
�>���G �A�/�, �?���H�@�y�y�N�d�N�y�j�9

�?�i�i�T�b�,�f�f�?���H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�?���H�@�y�y�N�d�N�y�j�9�p�R

�a�m�#�K�B�i�i�2�/ �Q�M �R�8 ���T�` �k�y�R�9 �U�p�R�V�- �H���b�i �`�2�p�B�b�2�/ �e �J���v �k�y�R�9 �U�p�k�V

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�a�K���`�i�B�2�b�, ���M �A�M�T�m�i �a�v�b�i�2�K �7�Q�` �q���H�H �.�B�b�T�H���v
�.�2�p�2�H�Q�T�K�2�M�i

�P�H�B�p�B�2�` �*�?���T�m�B�b�- ���M���b�i���b�B�� �"�2�x�2�`�B���M�Q�b�- �a�i�2�H�B�Q�b �6�`���M�i�x�2�b�F���F�B�b

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�P�H�B�p�B�2�` �*�?���T�m�B�b�- ���M���b�i���b�B�� �"�2�x�2�`�B���M�Q�b�- �a�i�2�H�B�Q�b �6�`���M�i�x�2�b�F���F�B�b�X �a�K���`�i�B�2�b�, ���M �A�M�T�m�i �a�v�b�i�2�K �7�Q�` �q���H�H
�.�B�b�T�H���v �.�2�p�2�H�Q�T�K�2�M�i�X ���*�J�X �*�>�A �ö�R�9�- ���T�` �k�y�R�9�- �h�Q�`�Q�M�i�Q�- �*���M���/���X �R�y �T�X�- �k�y�R�9�- �*�>�A �ö�R�9�X �I�?���H�@
�y�y�N�d�N�y�j�9�p�R�=

https://hal.archives-ouvertes.fr/hal-00979034v1
https://hal.archives-ouvertes.fr


Smarties: An Input System for Wall Display Development
Olivier Chapuis1;2 Anastasia Bezerianos1;2 Stelios Frantzeskakis2;1;3

1Univ Paris-Sud &CNRS (LRI) 2 INRIA 3University of Crete
F-91405 Orsay, France F-91405 Orsay, France GR-70013 Heraklion, Greece

ABSTRACT
Wall-sized displays can support data visualization and collab-
oration, but making them interactive is challenging. Smarties
allows wall application developers to easily add interactive
support to their collaborative applications. It consists of an
interface running on touch mobile devices for input, a commu-
nication protocol between devices and the wall, and a library
that implements the protocol and handles synchronization,
locking and input con�icts. The library presents the input as
an event loop with callback functions. Each touch mobile has
multiple cursor controllers, each associated with keyboards,
widgets and clipboards. These controllers can be assigned to
speci�c tasks, are persistent in nature, and can be shared by
multiple collaborating users for sharing work. They can con-
trol simple cursors on the wall application, or speci�c content
(objects or groups of them). The types of associated wid-
gets are decided by the wall application, making the mobile
interface customizable by the wall application it connects to.

Author Keywords
input toolkit; wall display; hand-held touch devices; cscw;
multi-cursors.

ACM Classi�cation Keywords
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces - Graphical user interfaces

INTRODUCTION
High-resolution wall-sized displays allow multiple people to
see and explore large amounts of data. They are well adapted
to data analysis and collaboration, due to physical navigation
that affords a natural pan-and-zoom in the information space,
an enlarged physical space that enables collaborative work,
and millions of pixels that allow viewing large amounts of
data in one shared environment [1, 8]. They are well suited
for application domains such as command and control, data
visualization, astronomical imagery, collaborative design, etc.

