N

N
N

HAL

open science

KAM Theorem for Gevrey Hamiltonians

Georgi Popov

» To cite this version:

Georgi Popov. KAM Theorem for Gevrey Hamiltonians. Ergodic Theory and Dynamical Systems,

2004, 24 (5), pp.1753-1786. hal-00000368

HAL Id: hal-00000368
https://hal.science/hal-00000368
Submitted on 19 May 2003

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00000368
https://hal.archives-ouvertes.fr

ccsd-00000368 (version 1) : 19 May 2003

KAM Theorem for Gevrey Hamiltonians
G. Popov

Abstract

We consider Gevrey perturbations H of a completely integrable Gevrey Hamiltonian Hy.
Given a Cantor set (2, defined by a Diophantine condition, we find a family of KAM invariant
tori of H with frequencies w € €Q,, which is Gevrey smooth in a Whitney sense. Moreover, we
obtain a symplectic Gevrey normal form of the Hamiltonian in a neighborhood of the union
A of the invariant tori. This leads to effective stability of the quasiperiodic motion near A.

1 KAM theorem for Gevrey Hamiltonians

Let DY be a bounded domain in R", and T" = R"/27Z"™, n > 2. We consider a class of real
valued Gevrey Hamiltonians in T™ x D° which are small perturbations of a real valued non-
degenerate Gevrey Hamiltonian H°(I) depending only on the action variables I € DY. Our aim
is to obtain a family of KAM (Kolmogorov-Arnold-Moser) invariant tori A, of H with frequencies
w in a suitable Cantor set €, defined by a Diophantine condition and to prove Gevrey regularity
for it. It turns out that for each w € Q,, A, is a Gevrey smooth embedded torus having the
same Gevrey regularity as the Hamiltonian H. Moreover, we shall prove that the family A,
w € €, is Gevrey smooth with respect to w in a Whitney sense, with a Gevrey index depending
on the Gevrey class of H and on the exponent in the Diophantine condition. This naturally
involves anisotropic Gevrey classes. Let p1,p2 > 1 and Lq, Lo be positive constants. Given a
domain D C R", we denote by G7'"7° (T" x D) the set of all C*° real valued Hamiltonians H in
T™ x D such that

|Hl|zyz, = sup  sup  (|0g0)H(0, 1) Ly L5 P at=m81772) < oo, (1.1)
a,BEN™ (9,1)eT™xDO

where |a] = a1 + -+ + o, and ol = !+~ ay! for a = (aq,...,a,) € N™. In the same way we
define gﬁ:’g (T™ x D), where D is the closure of D. If p; = ps = p we write also gghLz (T"x D),
and sometimes we do not indicate the Gevrey constants Li, L.

Let H? be a completely integrable real valued Gevrey smooth Hamiltonian T" x D% 3
(0,I) — H°(I) € R. We suppose that H" is non-degenerate, which means that the map
VH? : D° — Q0 is a diffeomorphism. Denote by ¢g° € C°°(Q°) the Legendre transform of H°
(then Vg° : Q% — DU is the inverse map to VH"). We suppose also that there are positive
constants p > 1, Ag > 0, and Lo < Lo such that H° € QZO(DO), ¢ € QZO(QO), and

IH | zo » 119°12 < Ao (1.2)

in the corresponding norms, defined as in ([.1]). In particular, Q° is a bounded domain. Given
a subdomain D of D° we set ) := VH?(D) C QY. Fix 7 > n — 1 and x > 0. We denote by



the set of all frequencies w € ) having distance > & to the boundary of 2 and also satisfying
the Diophantine condition

Hw, k)| > %, for all 0 # k € Z", (1.3)
where |k| = |ki| 4+ - + | Ky
We are going to find a Gevrey family of KAM invariant tori with frequencies in €2, for small
perturbations of H in gzh L,- In what follows we fix the constants Ay and Lg, and allow the
constants Ly > L1 > 1 to be arbitrary large. This occurs in the case of the elliptic equilibrium for
example (Lg > 1). Given w € €2, we denote by L, = (w,9,) = >_7_; w;j0/0¢p; the corresponding
vectorfield on T™. Fix 0 < ¢ < 1.

Theorem 1.1 Let H® be a real valued non-degenerate GP-smooth Hamiltonian , p > 1, de-
pending only on I € D% and satisfying (I:3). Let D be a subdomain of D with D ¢ D°, and
Q) =VHYD). Fiz Ly > L1 > 1 and x < L;l_g such that Ly > Lo and Q, # (. Then there
exists N = N(n,p,7) > 0 and € > 0 independent of k, L1, L2, and of the domain D C D°, such
that for any H € Gf | (T" x D) with norm

€H ‘= ’%_ZHH - HOHL17L2 < €L1_N7

there erists a map ® := (U,V) : T" x Q — D of an anisotropic Gevrey class Ggrr p =
p(T+ 1)+ 1, such that

(i) For each w € Qy, A, := {(®(0,w)) : 0 € T"} is an embedded Lagrangian invariant torus
of H and Xp o ®(-,w) = D®(-,w) - L,,.

(ii) There are constants A,C > 0, independent of k, L1, Lo, and of D, such that
0505(T (0;0) — 0)] + 119502V (05) — Vo' ()|

151

< AClla‘ (CQH_I) a!pﬁ! p(T+1)+1 L]1V/2\/@’

uniformly in (0,w) € T™ x Q and for any o, € N", where C1 = CL; and Cy = CLIH.

Note that ® belongs to gg’fliz(T" X ﬁ) with Gevrey constants L1 = CL; and Ly = Cox™ ' >
CL{HL;K. As a consequence, we obtain a symplectic normal form of H near the union of the
invariant tori. We say that a real valued function ® € C*°(R"™ x D) is a generating function of
an exact symplectic map x : T" x D — T" x D if ®(x,I) — (x, I) is 2m-periodic with respect to
z, |Id — ®7| < 1, and

{(e. Lx(e, 1)) = (o, 1) € T* x D} = {(p(@1(x, 1)), I; p(x), @z (2, 1)) - (2, 1) € R" x D},

where p : R™ — T" is the natural projection. Fix kK = k(D) so that the Lebesgue measure of
(Y- is positive. Define Q,i, 0 < k < K(D), to be the set of points of a positive Lebesgue density
in Q.. In other words, w € Q. if for any neighborhood U of w in 2 the Lebesgue measure of
U N Q) is positive. Obviously, Q.. and Q. have the same Lebesgue measure.



Corollary 1.2 Suppose that the hypothesis of Theorem 1.1 hold and 0 < k < K. Then there
exists N = N(n,p,7) > 0 and ¢ > 0 independent of K, L1, Lo, and D, such that for any
H e QZLM(T” X E) with eg < 6LIN72(T+2) there is a gpl—diﬁeomorphism w:D — Q, and
an exact symplectic transformation x € g”’p/(T” x D, T"™ x D) defined by a generating function
®(x, 1) = (z, 1)+ ¢(z, 1), ¢ € GPP(T" x D), such that the transformed Hamiltonian H(p,I) :=
H(x(¢,1)) belongs to GP* (T™ x D) and for each I € w™ (), T™ x {I} is an invariant torus

of H. The functions K(I) := H(0,I) and R(p,I) := H(p,I)— K(I) satisfy
VaeN", V(p, ) e T" x w ' (Q), 0°VKI) = 8°w(I), d¢R(p,I) = 0.
Moreover, there exist A,C > 0 independent k, L1, Lo, and of the domain D, such that

0207 0(0, )| + [0f (w(1) = VE(D)| + 0207 (F (o, 1) — H(D))

< ArCP (Cor )Pl arepre LN ser

uniformly with respect to (p,I) € T™ x D and for any o, € N", where C; = CL; and
Cy = CLT™.

Denote by 5> w +— I(w) € D the inverse map to the diffecomorphism I — w(I). Then for
cach w € Q. the restriction of the Hamiltonian flow of H to the invariant torus T x {I(w)} is
given by (t,,1) — (¢ +tVK(I),I), I = I(w). Set E, = w (). Expanding 8;‘8?]%(%[) in
Taylor series at some Iy € E such that |Ip — I| = |E, — I| = infpep, |I’ — I|, we obtain for any
a,f€N"and m € N

0207 R(p, I)| < wACY (Cyfl)‘mm al PR I P (o, 1) eT" x D, I¢E,,

where the positive constants A, C1, Co are as above. Using Stirling’s formula we minimize the
right-hand side with respect to m € N which leads to

a 98 o] _1\ 8l 1pale B 1 _ 7#
0507 R(p, I)| < rACT (C2k al?pl? exp | —(kCy " |E, — I|) »GHD (1.4)

for any a, 3 € N™ uniformly with respect to (p,I) € T" x D, I ¢ E,, where the constants
A,C1,Cy are as above. These inequalities yield effective stability of the quasiperiodic motion
near the invariant tori as in [[[(]. Effective stability of the action along all the trajectories for
Gevrey smooth Hamiltonians has been obtained recently in in [[j]. The importance of the Gevrey
category for that kind of problems is indicated by Lochak [f]. Integrability over a Cantor set of
tori for C°° Hamiltonians is obtained by Poschel [§] and Lazutkin (see [f] for references).

Theorem 1.1 and Corollary 1.2 hold in the case of a non-degenerate elliptic equilibrium
for Gevrey Hamiltonians as in [[[(]. Indeed, let us consider the Birkhoff normal form of the
Hamiltonian, namely, H(0, 1) = H°(I)+H'(0,I), where H(I) = (%, I)+(QI, I), with det Q #
0, and H'(0,I) = O(|I|°/?), (8,I) being suitable polar symplectic coordinates. Here, H' is
Gevrey smooth in T" x D,, D, = {coa < I; < cgla :j=1,...,n}, and 0 < a < ag, where
0 < cg < 1 is fixed. More precisely, H' € gﬁhLQ(T” x Dg) with norm ||H'||1, 1, = O(a®/?),
where Ly = Cpa~!, and the positive constants L; and Cj are fixed. Then Theorem 1.1 holds
choosing k = da'*s, 0 < ¢ <1/4,0< 6 <1, and for any 0 < a < ag < 1.



