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LIFTS OF C AND L.-MORPHISMS TO G..-MORPHISMS
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Paris 13 et Ecole Normale Superieure de Cachan, France
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ABSTRACT. Let ga be the Hochschild complex of cochains on C°°(R™) and g1 be the space
of multivector fields on R™. In this paper we prove that given any Goo-structure (i.e. Ger-
stenhaber algebra up to homotopy structure) on gz, and any Cso-morphism ¢ (i.e. morphism
of commutative, associative algebra up to homotopy) between g; and ga, there exists a Goo-
morphism ® between g1 and go that restricts to . We also show that any Loo-morphism (i.e.
morphism of Lie algebra up to homotopy), in particular the one constructed by Kontsevich,
can be deformed into a Goo-morphism, using Tamarkin’s method for any Goo-structure on
g2. We also show that any two of such Goc-morphisms are homotopic.

O-Introduction

Let M be a differential manifold and g2 = (C*(A4, A),b) be the Hochschild cochain
complex on A = C°°(M). The classical Hochschild-Kostant-Rosenberg theorem states
that the cohomology of go is the graded Lie algebra g1 = I'(M,A*T'M) of multivector
fields on M. There is also a graded Lie algebra structure on g given by the Gerstenhaber
bracket. In particular g; and go are also Lie algebras up to homotopy (L..-algebra for
short). In the case M = R", using different methods, Kontsevich ([Kol] and [Ko2])
and Tamarkin ([Ta]) have proved the existence of Lie homomorphisms “up to homotopy”
(Loo-morphisms) from g; to go. Kontsevich’s proof uses graph complex and is related

to multizeta functions whereas Tamarkin’s construction uses the existence of Drinfeld’s
associators. In fact Tamarkin’s L,,-morphism comes from the restriction of a Gerstenhaber

algebra up to homotopy homomorphism (Gy-morphism) from g; to go. The G-algebra
structure on g, is induced by its classical Gerstenhaber algebra structure and a far less
trivial Go-structure on go was proved to exist by Tamarkin [Ta] and relies on a Drinfeld’s
associator. Tamarkin’s G,.-morphism also restricts into a commutative, associative up
to homotopy morphism (Cy-morphism for short). The Cy-structure on go (given by
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2 GREGORY GINOT, GILLES HALBOUT

restriction of the G.-one) highly depends on Drinfeld’s associator, and any two choices
of a Drinfeld associator yields a prior: different C,-structures. When M is a Poisson
manifold, Kontsevich and Tamarkin homomorphisms imply the existence of a star-product
(see [BFFLS1] and [BFFLS2| for a definition). A connection between the two approaches
has been given in [KS] but the morphisms given by Kontsevich and Tamarkin are not
the same. The aim of this paper is to show that, given any G-structure on go and any
Co-morphism ¢ between g; and gs, there exists a Go,-morphism ® between g; and go
that restricts to . We also show that any L..-morphism can be deformed into a G o,-one.

In the first section, we fix notation and recall the definitions of L., and G .-structures. In
the second section we state and prove the main theorem. In the last section we show that
any two Go.-morphisms given by Tamarkin’s method are homotopic.

Remark : In the sequel, unless otherwise is stated, the manifold M is supposed to be R"
for some n > 1. Most results could be generalized to other manifolds using techniques of
Kontsevich [Kol] (also see [TS], [CFT]).

1-C», Lo and G.-structures

For any graded vector space g, we choose the following degree on A®g : if Xy,..., X} are
homogeneous elements of respective degree | X1|,...| X/, then

| X1 A A X =X+ + | Xk| — k.

