Mohamed Amine Kafi, Yacine Challal, Djamel Djenouri, Messaoud Doudou, Abdelmadjid Bouabdallah, Nadjib Badache

To cite this version:

HAL Id: hal-00920721
https://hal.archives-ouvertes.fr/hal-00920721
Submitted on 14 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mohamed Amine KAFI, Yacine CHALLAL, Djamel DIENOURI, Messaoud DOUDOU, Abdelmadjid BOUABDALLAH, Nadjib BADACHE.

Abstract—With the constant increasing of Vehicular traffic around the world, especially in urban areas, existing traffic management solutions become inefficient. This can be clearly seen in our life through persistent traffic jam and rising number of accidents. Wireless sensor networks (WSN) based intelligent transportation systems (ITS) have emerged as a cost effective technology that bear a pivotal potential to overcome these difficulties. This technology enables a new broad range of smart city applications around urban sensing including traffic safety, traffic congestion control, road state monitoring, vehicular warning services, and parking management. This manuscript gives a comprehensive review on WSN based ITS solutions. The main contribution of this paper is to classify current WSNs based ITS projects from the application type point of view with a deep discussion on how the application requirements are fulfilled. This work extends our previous study on traffic lights WSNs based projects [1].

Keywords—WSN, ITS, traffic management, traffic monitoring, traffic safety, parking management.

1. Introduction
Nowadays, traffic jam and high number of accidents in urban and metropolitan areas become more and more stressful and lead to dramatic consequences on economy, human health, and environment.

Existing ITS solutions detect vehicles in predefined positions. They are based on bulky and power-hungry devices which use wired technologies for communication and power supply. This increases their installation, maintenance, and reparation cost and subverts the scalability of ITS affecting thus their major objectives [1].

Advances in embedded systems and wireless technology give birth to wireless sensor networks (WSNs) which are composed of cheap and tiny devices that communicate wirelessly and sense the surrounding environment. Each device node contains sensors; a processor, a memory, a radio, and energy source as depicted in Fig. 1. This technology has a great potential to overcome existing difficulties of ITS.

With WSN, different types of motes can be used to sense, process and transmit data to optimally manage complex situations and enabling real-time adaptive traffic control systems. Data of interest includes position, traffic condition, local weather, images, acceleration, etc. Some possible sensors for ITS include magneto resistive, light, pressure, infrared, video, etc.

Figure 1 Mote components.

The literature presents few surveys on WSNs based ITS. In [2], authors survey vehicular sensor network (VSN) platforms, while those of [3] discuss many urban applications. In contrast, in this survey we review WSN based ITS projects and solutions based on both on-road and/or on-vehicle sensors. We discuss their architectures, analyze them according to several important performance criteria and highlight some open issues.

The remainder of this paper will be organized as follows. Section 2 presents some applications of ITS. In Section 3, some requirements of WSN usage in ITS systems are discussed. Relevant architectures that are used in ITS projects based on WSN technology are presented in Section 4, followed by some projects for traffic management that rely on WSN. In Section 6, the relation between traffic management applications and WSN architectures is investigated. Finally, Section 7 draws the conclusions and open research trends.

2. ITS Applications: Requirements and Challenges
The ITSs attempt to manage optimally the urban traffic by enhancing safety, reducing travel time and fuel consumption at the aim of improving our daily life. It works as a control loop system where it senses traffic and road conditions using surveillance or detection system. The gathered information is communicated to the decision system to be organized and analyzed in order to take appropriate
WSN based ITS can be deployed in many application scenarios and may fit into many categories or diverge slowly from existing ones. So, applications’ categorization has to be flexible because answering the needs of the operators and end users is the first goal of tracing classification.

![Figure 2 ITS mechanism.](image)

As the purpose of ITS is traffic monitoring and management to improve life quality, ITS applications classification can include:

- **Drivers’ safety**: Its principle is to transmit information related to accidents and weather in order to reduce the number and severity of crashes that lowers the number of deaths and injuries. It can be also used to guide ambulances and fire trucks.

- **Traffic Management**: the goal of such system is to minimize congestion of the whole traffic network and optimize the use of road capacity. This is done through traffic optimization and real-time traffic light control.

