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Abstract

This paper considers the analysis of multicomponent signals, defined as superpositions of real

or complex modulated waves. It introduces two new post-transformations for the short-time Fourier

transform, that achieve a compact time-frequency representation while allowing for the separation and

the reconstruction of the modes. These two new transformations thus provide the benefits of both

the synchrosqueezing transform (which allows for reconstruction) and the reassignment method (which

achieves a compact time-frequency representation). Numerical experiments on real and synthetic signals

demonstrate the efficiency of these new transformations, and illustrate their differences.
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Second-order synchrosqueezing transform or

invertible reassignment? Towards ideal

time-frequency representations

I. INTRODUCTION

Most real signals can be accurately modeled as superpositions of locally bandlimited, amplitude and

frequency-modulated (AM-FM) waves. Containing several modes they are often called multicomponent

signals (MCS). Many approaches have been built to decompose these signals into their constituent modes

either in time-frequency (TF) domain, like the synchrosqueezing transform [1], or in time domain, as

for instance the empirical mode decomposition (EMD) [2], [3]. Yet, very few results on the accuracy of

the mode retrieval are available. In this regard, a new approximation result on the retrieval of weakly

modulated modes of an MCS has been shown using the synchrosqueezing transform (SST) [4]. To obtain

such a result, very strong assumptions were made on the modes making up the signal among which the

most limitating one is the weak modulation hypothesis on the modes.

Indeed, most MCS contain strongly frequency modulated modes, as for instance chirps involved in radar

[5], speech processing [6], or graviational waves [7]. Although many TF transforms such as quadratic

distributions [8], [9] or the reassignment method (RM) [10], [11] manage to accurately represent this

kind of signals, they do not allow for mode separation and reconstruction. Recently, some work has been

done on how to deal with high FM with SST. For instance, in [12], authors use a two-steps algorithm,

which first computes SST, estimates the FM, and finally recomputes SST on the demodulated mode. In

the same spirit, authors in [13] use an iterative procedure, where at each iteration a SST is computed with

a finer resolution. A different and earlier attempt [14] consisted in building an invertible extension of

RM. Unfortunately, the proposed reconstruction was only an approximation, valid for Gaussian windows

with a small temporal width.

The aim of this paper is to extend SST to MCS containing strongly frequency modulated modes by

generalizing the SST in two different ways. The first attempt is inspired by RM, which is known to

optimally sharpen the TF representation of a linear chirp. However, in the original RM the sharpened

representation obtained from the spectrogram did not allow for mode retrieval. We will see that by

fully exploiting the information contained in the so-called reassignment vector, one can derive a new
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generation of SST that provides a sharpened TF representation as good as the one given by RM, while

enabling exact retrieval of linear chirps. Our second approach relies on a second-order local estimate of

the instantaneous frequency, which is used to improve modes localization and reconstruction using SST.

The outline of the paper is as follows: in section II, we recall important notations that are subsequently

used in the paper and we introduce the concept of weakly modulated modes. We then define SST and

RM in section III, putting the emphasis on the differences in terms of reconstruction and representation.

Then, section IV is devoted to the presentation of the new extensions of SST. Section V finally delivers

numerical results on both synthetic and real data, comparing the proposed methods with standard SST

and RM.

II. TIME-FREQUENCY ANALYSIS OF MULTICOMPONENT SIGNALS

A. Short-Time Fourier Transform

Definition II.1. The Fourier transform of a function f ∈ L1(R) is defined by

f̂(η) =

∫

R

f(t)e−2iπηt dt. (1)

For a given η, f̂(η) represents the part of f that oscillates at frequency η on the whole time domain.

The need for time-localized frequency descriptors leads to the following definition:

Definition II.2. Let g ∈ L2(R) a real-valued and even function, with unit norm. The short-time Fourier

transform (STFT) of f ∈ L2(R), with respect to the window g, is defined by

V g
f (η, t) = 〈f, gη,t〉 =

∫

R

f(τ)g(τ − t)e−2iπη(τ−t) dτ. (2)

The representation of the positive quantity |V g
f (η, t)|

2 in the TF plane is called the spectrogram of f .

Without ambiguity, V g
f will be denoted by Vf .

Remark: The usual definition of STFT differs from equation (2) by a factor e2iπηt and considers the

conjugate of g. However, to be consistent with the continuous wavelet transform formulation that follows

we stick to equation (2). Also, as we assume g to be real-valued, we do not need the conjugate g∗ in (2).

It is well known from the properties of the Fourier transform that a well-localized TF representation

requires a window g well localized both in time and frequency. We shall then mention that STFT is
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invertible on L2(R) using either of the following formulae:

f(τ) =

∫∫

R2

Vf (η, t)g(τ − t)e2iπη(τ−t) dtdη (3)

f(τ) =
1

g(0)

∫

R

Vf (η, t)dη. (4)

Note that equation (4) is valid only if g is non-zero and continuous at 0. If the signal is analytic (i.e.

η ≤ 0 ⇒ f̂(η) = 0) then the integral domain for η is R+.