Deciding on appropriate interaction techniques for wall dis-
plays is nevertheless not a simple matter. Mice, keyboards and
direct touch are limiting in environments where more than one
user canmove freely, come close to the display to see details
or move away to acquire an overview [1]. Research on mid-air
interaction for remote displays (e.g. [22, 37, 25]), and recent
work on mobile devices (mainly smartphones, e.g. [20]) fo-
cuses on speci�c interactions such as navigation, pointing and

Olivier Chapuis, Anastasia Bezerianos & Stelios Frantzeskakis. Smarties: An
Input System for Wall Display Development. In CHI '14: Proceedings of the 32nd
international conference on Human factors in computing systems, to be published (10
pages), ACM, April 2014.

c
 ACM, 2014. This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The de�nitive
version will be published inCHI 2014, April 26–May 1, 2014, Toronto, Ontario,
Canada.http://dx.doi.org/10.1145/2556288.2556956

selection. Thus it cannot be applied as-is in real wall-display
applications that need support formultiple usersperforming
complex interactionsthat combine navigation, pointing, se-
lection, dragging, text editing and content sharing. Finally,
interaction techniques are often application or content speci�c
(e.g. using a brain prop to rotate virtual brain scans [10]),
requiring considerable design and implementation effort, thus
making quickprototype development and setupchallenging.

The few existing toolkits for programming collaborative in-
teraction on walls require a signi�cant effort to develop com-
munication protocols between input devices and applications
(e.g. [28]), prohibiting quick prototyping. Or assume users
are static (e.g. [35]), forcing them to carry multiple devices
(mice and keyboard) to perform complex tasks while moving.

The design goal ofSmartiesis to address all of the above:
support complex interactions, using mobile devices to accom-
modate multiple mobile users, in a way that is easy to setup,
develop, and use with different wall-display applications. Our
motivation is the following: although specialized interaction
techniques and devices can be very well adapted to speci�c
applications, often wall application developers need input tech-
nology they can setup and use quickly to prototype and test
their interactive applications.

Concept and Contributions
The components of theSmartiessystem, whose concept is
described next, are: (i) an input interface on touch mobile
devices (mobile input interface), (ii) a communication protocol
between these devices and wall applications, and (iii) libraries
implementing the protocol at the wall application side.

Mobile input interface
Classic desktops include a pointing device (mouse), a key-
board, and a clipboard to store data. If a large number of
mice is available, together with associated keyboards and clip-
boards (we'll call them extended mice), we could use them
for different tasks(e.g. one for pointing, one for selecting
objects, or one for editing a shape or a text object in a drawing
application). Or we could leave a mouse permanently attached
to one or more speci�c objects (e.g. selected drawing shapes),
making it synonymous to the objects it's attached to, i.e. a
shortcutto them. In a simple desktop, if we copy a shape
and then a text object in the same application, the second
copy would overwrite the �rst. With the extended mouse idea
both copies can still be available in their respective mouse's
clipboard, ensuringpersistenceof interaction at the task level.

These extended mice, which we callpucksdue to their round
shape, form the central component of our mobile input inter-
face. Each puck also has speci�c actions available to them, in
the form of gestures or widgets on the mobile device: e.g. a

1

http://dx.doi.org/10.1145/2556288.2556956


Figure 1. Left image: mobile device interface. The top area is taken up by multiple pucks. The bottom area has space reserved for (i) storing unused
pucks; (ii) buttons for creating and sharing pucks; and �nally (iii) an area for widgets customized by the wall applicationthat can be associated to the
active puck (green one here). The second image presents the view from another mobile device. Here the active puck is the orange one and the green one
looks faded-out as it is unavailable. The last image shows possible presentation and behavior of the cursors on a wall display, controlled by these pucks.
For example a moving puck can be associated with a simple moving cursor (top), moving an object (middle), or a group of objects (bottom).

puck attached to a text object can have shortcut action buttons
for turning text bold, italic, etc. If we move this puck to an-
other text editing object (even in another application) the same
associated actions will still be available.

Multiple such pucks are available at any given time for per-
forming different tasks, and their states (thus the users' work)
can bestored. They can be also shared between multiple peo-
ple tosharetasks with colleagues: e.g. a user can hand over
all her text editing work (including current mouse position,
widget states, clipboard) just by handing over the puck.

