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Abstract

« Introduction Deterministic single-tree models are com-
monly used in forestry. However, there is evidence that
stochastic events may interact with the nonlinear mecha-
nisms that underlie forest growth. As a consequence,
stochastic and deterministic simulations could yield differ-
ent results for the same single-tree model and the same
initial conditions. This hypothesis was tested in this study.
« Material and methods We used a single-tree growth
model that can be implemented either stochastically or
deterministically. Two data sets of 186 and 342 plots each
were used for the comparisons. For each plot, the
simulations were run on a 100-year period using 10-year
growth steps. Three different response variables were
compared.

+ Results The results showed that there were differences
between the predictions from stochastic and deterministic
simulations for some response variables and that random-
ness alone could not explain these differences. In the case
of deterministic simulations, the fact that predictions are
reinserted into the model at each growth step is a concern.
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These predictions are actually random variables and their
transformations may result in biased quantities. Forest
growth modellers should be aware that deterministic
simulations may not correspond to the mathematical
expectation of the natural dynamics.
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1 Introduction

In forest management, growth and yield models are
considered as essential tools because they provide insights
into future forest conditions. Like most statistical models,
growth and yield models can be used either deterministi-
cally or stochastically. Whether it is at the tree or the stand
level, a deterministic model provides the expected growth,
i.e.,, the mathematical expectation of the growth for a
particular stand, whereas a stochastic model attempts to
illustrate the natural variability of the growth by including
random components (Vanclay 1994, p.7). Although forest
managers might be more interested in the natural variability
of the growth than the mean response alone, stochastic
growth and yield models are still rarely used. Most models
are used in a deterministic fashion or include only a few
stochastic components (Stage 1973; Solomon et al. 1986;
Maikela et al. 1997; Pretzsch et al. 2002).

The current situation can be explained by the difficulties
related to stochastic implementation. Although alternative
methods exist (Mowrer and Frayer 1986; Mowrer 1991),
stochastic implementation usually relies on Monte Carlo
methods. Random numbers are generated in order to
provide realisations for the variable of interest. Generating
a large number of realisations provides an assessment of the
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variability of the response. Monte Carlo methods have been
widely used in resampling methods in statistics, e.g.,
bootstrap methods (Efron and Tibshirani 1993).

Because numerous random numbers are needed to
compute the different Monte Carlo realisations, stochastic
simulations usually require greater computing power and
are often time consuming. Moreover, the correlations
between the error terms and the coefficients of the different
submodels may be unknown, and assumptions therefore
have to be made (Kangas 1999).

On the other hand, deterministic simulations quickly
provide forest managers with predictions since they
produce an expected mean growth in a single run.
Nevertheless, useful information such as prediction uncer-
tainty may not be available because the error propagation is
complex and cannot generally be analytically evaluated.

Beyond the advantages and disadvantages of the
deterministic and stochastic approaches, there seems to be
more basic statistical concerns related to the choice of one
or the other. For instance, Zhou and Buongiorno (2004)
reported that the nonlinearity in a matrix growth model, i.e.,
a model expressed as a matrix that contains movement
ratios from one diameter class to the other (see Vanclay
1994, p. 43), interacted with the simulation approach
(deterministic or stochastic). As a result, deterministic
predictions were different from stochastic ones, even
though the model and the initial conditions were the same.

Although there is no evidence of such a phenomenon for
single-tree growth models, it can be reasonably expected
that they exhibit similar behaviour, especially when they are
based on differential equations. As a matter of fact, most
single-tree models are often iterative, i.e., predictions are
reinserted into the model in order to obtain long-term
growth projections. As a consequence, in deterministic
simulations, some tree- and stand-level predictors are no
longer observed after the first growth step. They are instead
predicted and, thereby, become random variables. Even if these
predictions are assumed to be reliable, their transformation
might be biased. Unbiased quantities usually do not transform
into unbiased quantities (Duan 1983). These biases may,
therefore, cause some distortion in deterministic simulations.

Considering the popularity of single-tree growth models
in forest science, determining whether or not these models
are sensitive to the simulation approach is a major issue. In
this paper, we tested the null hypothesis that the differences
between stochastic and deterministic simulations are negli-
gible. For the sake of comparison, we used ARTEMIS-
2009, a general single-tree growth model for the province
of Quebec, Canada, which implements both approaches
(Fortin and Langevin 2010). Two sets of sample plots
served as benchmarks. The growth of these sample plots
was simulated over 100 years using each approach, and
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stochastic and deterministic predictions were then com-
pared for several plot variables.

Our intent was not to thoroughly evaluate the model but
rather to evaluate the effect of the approach over the
predictions. The model has already been evaluated in Fortin
and Langevin (2010). Consequently, the discussion focuses
on statistical and practical issues related to the use of the
stochastic and the deterministic approaches.