B. Continuous Wavelet Transform

STFT can be interpreted as the scalar product of f onto the translated and dilated versions of window

g, each basis functions having the same TF resolution. On the contrary, the continuous wavelet transform

(CWT) is associated with the decomposition of a signal on a family of functions with varying TF

resolution [15], [16]. Let us recall briefly its definition:

Definition II.3. An admissible wavelet is a function ψ ∈ L2(R) satisfying the condition

0 < Cψ =

∫ ∞

0
|ψ̂(η)|2

dη

η
<∞. (5)

Definition II.4. Let f ∈ L2(R) and ψ be an admissible wavelet, the continuous wavelet transform (CWT)

of f is defined for each (a, t) ∈ R
∗
+ × R by:

Wf (a, t) = 〈f, ψa,t〉 =
1

a

∫

R

f(τ)ψ

(

τ − t

a

)∗

dτ. (6)

The representation |Wf (a, t)|
2 in the time-scale plane is called the scalogram of f .

It is well known [15] that when ψ is real, the transform is invertible:

f(τ) =
1

Cψ

∫∫

R
∗

+×R

Wf (a, t)
1

a
ψ

(

τ − t

a

)

dadt

a
. (7)

As in the STFT case, another reconstruction formula exists, which consists in the following integral:

f(τ) =
1

C ′
ψ

∫ ∞

0
Wf (a, τ)

da

a
, (8)

where the constant C ′
ψ =

∫

R

ψ̂(η)
η
dη is supposed to be finite. Similarly to the STFT case, a good TF

localization imposes some constraints on the wavelet ψ.

To properly deal with real signals, one needs to associate with these signals only positive frequencies,

that is to consider the analytic signal fa = (I + iH)f , where Hf is the Hilbert transform of f . Then,
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when one uses analytic wavelets (i.e. satisfying η ≤ 0 ⇒ ψ̂(η) = 0), f can be reconstructed from the

CWT of its analytic signal fa since:

Proposition II.1. Let f ∈ L2(R) be a real-valued signal, and ψ an admissible analytic wavelet (satisfying

ν ≤ 0 ⇒ ψ̂(ν) = 0). Denote by fa = (I + iH)f the analytic signal associated to f , then Wf = 1
2Wfa .

In particular, the following synthesis stands in L2(R):

f(τ) = Re

{

2

Cψ

∫ ∞

0

∫

R

Wf (a, t)
1

a
ψ

(

τ − t

a

)

dtda

a

}

, (9)

This result shows that the use of an analytic wavelet enables to deal with real signals the same as

complex ones.

C. MCS and Ridges

Definition II.5. An AM–FM mode is an oscillating function h(t) = A(t)e2iπφ(t), with A and φ′ positive

and slow-varying.

A(t) is called the instantaneous amplitude of h at time t, φ′(t) being its instantaneous frequency. Note

that the slow-varying condition is not quantified, since as we will see later, it is model-dependent. Thanks

to that condition, a first order expansion of the phase combined with a zeroth order expansion of the

amplitude lead to the approximation, for τ close to a fixed time t:

h(τ) ≈ h̃t(τ) = A(t)e2iπ[φ(t)+φ
′(t)(τ−t)]. (10)

STFT and CWT of mode h are then approximated by:

Vh(η, t) ≈ Vh̃t(η, t) = h(t)ĝ(η − φ′(t))

Wh(a, t) ≈Wh̃t
(a, t) = h(t)ψ̂(aφ′(t))∗.

(11)

This shows that the STFT (resp. CWT) of an AM–FM mode is non-zero on a TF (resp. time-scale) strip,

centered on the ridge corresponding to its instantaneous frequency and defined by η = φ′(t) for STFT

and a = ηψ
φ′(t) for CWT, ηψ = argmaxη |ψ̂(η)| being the center frequency of the wavelet. Without loss

of generality, we shall assume in the sequel that ηψ = 1. The width of this strip depends on that of the

support of ĝ (resp. ψ̂). Let us now define MCS, that are superpositions of AM-FM modes.
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Definition II.6. A MCS reads

f(t) =

K
∑

k=1

fk(t) =

K
∑

k=1

Ak(t)e
2iπφk(t),

where the modes fk satisfy φ′K > · · · > φ′k > · · · > φ′1 > 0.

In order to retrieve each mode from the STFT (resp. CWT) of f , we assume the modes occupy non-

overlapping regions in TF (resp. TS) plane. This requires the following frequency separation condition:

Definition II.7. If supp ĝ ⊂ [−∆,∆], a MCS f is separated for STFT if the instantaneous frequencies

satisfy for each k ∈ {1, · · · ,K − 1}:

φ′k+1 − φ′k > 2∆.

If supp ψ̂ ⊂ [1−∆, 1 + ∆], a MCS f is separated for the CWT if for each k ∈ {1, · · · ,K − 1}:

φ′k+1 − φ′k
φ′k+1 + φ′k

> ∆.

