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Abstract

In this paper, we analyze the diversity of term structure functions (e.g., yield curves,
swap curves, credit curves) constructed in a process which complies with some admissible
properties: arbitrage-freeness, ability to fit market quotes and a certain degree of smooth-
ness. When present values of building instruments are expressed as linear combinations of
some primary quantities such as zero-coupon bonds, discount factor, or survival probabilit-
ies, arbitrage-free bounds can be derived for those quantities at the most liquid maturities.
As a matter of example, we present an iterative procedure that allows to compute model-free
bounds for OIS-implied discount rates and CDS-implied default probabilities. We then show
how mean-reverting term structure models can be used as generators of admissible curves.
This framework is based on a particular specification of the mean-reverting level which al-
lows to perfectly reproduce market quotes of standard vanilla interest-rate and default-risky
securities while preserving a certain degree of smoothness. The numerical results suggest
that, for both OIS discounting curves and CDS credit curves, the operational task of term-
structure construction may be associated with a significant degree of uncertainty.

Keywords: Term-structure construction methods, OIS discounting curves, credit curves,
model risk, arbitrage-free bounds, affine term-structure models

1 Introduction

Building financial curves from market quotes of liquidly traded products is at the heart of modern asset
pricing and risk management. A term-structure curve describes the evolution of a particular economic
or financial variable (such as interest rate, yield-to-maturity, credit spread, volatility) as a function of
time-to-maturity. In most situations, market quotes are only reliable for a small set of liquid instruments
whose value may depend on several points of the curve. If all maturities were liquidly traded, then the
curve could be unambiguously inferred from market quotes. Consequently, the financial industry has to
rely on somehow arbitrary interpolation or calibration schemes to construct term structure curves. These
techniques are used to supplement the market information in illiquid parts of the curve while extracting

∗The research of A. Cousin benefited from the support of the “chaire d’excellence management de la
modélisation”. The authors are grateful to Véronique Maume-Deschamps for many helpful discussions on the
subject.
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the quantities of interest for all required maturities.

Interestingly, a pretty large recent literature is devoted to the subject of curve construction meth-
ods. Hagan and West (2006) provide a review of different interpolation techniques for curve construction.
They introduce a monotone convex method and postulate a series of quality criterion such as ability to fit
market quotes, arbitrage-freeness, smoothness, locality of interpolation scheme, stability of forward rate
and consistency of hedging strategies. Andersen (2007) analyzes the use of tension splines for construc-
tion of bond term structures. In this approach, stability of forward rates and market fit precision seems
to be difficult to achieve simultaneously. Iwashita (2013) makes a survey of non-local spline interpolation
techniques which preserve stability of forward rates. Le Floc’h (2013) introduces another quality criteria
related to consistency of hedging strategies. He postulates that, given a constructed term structure, the
sum of sequential deltas should be close enough to the corresponding parallel delta. He observes that
most of spline techniques are not able to achieve this property correctly. Other papers such as Ametrano
and Bianchetti (2009), Chibane et al. (2009), Kenyon and Stamm (2012) or Fries (2013) are concerned
with the adaptation of curve construction methods in a multi-curve interest-rate environment. Note that,
in terms of interpolation scheme, there is no consensus towards a particular best practice method in all
circumstances.

In another hand, the question of model uncertainty and its impact on the assessment of financial
derivatives has been studied since a certain time period and, following the recent fincancial crisis, has
received a particular interest. Impact of model risk on valuation and hedging of financial derivatives
have been treated by, among others, Derman (1996), Eberlein and Jacod (1997), El Karoui et al. (1998),
Green and Figlewski (1999), Branger and Schlag (2004), Cont (2006), Davis and Hobson (2007), Henaff
(2010), Morini (2011). In most papers, the question of model risk is restricted to the class of derivative
products and is considered in a pretty theoretical way. In contrast, the question of model risk embedded
in the construction process of term-structures has not been investigated as a main object, whatever it may
concern discount curves, zero-coupon curves, swap basis curves, bond term structures or CDS-implied
survival curves.

We define admissible curves as arbitrage-free term structures which are perfectly compatible with
input market quotes and which admit a minimum degree of smoothness. The aim of this paper is to
provide a methodology for assessing the range of these admissible curves and its impact on asset valuation
and hedging. Present values of instruments involved in the curve construction process are assumed to
have linear representations in terms of some elementary quantities which define the curve. Depending on
the context, these elementary quantities can be discount factors, zero-coupon prices or survival probabil-
ities. Under this assumption and using a no arbitrage argument, we present an iterative procedure which
allows to compute model-free bounds for these elementary quantities. We show that admissible curves
can be easily generated using mean-reverting term-structure models, which are classically employed for
valuation and hedging of financial derivatives. Contrary to an HJM approach where an arbitrary initial
term-structure is given as a model input, the initial curve is here constructed as a by-product of a cal-
ibrated term-structure model. The proposed curve construction method relies on a piecewise-constant
specification of the mean-reverting level. We identify under which condition the implied parameters lead
to an admissible curve.

The paper is organized as follows. Section 2 defines what is understood as admissible term-structures,
with a focus on curves constructed from market quotes of interest-rate sensitive (IR curves) and default-
sensitive products (credit curves). Our framework relies on the assumption that present values of building
instruments have linear representations with respect to some elementary quantities. We show that this
assumption is usually satisfied for construction of bond term-structures, OIS discount curves, forward
rate curves implied from market quotes of swaps versus Libor or Euribor index rates. Section 3 explains
how to compute arbitrage-free bounds for OIS discount curves and CDS survival curves. In Section 4,
we develop a methodology that allows to generate admissible curves as a by-product of a mean-reverting
term-structure model. By playing with some free parameters, we illustrate the range of admissible curves
that can be obtained in different approaches, for OIS discount curves and CDS-implied survival curves.
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Section 5 concludes.

2 Admissible curves

In this section, we define what is understood as an admissible curve. The presentation of admissible curve
is generic in the sense that it covers both term-structure curves constructed from interest-rate or fixed-
income products (IR curves) but also default distribution functions constructed from a term-structure of
CDS spreads (Credit curves). Let us first define what is an arbitrage-free curve in these two cases.

Definition 2.1 (arbitrage-free curve). A curve is said to be arbitrage-free if

• IR curves : the associated forward rates are non-negative or equivalently, the associated zero-
coupon prices are nonincreasing with respect to time-to-maturities.

• Credit curves : the curve corresponds to a well-defined default distribution function.

For IR curves, the no-arbitrage property means that forward rates associated with any future loan
period should be positive. In addition, admissible curves are also required to be smooth at a certain
minimal degree.

Definition 2.2 (Smoothness condition). A curve is said to be smooth if

• IR curves : the associated instantaneous forward rates exist for all maturities and are continuous.

• Credit curves : the associated default density function exists and is continuous.

As pointed out in McCulloch and Kochin (2000), “a discontinuous forward curve implies either
implausible expectations about future short-term interest rates or implausible expectations about holding
period returns”.

Definition 2.3 (Admissible curve). Given a set of observed market quotes. A curve is said to be ad-
missible if it satisfies the following three constraints:

• The selected market quotes are perfectly reproduced by the curve.

• The curve is arbitrage-free in the sense of Definition 2.1.

• The curve satisfies the smoothness condition presented in Definition 2.2.

Term-structure functions are usually constructed from market quotes of a small number of liquidly
traded instruments. We assume that the present values of these market instruments can be represented
as linear combinations of some elementary quantities. As illustrated in the examples below, these ele-
mentary quantities can be OIS discount factors, Libor or Euribor forward rates or CDS-implied survival
probabilities.

Assumption 2.4 (Linear representation of present values). Present values of products used in the curve
construction process can be expressed as linear combination of some elementary quantities. Depending on
the context, the latter can be either zero-coupon prices, discount factors, Libor or Euribor forward rates
or CDS-implied survival probabilities.

Let us now present some situations where Assumption 2.4 holds. In what follows, t0 denotes the
quotation date.

Example 2.5 (Corporate or sovereign bond yield curve). Let S be the observed market price of a corporate
or a sovereign bond with maturity time T and with a fixed coupon rate c. The price S and the coupon
rate c are expressed in percentage of invested nominal. The set of coupon payment dates is given by
(t1, . . . , tp) where t0 < t1 < . . . < tp = T and δk represents the year fraction corresponding to period
(tk−1, tk), k = 1, . . . , p. The present value of this bond can be defined as a linear combination of some
default-free zero-coupon bonds, i.e.,

c

p
∑

k=1

δkP
B(t0, tk) + PB(t0, T ) = S (1)

3



where PB(t0, t) represents the price at time t0 of a default-free zero-coupon bond with maturity t. Note
that, even if representation 1 obviously relies on a default-free assumption, it is commonly used as an
intermediary step in the computation of the so-called bond yield-to-maturity.1.