2 Methods
2.1 Model description

In 2007, a research project was undertaken in the province
of Quebec, Canada, with the aim of providing forest
managers with a general, single-tree model for the 25 most
important potential forest types of the commercial forest.
Potential forest type refers to the forest composition that is
expected in late successional stages (Saucier et al. 1998).
Stands belonging to the same potential forest type are
assumed to have similar forest dynamics.

The model, which is called ARTEMIS-2009, considers
all trees of commercial and non-commercial species with
diameter at breast height (dbh at 1.3 m) equal to or greater
than 9.1 cm. It is designed for 400-m> sample plots, which
is the standard plot area in the provincial inventory. The
model encompasses four dynamic submodels (Fig. 1) that
predict mortality, dbh increment, recruitment and recruit
dbh, respectively, given that recruitment occurred for a
particular growth step, which is set to 10 years. These four
submodels were all designed to predict a response variable
(mortality, increment, recruitment and recruit dbh) at the
end of a particular growth step from predictors that are
evaluated at the beginning of the same growth step. Growth
forecasts for longer periods are obtained by reinserting
predictions into the model. Tree heights and volumes are
estimated using a model of the height/diameter relationship
and a general volume model that can be found in Fortin et
al. (2007, 2009a). The model was implemented in the
CAPSIS platform (http://capsis.cirad.ft/).

All submodels belong to the linear or generalised linear
type category. Special care was taken during the fitting
process to make sure that the distributional assumptions
were valid. Using the provincial network of permanent
sample plots, the submodels were independently fitted to
the potential forest types, thereby providing 25 different
versions of the model. The consistency of the whole model
was assessed at the plot level using the all-species basal
area as the reference variable (Fortin and Langevin 2010).
A cross-validation was carried out and did not reveal any
major lack of fit. In this case study, we focused on two
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Fig. 1 Flowchart of ARTEMIS-2009 model

major potential forest types for the sake of comparison: the
sugar maple—yellow birch and the yellow birch—balsam fir.
The different parts of the model are briefly described in
the following sections. The reader can refer to Fortin and
Langevin (2010) for further details about the model. For a
better understanding, we will define 7, j, k£ and s as the plot,
tree, growth step and species group indices, respectively.

2.2 Mortality submodel

The mortality submodel is of the generalised linear type
with the assumption of a Bernoulli distributed response
variable. Let us define mj as a binary variable whose value
is 1 when the tree j in plot 7 died during growth step & or 0
otherwise. The model uses a complementary log—log link
function in order to express the predictors in a linear
fashion and to facilitate the mathematical tractability of the
model (Fortin et al. 2008). Basically, the submodel
expresses the probability of mortality p;; for tree j in plot
i during growth step k as

mg ~ Bernoulli(pg;,) (12)

_ exijk B-+In( Az )

pjxk=1—e (1b)

where X, is a row vector of predictors and class variables,
B is a column vector of fixed-effect parameters, and

In(Aty) is the natural logarithm of growth step duration
(year), which is set to 10 years. The predictors and class
variables included in x;; are the species group, dbh, the
natural logarithm of dbh, the basal area of trees with dbh
larger than tree j, the occurrence of spruce budworm
outbreak, the 1971-2000 mean annual precipitation, the
occurrence of partial cutting, as well as some interactions
between these variables.

2.3 Dbh increment submodel

This submodel is a linear mixed-effects model including
some random effects and a covariance structure. Let Ad
be the dbh increment (cm) for tree j in plot 7 during growth
step k. A logarithmic transformation of the response
variable was required to ensure the validity of the
assumptions of normality and homogeneous variances.
The submodel can be expressed as follows

In(Adj 4+ 1) = X B + ui + i + 4t (2a)
u; ~ N(0, Gglm) (2b)
uy ~ N(0,0%,) (2¢)
g5 = (€41, €25 €3y )| ~ MVN(0, R;) (2d)

where x;;; is a vector of predictors and class variables, 3 is
a vector of parameters, u; is a plot random effect that is
normally distributed with mean 0 and variance aglot, Uy is a
growth step random effect that is also normally distributed
with mean 0 and variance thep, and ¢ is a residual error
term. The vector of within-tree residual error terms (g;) is
assumed to follow a multivariate normal (MVN) distribu-
tion with mean 0 and variance—covariance R;;. Matrix R;; is
actually the covariance matrix of the within-tree error terms
and can be re-expressed in turn as the product of a within-
tree variance (O'tzree) and a correlation matrix (¥y), ie.,
R;=0uee ¥ A correlation structure can be modelled in
matrix W, For this submodel, a linear log correlation
structure yielded the best fit. For further details about this
correlation structure, the reader can refer to Pinheiro and
Bates (2000, p. 226) and Littell et al. (2006, p. 440). The
predictors and class variables included in x;; are the species
group, the dbh, the square of the dbh, the natural logarithm
of growth step duration, the plot basal area, the occurrence
of spruce budworm outbreaks, the occurrence of partial
cutting, and the 1971-2000 mean annual precipitation, as
well as some interactions between these variables.
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2.4 Recruitment submodel