Note that this separation condition is of a linear (resp. logarithmic) type for STFT (resp. CWT). Note

also that for non-compactly supported windows (e.g. the Gaussian window) or wavelets, these conditions

can be adapted by defining ∆ as the “essential support”.

III. SYNCHROSQUEEZING AND REASSIGNMENT IN A NUTSHELL

The so-called reassignment method (RM) [11] is a general way to sharpen a TF representation towards

its ideal TF representation which corresponds for MCS given by definition II.6 to:

TIf (η, t) =

K
∑

k=1

Ak(t)
sδ(η − φ′k(t)), (12)

s being equal to 1 or 2 depending on whether a linear or a quadratic representation is used (e.g. s = 2

for the spectrogram and s = 1 for STFT).
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A. Reassignment of the Spectrogram

RM presented here in the spectrogram context consists of the computation of so-called reassignment

operators:

ω̂f (η, t) =
1

2π
∂t arg Vf (η, t) = η + Im

{

1

2π

V g′

f (η, t)

V g
f (η, t)

}

τ̂f (η, t) = t−
1

2π
∂η arg Vf (η, t) = t+Re

{

V tg
f (η, t)

V g
f (η, t)

}

,

(13)

where ω̂f can be viewed as an approximation of the instantaneous frequency and τ̂f as the group delay.

Then, the reassignment step aims to retrieve the ideal TF representation by moving the coefficients of

the spectrogram according to the map (η, t) 7→ (ω̂f (η, t), τ̂f (η, t)), which reads:

Sf (ω, τ) =

∫

R

∫ ∞

0
|Vf (η, t)|

2δ(ω − ω̂f (η, t))δ(τ − τ̂f (η, t)) dηdt. (14)

B. STFT-Based SST

The aim of SST based on STFT (FSST), introduced in [1] in the CWT context, is to retrieve the

ideal TF representation, i.e. TIf with s = 1, from its STFT. Following [1], the authors in [17], [18]

proposed to neglect operator τ̂f , and to reassign only the complex coefficients Vf (η, t) according to the

map (η, t) 7→ (ω̂f (η, t), t), which read:

Tf (ω, t) =
1

g(0)

∫ ∞

0
Vf (η, t)δ (ω − ω̂f (η, t)) dη. (15)

Knowing φ′k, the kth mode can then be retrieved by considering:

fk(t) ≈

∫

|ω−φ′

k(t)|<d
Tf (ω, t)dω. (16)

In a nutshell, SST reassigns the information in the TF plane and then makes use of this sharpened

representation to recover the modes. The rationale behind equations (15) and (16) is the reconstruction

formula

f(t) =
1

g(0)

∫ ∞

0
Vf (η, t) dη, (17)

but only considering a mode-related integration domain instead of R+. This enables us to retrieve the

modes which was not possible with RM based on the spectrogram, but the representation is unfortunately

less sharp as soon as the frequency modulation is not negligible. This difference between FSST and RM

is further illustrated in section III-D.
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C. Perfect Localization and Reconstruction

We now recall the main properties of FSST and RM in terms of TF localization and mode reconstruc-

tion. We first highlight for what type of signals they actually lead to the ideal TF representation and then

consider a more general case.

1) Synchrosqueezing for Perturbations of Pure Waves: One can show that ω̂f actually matches the

instantaneous frequency only for a pure tone Ae2iπωt. In this case, FSST provides the ideal TF repre-

sentation given by equation (12). More interesting is the study of the behavior of FSST on perturbations

of pure waves as was done in [4] for SST based on CWT. The corresponding result is available in [18]

and can be summarized as follows. Let us start by defining precisely the class of MCS we study.

Definition III.1. Let ε > 0 and ∆ ∈ (0, 1). We define the set B∆,ε of MCS where

• for all k, fk satisfies: Ak ∈ C1(R)
⋂

L∞(R), φk ∈ C2(R), supt φ
′
k(t) <∞ and for all t, Ak(t) > 0,

φ′k(t) > 0, |A′
k(t)| ≤ ε and |φ′′k(t)| ≤ ε.

• the fk are separated with resolution ∆ i.e. for all k ∈ {1, · · · ,K − 1} and for all t,

φ′k+1(t)− φ′k(t) > 2∆.

We can then define the synchrosqueezing operator, using a function ρ ∈ D(R), the space of compactly

supported smooth functions, such that
∫

ρ = 1, a threshold γ > 0 and an accuracy parameter δ > 0:

T δ,γf (ω, t) =
1

g(0)

∫

|Vf (η,t)|>γ
Vf (η, t)

1

δ
ρ

(

ω − ω̂f (η, t)

δ

)

dη, (18)

and finally state the main result.

Theorem III.1. Let f ∈ B∆,ε and ν ∈ (0, 12). Consider a window g ∈ S(R), the space of smooth

functions with fast decaying derivatives, such that supp ĝ ∈ [−∆,∆]. Then, if ε is small enough,

• |Vf (η, t)| > εν only if there exists k ∈ {1 · · · ,K} such that (η, t) ∈ Zk := {(η, t) / |η−φ′k(t)| < ∆}.