This is the concept behind our interface: it is a collection of
extended mice, referred to as pucks, together with their as-
sociated keyboards, widgets and clipboards. They reside in
multiple touch mobile devices, ensuring that users canmove
freelyin front of the wall, and control a wall application. They
can be seen as simple mouse cursors, or shortcuts to speci�c
tasks or content on the wall display. They are persistent in
nature and can be shared among collaborating users. In our
design, the associated widgets and keyboards are decided upon
by the wall application, making the puck interfacecustomiz-
ableby the wall application they connect to. See Fig. 1.

Protocol and Library
Smartiesuses a client - server logic: the server is the wall
application and the clients are the mobile devices. A proto-
col ensures the communication between mobiles and the wall
application, with messages to: set up connections, maintain
synchronization of pucks and their widgets/clipboards/key-
boards across devices, and send high level input events (e.g.
gestures or widget values) associated with the pucks.

The libraries implement the protocol in the server side and
provides developers with the following functionality: a cen-
tralized way to synchronize pucks and their widgets across de-
vices, ways of implementing ownership and locking of pucks,
an event loop with callback functions to handle the events
sent by pucks and their widgets, and methods for dealing with
event con�icts from multiple devices.

The major advantage of the protocol and library is that the
internal workings of pucks are hidden and developers can
setup and use them as they would use regular mice and widgets.
Thus, they provide aquickway of setting up and prototyping
interaction support for wall display applications.

The main contributions of our work are:
� An open-source framework that combines (i) a mobile in-
put interface, (ii) a communication protocol between multiple
mobiles running the interface and the wall applications, and
(iii) libraries encapsulating the protocol and mobile interface
customization functionality, allowing for fast development of
input supportfor collaborative interactive wall applications.
� The library hides completely the communication between
wall application and mobile interface devices(s) from the de-
veloper. It provides collaborative interaction support in a few
lines of code in the wall application side. And it allows the
customization of the mobile interface with simple instructions
in the wall application side, without modifying the code on
the mobile devices.
� The mobile input interface components support complex
interaction, from touchpad, keyboard, and clipboard, to com-
binations of specialized widgets such as menus, buttons or
sliders with programmable interaction behavior (e.g. a button
for ”gathering” a set of selected objects). Multiple interaction
elements called pucks act as shortcuts either to user tasks or
wall display content, allowing for persistent work, that can can
be stored and shared with other users.
Contrary to systems such as Pebbles [21], jBricks [28],
ZOIL [17] and iRoom/iStuff [2], Smarties focuses on the
input side only, offering an integrated system with ahigh-
level protocolcoupled with libraries thathide the complexity
of the protocol, for quicker input prototyping. Contrary to
these previous systems, it also comes with a ready to use (but
customizable)original input interfacerunning on mobile de-
vices, handling advanced input (e.g. widgets and multi-touch
gestures) and collaborative interaction (e.g. sharing policies).

SMARTIES MOBILE INPUT INTERFACE
The interface on the mobile clients is divided into two areas,
thetoucharea where pucks exist and thewidgetarea (Fig. 1).

Puck Visual Design and Basic Interaction
A proxy of the entire wall is represented visually on the top
of the mobile device (touch area). A puck is represented as a
small colored circle. We chose a round shape to both provide
a large enough target and remind users of a touch footprint1.

1 Multiple pucks together look like Smarties candies, thus the name
of the system.

2



Users can create several pucks on their device using the
”Pucks” container on the widget area. Each device has at
most oneactivepuck at a time, rendered more opaque. Pucks
can be deleted by moving them back to the ”Pucks” area, or
stored for later use by dragging them in a corridor on the left.
Stored pucks can retain their interaction behavior and any
properties the wall application associated with them. These
designs were informed by user studies (see Applications).