In particular the component g = Alg C A®g is the same as the space g with degree shifted
by one. The space A®*g with the deconcatenation cobracket is the cofree cocommutative
coalgebra on g with degree shifted by one (see [LS], Section 2). Any degree one map

d* : \Fg — g (k > 1) extends into a derivation d* : A®g — A®g of the coalgebra A®g by
cofreeness property.
Definition 1.1. A wvector space g is endowed with a L,-algebra (Lie algebras “up to

homotopy”) structure if there are degree one linear maps m*~1, with k ones : N\Fg — g
such that if we extend them to maps AN*g — A®g, then dod = 0 where d is the derivation

d=m!+mbt o bl

For more details on Lo,-structures, see [LS]. It follows from the definition that a L..-algebra
structure induces a differential coalgebra structure on A®g and that the map m! : g — g

is a differential. If mb~! : AFg — g are 0 for k > 3, we get the usual definition of
(differential if m! # 0) graded Lie algebras.

For any graded vector space g, we denote ﬁ the quotient of g®™ by the image of all
shuffles of length n (see [GK] or [GH] for details). The graded vector space ®,>0g®" is a
quotient coalgebra of the tensor coalgebra @, >0g®™. It is well known that this coalgebra
®On>0 ﬁ is the cofree Lie coalgebra on the vector space g (with degree shifted by minus
one).

Definition 1.2. A C.-algebra (commutative and asssociative “up to homotopy” algebra)
structure on a vector space g is given by a collection of degree one linear maps mF
g®% — g such that if we extend them to maps @ﬁ — @ﬁ, then dod = 0 where d is the

derivation
d=m'+m?>+m’+ - .

In particular a C,.-algebra is an A..-algebra.
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For any space g, we denote A®g®® the graded space

/\'g®' _ D g®p1 Aee A g®pn.
m2>1, p1+--+pp=m

We use the following grading on A®g®*: for xl, ... 2P € g, we define

P1 P1
21 @ @a A Azl @ @alr | =) Jal 4+ + Y 2l - n
i1 in

Notice that the induced grading on A®g C A®g®® is the same than the one introduced
above. The cobracket on ®g®® and the coproduct on A®g extend to a cobracket and a
coproduct on A°g®® which yield a Gerstenhaber coalgebra structure on A®g®®. It is well
known that this coalgebra structure is cofree (see [Gi], Section 3 for example).

Definition 1.3. A G.-algebra (Gerstenhaber algebra “up to homotopy”) structure on a
graded vector space g is given by a collection of degree one maps

mPLrPn . g®p1 A-e- /\g®pn — g

indexed by p1,...pn > 1 such that their canonical extension: A*g®® — A®g®*® satisfies

dod =0 where
i= Y e

m>1, p1+-pp=m

Again, as the coalgebra structure of A®g®® is cofree, the map d makes A®g®® into a

differential coalgebra. If the maps mP*?n are 0 for (p1,p2,...) # (1,0,...), (1,1,0,...)
or (2,0,...), we get the usual definition of (differential if m! # 0) Gerstenhaber algebra.

The space of multivector fields g; is endowed with a graded Lie bracket [—, —|g called
the Schouten bracket (see [Kos]). This Lie algebra can be extended into a Gerstenhaber

algebra, with commutative structure given by the exterior product: (a, 3) — a A 3
Setting di = m%’l +m?, where mi’l : A%gy — g1, and m3 : 9?2 — g1 are the extension

of the Schouten bracket and the exterior product, we find that (g1, d;) is a G.-algebra.

In the same way, one can define a differential Lie algebra structure on the vector space go =
C(A,A) =Dy Ck(A, A), the space of Hochschild cochains (generated by differential k-

linear maps from A* to A), where A = C°°(M) is the algebra of smooth differential
functions over M. Tts bracket [—, —]g, called the Gerstenhaber bracket, is defined, for
D7 E € g2, by

[D, E]e = {D|E} - (-1)"I'""{E|D},

where

{DIE} (1, 2aye1) = D (=)' D(@r, . 2, E(@ist, o wige), - ).
i>0

The space go has a grading defined by | D |=k < D € C**1(A, A) and its differential is
b= [m,—]qg, where m € C?(A, A) is the commutative multiplication on A.
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Tamarkin (see [Ta] or also [GH]) stated the existence of a G-structure on go (depending
on a choice of a Drinfeld associator) given by a differential dy = mi + m%’l +mi 4+
mbtoPr 4. on A%gY® satisfying dg o da = 0. Although this structure is non-explicit, it
satisfies the following three properties :