• For all k ∈ {1, · · · ,K} and all pair (η, t) ∈ Zk such that |Vf (η, t)| > εν , one has

|ω̂f (η, t)− φ′k(t)| ≤ εν . (19)

• For all k ∈ {1, · · · ,K} there exists a constant C such that for all t ∈ R,

∣

∣

∣

∣

∣

lim
δ→0

(

∫

|ω−φ′

k(t)|<ε
ν

T δ,γf (ω, t) dω

)

− fk(t)

∣

∣

∣

∣

∣

≤ Cεν . (20)

Equation (20) shows that the synchrosqueezing operator has to be summed up around the ridge, the

May 22, 2014 DRAFT



8

width of the interval being 2εν . As in practice ε is not known, one chooses a parameter d instead. Mode

fk is hence estimated at time t from FSST Tf according to:

fk(t) ≈

∫ φ′

k(t)+d

φ′

k(t)−d
Tf (ω, t) dω. (21)

Note that a similar approximation result was stated before in [17], but with stronger (global) assumptions

on the mode separation fk, instead of the local one in Def III.1.

2) Reassignment of Perturbations of Linear Chirps: It was shown in [11] that the reassignment

operators perfectly localize linear chirps, i.e. modes with a linear instantaneous frequency and constant

amplitude. More precisely, one can easily prove the following result.

Theorem III.2. Consider a pure linear chirp h(t) = Ae2iπφ(t), where φ is a polynomial of degree 2 and

A > 0. Then, whenever the reassignment operators are defined one has ω̂h(η, t) = φ′(τ̂h(η, t)).

As the operators are local, this suggests that whenever the instantaneous frequency is quasi-linear

and the amplitude slow-varying, the reassignment provides an accurate approximation of the ideal TF

representation.

D. Illustrations

To illustrate the differences between FSST and RM, we use two synthetic test signals throughout this

paper. One (signal 1) is made of low-order polynomial chirps, that behave locally as linear chirps, and

the other one (signal 2) contains strongly nonlinear sinusoidal frequency modulations and singularities

(points where φ′′ = 0). Figure 1 displays FSST and RM for these signals. Note that wherever the slope

of the ridge φ′′(t) is strong, RM gives a more concentrated representation than FSST.

To illustrate the specificity of FSST regarding invertibility, we display on Figure 2 the reconstruction

process of each test signals from FSST. To compute an estimation of the ridges (t, φ′k(t)), knowing the

number K of modes, we use the same algorithm as in [4] or [19], which computes a local minimum of

the functional

Ef (ϕ) =

K
∑

k=1

−

∫

R

|Tf (t, ϕk(t))|
2dt+

∫

R

(

λϕ′
k(t)

2 + βϕ′′
k(t)

2
)

dt, (22)

where (t, ϕk(t)) is an estimator of the ridge (t, φ′k(t)), and λ and β are two positive parameters tuning

the level of regularization. Other ridge detectors such as the one developed in [20] may of course be

used instead but this is beyond the scope of the present paper.
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Figure 1. Illustration of FSST and RM for test signal 1 (top) and 2 (bottom). From left to right: the spectrogram, FSST and

RM.

Looking at the results of Figure 2, it is worth noting that the quality of the reconstruction of a mode

is highly dependent on its modulation. For instance mode 2 and 3 of signal 1 are properly retrieved but

so is not mode 3 since it contains stronger modulations. Our goal is thus in what follows to improve

mode reconstruction based on FSST when the modes are strongly modulated.
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Figure 2. Illustration of mode retrieval based on SST on test signals 1 (left) and 2 (right). From top to bottom: the three

modes making up the test signals, their SST with the estimated ridges superimposed, and the reconstruction error. SNR after

reconstruction for modes 1, 2 and 3 equals 14, 51 and 70 dB for test signal 1, and 5, 7 and 70 dB for test signal 2, respectively.

We use d = 5 in the reconstruction (see equation (21)).

IV. TOWARDS A SECOND-ORDER FSST

Recalling that FSST was designed to process superpositions of perturbed pure waves, by second order

FSST we mean that we want to adapt SST to superpositions of perturbed linear chirps. This should

enable us to obtain an invertible sharpened TF representation of the same quality of the one provided by

RM. To build our extension of SST, we are going to first consider the case of linear chirps, i.e. modes

with constant amplitude and quadratic phase.
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A. Handling Strong Modulations: Invertible Reassignment or Second-Order Synchrosqueezing?