- **Smart cities**: It is clear that ITS’s goal is enabling smart cities. So, this category covers the remaining applications. Because of limited space, we restrict our study to: (i) Traveler **Navigation Guidelines** to minimize cost, time, and fuel consumption, (ii) **Pollution Prevention** which become a sensible field and needs more and more attention, and (iii) Efficient Parking Management which may be also a field of traffic optimization but it falls also in smart cities sub-classes. Figure summarizes our proposed WSN based ITS applications.

Despite their benefits over conventional systems, WSNs face many design challenges to fulfill ITS application requirements. This stems from their inherent properties such as: wireless communication, absence of physical protection and resource limitations. These challenges should be overcome by any WSN based ITS solution. Following a thorough analysis of ITS applications in our previous study [RF], five main application requirements can be distinguished thus far namely: reliability, security, interoperability, end-to-end communication latency, and multimodal sensing.

- **Reliability**: In WSN based ITS many critical decisions must be taken regarding the received information. So, the lost in some data packets can lead to undesired system behavior. The harsh environment conditions and the lossy nature of wireless link raise the probability of lost which require reliable communication protocol.

- **Real-Time**: Despite receiving reliable information, real time reception may be also more or less critical regarding the application. Ensuring delay guarantee in WSN is challenging and must be dealt by the underlying solution.

- **Heterogeneity**: The coexistence of many WSN based ITS solutions technologies is primordial for long life of the system.

Security: Wireless communications impose more security issues namely, jamming and criminality attacks, physical compromising of motes, etc. This makes security handling mandatory for any proposed WSN based solution.

![Figure 3 ITS Classification WSN Based projects](image)

<table>
<thead>
<tr>
<th>Applications</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>reliability</td>
</tr>
<tr>
<td>Traffic light</td>
<td>++</td>
</tr>
<tr>
<td>Parking management</td>
<td>+</td>
</tr>
<tr>
<td>Traffic optimization</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 1 Applications’ requirements

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>++</th>
<th>+</th>
<th>++</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart cities</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

Multimodal sensing: An ITS application is subject to various type of environment measurement depending on the application and user’s preference. Such measurements variables include: gas emissions, traveling delay, traveling tolls, etc. Consequently, the use of multimodal sensors by a WSN solution is more appropriate to efficient traffic management.

Table 1 presents a summary on the degree of importance the above requirements should be ensured by WSN for each type of ITS applications.

3. WSN Architectures for Urban Traffic Monitoring

Network architecture for ITS applications using WSN technology changes from an application to another, depending on the needs and the cost. Information exchange can be performed either through ad-hoc communication, or using infrastructure, or hybrid. We also distinguish two types of sensors: on-road sensors and on-vehicle sensors. The combination of sensor types and communication paradigms gives birth to various wireless sensor network architectures for ITS applications:

4.1 Ad-hoc paradigm:

In this paradigm sensors do not have a specific backbone but they exchange and forward collected data in an ad-hoc manner. Node deployment can be classified into:

- **(i) On road sensor network**, where all sensors are implanted shallowly inside the carriage or on poles next to the road. In this case, sensors are static. Sensors communicate in a multi-hop way (without using any infrastructure).
- **(ii) Vehicular sensor network**, where all sensors are included in vehicles. In V2V (vehicle-to-vehicle) communications, mobile nodes directly communicate to each other without any need of infrastructure [7-10]. Vehicles exchange information helping to avoid severe situations like traffic jam and enhancing drivers’ security. Decisions can be taken even locally or cooperatively.
- **(iii) Hybrid ad-hoc sensor network**, which is more robust and combines the two previous deployments. Both on-road and in-vehicle sensors, exchange traffic information to cooperatively take correct and real-time decisions for traffic optimization and driver safety [11, 12].

4.2 Infrastructure-enabled monitoring:

In this kind of communications all the above sub classes can be found but in the presence of base stations (BS) that can be also relayed to each other or to servers and Internet through either wireless or wired links. This includes wifi, Wimax, cellular, DSRC [13], and sensors.

- **(i) On-road sensors with Base Stations** [14-21],
- **(ii) Vehicular sensors with Base Stations** [22-24],
- **(iii) Hybrid on-road and on-vehicles sensors with Base Stations** [25, 26].