Example 2.6 (Discounting curve based on OIS). Due to legal terms of standard collateral agreements, a
possible choice to build discounting curves is to use quotations of OIS-like instruments (See, for instance
Hull and White (2013) for more details). Let S be the par swap rate of an overnight indexed swap with
maturity T and fixed leg payment dates t1 < . . . < tp = T . If for any k = 1, . . . , p, δk represents the year
fraction corresponding to period (tk−1, tk), the swap equilibrium relation can be expressed in linear form
with respect to some discount factors PD as

S

p
∑

k=1

δkP
D(t0, tk) = 1− PD(t0, T ) (2)

where PD(t0, t) is the discount factor associated with maturity date t. In the previous equation, the left
hand side represents the fixed leg present value whereas the right hand side corresponds to the floating leg
present value. For more details on the derivation of (2), the reader is referred to Fujii et al. (2010).

Example 2.7 (Forward curve based on fixed-vs-Ibor-floating IRS). Let S be the observed par rate of
an interest rate swap with maturity time T and floating payments linked to a Libor or an Euribor rate
associated with a tenor j (typically, j = 3 months or j = 6 months). The fixed-leg payment scheme is
given by t1 < · · · < tp = T and the floating-leg payment scheme is given by t̃1 < · · · < t̃q = T . For most
liquid products, payment on the fixed leg are made with an annual frequency, so that tk is the business day
corresponding to k years after the current date t0. The associated year fraction for the interval (tk−1, tk)
is denoted by δk whereas the year fraction for the interval (t̃i−1, t̃i) is denoted by δ̃i. Note that the length
between two consecutive dates on the floating leg should be close to the Libor or Euribor tenor, i.e., δ̃i ≃ j.
As a result, given a discounting curve PD, the swap equilibrium relation can be represented in a linear
form with respect to some forward Libor or Euribor rates, i.e.,

S

p
∑

k=1

δkP
D(t0, tk) =

q
∑

i=1

PD(t0, t̃i)δ̃iFj(t0, t̃i) (3)

where PD(t0, t) is a risk-free discount factor at time t0 for maturity t and F∆(t0, tk) is the forward Libor
or Euribor rate defined as the fixed rate to be exchanged at time t̃i against the j-tenor Libor or Euribor
rate established at time t̃i−1 so that the swap has zero value at time t0. As in the previous example, the
left hand side of 3 represents the fixed leg present value whereas the right hand side corresponds to the
floating leg present value. For more details, see, for instance Chibane et al. (2009).

Example 2.8 (Credit curve based on CDS). Let S be the fair spread of a credit default swap with
maturity T and with premium payment dates t1 < · · · < tn = T . If we denote by R the expected recovery
rate of the reference entity and by δk the year fraction corresponding to period (tk−1, tk), then the swap
equilibrium relation can be expressed as

S

n
∑

k=1

δkP
D(t0, tk)Q(t0, tk) = −(1−R)

∫ T

t0

PD(t0, t)dQ(t0, t) (4)

where PD(t0, t) is a risk-free discount factor at time t0 for maturity date t and where t → Q(t0, t) is
the survival distribution function of the underlying reference entity at time t0. The left hand side of
4 represents the premium leg present value whereas the right hand side corresponds to the protection
leg present value. We implicitly assume here that recovery, default and interest rates are stochastically
independent. Using an integration by parts, it is straightfoward to show that survival probabilities Q(t0, t),
t0 ≤ t ≤ T , are linked by a linear relation:

1The bond yield for maturity time T is defined as the constant rate of return Y such that PB(t0, t) has a
return rate Y for any time t, t0 ≤ t ≤ T and such that present value relation 1 holds.
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S

n
∑

k=1

δkP
D(t0, tk)Q(t0, tk) + (1−R)PD(t0, T )Q(t0, T )

+ (1−R)

∫ T

t0

fD(t0, t)P
D(t0, t)Q(t0, t)dt = 1−R

(5)

where fD(t0, t) is the instantaneous forward rate2 at time t0 for maturity time t.

Proposition 2.9. Under Assumption 2.4, the set of admissible curves is convex.

Proof. Convex combination of any admissible curves is an admissible curve. Indeed, the no-arbitrage
requirement (which is a monotonicity condition) and the smoothness condition are preserved by convex
combination. The market fit condition is equivalent to impose that some points of the curve are related
through a rectangular system of linear equations. If two curves satisfy this linear system, then every
convex combination of these two curves also does. ✷

The convex nature of the set of admissible curves could be very helpful in measuring this set. It
means that if one is able to identify two specific admissible curves, then all possible convex combinations
of these two curves are immediately identified to be admissible. In other word, identifying the set of
admissible yield-curves amounts to identify its convex hull, which, under certain conditions, could be
characterized by its extreme points.

3 Arbitrage-free bounds

As pointed out previously, a term structure building process bears on a series of market quotes which are
usually reliable only for a small set of standard maturities. For instance, the interest-rate swap market
is quite liquid for annual maturities up to 10y and becomes less liquid for higher maturities. As for the
credit market, CDS contracts are typically considered to be liquid for protection maturities of 3, 5, 7
and 10 years. Before addressing the question of curve uncertainty and its impact on pricing and risk
management, the first step is to identify the range of values that can be attained by admissible curves.
In this section, we restrain ourselves to curve construction processes which both respect the no-arbitrage
and the market-fit constraints. No particular smoothness condition is imposed at this stage in the curve
building process. We show how to construct bounds for the underlying primary quantities at the most
liquid maturities.

3.1 Bounds for OIS discount factors

Let us assume that OIS par rates S1, · · · , Sn are observed at time t0 for standard maturities T1 < · · · < Tn.
Recall that, for maturities greater than one year, an OIS contract has annual fixed and floating interest
payments. We denote by t1 < · · · < tp1

< · · · < tpn
= Tn the annual time grid up to the last maturity

Tn where t0 < t1 and the index pi is defined such that tpi
= Ti for i = 1, ..., n. In other words, pi is

the index in the payment time grid associated with standard maturity Ti. We assume that par rates
of OIS contracts are reliable for the following maturities: 1 to 10 years, then 15, 20, 25 and 30 years.
Note that the payment and the maturity time grids coincide for the first 10 annual maturities, i.e.,
t1 = T1, · · · , t10 = T10 (pi = i, for i = 1, . . . , 10). Let i0 be the smallest index such that Ti0 6= ti0 (i0 = 11
in our applications). Recall from Example 2.6 that, under the market fit condition, the discount factors
PD(t0, tk), k = 1, . . . , pn are connected through the following (rectangular) system of linear equations:

Si

pi−1
∑

k=1

δkP
D(t0, tk) + (Siδpi

+ 1)PD(t0, Ti) = 1 , i = 1, . . . , n. (6)

2Instantaneous forward rates can be derived from discount factors through the following relation:
fD(t0, t)P

D(t0, t) = −
∂P

∂t
(t0, t).
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For i < i0, there is as many equations than unknown discount factors. Then, finding the unknown
discount factors amounts to solve a triangular linear system. For i ≥ i0, there are less equations than
unknown discount factors and a whole set of discount factors can be reached by arbitrage-free curves.
The next proposition gives the range of values that a market-compatible arbitrage-free curve may attain
at standard maturities.

Proposition 3.1. Assume that, at time t0, quoted OIS par rates S1, . . . , Sn are reliable for standard
maturities T1 < . . . < Tn. Recall that i0 corresponds to the index of the first interest-rate payment date
which differs from a standard maturity date. At maturity dates T1, . . . , Tn, the discount factors associated
with market-compatible and arbitrage-free curves are such that:

PD(t0, T1) =
1

1 + S1δ1
, (7)

PD(t0, Ti) =
1

1 + Siδi

(

1− Si

Si−1

(

1− PD(t0, Ti−1)
)

)

, i = 2, . . . , i0 − 1 (8)

and, for any i = i0, . . . , n,

PD
min(t0, Ti) ≤ PD(t0, Ti) ≤ PD

max(t0, Ti) (9)

where

PD
min(t0, Ti) =

1

1 + Siδpi

(

1− Si

Si−1

(

1− (1− Si−1Hi)P
D(t0, Ti−1)

)

)

, (10)

PD
max(t0, Ti) =

1

1 + Si(Hi + δpi
)

(

1− Si

Si−1

(

1− PD(t0, Ti−1)
)

)

, (11)

with Hi :=

pi−1
∑

k=pi−1+1

δk.