Let us investigate here the case of linear chirps h(t) = Ae2iπφ(t) with φ(t) = a+ bt+ 1
2ct

2. For such

signals, one has for each t and τ :

h(τ) = h(t)eiπc(τ−t)
2

e2iπφ
′(t)(τ−t), (23)

which leads to:

Vh(η, t) = h(t)

∫

R

g(τ)eiπcτ
2

e−2iπ(η−φ′(t))τ dτ. (24)

In such a case, the first reassignment operator writes

ω̂h(η, t) = φ′(t)−
c

2π
u(η − φ′(t)), (25)

where u is the function defined by:

u(ξ) =
d

dξ
arg

{
∫

R

g(x)eiπcx
2

e−2iπξx dx

}

. (26)

In the case of a Gaussian window g, one can show that u is linear [19], [21]. However, for a general

smooth window g the exact nature of u is unknown, but one can remark that it is a smooth function.

Formula (25) is directly derived from the first equation of (13). In the case of a linear chirp, one may

write using (23, 24):

ω̂h(η, t) =
1

2π
∂targVh(η, t)

=
1

2π
∂targ h(t)

∫

R

g(τ)eiπcτ
2

e−2iπ(η−φ′(t))τ dτ

=
1

2π
∂t

[

2πφ(t) + arg

∫

R

g(τ)eiπcτ
2

e−2iπ(η−φ′(t))τ dτ

]

= φ′(t) +
1

2π
∂t(η − φ′(t)) u(η − φ′(t))

= φ′(t)−
c

2π
u(η − φ′(t)).

Equation (25) clearly shows that ωh(η, t) = φ′(t) does not hold as soon as c 6= 0. We propose two

different ways to deal with the non-negligible modulation c = φ′′(t). The first one consists in modifying

the first reassignment operator by taking into account second-order terms, and then use this operator to

define a new SST. Since reassignment will only take place in the direction of the frequencies, we will

call it VSST (V for vertical) in the sequel.
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The second one uses the local time delay τ̂h defined in RM, which writes for linear chirps:

τ̂h(η, t) = t−
1

2π
u(η − φ′(t)), (27)

which is derived from the second equation of (13):

τ̂f (η, t) = t−
1

2π
∂η arg Vf (η, t)

= t−
1

2π
∂ηarg

∫

R

g(τ)eiπcτ
2

e−2iπ(η−φ′(t))τ dτ

= t−
1

2π
u(η − φ′(t))

Remembering that φ′(t) = b+ ct, we get from (25) and (27) that:

ω̂h(η, t) = φ′(τ̂h(η, t)), (28)

which means ω̂h(η, t) is the exact value of φ′ but at a shifted time location given by τ̂(η, t). This is not

surprising since RM is well known to perfectly localize linear chirps. The challenge here lies in designing

a complex reassignment formula which allows for mode reconstruction. Since the proposed technique

will use the two components of the reassignment vector we will call it OSST (O for oblique).

B. Local Instantaneous Modulation

Both VSST and OSST will use an estimation of the frequency modulation, q̂f , whose definition follows:

Definition IV.1. Let f be in L2(R). q̂f (η, t) is defined wherever Vf (η, t) 6= 0 and ∂tτ̂f (η, t) 6= 0 by:

q̂f (η, t) =
∂tω̂f (η, t)

∂tτ̂f (η, t)
. (29)

The following result shows that the local operator q̂f (η, t) perfectly estimates the frequency modulation

c = φ′′(t) for a linear chirp.

Proposition IV.1. If h(t) = Ae2iπφ(t) is a linear chirp, ie φ′′(t) = φ′′ 6= 0, then for each (η, t) where q̂h

is defined, one has

q̂h(η, t) = φ′′. (30)

Otherwise q̂h(η, t) can be computed through the general formula:

q̂h(η, t) = Im

{

1

2π

(V g′

h )2 − V g′′

h V g
h

V xg
h V g′

h − V xg′

h V g
h

}

, (31)
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where V g′′

h and V xg′

h are the STFT of h with windows g′′ and x 7→ xg′(x).

Proof. Let us first recall that for a linear chirp equation (28) holds, i.e ω̂h(η, t) = φ′(τ̂h(η, t)). Then dif-

ferentiating this equality with respect to t, one obtains: ∂tω̂h(η, t) = φ′′(τ̂h(η, t))∂tτ̂h(η, t) or equivalently

q̂h(η, t) = φ′′(τ̂h(η, t)). Now since φ′′ is constant, this leads to the expected result.

Regarding the computation of q̂h, recall that for any signal f ,

∂tV
g
f (η, t) = −V g′

f (η, t) + 2iπηV g
f (η, t).

To lighten the notation, we will note V g
h for V g

h (η, t). Equation (13) gives

∂tω̂h = ∂t

(

η + Im

{

1

2π

V g′

h

V g
h

})

= Im

{

1

2π

∂tV
g′

h V
g
h − V g′

h ∂tV
g
h

(V g
h )

2

}

= Im

{

1

2π

(−V g′′

h + 2iπηV g′

h )V g
h − V g′

h (−V g′

h + 2iπηV g
h )

(V g
h )

2

}

= Im

{

1

2π

(V g′

h )2 − V g′′

h V g
h

(V g
h )

2

}

.