The BS makes decisions and notifies actuators. The BS may also communicate to take global decisions.

4.3 Hybrid ad-hoc and infrastructure-enabled monitoring:

In this paradigm, static on-road and mobile on-vehicle sensors and devices communicate using available infrastructures (wifi, Wimax, cellular, BS) or using multi-hop ad-hoc communications in the absence of infrastructure [27-30]. This kind of architecture is the most efficient and takes advantage of all the available architectures.

4. Projects on WSN-based Urban Traffic Management

Many urban sensing applications are developed thus far, including traffic monitoring, urban surveillance, and road surface monitoring. Some relevant projects are highlighted in the following, using their application field.

5.1 Traffic Management

5.1.1 Traffic Light Control

Controlling isolated or interconnected intersections from ITS point of view is to optimize its capacity utilization through managing the intersection parameters [13]. Many optimization algorithms were proposed in order to achieve this goal.

Through the domain literature, off-line methods using historical measurements conduct to fixed time strategies while on-line ones using real time measurements give birth to traffic responsive strategies. This category can be ameliorated using WSN based ITS. Our previous study [1] focused on this ITS application type.

In [14-16,18,20], the authors use on-road sensors to implement traffic light WSN based solutions. In [19,29,30] authors use on-road and on-vehicle sensors, while in [10] authors use only on-vehicle sensors.

5.1.2 Parking applications
In these applications, sensors are located on the ground and form a network to monitor vehicles entrance/exit to a parking lot, to update availability of parking spaces, and possibly to help orienting drivers towards these places.

Zhang et al. [17] propose a three level architecture system (Figure 3) where the lower one composed of sensors forming a cluster, monitoring the surrounding environment and fusing data through their cluster head. The middle level is the transmission and management composed of the cluster heads which communicate between them and transmit information to data terminal, the benefits to use two frequencies avoiding interference intra-cluster and inter-cluster heads is clear. The higher level is the decision-making level where the control is done to manage traffic and implement ITS strategies.

The system is applied to parking management with a sensor per vehicle place to find available spaces and their location and inform drivers about it through interface. Sensors in each parking area form a cluster, sense empty places and notify the base station so that places will be displayed to users.

The architecture used is efficient in many ITS applications but only parking application use don’t need this architecture because the decision taken are not so complex and does not need so levelled system.

Boda et al. [21] design and implement a wireless sensor network using magnetic sensors for real-time available parking spaces and integrates it with telecommunication network (as telephony network), so that end users check for places using their cellular telephones. This work gains in cost by putting sensors in determined key locations rather than every vehicle place using a studied location scheme in the goal to know the number and location of empty places. There are three types of nodes which are the key location sensor nodes, the router nodes without sensors, and finally the base station which is simply the collecting node relayed to the computer.

Authors don’t involve how to consume the available information or how to request for it. The relation between the number of sensors in the path and the surface is not explained a part the existence of a sensor at each turning lane and the half of the lane which are not sufficiently precise in long lane diameter. A Possible integration of the system with other ITS applications will enhance overall city driving.

5.1.3 Traffic optimization

From [44], the efficiency and optimization of traffic can be viewed from two perspectives. The whole ITS system goal is ensuring road fluency and minimizing accidents while individual driver goal is fast arriving with minimum cost. The authors propose a minimizing travel time algorithm that uses road sensor nodes measurement to estimate lane travelling time and choosing the fast one.

Collins and Muntean [23, 24] present TraffCon Which try optimizing the overall system efficiency rather than individual only demands by optimizing the whole network road capacity utilization through drivers re routing, changing lanes, etc. This goal is reached using a client server architecture where the clients interact with the server part using WAVE (Wireless Access in Vehicular Environments). The vehicles equipped with GPS gather road state information and the server make decisions using optimization algorithms (like genetic algorithms) to be consumed by clients through displays or audio media. So, the clients don’t take decisions by their own and the system guideline respect drivers’ comfort.

Authors suppose that all vehicles are equipped which may not always be true.