(a) mj is the extension of the differential b

(b) may! is the extension of the Gerstenhaber bracket [—, —]¢
and m%’l"“’l =0

(c) m3 induces the exterior product in cohomology and the

collection of the (m*)g>; defines a Coo-structure on go.(1.1)

Definition 1.4. A L. -morphism between two Lo.-algebras (gi1,dy = mi + ...) and
(g2,d2 = m3 + ...) is a morphism of differential coalgebras

¢+ (A*g1,di) — (A°g2,da). (1.2)

Such a map ¢ is uniquely determined by a collection of maps ¢™ : A"g; — g2 (again
by cofreeness properties). In the case g; and go are respectively the graded Lie algebra
(D(M,ANTM), [—,—]s) and the differential graded Lie algebra (C' (A, A4), [—, —]g), the
formality theorems of Kontsevich and Tamarkin state the existence of a L.,-morphism
between g; and go such that ¢! is the Hochschild-Kostant-Rosenberg quasi-isomorphism.

Definition 1.5. A morphism of C-algebras between two Cus-algebras (g1, d1) and (g2, d2)
is a map ¢ : (©gP°, dy) — (@ﬁ, ds) of codifferential coalgebras.

A C,-morphism is in particular a morphism of A, -algebras and is uniquely determined
by maps 0% : g® — g.

Definition 1.6. A morphism of G-algebras between two G-algebras (g1, d1) and (gz, d2)
is a map ¢ : (/\'ﬁ, dy) — (A'ﬁ, d2) of codifferential coalgebras.

There are coalgebras inclusions A®g — A°g®®, ®g®® — A®g®® and it is easy to check
that any Goo-morphism between two Go-algebras (g, Y mPr-Pn), (g/, > m/P*P") re-

stricts to a Log-morphism (A®g, > mb1) — (/\‘g’,Zm’l""’l) and a Cs-morphism

(g®e, > mF) — (EBg’®°, Em’k>. In the case g; and gs are as above, Tamarkin’s theo-

rem states that there exists a G o.-morphism between the two G, algebras g; and g (with
the G structure he built) that restricts to a C'y, and a L.-morphism.

2-Main theorem

We keep the notations of the previous section, in particular go is the Hochschild complex
of cochains on C'°(M) and g its cohomology. Here is our main theorem.
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Theorem 2.1. Given any G -structure do on go satisfying the three properties of (1.1),
and any Cs.-morphism ¢ between g1 and g such that o' is the Hochschild-Kostant-
Rosenberg map, there exists a Go-morphism ® : (g1,d1) — (g2,dz) that restricts to .
Also, given any Lo-morphism v between g and go such that ~' is the Hochschild-
Kostant-Rosenberg map, there erxists a Goo-structure (gi,d}) on g1 and Goo-morphism
I : (g1,d}) — (g2,d2) that restricts to v. Moreover there exists a Goo-morphism TV :

(91,d1) — (g1,d1).

In particular, Theorem 2.1 applies to the formality map of Kontsevich and also to any
Co-map derived (see [Ta], [GH]) from any B..-structure on go lifting the Gerstenhaber
structure of g;.

Let us first recall the proof of Tamarkin’s formality theorem (see [GH] for more details):

1. First one proves there exists a Go-structure on go, with differential do, as in (1.1).

2. Then, one constructs a G.-structure on g; given by a differential d} together with
a Goo-morphism @ between (g1,d}) and (g, d>).

3. Finally, one constructs a G-morphism @ between (g1, d;) and (g1, d}).

The composition ® o P’ is then a Goo-morphism between (g1, d;) and (gz, d2),thus restricts
to a Lo,-morphism between the differential graded Lie algebras g; and go.