Proof. For any i = 2, . . . , n, line i− 1 and line i of the linear system (6) can be expressed as

Si−1

pi−1
∑

k=1

δkP
D(t0, tk) + PD(t0, Ti−1) = 1,

Si

pi−1
∑

k=1

δkP
D(t0, tk) + Si

pi
∑

k=pi−1+1

δkP
D(t0, tk) + PD(t0, Ti) = 1.

By combining the two previous lines, the i-th line of the linear system (6) can be reformulated as

Si

Si−1

(

1− PD(t0, Ti−1)
)

+ Si

pi−1
∑

k=pi−1+1

δkP
D(t0, tk) + (1 + Siδpi

)PD(t0, Ti) = 1. (12)

We then remark that, for i = 1, . . . , i0 − 1, the linear system (6) is bidiagonal and can trivially be solved
recursively. This boils down to equations (7) and (8). The bounds (9) are obtained by considering that
arbitrage-free discounting curves are nonincreasing, so that between any two successive standard matur-
ities Ti−1 and Ti, i = i0, . . . , n, discount factors must be greater than the value taken at Ti and smaller
than the value taken at Ti−1. Consequently, the minimum and maximum discount values PD

min(t0, Ti)
and PD

max(t0, Ti) given respectively by (10) and (11) can immediately be derived from equation (12) and
the fact that, in absence of arbitrage opportunity,

PD(t0, Ti) ≤ PD(t0, tk) ≤ PD(t0, Ti−1),

for k = pi−1 + 1, . . . , pi − 1. ✷
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Remark 3.2. Note that, as soon as i > i0, these bounds cannot be computed explicitly since PD
min(t0, Ti)

and PD
max(t0, Ti) may depend on the unknown discount factors PD(t0, Tk), k = i0, . . . , i. However, these

bounds can be used together with a bootstrap procedure to successively limit the exploration set of possible
discount factors when stripping the curve at each standard maturities.

We now give a recursive algorithm which allows to obtain bounds that do not depend on any build-
ing process (model-free bounds). For a particular maturity time Ti, the unknown discount factors in
expressions (10) and (11) can be replaced by the worst bounds computed at the preceding date Ti−1.

Proposition 3.3. Assume that, for any i = i0, . . . , n, the quantity 1−Si−1Hi is positive. The following
recursive procedure provides model-free bounds for OIS discount factors at standard maturities.

• Step 1: For i = 1, . . . , i0 − 1, compute recursively PD(t0, Ti) using equations (7) and (8).

• Step 2: For i = i0, . . . , n,
Pmin(Ti) ≤ PD(t0, Ti) ≤ Pmax(Ti) (13)

where

Pmin(Ti) =
1

1 + Siδpi

(

1− Si

Si−1
(1− (1− Si−1Hi)Pmin(Ti−1))

)

, (14)

Pmax(Ti) =
1

1 + Si(Hi + δpi
)

(

1− Si

Si−1
(1− Pmax(Ti−1))

)

. (15)

In addition, the bounds are sharp in the sense that the set of lower bounds (Pmin(Ti))i is reached by a
market-compatible arbitrage-free curve Pmin(t0, ·) and the set of upper bounds (Pmax(Ti))i is reached by
another market-compatible arbitrage-free curve Pmax(t0, ·).

Proof. If, for any i = i0, . . . , n, the quantity 1 − Si−1Hi is positive, the left hand sides of expressions
(10) and (11) correspond to an increasing function of PD(t0, Ti−1). The minimum (resp. maximum)
value is attained at Ti for PD(t0, Ti−1) = Pmin(Ti−1) (resp. for PD(t0, Ti−1) = Pmax(Ti−1)). The
bounds (14) and (15) are sharp since they are reached by some “extreme” arbitrage-free curves. More
specifically, the values (Pmin(Ti)) are reached at times Ti, i = i0, . . . , n by a curve Pmin(t0, ·) such that,
for any i = 1, . . . , i0−1, Pmin(t0, Ti) is defined by (7-8) and for any i = i0, . . . , n, Pmin(t0, t) = Pmin(Ti−1),
Ti−1 ≤ t < Ti. The values (Pmax(Ti)) are reached at times Ti, i = i0, . . . , n by a curve Pmax(t0, ·) such that,
for any i = 1, . . . , i0 − 1, Pmax(t0, Ti) is defined by (7-8) and for any i = i0, . . . , n, Pmax(t0, t) = Pmax(Ti),
Ti−1 < t ≤ Ti. ✷

Remark 3.4. To derive equation 14, we implicitly assume that, for any i = i0, . . . , n, the quantity
1−Si−1Hi is positive, so that the left hand side of expression (10) corresponds to an increasing function
of PD(t0, Ti−1). For the OIS-based construction of discounting curve, Hi is typically smaller than 10 (no
more than 10 years between two consecutive standard maturities) and this assumption is satisfied for all
standard maturities as soon as the OIS par rates Si are smaller than 10%.

Remark 3.5. Note that, for any i = i0, . . . , n, every value in the interval (Pmin(Ti), Pmax(Ti)) is reached
by a particular arbitrage-free curve which fits market quotes. This is because a particular value Pi in
(Pmin(Ti), Pmax(Ti)) is characterized by a convex combination of Pmin(Ti) and Pmax(Ti), i.e., there exists
α in (0, 1) such that Pi = αPmin(Ti) + (1 − α)Pmax(Ti). The curve PD

α defined by αPmin(t0, ·) + (1 −
α)Pmax(t0, ·) goes through the point (Ti, Pi) and, in addition, it fits market quotes and is arbitrage-free
since the two latter properties are invariant by convex combinations.

Figure 1 displays, for each standard maturity, the no-arbitrage set of discount factors (top graph)
and the corresponding set of continuously-compounded spot rate curves (bottom graph) that are per-
fectly compatible with quoted OIS par rates as of May 31st, 2013 (given in Table 1). Recall that OIS
discount factors can be computed without uncertainty from maturity spanning from 1y to 10y. For the
next maturities, sharp model-free bounds can be computed using the algorithm described in Proposition
3.3. The bounds associated with time-to-maturities 15y, 20y, 30y and 40y are represented by a black
segment. We also plot the curves Pmin(t0, ·) (in solid line) and Pmax(t0, ·) (in dashed line) which match
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Figure 1: Upper graph: bounds on discount factors constructed from OIS par rate as of May 3st, 2013. The solid
lines correspond to the curve Pmin(t0, ·) which reaches the lower bounds (14) whereas dashed lines correspond to the
curve Pmax(t0, ·) which reaches the upper bounds (15). Lower graph: corresponding bounds and “extreme” curves for
continuously-compounded spot rates.

(resp.) the lower and the upper bounds at these maturities. Note that between two standard maturities,
the range in discount rates can be greater than one point of percentage.

Another application of Proposition 3.3 is to identify a union of rectangles
⋃n

i=1 Ri in which any
arbitrage-free and perfect-fit discounting curve must lie. Given that arbitrage-free discount factors are
nonincreasing, these rectangles are defined by the following couple of (bottom-left, top-right) points:
R1 = {(0, PD(t0, T1)), (T1, 1)}, Ri = {(Ti−1, P

D(t0, Ti)), (Ti, P
D(t0, Ti−1)} for i = 2, . . . , i0 − 1 and Ri

= {(Ti−1, Pmin(Ti)), (Ti, Pmax(Ti−1)}, for i = i0, . . . , n. For OIS quoted par rates as of May 31st, 2013,
the union of rectangles is displayed in Figure 2.

Note that Proposition 3.3 can also be used to detect whether arbitrage opportunities are hidden
in market data. The set of market quotes (Si)i=1,...,n is arbitrage-free if, for any i = 1, . . . , i0 − 1,
PD(t0, Ti) are such that PD(t0, Ti) < PD(t0, Ti−1) where PD(t0, T0) := 1 and if for any i = i0, . . . , n,
PD
min(t0, Ti) < PD

max(t0, Ti). The following proposition gives a method to detect arbitrage opportunities
in the set of quoted OIS par rates.