The goal of Iftode et al. [22] in their Active high way paradigm is ensuring drivers’ traveling time boundaries near of that ensured by train and airlines. This is done through scheduling in a flexible manner users’ travels. To do, drivers reserve their travel through internet or in real time while driving. This permits them to drive in reserved lanes which cohabit with ordinary lanes. For ensuring system well work, real-time measurements of road state (congestion, accidents, weather related state…) is collected and sent to the decision maker server by different sensing mechanisms as vehicles’ sensors, on road sensors. It is clear that the reservations and system orientations (speed, route changing…) need users’ displays to be present, localization mechanisms are also required. The system takes into account security and privacy requirements to satisfy users’ intentions and ensure system well functioning.

The idea behind Active highways is interesting but need more investigation to guaranty time bounds especially when internet reservation is done the exact entrance moment may be relayed which perturbs the scheduling. The exit system from the
high lanes needs more details because if the vehicle can’t exit quickly it slows vehicles in the lane.

5.2 Safety

The purpose of Jankuloska et al. [28] in SRM is to gather traffic information, which enhances system and driver safety, to display to drivers and authority, through SMS or e-mail, in order to take appropriate decisions. The traffic information in SRM concern violations of traffic signals by drivers (over speed driving, no respect of stop or direction interdiction signals...) or dangerous situations as accident’ happening. VSN (vehicular sensor networks) is used in addition to on-road nodes combining so ad-hoc and infrastructure based scheme. The vehicle nodes, after sensing their environment, send data to the road node units which at their turn send the aggregated data to the data centre where decisions are taken. The Road units communicate this decision to vehicle nodes. The Data Centre contains system data bases and is responsible of decision taken and transmission to authorities (like SMS to police cars). The inter vehicles communication are permitted and enhance system functionality by exchanging hazardous information. A real test of the prototype has shown its feasibility and benefit.

Authors propose this architecture for safety but it can be used also to enhance road capacity through sending the recommended speed to avoid congestion or to reroute vehicles through other empty roads. The use of RSN unit may be enhanced by introducing sensors in it. The communication between RSN units is not also highlighted which can increase the performance. Security of communication does not also be introduced.

The work in [51], presents a scheme to avoid vehicle collision using on-road and on-vehicle wireless nodes. This scheme is based on wireless signal quality and strength, where stationary on-road nodes send to approaching vehicles information about the in-intersection vehicles after detection using magnetic sensors. The authors test their system on a real prototype. But this work does not present how to secure communication or ensure their reliability, as loss of information when drivers trust on it result on catastrophes.

Festag et al. [11, 12] work combines road sensor nodes to extend the vision of vehicle sensors, ensuring so driver safety. The WSN composed by road nodes send the aggregated data concerning road state such as weather and obstacles especially in harsh situation like forests and icy zones. The vehicles exchange these transmitted values to draw a more complete view. This architecture avoiding accidents is also used to ensure post accidents procedure as drivers’ responsibility. Data and transmission security is ensured using soft mechanisms in this scheme due its high importance especially for post accidents as data may stay for long time before being requested. Road sensors and vehicles communicate using IEEE 802.15.4and vehicles use IEEE 802.11p to distribute the information in multi-hop manner. The solution was tested through a real implementation.

The scheme proposed may be used for traffic management. As it combines road side sensors, the overall system performance may be enhanced. The use of access points may also enhance the application. Authors introduce the security of storage which is important and introduce security when requesting the databases. But storing the data in the WSN itself is not so interesting compared the use of gateways especially for long time storage and the exploitation of stored data will be easier from requesting the WSN.

5.3 Smart cities

The work presented by Fantacci and Chiti [25], which servers among others to sense environment pollution level load, is composed by road sensor nodes, mobile in vehicle sensors, and interconnected access points. The access points gather information from the both nodes type, aggregate and encode them and send them to the mobile vehicles which are not restricted to a dedicated access point. The consumption of this information by the vehicles is done through a displayer and serves to take appropriate decisions concerning congestion avoidance, pollution load balancing in the whole system, optimum route choice, etc.

Authors focalize on efficient gathering and coding operations ensuring also reliability. But they don’t introduce inter vehicles communication which can enhance system performance. Also the integration of this system with other ITS application to manage traffic is not introduced. The information presented to drivers may be augmented with orientations to guide drivers to take right decisions. The use of pollution information must be system based to avoid drivers’ ignoring.

