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Bayesian adaptive reconstruction of profile optima and optimizers

David Ginsbourger∗ †, Jean Baccou ‡ †, Clément Chevalier ∗†, Frédéric Perales ‡ †, Nicolas

Garland‡, Yann Monerie§

Abstract. Given a function depending both on decision parameters and nuisance variables, we consider the
issue of estimating and quantifying uncertainty on profile optima and/or optimal points as functions
of the nuisance variables. The proposed methods base on interpolations of the objective function
constructed from a finite set of evaluations. Here the functions of interest are reconstructed relying
on a kriging model, but also using Gaussian field conditional simulations, that allow a quantifica-
tion of uncertainties in the Bayesian framework. Besides, we elaborate a variant of the Expected
Improvement criterion, that proves efficient for adaptively learning the set of profile optima and
optimizers. The results are illustrated on a toy example and through a physics case study on the
optimal packing of polydisperse frictionless spheres.

Key words. Robust Design, Gaussian Process Regression, Uncertainty Quantification, Conditional Simulations,
Active Learning, Expected Improvement

1. Introduction. A number of scientific and industrial questions boil down to optimization
problems: Physical equilibria are found by minimizing adequate energy functionals, optimal
engineering designs are seeked by minimizing so-called fitness functions, etc. Mathematically,
the deterministic system at hand (that can be defined also in the stochastic case, e.g., as an
expectation) is classically seen as a real-valued objective function f : x ∈ X −→ f(x) ∈ R with
domain X ⊂ E, where typically E = R

d for some integer d ≥ 1. Whenever f reaches a global
maximum f⋆ = maxx∈X f(x), values of x ∈ X such that f(x) = f⋆ are usually called points
of (global) maximum or (global) maximizers. Here we focus on cases where the input vector x
can be split into a group of decision parameters α ∈ A and so-called nuisance variables v ∈ V ,
such that X = A× V . In such case, one can see the global maximum of f with respect to the
nuisance variables v as a function of α:

(1.1) f⋆ : α ∈ A −→ f⋆(α) = max
v∈V

f(α, v) ∈ R,

which we refer to as profile optimum or conditional optimum function. Assuming further that
f(α, ·) possesses a unique point of global maximum v⋆f (α) for any given α ∈ A (or defining
one particular global optimizer in case there are several, e.g., the smallest one in dimension
1), we also consider the map of profile or conditional optimizers:

(1.2) v⋆f : α ∈ A −→ v⋆f (α) ∈ V.

Our main aim in the present work is to reconstruct f⋆ and v⋆f under drastically limited
evaluation budget of the objective function f . An example of profile optimum and profile
optimizer functions is shown on Figure 1.1, where the objective function f is the (negative)
Branin-Hoo function [18].
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Figure 1.1. Left: profile optimizer v⋆f (black curve) and contour lines of a toy function f . Right: Profile
optimum function f⋆.

Concrete problems involving the reconstruction of profile optima and/or optimizers occur
in various contexts. Let us give a few examples:

• In reliability engineering, the dangerousness of a system may depend both on con-
trollable design variables α like materials and geometry, and also on uncontrollable
variables v like future climatic conditions (wind characteristics, temperature trends,
etc.). In such case, one may be interested in the evolution of the worst-case scenario
with respect to the climatic conditions, seen as a function of the design variables. The
profile optimum function then maps any design α to the associated maximum level
of danger with respect to the climate variable, while the profile optimizer function
represents the worst climatic condition vf (i.e. the one implying the highest level of
danger) as a function of the design variables α. A neighbouring problem referred to as
robust inversion has been tackled in [5], with nuclear criticality safety applications.

• In statistical modelling, it often arises that some likelihood function may be analyti-
cally maximized as function of a subgroup of parameters, the other model parameters
being considered as fixed. One then speaks of profile Likelihood [33]. E.g., this hap-
pens in the case of centred Gaussian vector with stationary covariance depending on a
variance v (or its square root, often named scale) and on some correlation parameter
α. It is the well-known that the maximum likelihood estimator of v can be derived
analytically as a function of α. Plotting the optimal v as a function of α then amounts
to representing what we call here a profile optimizer function.