Similarly one has

∂tτ̂h = ∂t

(

t+Re

{

V xg
h

V g
h

})

= 1 +Re

{

∂tV
xg
h V g

h − V xg
h ∂tV

g
h

(V g
h )

2

}

= 1 +Re

{

(−V g
h − V xg′

h + 2iπηV xg
h )V g

h − V xg
h (−V g′

h + 2iπηV g
h )

(V g
h )

2

}

= Re

{

V xg
h V g′

h − V xg′

h V g
h

(V g
h )

2

}

.
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C. Vertical Second-Order Synchrosqueezing

Let h(t) = Ae2iπφ(t) be a linear chirp with constant FM φ′′. Equations (25) and (27) show that for

any time t,

φ′(t) = φ′(τ̂h(η, t)) + φ′′(τ̂h(η, t))(t− τ̂h(η, t))

= ω̂h(η, t) + q̂h(η, t)(t− τ̂h(η, t)), (32)

which means that the first order Taylor expansion of φ′ can be written in terms of the first reassignment

and frequency modulation operators. Using locally the chirp approximation for a given signal f , one can

now improve the estimation of the instantaneous frequency as follows:

Definition IV.2. Let f ∈ L2(R), we define the second-order instantaneous frequency estimator of f by:

ω̃f (η, t) =











ω̂f (η, t) + q̂f (η, t)(t− τ̂f (η, t)) if ∂tτ̂f (η, t) 6= 0

ω̂f (η, t) otherwise.

The vertical second-order synchrosqueezing (VSST) then consists in replacing ω̂ by ω̃ in standard SST:

TVf (η, t) =
1

g(0)

∫

R

Vf (η, t)δ (ω − ω̃f (η, t)) dη (33)

Since the coefficients are only moved vertically, the reconstruction is still achievable by summing up

the SST coefficients in the vicinity of the ridge. Moreover, as all the operators are local, VSST should

remain efficient for small perturbations of linear chirps. This will be further studied numerically in the

next section.

D. Oblique Synchrosqueezing

An alternative way to modify FSST to take into account FM consists in moving the coefficients

according to the reassignment vector field while keeping the phase information so as to allow signal

reconstruction. A first attempt in this direction defined the following complex reassigned transformation

[14]:

TCf (ω, τ) =

∫∫

R2

Vf (η, t)e
iπ(ω+η)(τ−t)δ (ω − ω̂f (η, t)) δ (τ − τ̂f (η, t)) dηdt. (34)

Unfortunately, this definition allowed for an approximative reconstruction only for Gaussian windows,

and with non-negligible errors as demonstrated by numerical results.

Let us now propose an alternative reassignment technique computing the phase shift in a different way
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from [14] and that we will call oblique synchrosqueezing (OSST). The starting point is to remark that

the STFT of a linear chirp h is invariant by translations along the direction of the ridge (ct, t) , t ∈ R

modulo a phase shift. Indeed, one can write, using (24) and φ′(t) = b+ ct,

Vh(η, t) = h(t)

∫

R

g(s)eiπcs
2

e−2iπs(η−φ′(t)) ds

= e2iπφ(t)
∫

R

g(s)eiπcs
2

e−2iπs(η+c(τ−t)−φ′(τ)) ds

= Vh(η + (τ − t)c, τ)e2iπ(φ(t)−φ(τ))

= Vh(η + (τ − t)c, τ)e2iπ(t−τ)(φ
′(τ)+ c

2
(t−τ)). (35)

Instead of reassigning the real value |Vh(η, t)|
2 as in RM, we propose to move the complex quantity

Vh(η, t)e
2iπ(τ−t)(φ′(τ)− c

2
(τ−t)) = Vh(η + (τ − t)c, τ)

Contrary to VSST where one builds a first order Taylor expansion of the derivative of the phase, OSST

directly involve the phase shift. For a linear chirp and when τ = τ̂h(η, t), one has φ′(τ) = ω̂h(η, t) so

that one can then write:

Vh(η, t)e
2iπ(τ−t)(ω̂h(η,t)−

q̂h(η,t)

2
(τ−t)) = Vh(η + (τ − t)c, τ).

This phase-modified coefficients belong to the vertical line I ′τ = {(η, τ) / η ∈ R}. Finally, summing up

all the phase shifted coefficients along the frequency axis will provide an approximation of h at time τ .

The principle of OSST is illustrated on Figure 3: the coefficients making up the dashed curve are

phase-shifted while moved to point (ω, τ). To obtain an approximation of the signal h(τ), the phase of

the coefficients are modified in order to be equal to their projection on the dashed dotted line.

t

η

 

 

0.3 0.4 0.5 0.6 0.7 0.8
100

200

300

400

ridge

I’
τ

I
τ

(ω,τ)

(η,t)

(η+c(τ−t),τ)

Figure 3. Illustration of oblique synchrosqueezing (OSST).
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Let us now give a more formal definition of OSST.