Proposition 3.6. Assume that OIS discount factors and model-free bounds are computed by launching
the recursive algorithm described in Proposition 3.3. An arbitrage opportunity can be detected in the data
set (Si)i=1,...,n at the first index i such that

Si <

(

1

Si−1
+ δi

PD(t0, Ti−1)

1− PD(t0, Ti−1)

)−1

, i = 2, . . . , i0 − 1, (16)
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maturity (year) 1 2 3 4 5 6 7

swap rate (percentage) 0.0720 0.1530 0.2870 0.4540 0.6390 0.8210 0.9930

maturity (year) 8 9 10 15 20 30 40

swap rate (percentage) 1.1570 1.3090 1.4470 1.9300 2.1160 2.1820 2.2090

Table 1: OIS swap rates as of May 31st, 2013
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Figure 2: Union of rectangles in which any arbitrage-free discounting curve must lie when fitted on quotes OIS par rate as
of May 31st, 2013.

Si <

(

1

Si−1
+ (Hi + δpi

)
Pmax(Ti−1)

1− Pmax(Ti−1)

)

−1

, i = i0, . . . , n. (17)

Proof. If the first index i is between 2 and i0 − 1, thanks to (8) inequality (16) leads to PD(t0, Ti) >
PD(t0, Ti−1). If the first index i is bewteen i0 and n, inequality (17) yields PD

min(t0, Ti) > PD
max(t0, Ti)

and, in that case, there is no nonincreasing curves on (Ti−1, Ti) that fits market rate Si at time Ti. ✷

Remark 3.7. As a consequence of Proposition 3.6, an increasing sequence of OIS par rates S1 ≤ · · · ≤ Sn

is always associated with an arbitrage-free curve.

3.2 Bounds for risk-neutral survival probabilities

In the previous subsection, we present a methodology for building market-consistent arbitrage-free bounds
for OIS discount factors at standard maturities. Here, the same approach is adapted to the case of credit
curves, i.e., term-structure of default probabilities implied from a set of CDS spreads.

We consider a particular underlying entity (corporate or sovereign issuer) or a credit index on which
CDS protection is quoted at several maturities. Let us assume that, for this entity, CDS fair spreads
S1, · · · , Sn are observed at time t0 for standard protection maturities T1 < · · · < Tn. We denote by
t1 < · · · < tp1

< · · · < tpn
= Tn the premium payment dates where t0 < t1 and the set of indices (pi) is

such that tpi
= Ti for i = 1, ..., n.

Recall from Example 2.8 that, under the market fit condition, the survival probabilities Q(t0, tk),
k = 1, . . . , pn are connected through the following system of linear equations

Si

pi
∑

k=1

δkP
D(t0, tk)Q(t0, tk) + (1−R)PD(t0, T )Q(t0, T )

+ (1−R)

∫ Ti

t0

fD(t0, t)P
D(t0, t)Q(t0, t)dt = 1−R , i = 1, . . . , n.

(18)

9



where R is the expected recovery rate and fD(t0, t) is the instantaneous forward rate associated with
the discounting curve PD(t0, ·). The next proposition gives the range of survival probabilities that a
market-compatible arbitrage-free credit curve may attain at standard maturities.

Proposition 3.8. Assume that, at time t0, quoted fair spreads S1, . . . , Sn are reliable for standard CDS
maturities T1 < . . . < Tn. For any i = 1, . . . , n, the survival probability Q(t0, Ti) associated with a
market-compatible and arbitrage-free credit curve is such that:

Qmin(t0, Ti) ≤ Q(t0, Ti) ≤ Qmax(t0, Ti) (19)

where

Qmin(t0, Ti) =

1−R−
i

∑

k=1

((1−R)Mk + SiNk)Q(t0, Tk−1)

PD(t0, Ti)(1−R+ Siδpi
)

, (20)

Qmax(t0, Ti) =

1−R−
i−1
∑

k=1

((1−R)Mk + SiNk)Q(t0, Tk)

PD(t0, Ti−1)(1−R) + Si (Ni + δpi
PD(t0, Ti))

, (21)

with p0 := 1, T0 := t0 (thus PD(t0, T0) = Q(t0, T0) = 1) and, for any i = 1, . . . , n, Mi := PD(t0, Ti−1)−

PD(t0, Ti) and Ni :=

pi−1
∑

k=pi−1

δkP
D(t0, tk).

Proof. The bounds (19) are obtained by considering that an arbitrage-free term-structure of survival
probabilities must be nonincreasing, so that between any two successive standard maturities Ti−1 and
Ti, i = i0, . . . , n, survival probabilities should be greater than the value taken at Ti and smaller than the
value taken at Ti−1. Consequently, the minimum and maximum survival probability values Qmin(t0, Ti)
and Qmax(t0, Ti) given respectively by (20) and (21) can immediately be derived from equation (18) and
the following system of inequalities :











Q(t0, T1) ≤ Q(t0, t) ≤ 1 for t0 ≤ t < T1,
...

Q(t0, Ti) ≤ Q(t0, t) ≤ Q(t0, Ti−1) for Ti−1 ≤ t < Ti

(22)

✷

Remark 3.9. Note that these bounds cannot be computed explicitly since, for every i = 1, . . . , n, the
lower and upper bounds (20) and (21) depend on the survival probabilities Q(t0, Tk), k = 1, . . . , i− 1 and
the latter probabilities are not known with certainty. However, as for the OIS-based discounting curves,
these bounds can be used together with a bootstrap procedure to successively limit the exploration set of
possible survival probabilities when stripping the curve at each standard maturities.

For a particular maturity time Ti, the unknown survival probabilities Q(t0, Tk), k = 1, . . . , i − 1
in expressions (20) and (21) can be replaced by the worst bounds computed at the preceding steps
k = 1, . . . , i − 1. This argument leads to the construction of an iterative procedure that allows to
compute model-free bounds for survival probabilities at each standard CDS maturities. This procedure
is given in the following proposition.

Proposition 3.10. For each standard CDS maturity, model-free bounds for implied survival probabilities
can be computed using the following recursive procedure.

For i = 1, . . . , n, compute recursively

Qmin(Ti) ≤ Q(t0, Ti) ≤ Qmax(Ti) (23)
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where

Qmin(Ti) =

1−R−
i

∑

k=1

((1−R)Mk + SiNk)Qmax(Tk−1)

PD(t0, Ti)(1−R+ Siδpi
)

(24)

Qmax(Ti) =

1−R−
i−1
∑

k=1

((1−R)Mk + SiNk)Qmin(Tk)

PD(t0, Ti−1)(1−R) + Si (Ni + δpi
PD(t0, Ti))

(25)

and Qmax(T0) := 1.

As for the OIS-based discount curve construction, Proposition 3.10 can be used to identify a union
of rectangles

⋃n
i=1 Ri in which any arbitrage-free and perfect-fit credit curve must lie. Indeed, given that

any arbitrage-free term-structure of survival probabilities is nonincreasing, these rectangles are defined
by the following couple of (bottom-left, top-right) points: Ri = {(Ti−1, Qmin(Ti)), (Ti, Qmax(Ti−1)}, for
i = 1, . . . , n where T0 = t0 and Qmax(Ti−1) = 1. For CDS spreads of AIG as of Dec. 17, 2007 (given in
Table 2), the union of rectangles is displayed in Figure 3 where for all standard maturities, the model-free
bounds (23) have been represented by black segments.
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Figure 3: Union of rectangles in which any arbitrage-free survival curve must lie when fitted on CDS spreads of AIG as of
Dec 17, 2007. Survival probability bounds (24) and (25) have been computed with R = 40% and a discounting curve such
that PD(t0, t) = exp(−3%(t− t0)).

maturity (year) 3 5 7 10

CDS spread (bp) 58 54 52 49

Table 2: AIG CDS spread at Dec. 17, 2007
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Figure 4 shows the sensitivity of the lower and upper bounds with respect to the recovery rate
assumption. As expected, for any standard maturities, the bounds are decreasing function of the recovery
rate. This is consistent with the fact that, when the expected loss in case of default decreases, the default
probability has to increase in order to reach the same level of CDS spread. Interestingly, the size of the
bounds, which can be interpreted as a measure of uncertainty, increases with the recovery rate assumption.
For expected recovery lower than 40%, the recovery impact on the size of the bounds can be considered
to be insignificant whereas this is no longer the case for recovery larger than 40%.
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Figure 4: Survival probability bounds at standard maturities computed from CDS spreads of AIG as of Dec 17, 2007. The
discounting curve is such that PD(t0, t) = exp(−3%(t− t0)).