As in [[[7] the symplectic normal form in Corollary 1.2 can be used to obtain Gevrey quantum
integrability over the corresponding family of invarint tori and to construct quasimodes with
exponentially small discrepancy in the semi-classical limit for Schrodinger type operators with
Gevrey coefficients. Similar results could be obtained for more general classes of non quasi-
analytic Hamiltonians as well.

The idea of the proof of Theorem 1.1 is close to that of Theorem 1 in [[L0] (see also [d]).
It follows from a KAM theorem for a family of Hamiltonians P(6, I;w), where the frequencies
w are taken as independent parameters. Here we follow closely the exposition of Poschel [J].
First we prove an approximation lemma for Gevrey Hamiltonians P with real valued analytic
Hamiltonians P; in suitable complex domains in Sect. 3.1. To obtain P; we first construct
suitable almost analytic extension of P and then we use Green’s formula. In Sect. 3.2 we recall
from Poschel [J] the KAM step and in Sect. 3.3 we set the parameters and make the iterations.
Finally, using a Whitney extension theorem due to Bruna [[ll], we complete the proof of the
theorem. In Sect. 3.6 we consider the case of real analytic Hamiltonians and we improve certain
results in ] We prove in the Appendix an anisotropic version of the implicit function theorem
of Komatsu [J] in Gevrey classes.

2  KAM theorem for Gevrey Hamiltonians with parameters

Consider the Hamiltonian H (6, z) = H°(z)+ H'(0, 2) in T" x D°. Expanding H%(z) near given
20 € D C D, we write

HO(2) = H(20) + (V. H (20),I) + /01(1 —t)(V2H ()1, 1) dt,

where 2, = 29 + tI, 21 = 2, I varies in a small ball Bg(0) = {|I| < R} in R", and V2H" stands
for the Hessian matrix of H°. We put w = VH(zy). Then zg = V¢°(w), ¢° being the Legendre
transform of HY, and we write

HY(2) = e(w) + (w,I) + Pyo(I;w),
HY0,2) = H'(0,Vg(w) + I) = Py (0, I; w),

where e(w) = H(Vg(w)), while Pyo stands for the quadratic term in I in the expression of H°.
We set P = Pyo + P and consider the family of Hamiltonians

HO,I;w) :=e(w) + (w,I) + P(§,I;w) (2.1)

in T™ x Br(0) depending on the frequency w € Q. From now on, to simplify the notations, we
replace Cey, C Ay, CL1 and CLy by €y, Ag, L1 and Lo, respectively, whenever C' > 1 depends
only on Lo, p, 7 and n. Then using ([.T), (I.9), and Proposition A.3 we obtain

0530°07 P (0, I;w)| < (A032 + R%H) LRl LB (1pine,

for any «, 8 and 7, and uniformly with respect to (0, I;w) € T" x Br(0) x 2. Hence, we can
suppose that P € G7 ; ; (T" x B x Q), B = Bg(0), with norm

[Pl = sup (10507 2P0, I;w) Ly " L7 (@1piy) 7)) < AoR? + 12en,  (22)

where the sup is taken over all multi-indices a, 3,7 and for all (0, I;w) € T" x B x Q. Fix
0 < ¢ < 1. We can now formulate our main result in this section.



Theorem 2.1 Suppose that H is given by where P € G | ; (T" x BR(0) x Q). Fiz
k>0 and r > 0 such that k,r < L;l_g and r < R. Then there is N = N(n,p,7) >0 and € > 0
independent of k, L1, Lo, T, R, and of Q C Qq, such that if

IP|| < errLy™ (2.3)

then there exist maps ¢ € GF (Q,Q) and ® = (U, V) € GP (T xQ, T"x Bg(0)), p' = p(t+1)+1,
satisfying

(i) For each w € ., the map ®, := ®(-,w) : T" — T™ x Bgr(0) is an G” embedding and
Ay = @, (T") is an embedded Lagrangian torus invariant with respect to the Hamiltonian
flow of Hyy(¢,I) :== H(p,I; $(w)). Moreover, Xn,, o P, =D®, - Ly, on T".

(ii) There exist A,C > 0, independent of k, L1, La, r, and of Q C Qq, such that
0505(U (05) = 0)] + vt |95 0BV (65w)| + K1 |85 ((w) — w)|

1P) LY

RT

< AC‘IM (Cgﬂ_l)‘m |p/6|p

uniformly in (0,w) € T x Q and for any o and 3, where C1 = CLy and Cy = CLI'H.

Remark. Note that the constant e(w) in (R.I]) plays no role in Theorem R.1 and from now on we
suppose e(w) = 0.

Theorem P.1] will be proved in the next section. Theorem [ and Corollary 1.2 follow from
Theorem .1 and they will be proved in Sect. 4.

3 Proof of Theorem [Z1.

We divide the proof of Theorem 2.1 in several steps. First, using Theorem @N, we extend P
to a Gevrey function P of the class Q% 7 (T x R?") such that ||P|| < A||P||, L1 = CLy, and

1,L2
Lo = CLs, where the constants A,C' > 0 are independent of P, R and €. To simplify the
notations we drop ~. Multiplying P with a suitable cut-off function we assume that the support
of P with respect to (I,w) is contained in B;(0) x Bg(0), R > 1.

3.1  Approximation Lemma for Gevrey functions
We fix 0 < ¢ < 1 and choose three strictly decreasing sequences of positive numbers {uj}j?‘io,
{1520 and {w;}32, tending to 0 and such that

VjeN : ?JjLQ, UJ]'LQ < Ule <1, v, wy< L;li( . (31)

Consider the complex sets UJ", m = 1,2, in C"/2rZ™ x C™ x C" consisting of all (0,1,w)
with real parts Ref € T", Rel € By(0) and Rew € By, (0), and such that |[Im 6| < muy,
Tm I;,| < mwj, [Tmwy| < maw;j, for each 1 < k < n. Set U = U} and denote by A(U;) the set of
all real-analytic bounded functions in ¢; equipped with the sup-norm | - \uj-



Proposition 3.1 (Approximation Lemma) Let P € ggl 1, (T X R?"). Suppose that the
support of P with respect to (I,w) is in B1(0) x Bg(0), and assume (B-1). Then there is a
sequence Pj € A(U;), j > 0, such that

1
Pjt1 = Piluy, < CoLi exp (=3(p = 1)(2L1uy) 71 ) | P,
n 3 --L
Poly < Co (14 Liexp (=3(p— 1)(2Liug) 7)) | P
where Cy = Co(n, p,<)(R" +1). Moreover,
3 1
sup 9§07 0L(P ~ P)(0,1.w)| < CoLi Ly exp (= (o~ D(2Lyuy) 77 ) | 7).

in T™ x B1(0) x Bg(0) for |a| + |8] + |v| < 1.

Remark. Instead of 3/4 we can take above any positive number less than 1 in order to absorb
certain polynomials of (Lju;)~!. Similar estimates can be obtained without the inequalities

vo, wo < Ly 175 In this case Cy = 5’0(n, p) but the right hand side of the estimates above should
be multiplied by L3". Using the ‘standard’ proof of the Approximation Lemma [L] one obtains

for any § > 0 an approximation modulo C(p, d) exp (—c(p)(Lluj)_%M) I|P|l, C,c> 0.
Proof. We divide the proof into two parts.

1. Almost analytic extension of P. There is a constant C(p) > 1, depending only on p, such that
1
te (0,2, me N, 1<m<t »T+4+1, (3.2)

implies
mmlPt < C(p)ymlP/2e=lp—1m, (3.3)

Indeed, by Stirling’s formula, we get
tmm! Pl < C(p)m P 2e= (=M exptm[(p — 1) Inm + Int]}

= Cl(p)m(p_l)/Qe_(”_l)m exp {(p —1)mln [mtﬁ” .

Moreover,
1 1 1 1
mIn {mtﬂ—l} <mln {1 +tp—1} <mtr-1 < 14201

which proves (B.3).
We define an almost analytic extensions F; of P in UJ-Q as follows

(i6)*(I)" (i)
alBly!