The system proposed by Xia et al. [26], whose goal is helping to intelligent navigation and path planning, is composed of vehicles equipped with different sensors communicating between them and having on board displays, road sensors that send road state like vehicles speed to sink sensor nodes where data is stored, and data center where decision are taken after receiving sinks data. The data center sends util information to end users in their vehicles and to traffic decides to take appropriate reactions. As an example of the system functioning is traffic jam detecting and so route changing. The vehicle
noting its speed staying low for a long time transmits a message to the sink through sources on-road sensors. This last, after a significant messages number receiving, broadcasts to vehicles and data server the road jamming state. The vehicles them selves broadcast this message to enlarge the coverage. A prototype was tested by authors in their work.

The scheme used in this work is interesting. But authors don’t give enough details on algorithms used to perform path selection. The integration of this system results’ are not explored for traffic management as adaptive traffic lights. Security communication is not introduced; even authors highlight its necessity and application reliability for well application running.

Hull et al. develop “Car Tel” [27], which is a mobile sensing and computing system that uses phones and on-board vehicle devices. Each node gathers, processes, and delivers sensing data to a central portal, where the data is stored in a database for further analysis and visualization and constructing a reusable software platform for many mobile traffic sensing applications. CarTel nodes rely on wireless technologies (Wi-Fi, Bluetooth, other CarTel nodes and mobile phone) to communicate with the portal.

Car-Tel project includes traffic mitigation [46,47], road surface monitoring and hazard detection [48], vehicular networking [49], privacy protocols, intermittently connected databases. The model used by Cartel is very interesting especially the heterogeneity handling of different communication technologies. But including static on road sensors and actor infrastructure to the same system network may enhance system performance, especially when many existing cars don’t dispose on-board sensors or displays. Cartel permits drivers to know about jams and statistical data but don’t give enough details on traffic management or guiding which may be added easily to it as cartel is conceived in a modular manner.

As smart phones offer complex computation, huge storage, and long-range communication, Urbanet [7] proposed by Riva and Borcea use them as multi sensor (audio, video…) devices creating a wireless mobile ad-hoc sensor network and act collaboratively to provide sensing coverage, collect and share data enabling users to exploit sensor-rich world. Urbanet is a middleware platform that enables applications running on mobile devices (smart phones and vehicular systems) to collect real-time sensed data in a decentralized manner without dedicated servers or Internet. It optimizes resource utilization to the sensing activity, network conditions, and local resources. Urbanet proposes a mobile application for drivers to detect traffic jams in a city. It presents three middleware platforms for three different programming models.

The model proposed in Urbanet is interesting but does not use collected data from different kinds of sensors to manage traffic. Attaching Urbanet with existing infrastructure will also enhance the overall system performance and will permit using additional ITS applications. Urbanet interest on programming applications but does not give details on communication protocols and security mechanisms which needs also investigation.

Nadeem et al. [8,9] present TrafficView which provides drivers with traffic conditions information to be used in route planning and driving during special weather conditions causing low visibility. Each vehicle is supposed having a computing device with a display, a short-range wireless interface, and a GPS receiver.

Vehicles gather and broadcast information about them and other vehicles they know about, in an ad-hoc manner (car-to-car communications). Localization algorithms using angles between roads and vehicles speed are developed in this project.

Traffic View model has been used in Traffic management protocol [29], but the integration of this model with on road sensors will enhance the performance. Also the integration of this model with the infrastructure will also help especially for requesting through internet based browsers. Also a security communication is envisaged by authors in following versions.

CitySense [50] is an urban sensor network testbed developed at Harvard University and BBN Technologies. It consists of 100 wireless sensors deployed across a city (on light poles, private or public buildings) in Cambridge, MA. Each node is an embedded PC, with dual 802.11a/b/g radio interface, and various sensors for monitoring weather conditions and air pollutants. Users reprogram and monitor CitySense nodes via Internet. The testbed contains wire line gateways linking the wireless mesh to the Internet, and back-end servers for reprogramming and monitoring, storing data generated by user jobs, and a web-based interface to end users.

CitySense can be used as a backbone to test applications using on road sensors for traffic monitoring and management.

Table 3 gives a summary of projects with their architectures and destined application.