We suppose now that, in the first step, we take any G.-structure on go given by a differen-
tial do and we suppose we are given a C,,-morphism ¢ and a L.,-morphism 7 between g;
and go satisfying 7! = ¢! = ¢HKR the Hochschild-Kostant-Rosenberg quasi-isomorphism.
Proof of Theorem 2.1:

The Theorem will follow if we prove that steps 2 and 3 of Tamarkin’s construction are
still true with the extra conditions that the restriction of the Go,-morphism ® (resp. ®’)
on the Cyo-structures is the Co-morphism ¢ : g — go (resp. id).

Let us recall (see [GH]) that the constructions of ® and d} can be made by induction.
For ¢+ =1,2 and n > 0, let us set

‘/;[n] — @ gZ ®p1 A A g®pk

p1t-tpr=n

and Vi[— =D p<n Vi - Let d[n] and d[ " be the sums
V= N e and a5 =Yl
p1ttpr=n pIn

Clearly, da = 37,5, d”. In the same way, we denote d; = Dot @ " with

d/[ln] — Z d'lpl,m,pk and [<” _ Z d/[k]

P14 +pr=n 1<k<n

We know from Section 1 that a morphism O (/\' e d) — (A 'g%@',dg) is uniquely

determined by its components @F1-Pk . g7 OPL A LA g®p’c — go. Again, we have ® =
Yot P with

ol — Z PP Pk and dlsn] — Z dlF

p1+-+pr=n 1<k<n
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We want to construct the maps d’ [1n] and ®!" by induction with the initial condition

d/[ll] =0 and q)[l] = (,DHKR,

where oKR ¢ (81,0) — (g2,b) is the Hochschild-Kostant-Rosenberg quasi-isomorphism
(see [HKR]) defined, for o € g1, f1,---, fn € A, by

CHKR o~ ((fi,-o fa) = {adfy Ao A df)).

Moreover, we want the following extra conditions to be true:

k>2 _  k 12 42 1k>3
Q=" = ", d'y =dj, dy

= 0. (2.3)
Now suppose the construction is done for n—1 (n > 2), i.e., we have built maps (d'[li] )i<n—1
and (®l1),<,,_; satisfying conditions (2.3) and

(I)[Sn—l] o d/[lﬁn—l] — d[Qﬁn—l] o q)[gn—l] on Vl[ﬁn—l] nd d/[

<n—1] d/[lgn—l]

=0 on V="

(2.4)
In [GH], we prove that for any such (d’[li])ign_l and (qJ[ ])Z<n 1, one can construct d’[n]
and ®M such that condition (2.4) is true for n instead of n — 1. To complete the proof
of Theorem 2.1 (step 2), we have to show that d’ [1n] and ®™ can be chosen to satisfy
conditions (2.3). In the equation 2.4, the terms d’ ]f and ®F only act on V. So one can
replace ®" with ", d’> with d? (or d’},i > 3 with 0) provided conditions (2.4) are still
satisfied on V. The other terms acting on V] in the equation (2.4) only involve terms
™" = ™ and d'}". Then conditions (2.4) on V1 """ are the equations that should be
satisfied by a Cug-morphism between the Cuo-algebras (g1, d'1" = di') and (go, S es1d5)
restricted to V. Hence by hypothesis on ¢ the conditions hold.