The recruitment submodel is a two-part conditional model.
The first part predicts the occurrence of recruitment,
whereas the second part aims at predicting the number of
recruits conditional on the occurrence of recruitment. Such
models are useful for modelling data with excessive zero
counts (Cunningham and Lindenmayer 2005).

In this case study, the probability of observing a given
number of recruits (recy) for species group s in plot i at the
end of growth step & is given by:

1 — 7wy recy, = 0
Pr(recy,) = § § (3a)
Tiks - (recus — 1|y, @)  recys >0
e XisB
Tiks = m (3b)
= (3¢)

where 7, is the probability of occurrence of recruitment
for species group s in plot i at the end of growth step &, ¢ is
the probability mass function of a negative binomial
distribution with mean g, and dispersion @, X;;, and g
are two vectors of predictors and class variables, and 3 and
Y are two vectors of parameters. The predictors and class
variables included in x; and g;, are the species group, the
plot basal area, the stem density of the species groups, the
1971-2000 mean annual precipitation, the 1971-2000
mean annual temperature, and the natural logarithm of
growth step duration, as well as some interactions between
these variables.

2.5 Recruit dbh submodel

Once recruitment occurs, the recruits are not necessarily
integrated into the tree list with the minimum dbh, which is
set to 9.1 cm. Consequently, recruit dbh had to be modelled.
The recruit dbh submodel is a generalised linear model that
assumes a Gamma distribution for the response variable.
Let dr; be this response variable for recruit j in plot i at the
end of step &, i.e., the millimetres exceeding the 9.1 cm
threshold required to be considered as a recruit. The
submodel can be expressed as:

drji ~ Gamma(gy,, ©) (4a)

Hijie = e¥itP (4b)

where 11, and w are the mean and dispersion parameters of
the Gamma distribution, respectively, X is a row vector of
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predictors and class variables, and 3 is a column vector of
parameters. The predictors and class variables included in
x;; are the species group, the plot basal area, the occurrence
of partial cutting, as well as some interactions between
these variables.

2.6 Simulation approaches
2.6.1 Stochastic approach

The stochastic simulations in ARTEMIS-2009 rely on
Monte Carlo methods. More specifically, random numbers
are generated to account for the variability inherent in each
submodel. Three sources of error are taken into account: (1)
errors associated with parameter estimates; (2) random
effects; and (3) residual errors. The distributions of these
errors depend on the distributional assumptions behind each
submodel. The estimators that were used to fit the different
submodels provided the estimates for the parameters of the
assumed distributions.

For each Monte Carlo realisation, random deviates were
drawn from the assumed distributions. In the case of MVN
distributions, a Cholesky factorisation was used to generate
random vectors of deviates from these. An example is given in
the Appendix. For example, before simulating the growth, a
random normal deviate was drawn to account for the plot
random effect in the dbh increment submodel (see Eq. 2b),
and random vectors of deviates were also generated to take
the errors in the parameter estimates into account.

Then, at the beginning of each growth step, a random
normal deviate was drawn to act as a growth step random
effect in the dbh increment submodel (see Eq. 2c). At this
point, random deviates were drawn to account for the
residual errors in each submodel. For example, in the
mortality submodel, a random number uniformly distribut-
ed over the interval [0,1] was generated for each tree in the
tree list. If the number was lower than the predicted
probability of mortality p;; (see Eq. la), the tree was
considered to be dead. For survivor trees, normally
distributed numbers were generated to account for the
residual error in the dbh increment model.

When all trees in the tree list had been processed, a
random number uniformly distributed over the interval
[0,1] was drawn again for each species group in order to
determine if some recruitment had occurred. If the random
number was lower than the probability 7y (see Eq. 3a), it
was assumed that recruitment had occurred for species
group s. Conditional on the occurrence of recruitment,
some random numbers were drawn from negative binomial
distributions (see Eq. 3a) in order to predict the number of
recruits for each species group. A random Gamma-
distributed number was then generated for each recruit in
order to obtain its dbh (see Eq. 4a). The results of this
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growth step were then reinserted into the model until the
desired projected length was reached.