Definition IV.3. Let f ∈ L2(R), its oblique synchrosqueezing (OSST) is the function

TOf (ω, τ) =
1

g(0)

∫∫

R2

Vf (η, t)e
iπ(2ω−q̂f (η,t)(τ−t))(τ−t)δ (ω − ω̂f (η, t)) δ (τ − τ̂f (η, t)) dηdt. (36)

An approximation of mode fk is then given by its OSST on the ridge, i.e.

fk(t) ≈ TOf (φ
′
k(t), t). (37)

As for FSST and VSST, we would like OSST to remain efficient for perturbations of linear chirps,

when the amplitude (resp. phase) is not exactly constant (resp. quadratic). Recall that for SST, the strategy

to handle such perturbations was to integrate the coefficients around the ridge, so as to compensate for

the error made by estimating the instantaneous frequency by ω̂f . However, in the case of OSST the

coefficients are moved both in time and frequency, making this regularization impossible. We will see in

the next section how this impacts the performance of the proposed technique.

V. NUMERICAL RESULTS

To achieve a quantitative comparison between the different methods, we will reuse the test signals

defined in section III-D. Recall that test signal 1 is made of quasi-linear chirps that should be well dealt

with by VSST or OSST, while test signal 2 contains stronger nonlinear frequency modulations as well as

singularities where φ′′(t) vanishes, which makes the study of such signals more difficult. For the sake of

simplicity, we only consider the case of FSST, but similar results could be obtained within the wavelet

framework (see for instance [18] for a comparison). Note that in our simulations, we use a Gaussian

window with parameter σ = 0.05, defined by g(t) = σ−
1

2 e−
πt2

σ2 .

On Figure 4 SST, VSST and OSST of both signals 1 and 2 are depicted. Comparing with Figure 1,

one notices that both VSST and OSST provide a nice TF representation, as sharp as RM. In the next

subsections, we will compare more quantitatively the three methods in terms of the sparseness of the

representation (i.e. the number of nonzero coefficients) and accuracy of mode reconstruction. We also

numerically investigate the robustness to noise, and finally compare the methods on some real data.

A. Quality of Representation

The main purpose of RM was to make TF representations more readable, more easily interpretable.

Since readability is somewhat subjective, we propose here to measure the readability as the amount
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Figure 4. Test signals number 1 (top) and 2 (bottom). From left to right, magnitude of FSST, OSST and VSST.

of information contained in the nonzero coefficients of the decomposition. In this regard, one way to

compare the different representations is to compute the normalized energy associated with the N first

coefficients with the largest amplitude: the faster the growth of this energy towards 1, the sharper the

representation. Figure 5 displays this normalized energy (i.e., the cumulative sum of the first N squared

sorted coefficients) for both test signals and the five representations, namely STFT, RM, FSST, VSST

and OSST. The first remark is that both OSST and VSST behave similarly as RM for both test signals.

Indeed, the representation of test-signal 1 with each of these three methods is almost perfect, since one

needs only 3 coefficients per time instant to recover the signal energy, which is consistent with the three

modes making up the test signal. Comparatively, the energy of FSST grows rapidly to reach a value

around 80% and then stagnates which means the signal energy cannot be retrieved with a reasonnable

number of coefficients. The results are similar but less sharp for the second test-signal, since it contains

stronger nonlinear frequency modulations.

In order to visualize the influence of noise, we carry out the same experiments when the test signals

are contaminated by white Gaussian noise. We use a strong noise level (0 dB) and display the results

on Figure 6. We observe that the increase of the energy is slower, since the coefficients corresponding

to noise are spread out in the whole TF plane. However, OSST, RM and VSST still behave better than

FSST, even though VSST is slightly less competitive.
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the number of coefficients over the size N of the signal, i.e. the mean number of coefficients for each column of the TF plane.
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Figure 6. Normalized energy as a function of the number of coefficients for the noisy (0 dB) test-signal 1 (left) and 2 (right).

B. Reconstruction of the Modes

The main advantage of FSST over RM is its invertibility. Let us recall that there are two possible

reconstructions of the mode from FSST. The easiest one assumes Tf is almost ideal, so that the whole

information is concentrated on the ridge. The mode fk at time t is then estimated following

fk(t) ≈ Tf (φ
′
k(t), t). (38)

FSST allows to achieve a more accurate reconstruction by using an integration around the ridge as a

regularization step, according to the formula

fk(t) ≈

∫ d

−d
Tf (φ

′
k(t) + ξ, t) dξ. (39)

Provided d is of the same order of magnitude as the perturbation defined in Theorem III.1, the latter

ensures an asymptotically perfect reconstruction. We investigate here the accuracy of the reconstruction

for each method starting with the reconstruction technique defined in (38). The results measuring the

accuracy of mode reconstruction displayed in terms of SNR are displayed in Table I. We check that both

OSST and VSST enable a good reconstruction of polynomial chirps (signal-test 1), whereas the quality
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SST OSST VSST Gardner

Test signal 1 3.5 17 18 11

Mode 1 1.5 15 16 8.8

Mode 2 2.2 17 19 12

Mode 3 19 19 19 19

Test signal 2 2.2 8.9 7.6 5.6

Mode 1 0.92 7.4 5.9 3.8

Mode 2 1.4 8.4 7.2 5.3

Mode 3 57 23 57 23

Table I

Direct reconstruction for each method, and both test signals. The accuracy of mode retrieval is expressed in SNR.