Fi(0+i0,1+ilw+iw) = > 950]9)P0,1,w)
(.B,7)EM;

(3.4)

The index set M; consists of all multi-indices a@ = (aq,..., ), = (B1,...,0n) and v =
(71, ..,7vn) such that ax < N1, B < Ny and v < N3, k=1,...,n, where

Ny = [(@Lyu)) 77| +1, Ny = [(2Lovy) 77| +1, N3 = [(2Lowy) 77| +1,  (35)

6



and [t] stands for the integer part of t. We have
[Ejlz < |IP] ST (2L1uy) N (2Lav) Pl (2Low;) M (a1 By
(e.B,7)EM;
For ay, Bk, v # 0 we estimate each term

(2L1’U,j)akak!p71 , (QLQUj)ﬁkﬁk!pil , (2L2wj)’y’“")/k!pfl ,k=1,...,n,

by C’(p)m(p_l)/Qe_(p_l)m, where m > 1 stands for ay, Bk, and v respectively. To this end, we
put t = 2L u;, 2Lov;, 2Low;, respectively, and we get t € (0,2] in view of (B.1). Now (B.2) holds
because of (B.H). Then using (B.3) we obtain

) 3n
|Eilyz < ||IP]l (1 +Cp) Y m(l_p)/26_(p_1)m> = 4| P]|.
J
m=1
Set 2, = 05 + i0;. Then applying 0., = (0/00 + ia/aék)m to Fj; we obtain

_ L Ao (i DB (i)
20, Fi(0+i0, T +il,w+id) = > 05000105, P(6,1,w) (i) (f ), ,(“*’)
(@ fmeM, alBly!
ak:Nl

(3.6)

We estimate each term in the sum by
L1 (2L1u)) 1 (2L90) Pl (2Low)) (a1 B11)7~ (i + 1)7| P
in L[JZ, where ap = Nj. Since
(2L1Uj)_ﬁ <o = N < (2L1Uj)_/’_i1 + 1,
we obtain from (B.3) (with ¢ = 2Lju; and m = Ny)
(2L1u;) ™ ag! P~ Hay, +1)P < C'(Lluj)_#_% exp (—(p — 1)(2L1uj)_ﬁ> .
This implies as above
G Fle < C"Li(Lywy) 77 exp (~(p — 1)(2Lywy) 77) ||P]
J
_ _1
02 Fihe < € Luexp (=3 (0= 1)(2L1uy) 77 ) | Pl
where C' = C(p,n) > 0. In the same way, differentiating (B.4), we get with 3+~ =1
‘agpagpgszj’M]? ) ‘ai,a[lpészj‘Mf J ‘agpag’pészj’U]?
1
< CLiLyexp (=3 (p— 1)(2L1uy) 77) | P,

where C'= C(p,n) > 0 (we recall that Ly > Ly > 1). Using (B.1)), we obtain the same estimates
for 07, Fj, 0., F}, and for their derivatives of order one in Lle. Indeed, putting zp = Iy + il we
obtain

= _ _ _ 1
1024 Filuz < C'La(Lavy) 71 2 exp (=(p = 1)(2Lavy) 7 7) |IP|

< Cexp (=3(p = 1)(2Lovy) 77 ) |P|| < Cexp (=3 (p — 1)(2Lruy) 77 ) | P,

7



where C' = C(p,n,s) > 0, since Ly < (Lgv;)~ "¢ by (B]). We generalize these estimates as
follows. Set z = (0, I,w) € C"/27Z"™ x C?", denote by zj and y, respectively, the real and the
imaginary part of 2, 1 < k < 3n, and put 9,, = (9, + 9y, )/2. Then using (B-1), (B-J) and
(B.H), we obtain for any § = (81, ...,d3,) € N3" with 0 < §, < 1 and |0] > 1 the estimate

_ n 3 1
|02F; e < OLY exp(~5 (0= VL) 7T ) [P,

where C = C(n,p,¢) > 0. To this end, differentiating (8.4), we obtain an expression similar
to (B.4), where for each k such that 6y = 1 we have oy, = Ny if 1 < k < n, ag, = Ny if
n+1 <k <2n and ap = N3 if 2n +1 < k < 3n, and then we proceed as above. More
generally, for any § = (61,...,03,) € N3" with 0 < §;, < 1 and |[§| > 1, and any 3,7 € N3" with
0 < |B] + |v| < 1, we obtain as above the estimate

= 3 _ 1
0000yl < C L LY exp (—N —1)(2L1u;) ) 1Pl (3.7)
J
where C' = C(n, p,<) > 0. Obviously, the same estimate holds for 5238;’5215} it 0 <|B|+ |y <1.

2. Construction of P;. We are going to approximate F}; by analytic in UJZ functions using Green’s

formula
! [ j© if¢eD
2mi Jop 0 — C 27m //D n— dT] A di { 0 tc¢D. (3.8)

where D C C is a bounded domain with a piecewise smooth boundary dD which is positively
oriented with respect to D, D = DU D, and f € C(D).

We denote by Dy, C C the open rectangle {|zy| < ag, |yx| < bx}, where ap, = 7 and b, = 2u;
for1 <k <n;a=2andb, =2v; forn+1 <k <2n,and a; = R+1and b, = 2wj for 2n+1 <
k < 3n. We denote also by 0Dy, the boundary of Dy which is positively oriented with respect to
Dy, and by T" the union of the oriented segments [—m — 2iuj, 7 — 2iu;|U [7 + 2iu;, —m + 2iu;]. Note
that Dy and I' depend on j as well but we omit it. Given n € C, we consider the 2m-periodic
meromorphic function

K _ ! K K = 1l 3 1 L

Consider the function
1
Fj,l(z) = 2— / Fj(nl, 29, ... ,Zgn)K(nl, 2’1) dm, z€ UJ-Z.
i Jr

It is analytic and 27-periodic with respect to 21 in the strip {|Imz;| < 2u;}. Moreover, for
z1 € D1, we have
1

Fji(z) = 271 Jon
1

Fj(nh 22y e n 723n)K(7]17 Zl) dnl

since the function under the integral is 27-periodic with respect to 71, and using (B.§) we obtain

1 _
Fj1(z) = Fj(2) — i o O Fyj(n1, 22, .., 230) K (1, 21) dmy A diy.
1



By continuity last formula remains true for Rez; = £w. Set Fjo(z) := Fj(z) and L{
U7 N {[Imz| < w;}. We claim that for any multi-index o = (0,02,...,03,) € N3” w1th
0<an<11<m<3n, any index k, and §,v € N such that 0 < 8+~ < 1, we have

0.0 0% (Fj1 — Fjp) »

g1

3 _ 1
< CnpLf e (< {0 - DLW ) 1P (9)

where C = C(n,p,¢) > 0. For k # 1 it directly follows from (B.]) differentiating under the
integral. To prove it for kK = 1, we use the same argument for

1

%/Dl 5771Fj(771,z27---,Z3n)K1(771721) dm A din.

On the other hand,

1 Op, F .
_/ m ](TH’ZQ’ ’Zgn) dnl A dﬁl
2w Jp, N — 21
- 1 Op, Fj . — 0., F;
= —210,, Fj(2) + 7/ s 22, 2n) = 00 1) dm A dm
27 Jp, N — 21

for 21 € Dy, which follows from (B.§) applied to f(z1) = z;. Differentiating the last equality and
using (B.7) we get the estimate. Moreover, if |a| > 1, then (B.4) and (B.9) imply

3 _1
050,02, < 1L e (<50~ DEL) FT) P (3.10)
7,1
We define by recurrence Fj,,(2), 2 < m < n, and we prove that it satisfies ( n U?

m
Llj%m_l N {Im z,,| < u;} for o = (0,...,0, g1, ..., a3,). Moreover, Fj,,(2 satlsﬁes @) for
la| > 1.
For n < m < 3n we define
1 ij 1(21,...,mel,nm,Zerl,...,Zgn)

F; — M dnm , 2 €UZ,
jm(2) = 5 . — o, 2 €U,

and set U7, = UZ, . N{[Im zy| < pp}, where pp, = vj for n+1 < m < 2n and p,, = w; for
2n +1 < m < 3n. By recurrence with respect to m, we obtain (B.9) for Fj,, in Uj%m for any
n<m<3n,a=(0,...,0,0m41,...,03,), 0 < ag <1 (a=0if m = 3n), for any index k and
3,7 such that 0 < 3+~ < 1. Moreover, Fj,,(z) satisfies (B.10) for |a| > 1 and m < 3n. For
2n < m < 3n the constant C should be replaced by C’(1+ R)™ 2" where C' = C’(p,n,s). The
factor 1 + R comes from the measure of D,,, 2n < m < 3n.

Set P; = Fj3,. Then for any index k and ¢ = 0, 1, we obtain

3 _1
0, (P~ Bl < €Ly Lexp (= (o~ DLiuy) 77 ) .

In particular,
1Pj1 = Piluga < [Py = Fia| + [Py = Fj + [Fj1 — Fj|

<O Ly exp (—3(p— 1)(2Liuy) 77 |IP].



Moreover, for any index k and ¢ =0, 1,
3 1
0, (Py(@) — P < CIF e (=30 = D@L1wy) 7 ) 1P
in U; N {Im z = 0}, since F;(x) = P(x) for x real. Finally,

3 1
Polus < |Fol + | Py — Fo| < C <1 + LM exp (—Z(p —1)(2L1uo) 1>> 1Pl

This completes the proof of the proposition. O

3.2 The KAM step

Introduce the complex domains
Dy, ={0 € C"/2rxZ" : |Im0| <s} x{Ie€C": |I|<r},

Op={weC": |w—Ql <h}.

The sup-norm of functions in V := D, x O, will be denoted by |- |5 4. Fix 0 < v < 1/6 and set
U =1/2 —3v (we shall choose later v =1/564 and v =4/9 ). Fix0<s,r <1, 0<n<1/8, 0<
o < s/5, K > 1. Consider the real valued Hamiltonian H(0,I;w) = N(I;w) + H(0,I;w),
N(I;w) = e(w) + (w, I). We shall denote by ‘Const.” a positive constant depending only on n
and 7 and by ‘const.” if it is < 1. We recall from Péoschel [fJ] the following

Proposition 3.2 Let H be real analytic in V. Suppose that |H — N, < € with

(a) & < const. kyro™HL,

(b) & < const. vhr,

K
(c) h < QKT
Then there exists a real analytic transformation

F=(®,¢), ®:Dysop xOp— Dy xOp, ¢: 05, — O,

of the form ®(0,1;w) = (U(O;w),V (0, I;w)), with V affine linear with respect to I, where the
transformation ®(-;w) is canonical for each w, and such that HoF = N4 + Py with N+ ([;w) =
e+(w) + <wa I)} and

2
| P4 | ~ < Const. (6— + (n* + K”eKU)€> : (3.11)

s—5o,mr,vh — kroTtl
Moreover,
. -1
[W(® —id)|, [W(D® —Id)W ™| < Const. s

|6 — id|, vh|D¢ — 1d| < Const. =,
.

uniformly on Ds_5qpr X Oy and O, respectively, where W = diag (a‘lld , T_lld).