The uncertainty of the stochastic simulations was tested
by comparing nominal and real confidence interval cover-
ages as proposed in Fortin et al. (2009b). The 95%
confidence intervals were found to have a 90-91% real
coverage, which indicates that the uncertainty predicted by
the stochastic simulations was close to the observed
uncertainty (unpublished result).

2.6.2 Deterministic approach

Deterministic simulations were run without generating any
random deviate. To account for mortality, the expansion
factor of a given tree record, which is the number of stems
represented by this record, was reduced by the proportion
predicted by the mortality submodel. Likewise, the expan-
sion factor of the recruits was determined by the recruit-
ment submodel. As for the dbh increments and the recruit
dbh, they were set to the mathematical expectation of the
two submodels.

For the dbh increment submodel, however, the mathe-
matical expectation of the increment involves a back
transformation because the submodel predicts the log of
the dbh increment and not the dbh increment (see Eq. 2a).
To correct for the bias induced by the logarithmic
transformation, a naive correction inspired from Flewelling
and Pienaar (1981) was applied to the predictions as
follows:

E[Adl]k] = eX(/'kﬁ+(0‘;lm+ﬁftcp+afmc)/2 1 (5)

where E[-] is the mathematical expectation and
(aglot + 02y + Gfree) /2 is the correction.

For the recruit dbh submodel, the mathematical expec-
tation (see Eq. 4a) corresponds to parameter ji;. As in the
stochastic approach, the results are reinserted into the
model for additional growth steps until the end of the
projection is reached.

2.6.3 Data sets and comparison

We used two subsets of sample plots located in the forest
management unit (FMU) 6152 for the comparison. The
FMU 6152 is located in central Quebec, more specifically
in the Laurentides region (46°51' N, 74°26" W). The unit
covers an area of 149,992 ha. Among all the sample plots
available in the FMU 6152, we selected those that belonged
to the sugar maple—yellow birch and the yellow birch—
balsam fir potential forest types for a total of 186 and 342
sample plots, respectively.

The plots were established following the standards of the
provincial inventory. Within these fixed-radius 400-m?

plots, all trees with dbh greater than or equal to 9.1 cm
had their species identified and their dbh measured
according to 2-cm diameter classes. For the sake of
comparison, we assumed that dbh measurements and
species identifications were error free. A summary of the
data set is shown in Table 1.

Three variables, the all-species stem density, the all-
species basal area and the all-species merchantable volume,
were selected as reference variables for the comparison
between the predictions of the stochastic and deterministic
simulations. For each individual plot, stochastic and
deterministic simulations were run using the plot measure-
ments as initial tree lists. In order to compare the different
methods on the long term, we ran 100-year simulations
starting from 2011 using 10-year growth steps. During the
stochastic simulations, 1,000 Monte Carlo realisations were
carried out to illustrate the variability of the three response
variables for each individual plot to the greatest extent
possible. During preliminary trials, this number of 1,000
Monte Carlo realisations had been found to be large enough
to ensure the stability of the results. The predictions were
estimated as the mean of these 1,000 Monte Carlo
realisations. Deterministic simulations were run as de-
scribed in the previous section. They produced a single
simulated tree list from which the predictions of the three
response variables were calculated. Once all the simulations
were over, the predictions of the different approaches were
compared.

An interesting point was to compare the simulations with
respect to the initial conditions. Consequently, we defined
three classes of initial conditions for each variable tested.
For stem density, the classes of initial stem density (dens)
used were: densg<400, 400<densy<600 and densy,>600
stems ha !, For basal area, the classes of initial basal area
(BAy) were defined as BAy<15, 15<BAy<25, and BA4y>
25 m? ha .. Finally, for volume, the classes of initial
volume (Vy) were Vy<100, 100<V,<200 and Vy>
200 m? ha '. The results of the stochastic approach were
considered as the reference for the comparison. Student’s ¢
tests were performed on the differences between the
stochastic and deterministic predictions under the null
hypothesis that there was no difference.

3 Results

The results of the 100-year stochastic and deterministic
simulations are shown in Table 2 with respect to the
different initial conditions. For any response variable and
potential forest type, the average 100-year predictions were
convergent. In other words, the differences across the initial
condition groups were much lower at the end of the
projections than they were at the beginning.
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Table 1 Summary of the two