In the present work the main test case comes from physics, more precisely from an optimal
packing problem. A medium containing bidisperse frictionless spheres is considered, and the
maximum occupation density is numerically investigated as a function of the radii and a
coefficient tuning the volume fractions. A particular focus is put on the estimation of optimal
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volume fraction coefficient (v⋆f ) seen as a function of the ratio of radii (α).
When addressing such problems in realistic conditions, each pointwise evaluation of the

function f corresponds to a timely expensive experiment (be it physical or numerical), so that
the number of calls to f is drastically limited by practical constraints. It is then mandatory
to appeal to approximations of f for reconstructing the f⋆ and v⋆f functions. Here we con-
centrate on the use of kriging and Gaussian process models for estimating them, quantifying
the uncertainties bond to these estimations, and reducing those uncertainties by appealing to
adaptive evaluation strategies in the sequential Bayesian framework.

The article is organized as follows: in Section 2, we present plug-in and Bayesian ap-
proaches for reconstruction by kriging and uncertainty quantification on profile optimum and
optimizer functions. In Section 3, we then propose a new infill sampling criterion, obtained
as a variant of the Expected Improvement, that aims at reinforcing exploration in regions of
profile optima. Detail is given on the computation and the numerical maximization of this
new criterion, and a proof of consistency is provided for the associated sequential strategy
under fixed mean and covariance hyperparameters. In Section 4, applications of the proposed
methodology are presented on an optimal packing problem. Conclusions and perspectives of
future research are given in Section 5.

2. Plug-in and Bayesian reconstructions in the static framework.

2.1. Plug-in approach: Estimating f⋆ and v⋆f based on an approximation of f . We now
assume that the function f was already evaluated at a set of points, or design of experiments,

(2.1) X = {x1, . . . ,xn} = {(α1, v1), . . . , (αn, vn)} ∈ (A× V )n.

Reconstructing f⋆ and v⋆f directly from such data is not straightforward. A natural idea,
provided some prior knowledge on the function f is available, is to use an interpolator or an
approximation model for f , and to base on this model to reconstruct the profile maps. A
plethoric set of interpolation and approximation approaches may be envisaged [15], encom-
passing polynomials, methods based on Fourier and wavelets, splines, neural nets, and kernel
methods. Here we mainly focus on kriging [22, 7, 34, 6], a method originally used for interpo-
lating field data in geosciences. Assuming that noise-free evaluations of f at X are available,
and introducing the vector of observations

(2.2) z = (f(x1), . . . , f(xn))
′ ∈ R

n,

where u′ denotes the transpose of the vector u, the so-called Ordinary Kriging (OK) predictor
writes

(2.3) m(x) = µ̂+ k(x)′K−1(z− µ̂1),

where µ̂ = (1′K−11)−11′K−1z, k(x) = (k(x1,x), . . . , k(xn,x))
′, K = (k(xi,xj))(i,j)∈{1,...,n}2 ,

1 = (1, . . . , 1)′, and k is a kernel of positive type chosen a priori and/or tuned based on data.
In this noise-free context, a notable fact is that the OK predictor interpolates the data:

(2.4) m(xi) = f(xi) (1 ≤ i ≤ n).
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Note that in the case where the observations are corrupted by a Gaussian noise with mean 0
and variance τ2, the kriging equations are slightly modified through a substitution of K by
K + τ2I, and the interpolation property is lost. This variant (which slightly departs from
kriging with a nugget effect) is referred to as kriging with homogeneous noise variance in the
present work. Coming back to the profile functions and substituting f by m, we simply obtain
plug-in estimates for f⋆ and v⋆f :

m⋆(α) = max
v∈V

m(α, v),(2.5)

and v⋆m(α) such that

m(α; v⋆m(α)) ≥ m(α, v) (α ∈ A, v ∈ V ).(2.6)

Note that even if unicity of the profile maximizers is assumed for f , there is no reason why
this unicity should propagate to m. Here, for the sake of simplicity, we assume that the profile
maximizer of m is unique for any given α ∈ A, a realistic assumption in practice. Concerning
the quality of the approximation of f⋆ by m⋆, it is straightforward that

(2.7) ||f⋆ −m⋆||∞ ≤ ||f −m||∞,

where the norms refer to function spaces on A and A×V , respectively. In other words, if one
controls the error of the kriging predictor uniformly, the same control is guaranteed on the
map of profile maxima. The same doesn’t hold, however, for the profile maximizers: whatever
||f −m||∞ may be, it is always possible to have the maximizers v⋆f (α) and v

⋆
m(α) at any given

distance within the domain V .