10



Remark 3.3 Set W = diag (07 '1d,r Id,h~!1d) and suppose that h < ko™ 1. Since 1 —v >
1/3, using the Cauchy estimate with respect to w, we obtain

W(F —id)|, [W(DF ~1)W | < % C=C(n1)>0,

uniformly on Ds_ 54 X O, where DF stands for the Jacobian of F.

The proof of Proposition B.9 is given in [[J]. The only difference between the statement of
Proposition 1.3 and that of the KAM step in [J] appears in the transformation of the frequencies
(0 =1/41in [{]). To prove the proposition with ¥ as above we use the following analog of Lemma

A3 @

Lemma 3.4 Suppose f : Op — C" is real analytic with bounded |f|n. Let 0 < v < 1/6 and

0 =1/2 = 3v. If |f —id|, < vh, then f has a real analytic inverse f : Oy, — Oy iy and

|¢ —id|y;, , 3vh|D¢ —idly, < |f —id|y.

A sketch of proof of the Lemma is given in the Appendix. We are going to prepare the next
iteration. We choose a ‘weighted error’ 0 < F < 1, fix 0 < € < 1, and set

n=EY? ¢=zxkEro™, 0< E < 1/64.

We define K and h by
K

2R
Setting x = Ko we get the equation 2"e™" = E¢", which has an unique solution with respect
to x € [1,+00), since 0 < E < 1/64 < 1/e. Then K = xo~! > 1. We set

K'e ™™ =E, h=

ry=mnr, sy =8—50, 04 = 00,

where 0 < § < 1. Later we shall choose § = §(p) as a function of p only. Now the KAM step
gives the estimate

‘P+IS+ ryon < Const. Ekra™ ! (E2 + (n* + KnefK”)E) = Const. gkro” TLE?

= Const. 5(p)_7_1§/€r+01+1E3/2.

Hence there is a constant ¢; > 1 depending only on n, p and 7 such that

1172
. o T+1 173/2
’P+‘S+,r+,vh < 1 AT E°/=,

We fix the weighted error for the iteration by E, = 01/2E3/2, set ey = EAmq_afflEJr, and then
define ny, z,, K, and h, as above. Notice that, ¢;E, = (¢;E)*?. We require also ¢, E < 1
which leads to an exponentially converging scheme. Suppose that

hy < Uh. (3.12)

Then we obtain .

[Pilspirihy S 56+ (3.13)

11



3.3 Setting the parameters and iteration

As in [g] we are going to iterate the KAM step infinitely many times choosing appropriately the
parameters 0 < s,r,0,h,7 < 1 and so on. Our goal is to get a convergent scheme in the Gevrey
spaces GPP(THDHL We are going to define suitable strictly decreasing sequences of positive
numbers {s;}72,, {r;}32, and {h;}32,, tending to 0, and denote

Dj = Ds,r;, Oj =0y, V; =Djx0j.
Fix § € (0,1) (6 will depend only on p) and set
55 = sod7 oj = 0087 , so(1 —8) =50y .
Obviously, sj4+1 = sj — 50 and o = 571(1 — §)s; for j > 0. We set
u; =4s; = 45087 vj = 4rgd? | w;j = 4hod?,

and denote by U; the corresponding complex sets defined in Sect. 3.1. We assume for the
moment that these sequences verify (B.I]). Then applying Proposition B.1] we obtain

Polu, < ColLt||P
Pol pIP] 1 B -

1

Pj— Py, < Co LY|Plle”™% 7" = Co LY |Ple % " j>1,

1 1
where the positive constants ByL{™" and BoL{ " depend only on p and §. Given N and a > 0
we set

g:=|P|LY 2(akr)t < 1, (3.15)

and we introduce .
5. =& T+1 5T
€j = EKToOy '~ exp (—Bo o ° 1) .

We will choose later N = N(n,7,p) and a > 0 independent of x, L1, Lo, and r, so that
‘P0’M0 < &p and ’Pj — Pj—1|Z/{j < gj for 7 > 1. Now we put
-1 Be.— - _ Boe-2
Ej:=c exp( Boj » 1) with B := 5 ((5 p=1 1),
where ¢; > 1 is the constant in the KAM step. We find 6 € (0,1) from the equalities

VjeN, Ej=c¢"E/”.

A
This is equivalent to oj11 = (2/3)?"lo;, and we get § = <3) , which implies B = By/4 =

1
AgLy »=T, where Ay = Ap(p) > 0 depends only on p. Now we set n; = E;/2, rj41 = 1,7, and
put

S ATHL
€j = ERT}0; E;.

The choice of the ‘weighted error’ E; above is motivated by the inequality &; < €;41/2, j > 0,
which will be proved in (B.20). This inequality will allow us to put P; — P;_; in the error term

12



of the iteration of order j. Next we determine K; from the equation Kj”e_KJ'"J' = I;. Setting
z; = Kjo; we obtain
1
zie " = Ejol = ot o7 exp (—Baj ﬂ—l) .

Consider the equation
1

zj—nlnz; = Baj_"_1 —nln(o;) +1nec. (3.16)

We set
o0 =L (In(Li+¢) "V 0<o<dnp <1. (3.17)

Obviously, ogL1 < 0 < d(n,p) < 1, and for any j € N we obtain

1 1

BGJ-_F — nln(aj) +Inc; > B(J’O_pTl = Ao(LlO'o)iﬁ > A()Uiﬁ > 1.

Hence, choosing 0 < o < (n, p) < 1, we obtain for each j € N an unique solution z; = z;(0)
of (B.16) such that

__1 1
zj > z; —nlnz; > Bo, Pt > Ao T > 1.

Then z; —nlnz; = 2j(1+ o(1)) as o \, 0. On the other hand, using again (B.17) we get

1

zj—nhz; < Bo, " [1- nA7Y(Lyo;)7 7 In(Lyoj) + nAg ' (Lyoo)7 T (In Ly + In(cr))]

1

= Baj_ﬁ(l +o0(1)),

uniformly with respect to j € N. Hence,

1 1

Bo, "' <x; < Bo; "' (1+o0(1)), 0 \,0, (3.18)
uniformly with respect to j € N. We set h; = /12*1Kj_7_1 and fix v =1/54.

We are going to check the hypothesis (a) and (b) in Proposition B.2 for any j > 0 ( (c) is
fulfilled by definition). To prove (a) we use (B.15) and that 77 = E; = o(1) as o ™\, 0. Using
(B17) and (B.1§) we obtain

1 1

) R _ 1 1 T+l
r%j = 28F;x;7t! < 2¢texp (—Baj p—l) (Baj p—l) (14 0(1))

1

< ¢(p;7) (—%(ij)*ﬁ) <c(p,7) (—%(0—61)_ﬁ> .

This implies ;(r;h;)~! < const.v for 0 < o < &(n, p,7) < 1 which proves (b). In the same

way we obtain
s Ce; = Cg;
14— < —J ] <2 3.19
< ! ‘h‘> - (erhj) N (319

for 0 < 0 <o(n,p,7) < 1, where C = C(n,7) > 0 is the constant in Remark 3.3. We are going
1
to check (B-19) with v = 1/54. Using (B-1§) we obtain z;/zj41 = (0j41/0)?=T (1 + o(1)). This

implies
' o\ THL ' T+1 p(T+1)
hjtr _ ( xj > (Ug+1> _ 5D (14 0(1))) = (;) (I+0(1))

9j
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for o \ 0, uniformly with respect to 7 € N. Since p > 1 and 7 +1 > n > 2, we obtain

hjs <4)ﬂ 4
< | = < - =
n, ~\g) So9= "

for any 0 < o < 5(n, p,7) < 1, which proves (B.13).
Using the special choice of £, we are going to prove by induction that

. ~ 1
VjeN, €j < §€j+1. (3.20)
To obtain the estimate for j = 0 we write &1 = é\nrlcrIHEl = 5&7"008“57“0}/2&%, and we

obtain

(T+1)(p—1)
gofer =72 (g) exp (—2Bao‘ﬁ) <1/2

for 0 <o <3a(n,p,7) < 1, since By = 4B. To prove it for j +1 > 1 we write
~ 1 ~ 1sr+1 1/2 2 1/2 1
Ej+2 = 5/‘?7"j+20‘;-—j__2 Ej+2 = EHTjJrlO';-—j__l 5T+ Cl/ Ej+1 = €j+1cl/ Ej+157—+ .

Then for j > 0 we obtain

-1
= = (T+1)(p—1)
S N (Y B — 01_1/2 (§> exp (_EBUj——p%) <1
Ej+2 \Ej+1 2 2

for 0 < o0 < &(n,p,7) < 1 which implies by recurrence (B.20). From now on we fix o =
o(n,p,7) < 1 so that all the estimates above hold and define oy by (B.I7). Then we set
so = 5og(1 — 8)~t. We are going to prove that the sequences u; = 4s0d’, v; = 4r9d’, and
w; = 4hgd?, verify (B.]) choosing ro = cr and ¢ = ¢(n,p,7,5) < 1. We have 4soL; < 1
in view of (B.17). Moreover, hg < HO’SJrl < ksy < L;lfgso, and we obtain wjLy < wuj;Ly,
and w; < LQ_I_g. Finally, rg = cor < CL2_1_§ < Lz_l_c, and roLs < c¢Li® < soLi, choosing
appropriately ¢ = ¢(n, p, 7,¢) < 1.
It remains to show that

|Poluy < €05 |Pj—Pji-1ly; < &5, j=>1 (3.21)

for a < 1. In view of (B.14) we have

|Poluy < CollP|ILT = §/£TOC’0%L1_N+”+26L.
On the other hand, using (B.17) we get
g By = log exp (~ Ay (Liog) 77)
= CO'(n,p,7) Ly (In(Ly + €))Ly 4 e)™M > O(n, p, ) LY 7772,
where M = Ag(p)a(n,p,7)~/ =Y. Now we fix N = M 4 7 + n + 4 and chose

@ =C(n.p,7)C M2 = Clm, p,7)eln, p,7,6)Ci
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Then |Pyly, < 0. Recall that Cy comes from the Approximation lemma and the extension in
the beginning of Sect. 3, hence, a is independent of x, L1, Lo, and r. Using (B.14)), we obtain for
each j > 1
~ 1 ~
|Pj — Pj—1ly; < €oexp (—Bo 0 ”‘1) <éj.