data sets used in the comparison Potential forest types and variables Minimum Mean Maximum
of stochastic and deterministic
simulations Sugar maple—yellow birch (n=186)
Stem density (stem ha ')
All species 75.0 524.6 1,075.0
Sugar maple 0.0 298.7 975.0
Yellow birch 0.0 62.2 400.0
Basal area (m” ha ")
All species 1.5 222 41.1
Sugar maple 0.0 12.6 34.8
Yellow birch 0.0 39 24.4
Merchantable volume (m> ha™')
All species 7.7 164.1 338.2
Sugar maple 0.0 943 300.6
Yellow birch 0.0 30.1 228.8
Yellow birch-Balsam fir (n=342)"
Stem density (stem ha ')
All species 25.0 724.0 1,975.0
Yellow birch 0.0 79.9 550.0
Balsam fir 0.0 258.4 1,350.0
Basal area (m2 hafl)
All species 0.6 20.2 44.8
Yellow birch 0.0 4.7 24.5
Balsam fir 0.0 53 29.3
Merchantable volume (m> ha™')
n number of sample plots, mer- .
chantable volume the volume All species 1.9 130.7 354.5
from 15 cm in height up to a Yellow birch 0.0 353 207.8
minimum diameter under bark Balsam fir 0.0 298 194.0

0f 9.0 cm

For the sugar maple—yellow birch potential forest type,
the basal area and the volume predictions converged
towards 25-27 and 212-225 m® ha '. The stem density
predictions exhibited more variability, but there was no
clear trend between the initial conditions and the predicted
values. In fact, the initial stem density between 400 and 600
stems ha ' was the group for which the predicted stem
density was the lowest when compared with the other two.

Regarding the differences between stochastic and deter-
ministic predictions, the deterministic approach yielded
lower stem densities but higher basal areas and volumes.
Taking the stochastic approach as a reference, the relative
differences ranged from —5.1% to —2.2% for stem densities
and from 2.5% to 4.8% for basal area and volume. The
differences decreased with increases of initial density, basal
area or volume. According to the results of the ¢ tests, these
differences were all highly significant.

For the yellow birch-balsam fir potential forest type,
some trends could be distinguished. On average, lower
initial densities yielded higher stem density predictions over
the 100-year horizon. On the other hand, lower basal area
and lower volume predictions could be associated with
lower initial basal area and volume, respectively. With
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respect to the previous potential forest type, predicted stem
densities were higher, whereas predicted basal areas and
volumes were smaller.

The differences between the stochastic and deterministic
predictions revealed a different pattern. For basal area and
volume, the differences between the approaches were very
small and non-significant, except for the plots that had the
largest initial merchantable volume. For the stem density,
however, the deterministic approach yielded predictions that
were an average of 5% lower than the stochastic approach,
and all of these differences were highly significant.

The differences between the simulation approaches over
time are shown in Figs. 2 and 3 with the stochastic
approach taken as the reference. For the sugar maple—
yellow birch potential forest type (Fig. 2), divergences
could be observed after the first growth step for most of the
initial conditions except for higher stem densities, basal
areas and volumes (Fig. 2c, f and i). For stem densities, the
divergences increased over time (Fig. 2a, b). Volume and
basal area deterministic predictions were initially lower
than their stochastic counterparts during the first half of the
simulations, but were higher at the end of the simulations
(Fig. 2d, e, g and h).
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Table 2 Average 100-year sto-
chastic and deterministic simu-
lations of the stem density, basal
area and merchantable volume
as a function of the initial
conditions and the potential
forest types

dens initial stem density, B4,
initial basal area, ¥, initial mer-
chantable volume

*Significantly different from 0
at =0.01

®Significantly different from 0

Potential forest types, variables and Number of Stochastic ~ Deterministic ~ Difference
initial conditions sample plots

Sugar maple—yellow birch

Stem density (stems ha ')

densy<400 41 444.0 421.5 -22.5 (-5.1%)
400<densy<600 96 387.2 368.5 -18.6" (—4.8%)
densy>600 49 414.9 405.7 —9.2* (=2.2%)
Basal area (m? ha ")

BAy<15 41 25.7 26.8 1.1° (4.3%)
15<BA4y<25 73 252 26.1 0.8° (3.4%)
BAy>25 7 259 26.6 0.7° (2.8%)
Merchantable volume (m> ha™')

V<100 43 214.7 224.9 10.2° (4.8%)
100<V,<200 89 213.9 220.8 7.0° (3.3%)
Vo>200 54 2122 217.5 5.3% (2.5%)
Yellow birch—Balsam fir

Stem density (stems ha ')

densy<400 63 610.7 581.0 —29.7° (—4.9%)
400<densy<600 83 569.3 541.8 —27.5" (—4.8%)
densy>600 196 564.2 538.5 -25.7° (—4.5%)
Basal area (m? ha ")

BAy<15 85 20.8 20.8 0.1 (0.3%)
15<BA,<25 157 21.6 21.7 0.0 (0.2%)
BAy>25 100 22.6 22.6 0.0 (0.2%)
Merchantable volume (m3 ha ')

V<100 108 145.5 145.8 0.3 (0.2%)
100<¥5<200 196 157.1 157.1 0.1 (0.0%)
V5>200 38 165.1 162.9 —2.2% (=1.3%)

at «=0.001

For the yellow birch—balsam fir potential forest type
(Fig. 3), stochastic and deterministic predictions of basal
area and volume were very close throughout the simu-
lations in most cases (Fig. 3d—f, h and i). Simulations with
lower initial volume were an exception to this rule since
they exhibited divergences during the first 60 years
(Fig. 3g). For stem densities, the divergences appeared
earlier for lower initial densities but were nearly the same at
the end of the simulations, regardless of the initial
conditions (Fig. 3a—c).