4 Construction of admissible term-structures

In the previous section, we explained how to compute bounds at standard maturities for arbitrage-free
and market-consistent discounting or credit curves, given a set of market quotes for some liquidly traded
instruments. In particular, we did not impose any smoothness condition on the reconstructed curves,
which leads to identify “extreme curves” with unrealistic behaviors. In this section, we additionally force
the reconstructed curve to be sufficiently regular and thus to be admissible in the sense of Definition
2.3. The proposed construction of admissible curves is based on the idea that the class of dynamic term-
structure models is rich enough to generate admissible term-structures. The constructed term-structures
are given as a by-product of a mean-reverting affine model. For instance, an interest-rate curves (swap
curves or bond yield curves) will be defined as the initial term-structure of zero-coupon prices obtained
in a short-rate model. In the same vein, a credit curves will be defined as an initial term-structure
of survival probabilities obtained in a default intensity model. The curve building process relies on a
piecewise-constant specification of the long-term mean parameter which allows to perfectly reproduce
market prices of vanilla interest-rate products (bonds, swaps) and CDS contracts while preserving a cer-
tain degree of smoothness.

In the sequel, Y will denote a Lévy process and W a standard brownian motion. We assume that
all introduced processes are defined with respect to a stochastic basis (Ω,F ,F,Q). For every considered
Lévy process Y , its cumulant function is denoted by κ, i.e., κ(θ) = logE

[

eθY1

]

and its set of parameters is
denoted by pL. As a matter of example, some cumulant functions are given in Table 3 for the Brownian
motion and for two class of Lévy subordinators parametrized by a single variable λ which inversely
controls the jump size of the Lévy process.

We refer the reader to Cont and Tankov (2003) for more details on Lévy processes. The term-structure
curve at time t0 is built from a set of market quotes S = (S1, · · · , Sn) observed at time t0 and associated
with an increasing set of maturity dates T = (T1, · · · , Tn). For any i = 1, . . . , n, the market quote Si

corresponds to the market price of a financial instrument with maturity date Ti.
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Lévy measure Cumulant

Brownian motion ρ(dx) = 0 κ(θ) = θ2

2

Gamma process ρ(dx) = e−λx

x
1x>0dx κ(θ) = − log

(

1− θ
λ

)

Inverse Gaussian process ρ(dx) = 1√
2πx3

exp
(

−1
2λ

2x
)

1x>0dx κ(θ) = λ−
√
λ2 − 2θ

Table 3: Examples of Lévy measures and cumulants

We assume that, under the risk-neutral probability measure Q and depending on the type of curve
under construction, the short-term interest rate or the default intensity is either governed by an extended
Lévy-driven Ornstein-Uhlenbeck process (Lévy-driven OU)

dXt = a(b(t)−Xt)dt+ σdYct, (26)

or an extended CIR process
dXt = a(b(t)−Xt)dt+ σ

√

XtdWt, (27)

where the long-term mean parameter b is assumed to be a deterministic function of time, a is a positive
parameter which controls the speed of mean-reversion and σ is a positive volatility parameter. Concern-
ing the Lévy-driven OU specification 26, we use an additional positive parameter c which appears as an
increasing change of time t → ct. This parameter can also be interpreted as a volatility parameter but,
contrarily to σ, it controls jump frequency (an increase of c makes the underlying Lévy process jumps
more frequently). Let X0 be the value at time t0 of the process X. The use of Lévy processes as a
driver of short rate or default intensity dynamics stems from the fact that processes driven by some Lévy
processes provide better fit on time series of bond returns than when driven by a Brownian motion. For
more details on the subject of term structure or credit risk modeling with Lévy processes, the reader is
referred for instance to Eberlein and Raible (1999), Cariboni and Schoutens (2004), Kluge (2005), Crépey
et al. (2012).

Remark 4.1. Specification (26) corresponds to a Lévy Hull-White extended Vasicek model but where the
focus is put on curve construction instead of curve projection. In the seminal Hull and White approach
(see Hull and White (1990)), the initial term-structure is given as a model input and the function b is
defined in such a way that the input term-structure is reproduced by the model. In our approach, contrary
to the Hull and White framework, the deterministic function b is directly calibrated on the set of market
quotes.

The proposed construction of admissible curves is based on a piecewise-constant specification of the
long-term mean parameter b, i.e,

b(t) = bi, for Ti−1 ≤ t < Ti, i = 1, . . . , n. (28)

where T0 := t0. This specification is motivated by the following arguments.

• Interest-rate curves as, for instance, bond yield curves or OIS discount rate curves can be derived
from a term-structure of zero-coupon prices. Credit curves can be assimilated to a term-structure
of survival probabilities. As we will see in Subsection 4.1, analytical expressions exist for these
term-structures when they are computed in models (26) and (27).

• In addition, the piecewise-constant function (28) has discontinuity points corresponding to standard
maturities T1, . . . , Tn. We will see in Subsection 4.2 that this feature allows to transform the over-
parameterized linear system of present values into a triangular system of non-linear equations which
can be solved iteratively. The no-arbitrage requirement is guaranteed under some conditions on
the implied levels bi, i = 1, . . . , n and the curves obtained after calibration satisfy the smoothness
condition of Definition 2.2.
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4.1 Curve explicit analytical expressions

We rely on a standard pricing framework where, in absence of arbitrage opportunity, the value at time
t0 of a default-free zero-coupon bond with maturity time t is given by

P (t0, t) = EQ

[

exp

(

−
∫ t

t0

Xudu

)

| Ft0

]

, (29)

where F is the natural filtration of the short-rate process X. Note that (29) is also the expression of
the survival probability Q(t0, t) = Q(τ > t | Ft0) when X is the risk-neutral default intensity of the
default time τ . Let us denote by P (t0, t) the value at time t0 of a generic elementary quantity with
maturity date t. Depending on the type of curve under construction, this quantity can be either the
price of a zero-coupon bond in a short-rate model or the survival probability of a particular reference
entity in a default intensity model. When the mean-reverting level b is a deterministic function of time,
the following lemma, which is a classical result in the theory of affine term-structure models, gives an
analytical expression for P (t0, t) in the class of Lévy-driven OU models.

Lemma 4.2. In the Lévy-driven OU model (26), the value at time t0 of a generic elementary quantity
with maturity t is given by

P (t0, t) = exp

(

−φ(t− t0)X0 − a

∫ t

t0

b(u)φ(t− u)du− cψ(t− t0)

)

(30)

where the functions φ and ψ are defined by

φ(s) :=
1

a

(

1− e−as
)

, (31)

ψ(s) := −
∫ s

0

κ (−σφ(s− θ)) dθ. (32)

Proof. Using Itô’s lemma, the Lévy-driven OU process is such that, for any t > t0

Xt = e−a(t−t0)X0 + a

∫ t

t0

b(θ)e−a(t−θ)dθ + σ

∫ t

t0

e−a(t−θ)dYcθ. (33)

and, using (26) and (33), the integral
∫ t

t0
Xudu can be reformulated as

∫ t

t0

Xudu = φ(t− t0)X0 + a

∫ t

t0

b(u)φ(t− u)du+ σ

∫ t

t0

φ(t− u)dYcu. (34)

Expression (30) is obtained from (29) and (34) and by using Lemma 3.1 in Eberlein and Raible (1999).✷

When b is assumed to be a piecewise-constant function of time as defined by (28), the integral in the
right hand side of (30) can be discretized on the time grid (Ti)i=0,...,n which immediately leads to the
following proposition.

Proposition 4.3. Let t be such that Ti−1 < t ≤ Ti. In the Lévy-driven OU model, if b is a step function
defined by (28), then

P (t0, t) = exp (−I(t0, t,X0)) (35)

where

I(t0, t, x) := xφ(t− t0) +

i−1
∑

k=1

bk (ξ(t− Tk−1)− ξ(t− Tk)) + biξ(t− Ti−1) + cψ(t− t0) (36)

and where the functions φ and ψ are given respectively by (31) and (32) and ξ is defined by

ξ(s) := s− φ(s). (37)
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Remark 4.4. Note that the function φ (and thus ξ) does not depend on the Lévy process specification.
Moreover, for most Lévy processes, the integral of the cumulant transform in (32) has no simple closed-
form solution but can be easily computed numerically. The reader is referred to Hainaut and Devolder
(2008) for examples of Lévy processes for which the function ψ defined by (32) admits a closed-form
expression.