5. Discussion
Mobile systems, such as vehicular sensor networks, sense the environment with better granularity and at higher scale, compared to static sensor networks (particularly over large areas), and instrument a larger geographical area with a less number of sensors. But there are many traffic management applications where critical decisions must be taken in real-time, such as traffic light monitoring. Supposing all vehicles dispose on-board sensors or display devices is not yet reasonable. Therefore, the taken decisions may be wrong and engender catastrophic results in life and materials.

Therefore, using VSN or hybrid on-road and VSN for requesting real-time traffic information and avoiding traffic jam is very efficient, but not for taking vital decisions in real time manner (as traffic light monitoring in [10]).

For traffic management systems using WSN, many parameters may be used to enhance the efficiency of the whole system, added to the collected real-time data concerning vehicles

<table>
<thead>
<tr>
<th>solutions</th>
<th>architectures</th>
<th>applications</th>
<th>Validation tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>ad-hoc on-road</td>
<td>Ad-hoc on vehicle</td>
<td>Traffic optimization</td>
<td>Traffic light control</td>
</tr>
<tr>
<td>ad-hoc hybrid</td>
<td>Hybrid with BS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-road with BS</td>
<td>Hybrid Ad-hoc and BS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-vehicles with BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CURIAC and VOLOSENÇU [14]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Sensys [15]</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tubaishat et al [16]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Youcef et al [18]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Zhou et al [20, 42]</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gradinscu et al [29]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Youcef et al [18]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Salama et al [19]</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ferreira et al [10]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Zhang et al [17]</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boda et al [21]</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Jankuloska et al [28]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Collins and Muntean [23]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Festag et al [11, 12]</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fantacci and Chiti [25]</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Xue et al [26]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Ilode et al [22]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Hull et al [27]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Riva and Borcea [7]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Nadeem et al [8,9]</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3 A summary of projects architectures and applications
(speed, queue length...). For example, a traffic light network of a whole city can use weather and climate (air pollution) values to choose sequences time length.

In safety and traffic optimization applications, vehicles must contain sensors (in vehicle or driver smart phone) to display or use in an automated manner the gathered information.

In Table 2, the mapping between applications and required architectures is proposed.

To benefit completely from WSN and VSN capabilities, the conception of a whole system combining the two paradigms is very interesting. A complete ITS system using the two technologies permit the monitoring and management of traffic vehicles and furthermore the traffic infrastructure.

In literature and through the previous study a complex but complete scheme combining on road and on vehicles sensors using different kinds of communication technologies will clearly permit the overall monitoring.

So, on-road sensors gather data in cities to use it in adaptive traffic lighting to take correct decisions even in the absence of vehicles sensors. Also on-road sensors permit collecting data if implanted in hard driving surfaces where weather conditions are frequently severe as tornado and icy zones to avoid catastrophes.

On vehicles sensors are for important benefit for infrastructure monitoring as bridges state and road potholes through vehicles sensing to monitor large area surfaces. Combining multi-hop communications between vehicles or on road sensors to overcome connectivity problems is for great.

Using smart phone sensors with their innovative applications is an emergent sensing combination, too.

From the discussion above, it is clear that WSN bases ITS bring a large added value but need more research efforts. Answering the requirements is more or less rigorous concerning the application type. But generally speaking the large lines of any successful WSN based ITS application must ensure security, end-to-end reliability, privacy, real time and mobility supporting. The commercialization of finished products, which is already starting, must focus on these aspects.

6. Conclusion

Intelligent transportation systems are necessary for nowadays traffic management, but the huge traffic renders traditional ITS methods out of scalability and real time responding. WSN helps to join the ITS system drawbacks, due to its cheapness and scalability nature. Even that, much research keeps essential to make WSN the suitable partner, as seen in the literature projects.

In this study, we highlighted some existing works of this field, showing their application type, architectural aspect and some weaknesses to fulfill following the requirements that are related to each type of architectures.

References:

4. Luz Elena Y. Mimbela and Lawrence A. Klein. A Summary of Vehicle Detection and Surveillance Technologies used in Intelligent Transportation Systems, the Vehicle Detector Clearinghouse, New Mexico State University, Fall 2000.