Similarly the construction of ®’ can be made by induction. Let us recall the proof given
in [GH]. Again a morphism o (A 'g?',dl) — (A 'ggz",d’) is uniquely determined by its

components ®'Fr P g®p1 Ao A g®p’“ — g1. We write @' =5 '™ with
®/[7’L] — Z @/plr-wpk and <’I’L] Z ®/
p1t+-+pr=n 1<k<n

We construct the maps @’ ] by induction with the initial condition &’ 1= iq. Moreover,
we want the following extra conditions to be true:

®'" =0 for n > 2. (2.5)

Now suppose the construction is done for n—1 (n > 2), i.e., we have built maps (@'[i] )i<n—1
satisfying conditions (2.5) and

q)/[én—l]d[lﬁn] — d,l[gn]q)/[én—l] on Vl[gn]. (2.6)
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In [GH], we prove that for any such (®’ [i])ign_l, one can construct ®™ such that condition
(2.6) is true for n instead of n — 1 in the following way : making the equation ®'d; = d}®’

on Vl[nH] explicit, we get

o/[<n) sl = grlsnl, (2.7)

If we now take into account that d[li] = 0 for ¢ # 2, d'lm = 0 and that on Vl[nH] we have
@’[k]d[ll] = d’l[gk]@’[l] =0 for k + 1 > n + 2, the identity (2.7) becomes

n+1
p/<n] d[12] _ Z d, [k] g/[<n—k+2]
k=2
As d 2= g, (2.7) is equivalent to

n+1
dy 2] grlsnl _ grlsn] 4,12 = [dl 2, (p/[gn]} _ Z d, (k] gyr[<m—k-+2]
k=3

Notice that d[Q] = my"' +m2. Then the construction will be possible when the term
S A w’[<n "+21 is a couboundary in the subcomplex of (End(A%®*), [d}), —]) con-
sisting of maps which restrict to zero on @®y,>2g1%". It is always a cocycle by straightfor-

ward computation (see [GH|) and the subcomplex is acyclic because both (End(/\'g?'),

[d[12], —]) and the Harrison cohomology of g; are trivial according to Tamarkin [Ta] (see
also [GH] Proposition 5.1 and [Hi] 5.4).

In the case of the L.,-morphism -, the first step is similar: the fact that v is a L..-map
enables us to build a Gu-structure (gi,d}) on g; and a Go-morphism I' : (g1,d}) —
(g2, d2) such that:

s1,1 1,1, 1

Plool — bl bt = gt a7 = 0. (2.8)

For the second step, we have to build a map I satisfying the equation

n+1
dl[Q]F/[Sn] _ F/[Sn]dl [2] _ |:d1[2], F/[Sn]] —_ _ Z dll [k]l—\/[gn_k‘FQ]
k=3

on V[m—l] for any n > 1. Again, because Tamarkin has prooved that the complex
(End(Ag* 9y, [d[12], —]) is acyclic (we are in the case M = R"™), the result follows from

the fact that ZnH d' Mprlsn=htal ig o cocycle. The difference with the Cw-case is that
the I""7! could be non zero. [ |

3-The difference between two G..-maps

In this section we investigate the difference between two differents G .-formality maps.
We fix once for all a Go-structure on gy (given by a differential ds) satisfying the condi-
tions (1.1) and a morphism of G-algebras T : (g1,d1) — (g2,dz) such that Tt : g; — g2
is pykRr- Let K : (g1,d1) — (g2,d2) be any other G.-morphism with K! = PHKR
(for example any lift of a Kontsevich formality map or any G..-maps lifting another C\-
morphism).
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Theorem 3.1. There exists a map h: A\%gy° D0 NS such that

T—K=hody+dyoh.

In other words the formality G -morphisms K and 7T are homotopic.

The maps T and K are elements of the cochain complex (Hom(/\'g?', 'ggz)'),(S) with
differential given, for all f € Hom(/\'g?' ° ®') |f| =k, by

5(f)=dyof—(=1)Ffod.

We first compare this cochain complex with the complexes (End(/\‘g?') [dq; —]) and
(End(/\' $*), [do; —]) (where [—; —] is the graded commutator of morphisms). There are

morphisms
T, : End(A%g* o) — Hom(/\'g?', 'ggz"), 17 : End(A%gy " ) — Hom(/\'g‘iz"7 'ggz)')
defined, for f € End(/\'g?') and g € Hom(/\'g?', 'g?'), by
T.(f)=Tof, T"(g) =goT.

