Draft genome sequence of Lactobacillus hominis strain CRBIP 24.179r, isolated from human intestine
Sylvie Cousin, Sophie Creno, Laurence Ma, Dominique Clermont, Valentin Loux, Chantal Bizet, Christiane Bouchier

To cite this version:
Sylvie Cousin, Sophie Creno, Laurence Ma, Dominique Clermont, Valentin Loux, et al.. Draft genome sequence of Lactobacillus hominis strain CRBIP 24.179r, isolated from human intestine. Genome Announcements, American Society for Microbiology, 2013, 1 (4), pp.1. <10.1128/genomeA.00662-13>. <hal-00939673>

HAL Id: hal-00939673
https://hal.archives-ouvertes.fr/hal-00939673
Submitted on 30 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lactobacillus hominis strain 61DT, renamed L. hominis CRBIP 24.179T, was isolated in the early 1960s from a clinical isolate (1). Some species of the genus Lactobacillus have been isolated from clinical patients with a variety of clinical problems (2, 3). Most of those strains (but not all) belong to the species Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, and Lactobacillus plantarum. These species are also among those most frequently found in human intestinal flora. Nevertheless, there is only limited information concerning the risk that is linked to potential virulence factors present in Lactobacillus strains (4).

Here, we report the genome sequence of L. hominis CRBIP 24.179T, obtained using a whole-genome strategy based on Illumina paired-end sequencing, with an insert length of 380 bp (Illumina genome analyzer HiSeq 2000). In order to test assembly de novo tools, quality-filtered reads (116,085,864 reads, 99 bases mean read length, ~5,190-fold coverage) were assembled using two softwares, Velvet-Optimiser version 2.2.0 (5) and ABySS version 1.2.6 (6). The resulting contigs were compared using Mauve version 2.3.1 (7). The two scaffolds were somewhat similar (28 Velvet contigs and 37 ABySS contigs, with maximum lengths of 365,062 and 267,206 bases, respectively). Nevertheless, differences related to the number and the maximum length of contigs and Mauve assessment support the de novo assembled contigs obtained using Velvet.

The draft genome consists of 36 contigs, with a total length of 1,927,726 nucleotides (nt) and a G+C content of 37%. The sizes of the contigs were between 701 bases for the shortest and 365,062 bases for the longest. The contigs were annotated with the AGMIAL platform (8), an integrated bacterial genome annotation system. The prediction of coding sequences used the self-training gene detection software SHOW based on hidden Markov models (http://genome.jouy.inra.fr/ssb/SHOW/). tRNAs and rRNAs were detected using tRNAscan-SE (9) and RNAmer (10) softwares, respectively. There were 1,983 coding sequences (CDSs) predicted (1,938 complete), as well as one RNA operon with 1 copy each of the 23S, 5S, and 16S genes. Fifty-four tRNA genes were also predicted.

Nucleotide sequence accession numbers. The strain is publicly available in two European collections under the no. CRBIP 24.179T and DSM 23910T. The draft of this whole-genome sequencing project has been deposited in EMBL under the accession no. CAKE01000001 to CAKE01000036. The version described in this paper is the first version.

ACKNOWLEDGMENTS

We thank N. Joly (Biology IT Center, Institut Pasteur, Paris) for the programs used for the quality filtering of the reads.

This communication is an initiative of the European Consortium of Microbial Resource Centers (EMbaRC), supported by the European Commission’s Seventh Framework Programme (FP7, 2007–2013), Research Infrastructures action under the grant agreement no. FP7-228310.

REFERENCES