Similar analytical expressions are available when the underlying short-rate (or default-intensity) pro-
cess follows an extended CIR process with deterministic long-term mean parameter b.

Lemma 4.5. In the extended CIR model (27), the value at time t0 of a generic elementary quantity with
maturity t is given by

P (t0, t) = exp

(

−X0ϕ(t− t0)− a

∫ t

t0

ϕ(t− u)b(u)du

)

(38)

where ϕ is given by

ϕ(s) :=
2(1− e−hs)

h+ a+ (h− a)e−hs
(39)

and h :=
√
a2 + 2σ2.

Proof. For any maturity date t, thanks to the Feynman-Kac formula, the function P̃ defined for any u
such that t0 ≤ u ≤ t by

P̃ (u, x) := EQ

[

exp

(

−
∫ t

u

Xudu

)

| Xu = x

]

is solution of the following PDE

∂P̃ (u, x)

∂u
+ a (b(u)− x)

∂P̃ (u, t)

∂x
+

1

2
σ2x

∂2P̃ (u, t)

∂x2
− P̃ (u, t)x = 0, (40)

with the final condition P̃ (t, x) = 1, for all x. It is straightforward to check that the function P̃ defined
by

P̃ (u, x) = exp

(

−xϕ(t− u)− a

∫ t

u

ϕ(t− s)b(s)ds

)

with ϕ given by (39) is solution of PDE (40). ✷

Replacing b in (38) by the piecewise-constant function defined by (28) yields the following result.

Proposition 4.6. Let t be such that Ti−1 < t ≤ Ti. In the extended CIR model, if b is a step function
defined by (28), then

P (t0, t) = exp (−I(t0, t,X0)) (41)

where

I(t0, t, x) := xϕ(t− t0) +
i−1
∑

k=1

bk (η(t− Tk−1)− η(t− Tk)) + biη(t− Ti−1) (42)

and where the function ϕ is defined by (39) and the function η is given by

η(s) := 2a

[

s

h+ a
+

1

σ2
log

h+ a+ (h− a)e−hs

2h

]

(43)

and h :=
√
a2 + 2σ2.

The previous result can also be found in Bielecki et al. (2014) under a more general form. Schlögl
and Schlögl (2000) also consider an extended CIR model with piecewise-constant parameter in order
to construct initial yield-curves but prices of zero-coupon bonds are given in a recursive way in their
approach whereas they are expressed in closed-form here.
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Remark 4.7. In the case of credit curve construction and in the perspective of curve projection, the
positiveness of the default intensity process is guaranteed in the extended CIR model under the Feller’s
condition or in the Lévy-driven OU model when choosing a Lévy-subordinator as Lévy driver.

Depending on the chosen term-structure model and given that Assumption 2.4 holds, Proposition
4.3 or Proposition 4.6 can be used to compute the present values of instruments selected for the curve
construction. Note that, contrary to some Lévy-driven OU models, no numerical integration is required
under the extended CIR specification.

4.2 Admissible curve construction

We now explain how to construct admissible curves as described in Definition 2.3. Recall that the curve is
built by matching a set of market quotes S = (S1, . . . , Sn) corresponding to a series of financial products
with increasing maturities T = (T1, . . . , Tn). Under assumption 2.4, the curve t→ P (t0, t) is compatible
with the input set S if for some payment time grid (t1, . . . , tp1

, . . . , tpn
) with tpi

= Ti, the column vector
P = (P (t0, tk))k=1,...,pn

is solution of the following rectangular linear system

A ·P = B (44)

where A is a n × pn matrix and B is a n × 1 matrix. We moreover assume that, for any i = 1, . . . , n,
the i-th line of the previous system corresponds to the market-fit condition of the financial product with
maturity Ti. Note that matrices A and B only depend on market quotes S, on standard maturities T

and on products characteristics. For OIS discounting curve construction, P = PD and matrices A and
B can be easily extracted from system (6). For credit curve construction based on CDS spreads, P = Q

and matrices A and B can be obtained from a discretized version of the system described by (18). As a
rectangular system (n < pn), (44) may admit several solutions3.

We now consider that the curve t → P (t0, t) is given by either Proposition 4.3 or Proposition 4.6.
It is straightforward to remark that, for any i = 1, . . . , n, when t belongs to the time interval (t0, Ti),
P (t0, t) only depends on b1, . . . , bi. As the i-th line of the market-fit system 44 only involves the curve
values at maturity dates smaller than Ti, solving the previous rectangular system of P amounts to solving
a triangular non-linear system of b = (b1, . . . , bn) which can be solved iteratively.

• Step 1: Find b̄1 as the solution of

p1
∑

j=1

A1jP (t0, tj ; b1) = B1 (45)

• Step 2: For k = 2, . . . , n, assume that b̄1, · · · , b̄k−1 are known and find b̄k as the solution of

pk
∑

j=1

AkjP (t0, tj ; b̄1, · · · , b̄k−1, bk) = Bk (46)

where Bk denotes the k-th element of vector B and Akj denotes the (k, j)-entry of matrix A. In most
situations, all entries of A have the same sign, so that the left hand side of (46) is a monotonic function of
bk. Then, if a solution exists, it is the only one. The previous algorithm is a so-called bootstrap procedure
where the resolution of a triangular system of non-linear equations is reduced to successive resolution of
univariate equations. Given that the equations are monotonic in the unknown parameter, a numerical
solution can be obtained very efficiently at each step by a root-solver.

Remark 4.8. Note that, for any i = 1, . . . , n, if the implied parameter b̄i exists, the latter depends on
market quotes S1, . . . , Si and on cash-flow characteristics of the products with maturities T1, . . . , Ti. In
addition, b̄i depends on the underlying model parameters, that is p := (X0, a, σ, c,pL) for Lévy-OU models
or p := (X0, a, σ) for the extended CIR model.

3If maturity dates are strictly increasing, i.e., T1 < . . . < Tn, A is a full rank matrix (rank n) and the solutions
of (44) evolves in a linear space with dimension equal to n− pn.
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As soon as an implied set of parameter (b̄1, . . . , b̄n) can be found by the previous iterative procedure,
the market fit condition is satisfied. However, an admissible curve as described in Definition 2.3 has to
fulfill two additional requirements: the curve has to be smooth enough and arbitrage-free. How to be
sure that the curve generated with these implied parameters have these two additional features?

Proposition 4.9. A curve t→ P (t0, t) constructed in the previous mean-reverting term-structure models
has a derivative which is absolutely continuous. As a consequence, the curve satisfies the smoothness
condition described in Definition 2.2.

Proof. Let us consider a curve constructed from the Lévy-OU term-structure model. From equation 30,
the curve t→ P (t0, t) is continuous and its derivative with respect to t is given by

∂P (t0, t)

∂t
= P (t0, t)

(

−X0e
−a(t−t0) − a

∫ t

t0

e−a(t−u)b(u)du+ cκ(−σφ(t− t0))

)

(47)

Therefore, the corresponding instantaneous forward curve is given by

f(t0, t) = X0e
−a(t−t0) + a

∫ t

t0

e−a(t−u)b(u)du− cκ(−σφ(t− t0)) (48)

which is an absolutely continuous function of t even if b is a piecewise-constant function of time. As for
credit curves, the density function of the underlying default time t → P (t0, t)f(t0, t) is also absolutely
continuous as a product of two absolutely continuous functions. Given equation 38, the same arguments
hold for curves constructed from an extended CIR model where the instantaneous forward rates are given
by

fCIR(t0, t) = X0ϕ
′(t− t0) + a

∫ t

t0

ϕ′(t− u)b(u)du (49)

where ϕ′ denotes the derivative of function ϕ defined by (39). ✷

We proved that a curve constructed from our approach satisfies the smoothness condition. In order
to comply with the arbitrage-free requirement, one has to check whether the corresponding instantaneous
forward curve is truly positive. Note that, given (48) and (49), instantaneous forward rates have closed-
form expressions in both approaches. Assume that an implied set of mean-reverting parameters b =
(b̄1, . . . , b̄n) have been found using the previous iterative procedure. Let t be a maturity time such that
Ti−1 ≤ t < Ti. The Lévy-OU implied forward rate is given by

f(t0, t) = X0e
−a(t−t0) + a

i−1
∑

k=1

b̄k (φ(t− Tk−1)− φ(t− Tk)) + ab̄iφ(t− Ti−1)− cκ(−σφ(t− t0)) (50)

and the implied CIR forward rate is given by

fCIR(t0, t) = X0ϕ
′(t− t0) + a

i−1
∑

k=1

b̄k (ϕ(t− Tk−1)− ϕ(t− Tk)) + ab̄iϕ(t− Ti−1). (51)

A naive method would consist in checking the positivity of forward rates for every time point between
t0 and Tn. The next proposition shows that for Lévy-OU term-structures, the positivity of constructed
forward rates can be checked in a very efficient way.