4 Discussion

This study aimed at comparing stochastic and deterministic
simulations under the null hypothesis that both approaches
yield similar results in a context of single-tree growth
modelling. Using ARTEMIS-2009, a growth model that
implements both approaches, we compared the simulations
in terms of predicted stem densities, basal areas and
volumes. In forestry, Monte Carlo methods have been used
mostly for error propagation, uncertainty assessment and

sensitivity analysis (Gertner and Dzialowy 1984; Mowrer
and Frayer 1986; Mowrer 1991; McRoberts et al. 1994),
but the comparison between stochastic and deterministic
predictions of single-tree models has rarely been addressed.
To our knowledge, Ek (1980), Weber et al. (1986) and
Vanclay (1991) are the only examples of such a comparison.
Whereas they concluded (or assumed) that the differences
between stochastic and deterministic predictions were small
or negligible, we instead concluded that there may be
substantial differences depending on the response variable
and the model. In other words, for a given data set and a
particular model, stochastic and deterministic predictions
may not converge.

Several reasons may explain the fact that we obtained
different results. In previous studies, the reference data sets
were smaller, the stochastic simulations were based on
fewer Monte Carlo realisations, or the forecast periods were
shorter. For example, Weber et al. (1986) ran stochastic
simulations based on ten Monte Carlo realisations and the
comparison was performed on ten plots. Ek (1980)
examined 10-year deterministic and stochastic projections
for six plots, but only considered the mortality submodel as
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Fig. 2 Relative differences between deterministic and stochastic simulations for 186 plots of the sugar maple—yellow birch forest type (average
difference in black; dens, initial stem density, B4, initial basal area, ¥, initial merchantable volume)

stochastic. Vanclay (1991) showed that stochastic and
deterministic simulations could be compatible for single
plots in some cases but never performed any extensive
comparison. At the time these studies were carried out,
computing capacities were much more limited than they are
today. With only a few plots and/or short-term projections,
the true differences between stochastic and deterministic
simulations cannot be distinguished from randomness.
With 1,000 Monte Carlo realisations per plot and at least 38
plots per group (Table 2), our study clearly shows that
differences exist and that they cannot be attributed to
randomness alone, considering the results of the ¢ tests.
While comparing stochastic and deterministic simulations
from a density-dependent transition matrix over 10,000 years,
Zhou and Buongiorno (2004) also found large divergences.
They concluded that the interaction between nonlinearity and
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stochasticity could have effects on the prediction of stand
dynamics and stand structure.

On the basis of our experience, we concluded that this
interaction is actually a matter of random variable transfor-
mation. Unbiased quantities on a given scale usually do not
transform into unbiased quantities on a transformed scale
(Duan 1983). These biases may intervene during any
deterministic simulation if (1) some of the explanatory
variables are actually derived from the transformation of
other variables and/or (2) the effect of the explanatory
variables on the response variable is nonlinear. The two
different cases are explained in the following paragraphs.

Single-tree growth models usually rely on explanatory
variables that are actually transformations of other varia-
bles. For example, basal area is derived from the sum of
squared diameters. In statistics, it is well known that the
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Fig. 3 Relative differences between deterministic and stochastic simulations for 342 plots of the yellow birch—balsam fir forest type (average
difference in black; dens, initial stem density, B4, initial basal area, V) initial merchantable volume)

squared mathematical expectation of a random variable
underestimates the mathematical expectation of the squared
random variable, i.e., (E[Y])*<E[Y?] with Y being any
random variable (Gregoire et al. 2008). In deterministic
simulations, adding these underestimated quantities togeth-
er to estimate basal area systematically leads to the
underestimation of the true basal area, even after a single
growth step. A crude estimator of this bias is the variance
of the random variable (Gregoire et al. 2008). For basal area
estimation, this bias would be proportional to the sum of
the variances in the dbh increment predictions.