Lemma 3.2. The morphisms
T+ (End(A%gE*), [dr; =]) — (Hom(A'g5*, A%55*),6) « (End(A'g5"), [da; ) : T°

of cochain complexes are quasi-isomorphisms.

Remark: This lemma holds for every manifold M and any G..-morphism 7T : (g1,d;) —
(927 dQ) .
Proof :. First we show that T, is a morphism of complexes. Let f € End(/\’ $*) with
|f| = k, then

T.([d1; f]) =T odyo f—(— )kTofodl

=dyo(Tof)—(=1)*(Tof)od
=0(T.(f))-

Let us prove now that T, is a quasi-isomorphism. For any graded vector space g, the
space A*%g®® has the structure of a filtered space where the m-level of the filtration is

F(A%g®%) = ®pyteootpn—1<m@°P A ... g®Pn. Clearly the differential d; and dy are com-
patible with the filtrations on /\'g?' and /\'ggg', hence End(A°gY*) and Hom(A%gP®, A%S°)
are filtered cochain complex. This yields two spectral sequences (lying in the first quad-

rant) £¢* and Ee® which converge respectively toward the cohomology H® (End(/\'g?'))
and H*(Hom(A%g%*, 'ggz)')). By standard spectral sequence techniques it is enough to
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prove that the map 70 : Ej°* — E&" induced by T, on the associated graded is a
quasi-isomorphism.
The induced differentials on EJ® and Eg® are respectively [d}, —] = 0 and d}o (=) — (=)o

d} = bo (—) where b is the Hochschild coboundary. By cofreeness property we have the
following two isomorphisms

E(;’. =~ End(gl), Eg’. & Hom(91792).

The map 170 : Ey* — E?, induced by T} is YHKR © (=) Let p: g — g1 be the projection
onto the cohomology, i.e. po KR = id. Let u: g1 — g2 be any map satisfying b(u) = 0
and set v = powu € End(g1). One can choose a map w : g1 — g2 which satisfies for any
x € g1 the following identity

PHKR © P o u(z) —u(z) =bow(x).

It follows that @R (v) has the same class of homology as u which proves the surjectivity
of T? in cohomology. The identity p o YHKR = id implies easily that TV is also injective
in cohomology which finish the proof of the lemma for 7.

The proof that T™ is also a quasi-isomorphism is analogous.

Proof of Theorem 3.1:.
It is easy to check that T'— K is a cocycle in (Hom(/\'ﬁ, /\'ﬁ), 5). The complex of

cochain (End(/\'ﬁ), [dy, —]) = (Hom(/\'ﬁ, g1), [d1, —]) is trigraded with | |1 being the

degree coming from the graduation of g; and any element x lying in g?p PACA g?p ¢

satisfies |z]o = ¢ — 1, |z|]3 = p1 +...pg — ¢. In the case M = R", the cohomology
H* (End(/\'ﬁ), [dy, —]) is concentrated in bidegree (||2,]||3) = (0,0) (see [Tal, [Hi]). By

Lemma 3.2, this is also the case for the cochain complex (Hom(/\'ﬁ , /\'ﬁ ) 5). Thus,

its cohomology classes are determined by complex morphisms (g1,0) — (g2, d3) and it is
enough to prove that T and K determine the same complex morphism (gy, 0) — (g2, d3 = b)

which is clear because 7' and K' are both equal to the Hochschild-Kostant-Rosenberg
map. |

Remark. [t is possible to have an explicit formula for the map h in Theorem .3.1. In
fact the quasi-isomorphism coming from Lemma 3.2 can be made explicit using explicit
homotopy formulae for the Hochschild-Kostant-Rosenberg map (see [Ha] for example) and
deformation retract techniques (instead of spectral sequences) as in [Ka]. The same tech-
niques also apply to give explicit formulae for the quasi-isomorphism giving the acyclicity

of (End(/\‘ﬁ), [dq; —]) in the proof of theorem 3.1 (see [GH] for example)
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