Proposition 4.10. Let t → P (t0, t) be a curve constructed from a Lévy-OU term-structure model and
assume that the vector b = (b̄1, . . . , b̄n) of implied mean-reverting levels exists. The forward curve t →
f(t0, t) is then given by (50). Assume that p := (X0, a, σ, c,pL) is a vector of positive parameters and
that the derivative of the Lévy cumulant κ′ exists and is strictly monotonic on (−∞, 0). The constructed
curve is arbitrage-free on the time interval (t0, Tn) if and only if, for any i = 1, . . . , n, f(t0, Ti) > 0 and
one of the following condition holds:

• ∂f
∂t
(t0, Ti−1)

∂f
∂t
(t0, Ti) ≥ 0,

17



• ∂f
∂t
(t0, Ti−1)

∂f
∂t
(t0, Ti) < 0 and f(t0, ti) > 0 where ti is such that ∂f

∂t
(t0, ti) = 0,

where we recall that T0 := t0.

Proof. The curve is arbitrage-free if P (t0, t) is a nonincreasing function of t. From equations (30) and
(47), this is truly the case if f(t0, t) given by (50) is positive for any t in the interval (t0, Tn). Note that,
f(t0, T0) = f(t0, t0) = X0 > 0 and for any i = 1, . . . , n and any t such that Ti−1 ≤ t < Ti, the forward
rate f(t0, t) can be expressed as a function of f(t0, Ti−1) and b̄i:

f(t0, t) = b̄i +
[

f(t0, Ti−1) + cκ(−σφ(Ti−1 − t0))− b̄i
]

e−a(t−Ti−1)

− cκ
(

−σ
a

(

1− e−a(Ti−1−t0)e−a(t−Ti−1)
)) (52)

Let gi be the function defined on (Ti−1, Ti) and such that gi(t) = exp(−a(t− Ti−1)). On (Ti−1, Ti), the
function t→ f(t0, t) is such that f(t0, t) = Ki(gi(t)) where Ki is defined on (gi(Ti), 1) by

Ki(x) = b̄i +
[

f(t0, Ti−1) + cκ(−σφ(Ti−1 − t0))− b̄i
]

x− cκ
(

−σ
a

(

1− e−a(Ti−1−t0)x
))

. (53)

Note that f(t0, t) is strictly positive on (Ti−1, Ti) if and only if Ki is strictly positive on the interval
(gi(Ti), 1). As f(t0, Ti−1) > 0 and f(t0, Ti) > 0, then Ki is also strictly positive at the extreme points
gi(Ti) and 1. In addition, if κ is differentiable, the first derivative of Ki is given by

K ′

i(x) = f(t0, Ti−1) + cκ(−σφ(Ti−1 − t0))− b̄i −
cσ

a
e−a(Ti−1−t0)κ′

(

−σ
a

(

1− e−a(Ti−1−t0)x
))

. (54)

As κ′ is assumed to be a strictly monotonic function on (−∞, 0), K ′

i is also a strictly monotonic function
on the interval (gi(Ti), 1) as an affine transformation of a composition of κ′ with an affine function of x.
Note that ∂f

∂t
(t0, t) = K ′

i(gi(t)) · g′i(t) where g′i(t) < 0 for all t in [Ti−1, Ti]. Then, let us deal with the
following three possible situations:

• If ∂f
∂t
(t0, Ti−1)

∂f
∂t
(t0, Ti) > 0, then K ′

i(gi(Ti))K
′

i(1) > 0. As a result, K ′

i(gi(Ti)) and K
′

i(1) have the
same sign and, since K ′

i is a strictly monotonic function, K ′

i cannot cross the x-axis. Consequently,
Ki is a strictly monotonic function on (gi(Ti), 1). As Ki is strictly positive at the extreme points
of (gi(Ti), 1), it remains positive on this interval.

• If ∂f
∂t
(t0, Ti−1)

∂f
∂t
(t0, Ti) = 0, then, K ′

i(gi(Ti)) = 0 or K ′

i(1) = 0 but the two previous quantities
cannot be equal to zero simultaneously since K ′

i is strictly monotonic. Then, K ′

i is either positive
or negative on (gi(Ti), 1) and we can conclude as in the preceding case.

• If ∂f
∂t
(t0, Ti−1)

∂f
∂t
(t0, Ti) < 0, then K ′

i(gi(Ti))K
′

i(1) < 0. As a result, K ′

i(gi(Ti)) and K
′

i(1) have op-
posite signs and, since K ′

i is a strictly monotonic function, K ′

i crosses the x-axis once on (gi(Ti), 1).
Let xi be such that K ′

i(xi) = 0. Then Ki admits a unique extremum at xi. Since Ki is either
successively increasing and decreasing or successively decreasing and increasing and as Ki is strictly
positive at the extreme points of (gi(Ti), 1), Ki is positive on (gi(Ti), 1) if and only if Ki(xi) > 0.
This is equivalent to impose that f(t0, ti) > 0 where ti = gi(xi).

✷

Note that, if Y is a Lévy-subordinator, its cumulant function has the following form (see, e.g.,
Theorem 1.3.15 in Applebaum (2009))

κ(θ) = αθ +

∫

∞

0

(

eθy − 1
)

ρ(dy) (55)

where α is a positive parameter and ρ is the Lévy measure of Y . Then if ρ has a finite mean, κ is differ-
entiable on (−∞, 0) since ∂

∂θ

(

eθy − 1
)

= yeθy ≤ y for θ in (−∞, 0) and
∫

∞

0
yρ(dy) < ∞. Consequently,

the derivative of κ on (−∞, 0) is given by

κ′(θ) = α+

∫

∞

0

yeθyρ(dy). (56)
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Then, if the Lévy-OU term-structure model is driven by a Lévy subordinator, its cumulant function κ is
differentiable on (−∞, 0) as soon as the mean of the underlying Lévy measure is finite and, from (56), its
derivative κ′ is a strictly increasing function on (−∞, 0). In the Vasicek term-structure model, the driver
is a Brownian motion, then from Table 3, κ′(θ) = θ and κ′ is obviously an increasing function. The other
examples in Table 3 corresponds to Lévy subordinators and one can check for these examples that κ′ is
indeed an increasing function.

Proposition 4.11. Let t→ P (t0, t) be a curve constructed from an extended CIR term-structure model
and assume that the vector b = (b̄1, . . . , b̄n) of implied mean-reverting levels exists. The forward curve
t→ fCIR(t0, t) is then given by (51). The constructed curve is arbitrage-free if p := (X0, a, σ) is a vector
of positive parameters and if, for any i = 1, · · · , n, the implied b̄i is positive.

Proof. The result follows from equation 51 and the fact that ϕ is an increasing function. ✷

Remark 4.12. Note that a weaker condition can be found on the implied b̄i’s to guarantee the positivity
of CIR-implied forward rates. However, under this condition, mean-reverting levels could be negative,
which is incompatible with a well-defined square-root model.

Given a set of market quotes (S1, . . . , Sn) and a corresponding set of standard maturities (T1, . . . , Tn),
the curve t → P (t0, t; b̄1, . . . , b̄n) is then admissible on (t0, Tn) if the implied parameters b̄1, . . . , b̄n exist
and fulfill the assumptions of Proposition 4.10 for Lévy-driven OU models or the assumptions of Pro-
position 4.11 for CIR models. Note that the two previous proposition can be used within the iterative
bootstrap algorithm. Indeed, when seeking for the implied mean-reverting levels, the numerical procedure
can be stopped as soon as one of the no-arbitrage condition is not satisfied.

4.3 Numerical illustration

Let us now present some interest-rate and credit term structures constructed using the previous ap-
proaches.