For both potential forest types, this basal area underes-
timation partially explains the differences between the
deterministic and stochastic simulations in the first decades
(Figs. 2d—f and 3d-f). The fact that the relative differences
are larger for plots with lower initial basal areas (Figs. 2d

and 3d) is in accordance with the idea of basal area
underestimation. Lower initial basal areas in these plots
lead to higher dbh increments. Since these dbh increments
also exhibit larger variances, the basal area underestimation
is relatively greater. Note that the differences between
volume predictions exhibit a similar pattern because this
variable is also derived from the square of the dbh.

The nonlinearity of the submodels may also induce some
biases in the deterministic predictions. For generalised
linear statistical models such as mortality, recruitment and
recruit dbh submodels, the use of link functions results in
nonlinear relationships between the predictors and the
response variables. Except for the identity link function, a
random error on a given predictor has a direct effect on the
predictions. In general, the mathematical expectation of the
response variable no longer matches the result of the link
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function based on the mathematical expectation of the
predictor, i.e., E[¢(xB)]#P(E[xB]), where ¢(+) is the link
function of the argument, x is the row vector of predictors
with some being random variables, and 3 is a column
vector of parameters. These errors in predictors can actually
be seen as random effects. McCulloch et al. (2008, p. 190)
provide a good example of the aforementioned inequality
for generalised linear models. Note that the same develop-
ment applies to the errors in the parameter estimates.

Estimating the magnitude and the sign of these biases
over the response variable is rather complex. They both
depend on the distribution of the errors in the predictors as
well as the sign and the value of the parameter estimates
associated with the predictors. These errors are propagated
throughout the model over several growth steps, and the
situation becomes so complex that the exact cause of the
differences between stochastic and deterministic simula-
tions can no longer be identified. Because the model relies
on differential equations, the errors in a particular growth
step may have multiple impacts on subsequent growth
steps. In deterministic simulations, for example, under-
estimating basal area for a particular growth step results in
higher dbh increments and higher recruitment in the
following growth steps. The fact that the differences
between the stochastic and deterministic simulations exhibit
different patterns across the potential forest types (Figs. 2
and 3), especially for basal area and volume, is thought to
be related to this complex error propagation.

We first thought that the errors in the parameter estimates
could be responsible for the divergence between the
approaches. To test this possibility, we ran simulations
under the assumption that the model parameters were
known, i.e., no random deviates were simulated for the
parameter estimates. The results we obtained were very
close to those shown in this paper. The only change we
actually observed was that the differences for the first step
were slightly smaller. However, for the subsequent growth
steps, the differences were of the same magnitude. We
explain this small impact of the parameter deviates by the
fact that the model was fitted using large data sets. In this
case study, 1,015 and 846 permanent plots were used to fit
the model in the sugar maple—yellow birch and the yellow
birch—balsam fir potential forest types, respectively (Fortin
and Langevin 2010). Given that the uncertainty associated
with the parameter estimates decreases with the number of
observations, it is not surprising that the errors in the
parameter estimates have such a small effect on the
simulations. For models with less accurate parameter
estimates, the effect would probably be greater.

The results of our study showed that differences exist
between stochastic and deterministic predictions when
using 10-year growth steps. Would these differences also
exist for other growth step durations? For example, would
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the differences be greater or smaller if we had simulated the
growth over 100 years using 1-year growth steps instead?
Unfortunately, ARTEMIS-2009 cannot be used to test the
interaction between the growth step duration and the
simulation approach because the model was designed for
10-year growth steps.

The differences we observed are probably due to the
interaction between the model uncertainty and the number
of growth steps in the projections. The uncertainty is
obviously closely related to the growth step duration. The
predictions of 10-year growth steps are generally less
accurate than the predictions of 1-year growth steps.
However, we hypothesize that the differences between
stochastic and deterministic predictions are more highly
affected by the number of growth steps than by the model
uncertainty. For example, deterministic and stochastic
predictions over a century would be much closer if the
model used a single 100-year growth step. Basically, there
would no reinsertion of predicted variables into the model
during such deterministic simulations. Moreover, the effect
of the random effects and the errors in the parameter
estimates would be easily assessable and a correction factor
could be easily implemented.

On the other hand, if the model was based on 1-year
growth steps, projections over a century would mean a
hundred reinsertions of predicted variables during the
deterministic simulations. Even if each 1-year prediction
was more accurate than in the previous case, the error
propagation would probably be out of control after a few
growth steps and the risk of larger differences would arise.
This remains a hypothesis to be tested in future studies.