We are ready to make the iterations. We consider the real-analytic in ¢/; Hamiltonian
Hji(p,I;w) = No(I;w) + Pj(p, I;w), where Ny(I;w) := (w, I). For any j € N, we denote by D;
the class of real-analytic diffeomorphisms F; : Djy1 x Oj41 — D; x O; of the form

Fi(0, w) = (240, [;w), ¢j(w)), (0, [;w) = (U;(6;w),Vj(0, I;w)), (3.22)

where ®;(0, I; w) is affine linear with respect to I, and the transformation ®;(., .; w) is canonical

for any fixed w. To simplify the notations we denote the sup-norm in D; x O; by | - |; instead

of | - |s;,r;.n;- Obviously, D; x O; C U;.

Proposition 3.5 Suppose P;, j > 0, is real-analytic on U; with
|Poly < €0, |Pj—Pj1ly, < &, j=>1.

Then for each j > 0 there exists a real analytic normal form N;j(I;w) = e;j(w) + (w,I) and a
real analytic transformation F7, where FO = 1d and

.7:j+1:.7'—00"'0fj1 Djiq ><Oj+1 —>(DOX00)ﬁuj', 7 =0,

with Fj € D; such that Hj o F/™1 = N; 1 + Rj41 and |Rji1|j+1 < €j41. Moreover,

_ ) _ -1 Ce;
Wi(Fj —id)|j41, [Wi(DF; —I)W; |j41 < ﬁ, (3.23)
1
Wa(Fitl — Fiy|. CEj 94
[Wo( = F7)|j+1 <0 (3.24)
J°°%7

where C' = C(n,p) > 0 is the constant in Remark 3.3, ¢ = c(n,p) > 0, DFJ stands for the
Jacobian of FJ with respect to (0,1,w), and W; = diag (Uj_lld,rj_lld, hj_lld).

Proof. The proof is similar to that of the Iterative Lemma [f]]. First, applying the KAM step we
find F! = Fy such that Hgo Fy = N1 + Ry, where R; is real analytic in Dy x Oy and |Ry|; < e1.
By recurrence we define for any j > 1 the transformation F/*1 = FJ o Fj, where F; belongs to
D;. By the inductive assumption we have H;_1 0 F/ = N; + R;, where N;(I;w) = ¢;(w) + (w, I)
is a real-analytic normal form, R; is real analytic in D; x O;, and |R;|; < ;. Then we write

HjoFI*t = (Ng+ Pj_1) o FIT1 4+ (Pj — Pj_q) o FIt!
= [Hj10 F] o F+ (B = Byoa) o 771!
= (N; + Rj) o Fj + (Pj — Pj_1) o FI1.

We apply Proposition B.9 to the Hamiltonian N; + R; which is real-analytic in D; x O;. In this
way, using (B.I3), we find a real-analytic map F; : Dj11 X Oj41 — D; x O; which belongs to
the class D; and such that (N; + R;j) o F; = Nj11 + Rjy1,1, where

1 ..
. , S T+1 1/253/2 _ Ej+1
[Rjt1,1lj41 < FEhTi+105016 BT = “5
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Moreover, F; satisfies (B.23) in view of Remark B.J and as in [fJ] we obtain (B.24). We are going
to show that ‘
fj+1 : Dj+1 X Oj+1 E— Z/{j . (325)

This inequality combined with (B.20) and (B.21]) implies

[(Pj — Pj—1) o FIHY 40 < |Pj— Py, <& < %

and we obtain Hj o F/*1 = Nj 1 + R;41, where |Rjt1]j+1 < €j41.
To prove (B.2§) we note that

= =1
[WiW 1| = sup {sk41/8k: Th1 /T Py / I} = Sk1 /51 = 6,

since rgy1/rp = E;/z < 8, and hyyy/hy ~ 6THDPC=D"" < § for any k € N. Then using (B:19)
and (B.23), we estimate the Jacobian of F/*1 in D,y x Oj41 as follows (see [f])

‘WOij+1W;1‘j+l - ‘WoD(fo o OFj)Wﬂ'_l‘jﬂ
Mk ([WeDA T, [ ) [0

IN

IN

& 112, (1+C€j) < 267,

rjh;

Set z = (0,1,w) =x + iy € Dj;1 x Oj41, where 2 and y are the real and the imaginary part of
z. Then

FItl (e tiy) = FI @) + Wo T e, y) Wy,
Tjy1(z,y) =i /01 WoDFIT (x4 z‘ty)W;l dt .

Moreover, [Tj41(x,y)| < 267 and using that |[W;y| < [W,i1y| < V3 we get
[ Tj1(z, )Wyl <467, @ +iy € Djs1 x Ojy1.

This implies F/ 1 (x +iy) € Uj;, since FI*L(z) is real, and we complete the proof of Proposition

B3 0
We are going to prove suitable Gevrey estimates for 7. We set
Dj={(0,I)e D;: |Imf| <s;/2}, Oj={weC": |w—Q<hj/2},

and we denote S/ = F/T! — FJ. For any multi-indices o and 3 and m € N with |3] < m, we
denote

R (950087) (0,1,w) == 05008 (0, L,w) — > (w— /) 0508 (0,1,0) /9.
|B+7v|<m

Recall that p/ = p(7+1) + 1.
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Lemma 3.6 Under the assumptions of Proposition [3. we have
(Wod58587(8,0,w)| < EACHA PP 15l 1o g1 B2,

(9, O,Ld) S f)j—i-l X 6j+1 s

[WoR™(050°S7(0,0,w))| < &ACmtlalFLplermeDEEhFl —m—1

|w_w/ m—|8|+1

b al? (m+ DB e wu €Q,,

X

for any m € N, «, 8 € N, || < m, where the constants A,C depend only on T, p, n and s.

Proof. Using (B-24) and the Cauchy estimate, we evaluate 939587 for any j > 0 and |a+ 3| > 1
in Dj41 x Oj41. We have

j 2lotll o) Ble; olatBl o1 B BT
Mjap = ‘WoagaU?SJ‘ = C+ﬁ|ﬁ|] = CKE B ﬂwj ’
rihsiah hjsi il

1
Recall that s; = 5(1 — §)to; = 5(1 — 5)_1A8_1L1_1(BU]~ #~1)=(=1 "and

K

KTl = ﬁar+1xf7—1
27

hj: T 97J J

Then by (B.1§) we get
1

_ _ p(T+1)
hj_-&l < Kk 1CLTH (Baj p_l) .
where Cj depends only on 7 and p. This implies

Mg < &ACPHAILIRHBITEDH 18] gy

__1 N (p=D(lal=)+p(r+1)(I18]+1) 1
X (Baj ”_1> exp (—Baj p_1> ,

where Ay, Cq depend only on 7 and p. Then we obtain

Mjap < EACIHALIHPITEDT =15l 0 gre(ret)1 g2 (3.26)

where A, C depend only on 7 and p.

We are going to prove the second estimate for w,w’ € Q. First we suppose that |w' — w| <
hj+1/8. Expanding the analytic in O;41 function w — 9287(6,0,w), 6 € T", in Taylor series
with respect to w at w’, and using as above the Cauchy estimate for M}, , we evaluate

LY, 5 = [Wo(R 059587)(0,0:w))| , 0 €T, w, o' € Q.
For || < m+ 1 we have

BN istalg) < glotal __(mA D!
SRS T B oy
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Then we obtain as above

Liag = Yoo W ="My 04(6,0,0) /7!
[v[>m—|B]+1
|w/ _ w|m—|ﬁ|+l 4\0z|+m+1 .

Z ( | |hj+1)lﬁ+7|—m—1’

— ! |a| 1

< cal(m+1)!

and we get
‘w/ _ w|m—|,8|+1 4\a|+m+1

(m — 8]+ 1)! hjsljo_ﬂlh?fil

LT.s < 2cal(m+1)!

1
< gAC\a|+m+1L|a|+(m+1)(r+1)+1 —m—1 M al?(m +1)! p(T+1)+1E1/2
N (m — (B[ +1)!
where A, C' depend only on 7, p and n. For |w’ —w| > h;41/8 we obtain the same inequality,
estimating L7, 5 term by term and using (B.2§). This proves the lemma. O

According to Proposition B.j and Lemma B.6, the limit
09HP(0,w) == lim 059° [ff(e,o,w) - (e,o,w)} . (0,w) € T x Q,,

J—0o0

exists for each «, 8 € N and it is uniform since E;/ ? < 0. Moreover, the partial derivatives
of 03 (HP) = 93P exist and they are continuous on T" x . Consider the jet H = (390‘7'08 ),
a, 8 € N", of continuous functions 85“Hﬁ T x Qe — T" x D x €2, and set
(ROOFH) 5 (0,w) i= OgHO(0,0) = Y (w—w)ORHT(0,0")/.
|B+v|<m

In view of Lemma B.§, we have
(WodgHP(0,w)] < EALy (CLy) (CLT k1) Blatept e

|w 7wl|m—\ﬁ|+1

R ?(m 4 1)

(3.27)
for each «, and 3 satisfying 0 < || < m, and § € T", w,w’ € Q, where A and C depend only
on 7, p, p/, and n. We are going to extend H to a Gevrey function on T" x .