Construction of admissible OIS discounting curves

We first consider the construction of OIS discounting curves based on OIS market quotes as observed
in May, 31st 2013 and given in Table 1. In this example, the Lévy-driven OU short-rate model (26) is
used as generator of admissible curves. The Lévy driver is chosen to be a Gamma subordinator with a
cumulant function defined as in Table 3 and with parameter λ = 200. This choice of λ corresponds to a
Gamma subordinator with an annual mean jump size of 50 bps. Note that, if the short-rate process is
given by (26), the parameter c corresponds to the number of jumps that the short-rate is expected to do in
a one year period. In order to illustrate the diversity of admissible discounting curves, different values of
the jump frequency parameter c are considered. The starting point X0 of the short rate process is fixed at
0.063% which corresponds to the May, 31st 2013 rate of the OIS with maturity 1 month. The parameters
a and σ are such that a = 0.01 and σ = 1. For each considered value of c, the mean-reverting parameters
bi’s are bootstrapped from OIS swap rates using the procedure described in Subsection 4.2. Proposition
4.3 is used to compute discount factors in this approach. Figure 5 displays the set of discount factor curves
obtained by repeating the construction process for each value of c in the set {1, 10, 20, . . . , 100}. Each
of these values leads to an admissible curve. Figure 6 represents the corresponding set of (continuously-
compounded) discount rates and instantaneous forward curves (upper set of curves at low maturities).
In Figure 5 and Figure 6, the black segments corresponds to arbitrage-free bounds at time-to-maturities
15y, 20y, 30y and 40y. These bounds have been computed using Proposition 3.3. As expected, the values
taken by the displayed curves at these maturities belong to the no-arbitrage bounds.
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Figure 5: OIS discount curves computed in a Lévy OU model as of May, 31st 2013
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Figure 6: OIS discount rate and associated forward curves computed in a Lévy OU model as of May, 31st 2013

As can be seen in Figure 5 and Figure 6, playing with parameter c has little impact on the diversity
of values taken by these curves for maturities lower than 10y. This is due to the fact that discount
factors are known without uncertainty for these maturities. However, the effect of c on curve diversity
is significant as maturities become larger than 10y. For discount factor curves, this effect is exacer-
bated for the two last maturity periods (20y, 30y) and (30y, 40y). Note that, for maturities greater than
10y, the variability of forward curves (Figure 6) is much higher than the variability of the associated
spot rate curves (Figure 6) and discount curves (Figure 5). The distance between two forward curves
can be close to two points of percentage, as can be seen for instance at maturity 30y. This suggests
that, given a family of admissible construction methods, the range of values taken by the resulting for-
ward curves can be significantly larger than the range of values taken by associated spot rate curves. It
means that the uncertainty embedded in the process of curve construction is amplified for forward curves.

As a matter of comparison, we now consider the extended CIR model (27) as generator of discounting
curves. The input OIS data set is the same as in the previous example. The underlying parameters
of the CIR short-rate process are chosen such that X0 = 0.063% and a = σ = 1. Contrary to the
previous example, the admissible curves are not generated here by playing on some extra free parameters.
We instead choose to include additional fit constraints in the calibration process, while preserving the
admissible nature of the curves. In other words, the generated curves have been forced to take some
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pre-specified values at some pre-specified maturity dates. These pre-specified points have been chosen
consistently with the no-arbitrage bounds in such a way that the generated curves are admissible and
take values close to the upper or lower no-arbitrage bounds at standard maturities.
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Figure 7: OIS discount factor curves computed from swap rates as of May, 31st 2013
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Figure 8: OIS discount rate curves computed from swap rates as of May, 31st 2013

Each discount factor curve plotted on Figure 7 corresponds to a particular set of pre-specified values
that can be identified by a set of black dots. Figure 8 represents the corresponding set of admissible
discount rate curves. The no-arbitrage bounds (which are exactly the same as in Figure 5 and Figure 6)
are represented by black segments at standard maturities.

As can be seen in Figure 7 and 8, all generated curves behave similarly for maturities lower than 10y.
For maturities larger than 10y, the displayed set of admissible curves can take strikingly different values,
especially at non-standard maturities. Note that, thanks to the convex nature of the set of admissible
curves (see Proposition 2.9), any point between two admissible curves is reached by an admissible curve.
As can be observed in Figure 8, the range of admissible discount rates are nearly equal to one point of
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percentage for some maturities.

Construction of admissible survival curves

As stressed in the previous sections, our approach can also be used to construct survival curves or
default distribution functions from a series of quoted CDS spreads. Each spread represents the cost of
protection associated with the same underlying debt issuer but for different protection maturity. In this
example, we consider CDS spreads of AIG for maturities 3y, 5y, 7y and 10y as observed in December 17,
2007 and given in Table 2. The chosen curve generator is the extended CIR default intensity model (27)
where a = σ = 1. As explained in Subsection 4.2, the piecewise-constant mean-reverting level bi’s are
bootstraped from AIG market spreads. Figure 9 displays the set of admissible survival curves obtained
by repeating the construction process for each value of X0 such that 100X0 is in the set {0.01, 0.25, 0.49,
0.73, 0.97, 1.21, 1.45, 1.69, 1.94, 2.18, 2.42}. All the generated curves are admissible. The arbitrage-free
bounds computed from Proposition 3.10 are represented by black segments at standard maturities 3y,
5y, 7y and 10y. Note that the survival curves are consistent with the no-arbitrage bounds.
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Figure 9: Survival curves computed from CDS spreads of AIG as of December 17, 2007. The curves have been computed
with R = 40% and a discounting curve such that PD(t0, t) = exp(−3%(t− t0)).

As we can observe, the initial default intensity X0 has a significant impact on survival probabilities
for time-to-maturities nearby zero, in particular for the two first time periods (0, 3y) and (3y, 5y). The
effect of X0 is less significant for maturities larger than 5y. We can also note that the range of admissible
values seem to be larger for maturity point that far from standard maturities. This suggests that a proper
way to reduce the uncertainty in the curve construction process could be to enhance market liquidity at
the middle points of any two consecutive standard maturities.

5 Conclusion

In this paper, we propose a methodology that allows to estimate the diversity of term-structure functions
with some admissible features: arbitrage-freeness, market-consistency and a minimum degree of smooth-
ness. We first show how to compute model-free bounds at standard maturities in the class of arbitrage-free
and market-consistent term-structure functions. As for OIS discount curves, the proposed bounds are
sharp and can be used to detect arbitrage opportunities that could be hidden in the input market dataset.
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Similar bounds can be obtained for CDS-implied survival curves. This framework can easily be adap-
ted to bond term-structures. When an additional minimum smoothness condition is required, dynamic
term-structure models with a mean-reversion effect are appropriate to generate admissible curves. We
show that the diversity of admissible curves can be appreciated in difference situations (OIS discount
curve and CDS curve construction) and within different approaches (Lévy-driven OU or extended CIR
model) by playing with some extra unfitted parameters. In addition, as the set of admissible curves
is convex, any values between two admissible curves is reached by an admissible curve. The numerical
results suggest that, for both OIS discounting curves and CDS survival curves, the operational task of
building term-structures may be associated with a significant degree of uncertainty. This kind of model
risk should be, in our view, considered with more attention. Measuring the impact of curve diversity on
valuation and hedging of financial products is a next step which is part of an ongoing research project.
Another perspective should be to extend the proposed framework to a multi-curve interest-rate environ-
ment, where several curves (with possibly different tenors and different currencies) have to be constructed
in a joint consistent process.
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T. R. Bielecki, A. Cousin, S. Crépey, and A. Herbertsson. A bottom-up dynamic model of portfolio credit
risk with stochastic intensities and random recoveries. forthcoming in Communication in Statistics -
Theory and Methods, 2014.

N. Branger and C. Schlag. Model risk: A conceptual framework for risk measurement and hedging. In
EFMA 2004 Basel Meetings Paper, 2004.

J. Cariboni and W. Schoutens. Pricing credit default swaps under Lévy models. Technical Report 07,
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N. El Karoui, M. Jeanblanc-Picquè, and S. E. Shreve. Robustness of the Black and Scholes formula.
Mathematical finance, 8(2):93–126, 1998.

23



C. P. Fries. Curves and term structure models: Definition, calibration and application of rate curves and
term structure models. DZ Bank AG; LMU Munich, Department of Mathematics, 2013.

M. Fujii, Y. Shimada, and A. Takahashi. A note on construction of multiple swap curves with and without
collateral. FSA Research Review, 6(139-157), 2010.

T. C. Green and S. Figlewski. Market risk and model risk for a financial institution writing options. The
Journal of Finance, 54(4):1465–1499, 1999.

P. S. Hagan and G. West. Interpolation methods for curve construction. Applied Mathematical Finance,
13(2):89–129, 2006.

D. Hainaut and P. Devolder. Mortality modelling with Lévy processes. Insurance: Mathematics and
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