A puck can simply control a cursor of the same color that
appears on the wall. Moving the puck on the touch area
moves the corresponding wall cursor in different ways. When
users drag the puck itself, its wall cursor is moved with a
direct mapping, traversing quickly large distances on the wall
display. When users start the drag outside the active puck,
we use an indirect mapping with appropriate CD gain transfer
functions (see [24]) that slow down at low dragging speeds.
This allows precise cursor movements even when the touch
area is relatively small compared to the size of the wall. To
allow switching between pucks, but limit accidental switching,
users can long-press on another puck to activate it.

By default, a puck is visible in all mobile devices connected to
the wall application to provide awareness during collaboration.
An active puck on one device is seen as locked (faded out) on
other devices and other users cannot use it. This puck becomes
available to all users implicitly when it is no longer active, i.e.
when the user selects another puck, or explicitly, through a
”sharing” button. We have implemented alternative sharing
policies described in the library section.

Widgets and Advanced Interaction
The widgets contained in the widget area are application de-
pendent, and speci�ed directly by the wall application without
changing the mobile interface code (see library section).

A widget can control the active puck's behavior (e.g. a state
button decides dragging vs hovering behavior for the corre-
sponding wall cursor), execute actions (e.g. a button perma-
nently attaches a set of objects to the puck), or control param-
eters (e.g. a slider changes the opacity of attached objects).

We currently support text view widgets, buttons, toggle but-
tons, check boxes, radio buttons, sliders, and different popup
menu types. For example if users want to annotate objects
attached to a puck, the wall application can specify a button
”annotate” that pops up a keyboard and a dialogue window
with a text �eld. When the user �nishes typing and presses ok
the text is sent from the mobile device to the wall application.
We give more examples in the applications section.

By default a widget is puck dependent: its actions and values
are associated to the active puck, and can thus change or
even disappear when the user activates a new puck. However,
a widget can be speci�ed by the wall application as puck
independent, for executing global actions, e.g. loading a new
scene in our Lenses application example.

The system also supports several touch and tap gestures with
single or multiple �ngers. For example to allow wall applica-
tions to distinguish between cursor hover and drag, the touch
area can distinguish a simple drag event (hovering) and a

Figure 2. Basic Architecture. Rounded arrows indicate that the mobile
clients communicate via the library, e.g. if a puck is moved in a client,
this information is sent to the library that (i) transforms it into an event
for the application developer; and (ii) sends it back to the other clients.

tap-and-drag gesture to emulate the usual press-drag-release
interaction seen in touchpads. As we will see in the library
and Lenses application example, detected multi-touch taps and
gestures (e.g. multi-�nger pinch or move) are not necessarily
linked to puck movement and can be freely interpreted by the
wall application for other purposes (e.g. zoom the wall view).

THE SMARTIES COMMUNICATION PROTOCOL
A common software architecture for tiled wall displays con-
sists of a master application running on one machine (server),
that may be connected to slave machines on a rendering clus-
ter. User input is sent to the master application, that in turn
instructs the slaves to modify their rendering state depending
on the input events. ASmartieslibrary sits on the master appli-
cation side, managing input received from the mobile interface
clients trough our communication protocol (see Fig. 2).

This abstract protocol is hidden by a library (described next),
and ensures that the mobile interface client implementation is
independent of the wall application. This section describes the
internal communication process between the mobile clients,
that are application agnostic, and the wall application.

Our high-level protocol: (i) is extensible, (ii) does not require
programming or restarting the mobile clients, (iii) synchro-
nizes states among multiple mobiles, (iv) supports complex
multi-�nger input and (v) widgets and keyboard mapping.

Extensibility
For the mobile clients a server is an IP address and a com-
munication port that sends or receives messages. All mes-
sages from a mobile client to the wall server start with the
IP address of the client, considered as their unique identi-
�er. A messageconsists of a name followed by a sequence of
typed values (boolean, integer, �oat, double or string), whose
length depends on the name of the message (e.g.<IP, menu,
[list of item names]> for a popup menu).