(Wo (REgH) 5 (0,w)] < EAL (CLy)lel (LT g—1ym+t

3.4 Whitney extension in Gevrey classes

Let K be a compact in R™ and p > 1, p/ > 1. We consider a jet (f?), 8 € N”, of functions
f8:T" x K — R, such that for each & € N the partial derivative g 18 exists, it is continuous
on T" x K, and there are positive constants A, C7 and Cs such that

05 50,w)] < AcCkIclatepr,

/|m—|ﬁ|+1 (3.28)

[(RBO5 1), (0,w)] < Ac)lopt! w=w al? (m+ 1)1

(m — 18]+ 1)!
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Theorem 3.7 There exist positive constants Ag and Cy and for any compact set K and any jet
f=(f%), 8 € N*, satisfying (3-28) there exists f € GP'(T" x R™) such that 307 f = 95 f
on K for each a, 3, and

1050° F(6,w)| < A Ay max(Cy,1) (CoC)I¥H (CoCo)Pl atPp1? .

Remark. We point out that the positive constants Ay and Cy do not depend on the the jet f,
on compact set K nor on the constants A, C7 and Cs.
Proof.  Consider the Fourier coefficients

@) = @r [ g ke,

and denote by A the set of all Whitney jets g = (gf), 6 € N", where g,f — Tk f;f(w) and

keZ" |k| =|ki|+ -+ |kn|. Choosing r = cOCl_l/p with 0 < ¢p = ¢o(n, p) < 1, we are going
to show that (gf) € A satisfy

A e wek

,‘m,|m+1 , (3.29)
(m + 17,

Q

ERS

&
N

o w)| < A,omtt o = w

|( wgk’)ﬁ( )| = 249 (m—|ﬁ|—|—1)'

where Ay = 2Amax(Cy,1). We decompose j = plj + qj, j,£ € N, 0 < ¢; < p. For any

k= (ki,...,ky,) € Z" we have |k| < nmaxi<;<y |ki| = n|kp| for some p. Then integrating by
parts and using (B.2§), we estimate

J ]{7‘7/’0 J . / - /
k| 12 (w)| < A%nfﬁlcfﬁlcf'(ej+1)!p5!f’ < 27 Amax(Cy,1) Vg1,

j!

choosing r = COCfl/p with 0 < ¢g = ¢p(n, p) < 1. This proves the first part of (B.29). To prove
the second part, we notice that (R.; fr)s (w) is just the Fourier coefficient of (R4 f)4 (6, w)
corresponding to k. Now we use a variant of the Whitney extension theorem due to Bruna (see
Theorem 3.1, [fl]).

Theorem 3.8 For any compact set K and a jet g = (¢%), B € N, satisfying B-29) on K,
there is § € GP (R™) such that PG = g% on K for any 3, and

055(w)] < AgAy (CoCy)1P g7

Moreover, the positive constants Ag and Cy do not depend on the jet g, on the compact set K
nor on the constants As, Cs.

The proof of Theorem B.§ is given in [[]. Here we only indicate that the constants Ay, Co > 0 do
not depend on the compact set K nor on As and Cs. This follows from the proof of Theorem 3.1,
[. More precisely, setting f°(w) = A;lc;'ﬁ‘gﬁ(c*;lw), Cy'w € K, we obtain |f?(w)| < 817
and

|w — /|18l

(m — |6+ 1)!

(R, )] = 43657 |(Ri19) (€570 < (m+ 1"
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for Cy'w,Cy'w’ € K. Hence, we can suppose that (12) and (13), [fl], hold with e = A = 1
(K is scaled to another compact still denoted by K). Then it is easy to see that the constants
A and € in (19), [l], are independent of g and K. Moreover, the different constants in Lemma
3.2 and 3.3, [[l], do not depend on g and K, and we obtain that the constants in (26), [I], are
independent of g and K. Scaling back by Cy we obtain the desired estimates with constants Ag

and Cj independent of g, K, As and Cs. O

Applying Theorem B.§ to the family of jets A, we obtain a family of functions gy € G such
that 9%g, = gg on K for each 3, and

00 gu(w)| < ApAmax(C1,1)(CoCy)? 317, Yw e R", ke Z", BeN".
Now it is easy to see that the function

Flo,w) = 3 bk g ()

keZn

satisfies the requirements of Theorem PB.§ O

3.5 Proof of Theorem 2.1.

Using (B.27), we extend the jet H to a Gevrey function H = (Hi, Ha, Hz) : T xQ — T x D x Q.
We have
Wod§82H(0,w)| < EAL? (CLy) (CLTH ™1H)Plaregre(+1)+1

where & = || P||LY?(arr)~"! and the positive constants A and C are independent of Ly, Lo, k,
r, and Q C Bg(0). We set F = (®,¢), ® = (U,V), where U(0,w) = Hi1(0,w) + 6, V(0,w) =
H2(0,w), and ¢(w) = Haz(w) +w. Recall that rg = cr, where ¢ = ¢(n, 7, p,<) > 0 is fixed in Sect.
3.3. On the other hand, hg < /W(T)'H < K, and we obtain

0505 (0;) — 0)| + 171|950V (0;0)| + 571 [0 (B(w) — w)|

LIPILY

(CLy)ll(eLT e HBlate g7
RT

for some positive constants A and C as above. Choosing ¢ < 1/A4 in (R.J) we obtain |V (6, w)| <
A|P|| LYk~ < Aer < r < R. In the same way we get ¢(w) € Q for w € Q. This proves the

estimates in Theorem 2.1. As in Sect. 5.d, [[], we obtain that ‘XH o FJ — D®J - XN’ < riaﬂj
on T™ x {0} x Q, for all j > 0, where X m; and X stand for the Hamiltonian vector fields of
H;(0,I;w) and N = (w, I), respectively. On the other hand, VH; converges uniformly to VH

as j — oo in view of Proposition 3.1, hence,

XH(sp(w) © P = D - XN

on T” x {0} x Q. Then {®(A;w) : # € T"} is an embedded invariant torus of the Hamiltonian
H(0,I;$(w)) with frequency w € Q. It is Lagrangian by construction (see also [P}, Sect. 1.3.2).
This completes the proof of Theorem 1.1. a
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3.6  Real analytic hamiltonians.

Consider a real analytic Hamiltonian P € gihL%LQ(T” x B x Q), B= Bgr(0), with norm
P — 8aa/@a’yp 0.1 L_la‘L_Iﬂl_M 131~ —1
1Pl zy,2 = sup (10507 OLP(0, I;w) [ Ly ™ Ly (@f!y) ™) < oo

Then P can be extended as an analytic Hamiltonian in Dy, x Oy, where s = (2L1)_1 and
r = h = (2Ly)"!, and with sup-norm satisfying || P2z, 22, < [[Pllssn < C||P||L,,L,, Where
C =C(n) > 0. Fix 7/ > 7 > n — 1. We can slightly improve Theorem 3.1 [[[d]. Given s > 0 we
denote by Uy the set of all § € C"/27Z"™ such that [Im 0| < s.

Theorem 3.9 Suppose that H is given by ([2.1) where P € gihLZ,LQ(T" X Br(0) x Q). Fix

k > 0 and r > 0 such that k,r < LQ_I and r < R. Then there 1s 0 < sy < s and ¢ > 0 both
independent of k, Lo, 7, R, and of Q C Qq, such that if |P|| < exr then there exist maps
peGT2(0,Q) and ® = (U, V) € Q177/+2(Z/150/2 x Q, Us, x Bg(0)), satisfying (i), Theorem 2.1,
with p = 1. Moreover, there exist A,C > 0, independent of k, Lo, r, and 2, such that

/ P
05U ©0;0) = 0)| + 17 o0V (B;0)| + 5719 (B(w) — w)| < ACI T g I2]]
Kr
uniformly in (0,w) € U, /o x  and for any B € N".
Proof. Fix p = (7' — 7)(7 + 1)7! + 1 and set as above o; = 0¢6?, and s;11 = s; — 5oy,
j > 0, where so(1 — &) = 200¢ (then s; — 3s0/4) and so < s = (2L1)"!. As above we define
1

E; = ¢t exp(—aj_ﬁ) and set €; = aAm“ja]T-HEj, where & = || P||sn(akr)~t. Choose 1o =

and ho = h and define r;, z;, K; and h; as above. We consider H = (w, I) + P in Dj x O;. We
fix o9 = o9(n, p,7,5) < s(1—4)/20, so that a), b), c¢) in Proposition 3.1 and (B.13) hold for any
1

j > 0. Next we choose a = a(n, p, 7, L1) < cl_lao_T_1 exp(—a[;ﬁ). Then |P|y < €9, and we can
apply Proposition 3.5. Moreover, as in Lemma 3.6 we obtain with p' = p(r+1)+1=7"+2

Wodis?(0,0,w)] < ACH I B17 B (0,0,0) € Uyyjo x Ojpr s

WoR™(0287(0,0,w))] < gAC™Hg—m-1

|w_w/‘m—\ﬁ\+1

A Com T Y

(m+1)!p/E;/2, 0 € Usya, w0 € Qe

for any m € N, g € N", |3| < m, where the constants A, C' depend only on 7, p, n and L;. We
complete the proof of the theorem as above. a

4  Proof of Theorem [I-1 and Corollary 1.2.

Proof of Theorem [[.4. Set r = R = k/eg. Then (R.2) implies | P|| < (A+ 1)kr /ey and we can
apply Theorem 2.1. Consider the map ® : T" x Q — T" x D given by