of direct reconstruction from FSST is very poor. Looking at the results for each mode, one observes that

all the methods achieve a good reconstruction for mode 3 since it is not modulated, whereas FSST is

unadapted for modes 1 and 2 which contain stronger modulations. The results are less convincing for

test-signal 2: even if OSST and VSST improve the reconstruction compared to FSST, the accuracy is far

from satisfactory. Indeed, as this signal contains strongly nonlinear frequency modulations, both OSST

and VSST fail to represent the modes as a perfect sharp curve in the TF plane, some information being

spread out around the ridges. This result is in line with the simulation of Figure 6 right, where on average

4 coefficients per time instant are needed to recover the most part of the energy.

In order to compensate for that default, one has to integrate the transformations when possible around

the ridge, following equation (39). The results for such a reconstruction are displayed on Figure 7. For each

test signal, the SNR of the reconstruction is displayed with respect to parameter d. This time we display

the SNR associated with the reconstruction of the whole signal but considering the modes individually

would lead to the same results. Figure 7 shows that VSST allows for a quasi-perfect reconstruction from

very few coefficients (SNR = 50 dB for d ≥ 3). Conversely, with FSST, even if one uses a large d, i.e.

many coefficients, one cannot retrieve the modes with a high accuracy.

We already saw that in the noise-free case, the reconstruction is all the better that parameter d is large.

This is obviously not true when the signal is contaminated by noise: d must be large enough to take

into account the signal coefficients, while remaining small enough so as not to include too much noise

in the reconstruction. We illustrate this quantitatively by making the same experiments as for Figure 7

but in the noisy case. Note that in this case, the estimation of the ridges using formula (22) is worsened

due to the presence of noise. The results of the ridge estimation are depicted on Figure 8, together with

the reconstruction accuracy, for both FSST and VSST and with a moderate noise level (SNR = 12 dB).
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Figure 7. Reconstruction of the modes as a function of d, which is proportional to the size of the interval of integration. The

results are in SNR, for test signal 1 (left) and 2 (right).

While the ridge estimation can be successfully carried out on FSST and VSST for test-signal 1, only

VSST gives a correct estimation for test-signal 2 since the latter contains stronger FMs. As a result, the

reconstruction of test-signal 2 from SST cannot be satisfactory. This study tells us that to take into account

second order terms in the definition of VSST not only improves the quality of mode reconstruction but

also of ridge detection.
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Figure 8. From left to right: the ridges estimated from FSST, those estimated from VSST, and the quality of reconstruction

measured as a function of d. We use again test signal 1 (top) and 2 (bottom).

C. Illustration on Real Signals

We now illustrate the qualitative improvement of the two new transformations on real data. We start

by considering a bat echolocation call, available at http://dsp.rice.edu/sites/dsp.rice.edu/files/software/

batsignal.zip. Figure 9 displays both VSST and OSST of this signal, and compare them with the
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Figure 9. TF representations of a bat echolocation call. The representations are (from left to right) STFT, FSST, OSST and

VSST. A zoom on strong modulations is displayed in the second row.

spectrogram and FSST (parameter σ being set to 0.04). By zooming around a portion of one ridge,

the improvement brought about these new methods in terms of concentration and compactness of the

representation is undeniable. Note that the result provided by FSST remains satisfactory since the

frequency modulation is quite slow compared to the size of the window.

To better illustrate that improvement, we then considered a portion of a speech signal, with parameter

σ set to 0.025. Figure 10 shows the corresponding TF representations associated with the four different

methods, as well as a zoom on a modulated portion. For both VSST and OSST, the energy of the

representation is almost perfectly concentrated along the ridges whereas FSST does not provide an as

sharp representation. Note that the representation given by OSST seems slightly better but we know by

now that VSST provides with a more reliable reconstruction technique.
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Figure 10. TF representations of a speech signal. The representations are (from left to right) STFT, FSST, OSST and VSST. A

zoom on a strongly modulated part is displayed on the second row.

VI. CONCLUSION

This paper introduced the vertical and oblique second-order synchrosqueezing transformations to

circumvent the limitations of standard SST and reassignment. We emphasized that OSST can be viewed

as a complex version of the reassignment method, whereas VSST keeps the fixed-time structure of the

standard synchrosqueezing transform, allowing for a better reconstruction through a regularization step.

We showed that both methods provide the ideal invertible representation in the case of a linear chirp,

while remaining efficient on general multicomponent signals containing strong frequency modulations. All

the experiments suggest that OSST is slightly more competitive for the representation purpose, whereas

VSST allows for a better reconstruction.

Note that both the OSST and VSST can be extended readily to the wavelet setting. Further work should

be devoted to the theoretical analysis of both methods for perturbations of linear chirps, as well as a

precise understanding of the influence of noise on the reassignment operators and on the ridge estimation.
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