Our protocol builds upon OSC2, a low level communication
protocol that is �exible in message naming and length. It can
thus be extended either by adding new messages or appending
new values at the end of existing messages, ensuring that new
types of widgets and behaviors can be added.

Mobile Client Customization
To connect to a wall server, a client sends aNewConnection
message (msg) at startup or when the user changes the IP
or port (i.e. the wall server ID). Clients send continuously
interaction messages. Whenever the wall receives a msg from
an unknown client it sends aHello msg, andwhenevera client
2 http://opensoundcontrol.org/introduction-osc

3

http://opensoundcontrol.org/introduction-osc


receives such a msg it resets itself to receive customization
information. Thus, it is never necessary to restart a mobile
client (even if a different wall application is started) and a wall
server can ask a mobile client to reset itself at any time (e.g.
to install a different interface on the mobile).

After communication is established, the server initializes and
customizes the mobile client. This consists of: (i) a msg de�n-
ing default behaviors, e.g. what touch events the client should
send; (ii) a description of the widgets that will appear in the
widget area, their types, relative positions, values, labels, etc.;
and (iii) the description of any existing pucks, through a series
of NewPuck msg, consisting of a unique puck id, a position, a
color, an icon name and a status (free/locked/active).

Puck Synchronization
Mobile clients ask the server to create a puck with a
AskNewPuck msg. The server responds with aNewPuck msg
with a unique puck id to all the clients (with active status
for the requesting client). After that, to ensure interactive
response times, the mobile client can update its pucks' state,
and simultaneously send messages to re�ect user interaction
that modify the status of a puck (e.g. store, activate, move,
etc.). In turn, the server forwards this information to the other
clients, or can chose to ignore them and force a change of
state on the requesting client. Thus while puck creation and
management is centralized on the server side to synchronize
different mobile clients, requests from mobile clients are also
treated locally to ensure quick responses to users' actions.

Single- and Multi-touch events
Our protocol distinguishes one �nger drag on the touch area
used to manipulate the pucks (move, activation, etc.) from
multi-�ngers gestures and multi-taps that a wall application
can use for speci�c purposes. We provide two alternatives
(chosen by the wall server at connection time): a raw protocol
that simply forwards the touch events (with time stamps), and
aSmartiesprotocol consisting of higher level events.

Theraw protocol sends the usual three events:Downor Up with
a unique “�nger” identi�er and position, orMotion as an array
of positions with a unique identi�er for each down “�nger”.

The Smartiesprotocol sends msgs consisting of single and
multi-tap events3 that report: the number of taps and number
of �ngers for each tap, followed by single- or multi-�nger
move or multi-�nger pinch gesture events. So a simple single-
�nger drag can be interpreted as cursor hover, while a tap and
then drag as a press-drag-release interaction. Or a two �nger
pinch can be interpreted as global zoom, while a three �nger
pinch can scale a particular object. Thus due to the nature
of the protocol, either the number of taps or the number of
�ngers can act as modi�ers for the semantic of a gesture.

Widgets & Keyboard
When users interact with a widget on a mobile client, a msg
is sent describing the id of the active puck and the new state
of the widget (e.g. button click, state of a toggle button, value
for a slider, etc.). The server propagates the msg to the other
clients, synchronizing the widgets' state. For example, if a

3 Sequence of �nger taps separated by less than 200 ms.

client changes the value of a slider, the server communicates
this value to all other clients that in turn update the value of
the corresponding slider immediately, if the slider is global, or
when the associated puck becomes active on them.

Finally there are messages to ask a client to map or unmap a
keyboard. Regarding key events (up and down) sent by the
mobile clients, we have �xed a keyboard mapping so that the
protocol does not depend on a speci�c client toolkit or OS.