P(0,w) = (U(8;0), Vg’ (d(w)) + V(6;w)),
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where U and V are obtained in Theorem R.I. We have H (0, I; ¢(w)) = H(6,Vg°(p(w)) + I),
I € Bg(0), in the notations of Sect. 2.1. Then Theorem 2.1, (i), implies that A, = {®(0,w) :
0 €T}, we Q, is an embedded Lagrangian invariant torus of the Hamiltonian H for each
w € Q, with frequency w. The corresponding estimates for ® follow directly from those in
Theorem 2.1. O

Proof of Corollary 1.2. The proof is close to that of Theorem 2.1, [I(] and we will be concerned
mainly with the corresponding Gevrey estimates. Let ey < eLl_N =2, Then in the notations of

(ii), Theorem 1.1, we get AClLiV/ 2\/5 < ACe. Choosing € small enough and using Proposition
A.2 as well as (ii), Theorem 1.1, we obtain a solution § = 0(y,w) the equation U(,w) = ¢ such
that 0(p,w) — ¢ satisfies the same Gevrey estimates as U. Set F(p,w) = V(0(p,w),w). We
have A, = {(p, F(p,w)) : ¢ € T"} for each w € €. Moreover, by Proposition A.4 we obtain

0200(F(o,0) = V()| < rACT! (Cor")Plate g oD L2 2y

uniformly in (0,w) € T™ x Q. Hereafter, A, C; = CLy, and Cy = C’LI+1 are positive constants
as in Theorem 1.1. Denote by p : R® — T" the natural projection. As in Lemma 2.2 , [[[(],
we shall find ¢ € G## (R" x Q) and R € G” () such that Q(z,w) := ¥ (x,w) — (z, R(w)) is 27
periodic with respect to x and

(i) V(z,w) € R" x Q, Vob(z,w) = F(p(x),w),
(i)

for (z,w) € R™ x Q. To obtain ¢ we consider the function

0205Q(w, )| + [0/ (R() = Vo) < KACT(Con ) alepLor st 1372 /2,

zl;(a:,w) = L o = /01 (F(p(tx),w), z)dt, (r,w) e R"xQ,

where v, = {(tz, F(p(tr),w)) : 0 < t < 1} and ¢ = {dzx is the canonical one-form on T*R".
Then ) (z,w) — (Vg°(w), z) satisfies the Gevrey estimates (ii) in [0, 47]" x Q. We set 27 R;(w) =
1;(27rej, w), w € Q, {e;} being an unitary basis in R". Then R— Vg satisfies (ii) in Q. Since Ay,
w € {, is Lagrangian, we obtain as in E] that for such w the function in(x, w) is 27 periodic
with respect to z and ¥(z+2mm,w) —Y(z,w) = (27m, R(w)) for m € Z™. Consider the function

Q(z,w) = ¢Y(z,w) — (x, R(w)). It satisfies the Gevrey estimates (ii) in [0, 47]"™ x Q, and it is 27
periodic with respect to z for w € Q.. We are going to average Q on T™. Let f € G.(R™) with
supp f C [7/2,7m/2]", where C' > 0 is a positive constant, and such that > ,czn f(z —27k) =1
for each € R". Consider the function Q(z,w) = Y 1czn (fQ)(z — 27k, w). It is 27-periodic
with respect to z by construction, it belongs to G#? (R x Q), and Q(z,w) = @(m,w) for
(z,w) € R™ x Q,. Moreover, ) satisfies the Gevrey estimates (ii) in R" x Q. We set ¢(z,w) =
Q(z,w) + (z, R(w)). Recall that dist (Q,, R"\ Q) > x. Then multiplying @ and R — Vg¢° by a
suitable cut-off function h € Qg(Q), with ¢ = Ck~! and C > 0 independent of Q C €, such
that h = 1 in a neighborhood of Q, and h(w) = 0 if dist (w, R™\ Q) < /2, we can assume that
P(r,w) = (r,Vg®(w)) for any w such that dist (w, R™\ Q) < x/2. This does not change the
corresponding Gevrey estimates for 1.

Let 5HL11V+2(T+2) < e < 1. Then KACl(CQI{_l)Liv/2\/5 < AC?%¢ < 1, and the map

Q5w — Vy(x,w) € D becomes a diffeomorphism for any z fixed, which gives a GP*' -foliation
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of T" x D by Lagrangian tori A, = {(p(z),Vs¥(z,w)) : z € R"} , w € Q. The action
I=(L,...,I,) € Doneach A,, w € D, is given by

G =m0 = m) T wierew) ~v(0.9) = Riw)
i (w

where v;(w) = {(p(tej), Vab(tej,w)) : 0 <t < 2r}. Then I(w) — Vg%(w) = R(w) — Vg°(w)

satisfies (ii) in 2, and choosing 5HL]1V+2(T+2) < € < 1 we obtain that the frequency map

Q3w I(w) € D is a diffcomorphism of Gevrey class G#. Using Remark A.1 we show that

the inverse map D 3 I — w(I) € Q is in G* and

0 (w(1) = VH(D))| < kA (Corh)l ' LY /ey,
uniformly with respect to (p,w) € T™ x Q and for any «,F € N". Now we set ®(x,I) =

Y(x,w(l)). Then ®(x,I)— (z,I) is 2m-periodic with respect to x, and using Proposition A.3 we
get the estimates

0207 (® (2, 1) — (x,1 >)\ < rACIN(Cor ) Blar el T+ OFL N2

Solving the equation ®;(0, ) = ¢ with respect to 6 by means of Proposition A.2 we obtain the
symplectic transformation x. For any w € €2,; and any 6 we have (0, F(0,w)) = (0, ®9(0,I(w))) =

x(®1(0,I(w)), I(w)), hence, A, = x(T" x {I(w)}). Set H(p,I) = H(x(¢,I)). Then H is
constant on T” x {I(w)}. We set K(I) = H(0,I) and R(p,I) = H(p,I)—K(I). Then R(yp,I) =
0 on T" x E, hence, all the derivatives of R vanish on T" x E,, since each point of F is of
positive Lebesgue density in E,. Using Proposition A.4 for H(p,I) = H(0(y,I), ®e(0(¢,I),1))

we obtain for any «, 3 € N"
9507 (H (. 1) = H(I))| < wACY (Cor™")lal pp1 ettt L2 2y

uniformly with respect to (p,I) € T™ x D, where the constants A, C7 and Cy are as above. O

Appendix

We shall obtain a variant of the implicit function theorem of Komatsu [[] in anisotropic Gevrey
classes. Let X and €y be domains in R™ and R™ respectevly. Fix p/ > p > 1. Let F =
(fi,..., fn) be a Gevrey function of the class G/ (X x Q,R"). We suppose that there are
constants Ag > 0 and hq, he > 0, and a small parameter 0 < € < 1, such that

V(z,w) € X xQq,

205 (F (w,w) — z)| < eAphihlatog1” (A.1)

for any multi-indices «, 5. We choose € > 0 so that eAphy < 1/2. Then |D,F(z,w) —1d| < 1/2
for any (z,w) € X x g, where D, F stands for the Jacobian of F' with respect to x. Hence, the
inverse matrix (D, F)~! exists and |D,F(z,w)™'| <2 in X x Q. Consider now a local solution
x=g(y,w), (y,w) €Y x Qof F(x,w) =y, where Y C R™ and Q C ) are suitable domains.
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Proposition A. 1 Suppose that (A1) holds and with 0 < ¢ < 1 and eAoph1 < 1/2, and consider
a local solution x = g(y,w), (y,w) € Y x Q, of F(z,w) =y. Then g € G* (Y x Q,X), and
there exist positive constants A and C' depending only on p, p', n, and m, such that

Va, s, sup ‘80‘65 9(y,w) — y)‘ < eAgACothl h‘f' hlﬂ alPpe

Remark A.1. Let f = (f1,..., fn) € G°(X,R") and |0 (f(x) — z)| < eAoh®a!? in X for any
a, where 0 < ¢ < 1 and €¢4ph < 1/2, and let g : Y — X be an inverse map to f. Then the
inverse map g of f belongs to G°(Y, X) and lag(g(y) — y)‘ < eAgAC! plel o1 in Y for any o
As a corollary we obtain

Proposition A. 2 Suppose that F € GPP' (T™ x Q,T") satisfies (A7) with 0 < e < 1 and
eAohy < 1/2. Then there ezists g € GPP (T" x Q, T™) and there are positive constants A and C
depending only on p, p', n, and m such that

Va, B, sup ‘aaaﬁ g(y,w) — y)‘ < aAoAC|°‘+mh‘f‘| h‘f' alPpIP

Proof of Proposition A 1. We rescale the variables
tohr=icehX =X, yohy=gehY =Y, wr hw=o € hyQ:=.

Set F(z,w) = hy F(hy 'z, h2_1~w), (z,w) € X xQ, and §(y,w) = hlg~(h1_1y, hy'w), (y,w) €Y x Q.
Then = = §(y,w), (y,w) € Y x €, is a solution of the equation F(x,w) = 3. Moreover, ([A.1)
implies

sup 205 (F(z,w) — 1’)‘ < éalPp”, (A.2)

X xQ
where € := Aph; < 1/2. We are going to prove that there exist positive constants A and C
depending only on p, p/, n, and m such that

Va,8, sup [0005(5(y,w) — )| < EACKHIarep (A3)
Y xQ

Then rescaling back the variables we obtain the estimates in Proposition A.1.