We attempted to include correction factors in the
deterministic simulations during preliminary trials in order
to account for the errors in the explanatory variables. We
estimated the variance on dbh predictions as the cumulative
sum of the variance on the dbh increment throughout the
growth steps. This variance on the dbh prediction served as
a correction factor for the calculation of the basal area.
Unfortunately, the results of these “corrected” deterministic
simulations proved to be unsatisfactory. The correction
factor did not, in fact, account for the correlation between
log-transformed error terms associated with dbh increment
predictions (see Eq. 2d) and, for this reason, it could be
considered as being underestimated. Appropriate correction
factors for deterministic single-tree growth models remain
to be developed. However, considering the complexity of
the error propagation in such models, stochastic simulations
may be easier to implement and even less time consuming.

A major question remains: which approach is the best
one? Unfortunately, long-term data sets are usually unavail-
able to test each approach with respect to real-world
observed data. From a biological point of view, stochastic
simulations are thought to produce consistent predictions
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because they attempt to illustrate the natural variation we
expect from forest stand growth (Vanclay 1994, p. 7). This
is true as long as the simulations remain within the limits of
the data that served to fit the different submodels. There is no
guarantee that the predictions remain biologically consistent
outside of the calibration range. In such cases, inconsistent
stem densities, basal area or volume might be predicted and
these can be partially responsible for the differences between
the stochastic and the deterministic approaches.

The sugar maple—yellow birch and the yellow birch—
balsam fir versions of ARTEMIS-2009 were fit to 1,015
and 846 permanent plots, respectively, with three to five
measurements per plot. In spite of these large data sets, a
few extreme inconsistent numbers of recruits would be
rarely predicted during stochastic simulations. To prevent
this, a biologically consistent limit was set and inconsistent
predictions beyond that limit were brought back to the limit
with a warning message displayed. During the Monte Carlo
simulations we ran in this case study, the limit was reached
approximately 15 times for each comparison data set, which
means that the probabilities of occurrence are around 8.1 x
107® and 4.4x10°° for the sugar maple-yellow birch and
the yellow birch—balsam fir potential forest type, respec-
tively. Considering these low probabilities, inconsistent
predictions had a negligible impact on our results and the
differences between both approaches appear to be primarily
due to the statistical concerns expressed above.

5 Conclusions

In population biology, the study of density-dependent deter-
ministic models has been found to be highly problematic since
small environmental disturbances can considerably alter the
dynamics of deterministic biological mechanisms (Higgins et
al. 1997). The deterministic simulation is much simpler but
clearly omits the possibility of stochastic events, whereas
they are considered to be part of natural stand dynamics.
With a transition-matrix model, Zhou and Buongiorno
(2004) clearly showed that small stochastic events main-
tained some scarce species, whereas deterministic simula-
tions led to the conclusion that they would disappear.
Using a deterministic approach with single-tree models
oversimplifies the natural dynamics. The iterative reinser-
tions of predicted explanatory variables into the model for
long-term projections are a concern from a statistical
standpoint since the complex error propagation due to
variable transformation may lead to biases. In this case
study, relative differences as large as 5% could be observed
between the deterministic and the stochastic approaches for
some response variables when forecasting growth over a
100-year horizon (Table 2). Considering these differences
and the results of their associated ¢ tests, we are forced to

reject our null hypothesis and to conclude that deterministic
and stochastic simulations may yield different predictions.

On the basis of the results of this study, it cannot be
concluded that deterministic simulations are systematically
biased due to random variable transformation. Our recom-
mendation is instead that modellers should be aware that
deterministic simulations may yield different results from
stochastic simulations when using the same data and the
same model. Unless the stochastic simulation produces
inconsistent predictions, it would be more consistent with
stand dynamics. Regardless of the level of reliability
associated with the stochastic approach, there is no
certainty that a deterministic model truly represents the
expectation of the natural dynamics. Deterministic models
should instead be considered as one of the possible
evolutions that may or may not be close to the mathemat-
ical expectation of the natural dynamics.
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Appendix

Random vector drawn from a multivariate normal distribution

Let us consider the vector £ as a random vector that
follows a multivariate normal distribution with mean p and
covariance V, i.e., e~MVN(u, V). The Cholesky decompo-
sition provides the lower triangular matrix A that satisfies
the condition V=AA”. If y is a vector of independent
standard normal random variates (i.e., all independently and
normally distributed with mean 0 and variance 1), the sum
p+Ay yields a random vector from the desired multivariate
distribution.

For example, let us consider the bivariate case where:

o
= 1o

The Cholesky decomposition of V yields:

0.700 0.500
0.500 2.000

and V =

[ 0.837 0.000
10598 1.282

Now, let us draw a random vector of independent
standard normal variates where:

y = (0.246, — 1.976)"
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The sum of u+Ay, i.e.,

0 n 0.837 0.000
0 0.598 1.282

0.246
—1.976

0.206
—2.386

yields a vector that follows a MVN distribution with mean
p and covariance V.
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