SMARTIES LIBRARIES FOR WALL APPLICATIONS
We wantedSmartiesmobile clients (under Android), to be
setup and used as input by wall application developers, al-
most as easily as desktop developers can use a mouse. To
simplify the protocol, a library implementation takes care of
issues not directly related to the behavior of a wall application,
such as connections, maintaining states, etc. We developed
a multi-platform C++ library (libSmarties) and a Java library
(javaSmarties) forSmarties.

The libraries hide the protocol and the communication needed
to keep puck properties synchronized across mobile clients.
It also simpli�es the initialization, widget creation and han-
dling through callbacks. The heart of the libraries is an event
queue that providesSmartiesevents of various types: puck cre-
ate/delete/store/activate, touch events and widget use. These
come with data structures and classes for the pucks,Smarties
events and widgets. The class for pucks also includes an object
(the “clipboard”) used solely for storing application speci�c
data. Functions are also provided to facilitate the synchroniza-
tion of widget states, and to access a large part of the protocol
allowing customization, extensions and advanced use.

Wall application developers can create new sharing policies or
use one of the three already implemented:strict, where pucks
are unlocked and available to others only when an explicit
share action is taken;medium, where a puck is immediately
unlocked when another is selected; orpermissive, where a
puck is unlocked if it is not actively used.

Example walkthrough
Let us sketch the needed code for awall applicationto support
multi-cursors with pick-and-drop of graphical objects using
Smarties. We use the C++ version of the library here, but both
are (intentionally) very similar.

We �rst create a Smarties object with the wall geometry:
Smarties * smarties = new Smarties (wallWidth, ...);

We can then override some defaults, e.g. the sharing policy
and the type of multitouch events, using simple class methods.
The �nal step in the initialization is to create some widgets in
the widget area. Here we create a slider in the center of the
widget area to change the size of the cursor associated to the
active puck, set the default value of the slider, specify that it is
puck dependent (default) and attach it to a callback function.
SmartiesWidget * slider; int wid;
slider = smarties-> addWidget (

&wid, SMARTIES_WIDGET_TYPE_SLIDER, "Cursor Size" ,
0.3f,0.3f,0.3f,0.6f);

slider->slider_value = 50; // default range from 0 to 100
slider->dependence( SMARTIES_WIDGET_DEP_PUCK); // default
SET_CALLBACK(slider, &sliderHandler);

4



After the initialization, thesmarties instance is ready to run
on a thread,smarties->run() . The library provides access to
the events that can be handled in a classic ”event loop”:
SmartiesEvent * evt;
while ((evt = smarties-> getNextEvent ()) != NULL) f

puck * p = evt->puck; // the puck of this event
float x = (p-> getX() * wallWidth); // x pos in the wall
float y = (p-> getY() * wallHeight); // y pos in the wall
// switch on event type ...
switch (evt->type) f

case SMARTIE_EVENTS_TYPE_CREATE:
// a new puck; create an associated WallCursor
p->app_data = new WallCursor (x, y);
break ;

case SMARTIE_EVENTS_TYPE_DELETE:
delete ( WallCursor )p->app_data; // remove wall cursor
// allows the library to delete the puck
smarties-> delete (p);
break ;

// ... handle the other event types

In the code above we assume that we have aWallCursor class
that draws a cursor at a given position, and the code just (i)
creates an instance of this class for each new puck and stores
it in the �eld of the puck object reserved for the application;
and (ii) removes the wall cursor if the puck is deleted. Store
and restore puck events can also be handled by using methods
de�ned in theWallCursor class.

