The Selberg zeta function for convex co-compact Schottky groups

Abstract : We give a new upper bound on the Selberg zeta function for a convexco-compact Schottky group acting on $ {\mathbb H}^{n+1}$: in stripsparallel to the imaginary axis the zeta function is bounded by $ \exp ( C|s|^\delta ) $ where $ \delta $ is the dimension of the limit set of thegroup. This bound is more precise than the optimal global bound $ \exp (C |s|^{n+1} ) $, and it gives new bounds on the number of resonances(scattering poles) of $ \Gamma \backslash {\mathbb H}^{n+1} $. The proofof this result is based on the application of holomorphic $L^2$-techniques to the study of the determinants of the Ruelle transferoperators and on the quasi-self-similarity of limit sets. We also studythis problem numerically and provide evidence that the bound may beoptimal. Our motivation comes from molecular dynamics and we consider $\Gamma \backslash {\mathbb H}^{n+1} $ as the simplest model of quantumchaotic scattering. The proof of this result is based on the applicationof holomorphic $L^2$-techniques to the study of the determinants of theRuelle transfer operators and on the quasi-self-similarity of limitsets.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00000036
Contributeur : Laurent Guillopé <>
Soumis le : lundi 4 novembre 2002 - 10:28:04
Dernière modification le : mardi 25 octobre 2016 - 01:02:13
Document(s) archivé(s) le : lundi 29 mars 2010 - 12:11:12

Fichiers

Identifiants

Collections

Citation

Laurent Guillopé, Kevin Lin, Maciej Zworski. The Selberg zeta function for convex co-compact Schottky groups. Communications in Mathematical Physics, Springer Verlag, 2004, 245, pp.149-176. <10.1007/s00220-003-1007-1>. <hal-00000036>

Partager

Métriques

Consultations de
la notice

181

Téléchargements du document

137