We are going to prove ([A.3). From now on we omit ‘~’ to simplify the notations. The
implicit function theorem of Komatsu [f] implies that g € G# (Y x Q; X). Moreover, it follows
from [{] that

sup (070201 ) = )| < AR (@137 (A4)

X xQ

Hereafter, A and h are positive constants, depending only on p, p/, n, and m. To obtain ([A.4)

we consider the inverse mapping (g, id) of (F,id) in X xQ and we use that B=2,0<C =¢ <1
and h =1in the estimates of b, in (4), B, p- 70-71 (see also the estimates of Y™ below).

Take any z°,79° € X and w? E Q) such that F(2%,w%) = y°. Changing the variables if

necessary we assume 3° = 0 and w® = 0. Consider now the solution w + g(0,w) of F(x,w) =0

with ¢(0,0) = zY. Then we obtain

F(z,w) = (x — ¢g(0,w)) D, F(9(0,w),w) + R(z,w),
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ina nelghborhood of (0,0), where R(z,w) = O(|z — g(0,w)[?), R € G/ (X x Q; R"). Moreover,
it follows from ([A.2), (A.4) and from Proposition A.3 below that

sup 8?85]%(33,@‘ < eAnletBlarepre’,

X xQ

where A > 0 and h > 0 depend only on p, p/, n, and n. Now me make a local change of the
variables
z=(r—g(0,w)) D F(g(0,w), w),

and we obtain the equation (with respect to z)
z=y+p(zw), 2€YyeY, weQ, (A.5)

where Yy and Y are neighborhoods of 0 in R", ¢(0,w) = 0, and

Ya,B3, sup
Y0><Q

UJSO(Z7 w)‘ < EAh'aera' p/B' o

with some positive constants A and h as above. We are going to estimate the derivatives
9895u(0,0) of the solution 2z = u(y,w) of the equation above.

For j € N we set M; = j!” and N; = j!?". Then M; < N; and there is H > 1 such that
J J J J
(Mq/a) ™t < H (My/p)' P, (My/q)"" < H(My/p)'/?, 2<q<p.  (A6)

The same estimates hold for N; as well.
Consider the Taylor expansion of ¢ in formal power series at (0,0)

D,
plew)= 3 > T, P = 2920(0,0).

ley!
p|>2 aeNm PP

Then we have

peAd Y T T Tledpitlele
p|>2 aEN™

which means that || < €AM‘p|N‘a|h|p‘+|a‘ for each p, a. Consider the solution z = u(y,w) of
(A-F) and its formal Taylor series at (0, 0)

wy=y+ >, Y

[p|>2 a€N™

plaly

Then ([A.§) is formally equivalent to

>y S =zz¢pj( I DI ST )

ley!
[p|>2 aeN™ p|>2 aeNm PP lq|>2 BEN™

Denote by v(y,w) the power series

- ¥

Yrw
1!
p>2 aeNm PO
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and suppose that it is a formal solution of

M Na
=cA Z Z ‘p| | [ plplplel (y +v(y,w))P w™. (A.7)
|p|>2 aEN™ !

We claim that such a solution exists and it is unique, v»* > 0, and u < y + v. Indeed, for any
Ip| > 2, € N, and 1 < j < n, there is a polynomial @}, ; # 0 of the variables (t, g, sr) and
with non-negative coefficients, where ¢,7 € N", B,y € N™ 2 < |q| < |p|, B < a, 2 < |r| < |p|—

v < a, and such that up’a, respectively, v f’a, is the value of Qpqj for t, 5 = %P, 5., = (O
7’}/

’Y

respectively, for ¢, 5 = eAM, Nj, ‘h‘p|+| al Sry = Uj For |p| = 2 the polynomial Qp . ; is
independent of s, ~, [r| > 2. Since the coefﬁments of Qp.a,j are non-negative, we get [u;”| < v;®
for |r| = 2 and each a. By recurrence we obtain |u§a| < v;’a for each |r| > 2 and a € N™.

Now we set y = (s,...,s), s > 0, and consider
o0 ¢ NoY
_ sTw® o X
QS(S,W) - Z Z ‘Oé' ¢ Z P
r=2acN™ |p|=r

Note that for such y the right hand side of the equation ([A.7) is invariant under any permutation
of the components v;(y,w), 1 < j < n, and using the uniqueness of the solution, we obtain
b1(s,w) = = ¢p(s,w) = ¢(s,w). Then t = s+ ¢(s,w) is a formal solution of

f—steAY Y T

ol l
r=2acN™ |p|—rp "
where 37—, ;75 <n". Let t =9Y(s,w) :=5+ 329> penm %srwa be the formal solution of

M N|a\

t—s—i—sAZ Z

r=2 aeN™

nt)" (hw)® . (A.8)

We obtain as above s + ¢ < 9, which implies |u§’a| < lPhe for 1 < j < n and for any [p| > 2,
a e N™.

We are going to estimate 1™, Set C(w) = A 3" enm — N'”“ (hw)®. Then (A.g) becomes
0o Mr
s =k(t,w) =t —eC(w) Z 7(hnt))r.
r=2

Recall that 0 < & < 1. We suppose also that A > 1 and h > 1. As in [fJ], using the Lagrange
expansion theorem, we obtain for r > 2

v = laa{gt)r_l(k(tt,w))r}'”} oo T
el o}
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and we get

r—1
N,
g < My (M) (0% (14 A Y T (hw)? oo
Nay\ Vel NV
< eM,(8AHRW*n?)" 1|95 | Y (—'> hw =0
5 af!
< eM,Njy(SAHR n?)" ! plolgmr=2)Flel,

We have used the inequalities ([A.6) for M; and Nj, as well as the identity

(Z wﬁ>q: Z Cow®,

BeN™ aEN™

where g =7r—12>1 and

- (et [ atam=1 ongontal
aq Qo B

V(p,a,j), [ub®| < plPhe < e A My N bt

Thus we obtain

where A, h > 0 depend only on p, p/, n, and m. Changing back the variables and rescaling back
2, we obtain the desired estimates for g.

Finally we recall the Gevrey estimates for the composition of two functions in anisotropic
Gevrey classes.

Proposition A. 3 Let g € G¢, (,Y) and f € Gl (X xY), where p > p > 1, B, C1 and
Cy are positive constants and X, Y and Q are open sets in R™. Suppose that ||gllc, = A1
and || f||B,c, = A2 in the corresponding Gevrey norms with Ay, Ay > 0. Then the composition
(z,w) = F(z,w) := f(z,g(w)) belongs to G5'n(X x Q), where C' = 2" HntCy max(1, A1C2) and
[Fllc < As.

Proof. Using the Faa de Bruno formula we write

(9207 f)(z, g(w)) 3 al

NNISF (x,w) = 7 S arl

1<|B|=p<|al

(05" g)(w) - (0 g) (w).

a1+»-<+ap:a
lal|>1,...,|aP|>1

Since [0%g(w)| < AlClla‘a!“, and j! < 27(j — 1)! for j > 1, we estimate above |9)0%F(x,w)| by

B @Oy al Y Y G (et =1t (o - )

1§V3|:p§|a\ aldqaP=a
lal|>1,...,|aP|>1

We have (|a!| — 1)!---(Jo?| — )Ip! < |a|! < nl*lal. Observe that for any r,p € N, r,p > 1, the

number of multi-indices v = (v1,...,7p) € NP with |y| = r is given by (r ;g; 1) (see [IL1],
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Sect. 1.2). Then the number of partitions al + -+ a? = a, of € N, of a = (ay,...,qy) is

given by
a1 +p_1 Qp +p_1 < 2|a|2n(p71)7
p—1 p—1

which implies

1000° F ()| < A2~ BN (27 ) max(1, A1C5)) '™ 417 al® S o7l < Ay BhiClelyt e e,
BGN"

In the same way we obtain

Proposition A. 4 Let g € QBl o, (X x QYY) and f € 932 o, (Y X Q), where p > p > 1, B;
and Cj, j = 1,2, are positive constants, and X, Y, and € are open sets in R"™. Suppose
that ||g||B, ., = A1 and || f||B,,co = A2 in the corresponding Gevrey norms with Ay, As > 0.
Then the composition (z,w) — F(z,w) := f(g(z,w),w) belongs to Gi'r(X x Q), where B =
2"1P(2n)P By max(1, A1 By), C = Cy + 2"P(2n)PCy max(1, A1 Bs), and HF”B,C < A,

To prove the Gevrey estimates we set z = (x,w) and using Leibnitz formula and the Faa de
Bruno formula we write

NEF(r,w) = 3 (g) 3 (9505 £)(9(2): )=

I
a'<o 1<|8|=p<|y+a/| Al

5! ] N

X Z 5 . op! (82 )( ) "(ang)(2)7
Sl 6P =6=(~,0))
|61>1,...,|6P|>1

where 67 = (77, a/). On the other hand,

(fyl PP 1(a11 .apv)uflglpfl
< 207D F (|l = 1)1 (9P + aP| = DIphP (@ - - aPl)er
< 2(p=1)hr+a \(Qn)(p 1)|y+a W)o/!“

and as above we complete the proof of the proposition.

Proof of Lemma 3.4. First, using the Cauchy formula, we obtain as in [J], Lemma A.3, that
[+ Ozq0v)p — C is one-to-one (injective). Note that 2(0 + v) = 1 — 4v. To show that
Osn C f(O—av)n), we take w € Ogp, and w € §; such that [w —w| < Oh. Set f =id — F. Then
|F'|p, < vh and |[DF|(;_4,)n < 1/4 by the Cauchy estimates. Put up = w and ug1 = F'(ug) +w
for £ > 0. By recurrence we prove

luprr —up]l <27H47F1 —40)h, Jug —w| < (2/3)(1 —47F)(1 - 4v)h.

Taking the limit we find u € B,(w), 7 = (1 — 4v)h, such that u = F'(u) +w. The corresponding
estimates of ¢ follow from the arguments in [J], Lemma A.3. a
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