We assume that the application has a picker to select graphical
objects rendered in the wall, and that such objects can be
attached to a cursor. Here is an example of coding pick-and-
drop interaction (tap to pick) usingSmartiestouch events.

case SMARTIE_EVENTS_TYPE_TAP:
WallCursor * wc = ( WallCursor )p->app_data;
if (wc->attached_object != NULL) f

wc->attached_object = NULL; // drop
else f // pick eventually

wc->attached_object = pickObject (x,y);
g
break ;

case SMARTIE_EVENTS_TYPE_MOVE:
// move wall cursor and attached_object if not NULL

(( WallCursor )p->app_data)-> move(x, y);
break ;

Widget callback functions are called in the same manner from
the event loop, for synchronization purposes and for allowing
to pass on data depending on the interaction context:

case SMARTIE_EVENTS_TYPE_WIDGET:
evt->widget-> handler (evt->widget, evt, some_data);
break ;

In our example, the slider callback just calls thesetSize
method of theWallCursor class that changes the cursor size:
void sliderHandler(

SmartiesWidget * w, SmartiesEvent * evt, void * user_data) f
WallCursor * wc = ( WallCursor )w->puck->app_data;
wc-> setSize (w->slider_value);

g

The example illustrates how implementing mobile multi-user
input for a wall application with libSmarties resembles closely
the usual development of interactive applications using an
event loop. Here multi-user pick-and-drop is supported with
code very similar to the one a developer would use to code
pick-and-drop for a single mouse. Thus,Smartiesallows to
quickly prototype input for mobile multi-user interaction, so

as to move fast into more interesting aspects, for instance
collaborative pick-and-drop: observe how one user can pick
an object with a puck on one side of the wall, share it with
another user, that can then drop it on the other side.

Although the library treats commands executed simultane-
ously as FIFO (e.g. when two users want to activate the same
free puck), it does not deal with complex operations that may
cause con�icts in the state of the application, for instance if a
user tries to pick a graphical object that is already picked by
someone else in our example. These situations are highly ap-
plication dependent and as such need to be handled by the wall
application itself, e.g. by adding a picked state to graphical
objects that is checked inpickObject for our example.

APPLICATION EXAMPLES
Besides toy examples for testing, we developed three wall dis-
play applications to demonstrate our framework. These server
applications are developed in different rendering engines, a
Java one (zvtm-cluster [28]) and two C++ ones (Equalizer [7],
and Qt4 with OpenMPI5), showing howSmartiesis indepen-
dent of the rendering engine. The �rst application was used to
design theSmartiesconcepts and client interface, informed by
user studies. The other two use libSmarties and are drastically
different, demonstrating the generality of theSmartiessystem.

a. Object Grouping (server in ZVTM cluster, Java)
In a workshop we conducted on potential wall display uses, a
group of biologists felt wall displays could be an appropriate
environment to collaborate for their task of cataloging photos
of plants sent by volunteers in the �eld. Depending on their
expertise, they sort and tag the images based on speci�c char-
acteristics (origin, leaf or stem shape and color, �ower family,
etc.), compare them with existing images for similarities, and
group them into entries of existing plants. Similar needs for
wall display use have been identi�ed in [10] where a team of
neuroscientists needed to compare and classify brain images
to study variations in the brain.

Motivated by such scenarios we developed a prototype ap-
plication (Smartiesclient and wall application), that allows
users to access one or more objects on the wall display, apply
properties (tagging), and perform actions on them (grouping
and moving). The prototype can be seen in Fig. 3 and was
preceded by two iterations used to run laboratory experiments.

Interface: A puck's behavior is set through toggle buttons on
the widget area: (i) a select mode adds or removes objects
in a group associated with the puck by a simple tap when
the corresponding cursor is on the object; (ii) a move mode
where a simple gesture on the touch area moves together all
the objects selected by the puck; and in our �nal prototype (iii)
a cursor-inside mode that allows interaction inside an object as
if it is a classical desktop application window. In this last case
the cursor associated to the puck is con�ned inside the object
and the touch area of the mobile devices acts as a touchpad (in
our prototype we use it to treat some objects as post-it notes
where free hand drawing and annotation is possible).

4 http://qt.digia.com/ 5 http://www.open-mpi.org/

5

http://qt.digia.com/
http://www.open-mpi.org/











	INTRODUCTION
	Concept and Contributions

	SMARTIES MOBILE INPUT INTERFACE

