− ̏

(
hk

˾k

̇x

)∣∣∣∣ ≤ 2 sup
ξ∈B(0;2hk/εkR)

|̏ (̇) − ̏ (0)| ջ 0 as k ջ ∞.

Thus, in either case,

sup
ξ∈Rd

|â (q, ̇) Φk (̇) [Φk (̇ + ˾kq) − Φk (̇)] 〈̇ + ˾kq〉s 〈̇〉s| ջ 0 as k ջ ∞,

for every q ∈ Rd. Lebesgue’s dominated convergence Theorem gives the conver-
gence to zero of the integrals (62). The density of D̂ in S concludes the proof of
the Lemma.

Proof of Proposition 8.3. To prove i) and ii) it only needs to be checked
that, for any a ∈ C∞

c

(
Rd · Rd

)
(if ˾k = hk, we further require that a|Rd·Dφ

≡ 0),

the functions |̏ (hk/˾k̇)|2 a (x, ̇) belong to the class Σs. If so, then

lim
kջ∞

〈∣∣∣∣̏
(

hk

˾k

̇

)∣∣∣∣
2

mεk [uk] , a

〉

S′·S

=

∫

Rd·Rd

|̏ (ċ)|2 a (x, ̇) d̅,
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holds with c := lim hk/˾k, because of Remark 8.10. The conclusion would then
follow from identity (61).

First, notice that |̏ (hk/˾k⋅)|2 a are compactly supported and infinitely differ-
entiable in x. When ˾k = hk we must verify that |̏|2 a ∈ Σs which is clearly the
case if a|Rd·Dφ

≡ 0, for then |̏|2 a is continuous in ̇.

On the other hand, if hk ≪ ˾k and ̏ is merely continuous in a ball B (0; ˽)
then, for k large enough, supp a ⊂ B (0; hk/˾k˽) and consequently, ̏ (hk/˾k⋅) is
continuous on supp a.

8.4 Additional properties.

The next approximation result is sometimes useful in the computation of Wigner
measures:

Lemma 8.12 Let (uk) and
(
uN

k

)
be sequences in H−s

(
Rd

)
, s ≥ 0, satisfying (51)

with the same bound and

lim sup
kջ∞

∥∥〈˾kDx〉−s (
uk − uN

k

)∥∥
L2(Rd) ջ 0 as N ջ ∞.

Suppose that mεk [uk] and mεk
[
uN

k

]
converge respectively to ̅ and ̅N . Then

̅N ⇀ ̅ in M+

(
Rd · Rd

)
as N ջ ∞.

Proof. This is a simple consequence of the identity:

〈
mεk [uk] − mεk

[
uN

k

]
, a

〉
S′·S =

〈
uN

k , a (x, ˾kDx)
(
uk − uN

k

)〉
S′·S

+

+
〈
(uk − uN

k ), a (x, ˾kDx) uk

〉
S′·S

.

This gives an estimate:

∣∣∣
〈
mεk [uk] − mεk

[
uN

k

]
, a

〉
S′·S

∣∣∣ ≤ C
∥∥〈˾kDx〉−s (

uk − uN
k

)∥∥
L2(Rd) ;

taking limits as k ջ ∞ we obtain:

∣∣∣∣
∫

Rd·Rd

a (x, ̇) (d̅ − d̅N)

∣∣∣∣ ≤ C lim sup
kջ∞

∥∥〈˾kDx〉s
(
uk − uN

k

)∥∥
L2(Rd)

and the result follows, since the measures ̅N and ̅ are equibounded.

We conclude this section with an almost orthogonality result:
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Lemma 8.13 Let (uk) and (vk) be sequences in H−s
(
Rd

)
, s ≥ 0, satisfying (51)

for some scale (˾k). Suppose their Wigner measures at scale (˾k), ̅ and ̆ are
mutually singular. Then mεk [uk + vk] converges to ̅ + ̆.

Proof. A proof of this result for s = 0 may be found in [6] or [13]. For
the general case, it suffices to take into account Remark 8.4 to conclude that the
Wigner measures of 〈˾kDx〉−s uk and 〈˾kDx〉−s vk are 〈̇〉−2s ̅ and 〈̇〉−2s ̆. These
are clearly mutually singular and thus the aforementioned L2-version of the present
result gives

mεk
[
〈˾kDx〉−s (uk + vk)

]
⇀ 〈̇〉−2s ̅ + 〈̇〉−2s ̆

and finally
mεk [uk + vk] ⇀ 〈̇〉2s (

〈̇〉−2s ̅ + 〈̇〉−2s ̆
)

= ̅ + ̆

as claimed.
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