Below (see, Figure 2.1), we give some first illustrations on a toy test function. Here, two
different designs of experiments are considered. In the first case, f is known at n = 10 points
only, forming a so-called Latin Hypercube Design (LHD). In the second case, the LHD is made
of n = 20 points. Here the LHDs are generated using the R package lhs [4] with ”optimum”
option and default settings. In both cases, an anisotropic Matérn kernel with ν = 3/2 is chosen
for k, and the corresponding scale and range hyperparameters are estimated by maximum
likelihood using the DiceKriging package [31]. One can see on Figure 2.1 that f⋆ and v⋆f are
better reconstructed with the 20-point design, as expected. More specifically, Table 2.1 gives
the bias obtained on the profile optimum and profile optimizer functions, measured as follows:

bv
⋆
f :=‖v⋆m − v⋆f‖(2.8)

bf
⋆

:=‖m⋆ − f⋆‖ ,(2.9)

where the considered norms are either L2 or L∞ on appropriate spaces.

In applications, the use of the bias as a performance indicator is unrealistic as the true v⋆f
and f⋆ are unknown. The next subsection discusses uncertainty quantification approaches in
the case where a Gaussian random field prior is put on the objective function f .
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Figure 2.1. Plug-in estimates v⋆m (top) and m⋆ (bottom) obtained from 10-point (left) and 20-point (right)
experimental designs. The estimates are thick black curves. The blue dashed curves represent the actual v⋆f and
f⋆ functions. The triangles stand for the design points.

Table 2.1
Model bias if 10 or 20 locations are evaluated

norm indicator 10 obs. 20 obs.

L2 bf
⋆

13 4

L2 bv
⋆
f 0.13 0.04

L∞ bf
⋆

25 10

L∞ bv
⋆
f 0.32 0.08
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2.2. Bayesian approach, with Gaussian field priors. An alternative approach proposed
here, that complements the prediction by kriging presented in the last section, consists in
assuming a Gaussian random field prior for the function f , and then in relying on the obtained
posterior distribution to draw conclusions on the profile optima and optimizer functions. In
such framework, f is hence seen as one possible realization (i.e. Z·(ω) for some ω ∈ Ω, Ω
being the underlying probability space) of a Gaussian random field (Zx)x∈X with mean µ and
covariance kernel k. Then not only may f be approximated by the conditional expectation
Ẑx = E[Zx|ZX], but the approximation error happens to be itself a centred random field with
analytically tractable covariance. Under well-known technical conditions [27] (e.g., uniform
improper prior on µ), it turns out that the conditional expectation coincides with the OK
predictor of Eq.(2.3):

(2.10) E[Zx|ZX = z] = m(x)

while the covariance of the prediction error writes

(2.11) Cov[Zx− Ẑx, Zz− Ẑz] = k(x, z)−k(x)′K−1k(z)+
(1− k(x)′K−11)(1− k(z)′K−11)

1′K−11
.

Using this result, one may simulate Gaussian random field realizations that honor the data
while giving a quantification of uncertainty on various quantities regarding f . Here we use that
workflow to enhance the estimation of the f⋆ and v⋆f functions, and also provide associated
measures of accuracy that do not depend on validation data. Instead of basing our estimates
on a single predictor as in the plug-in approach, we rely on a set of conditional simulations

zi(·) = Z·(ωi) (1 ≤ i ≤ s)

In other words, the f⋆ and v⋆f functions are represented by the random process Z⋆ and the

random field 1 v⋆Z , being themselves approximated by the sets of functions {z⋆1 , . . . , z⋆s} and
{v⋆z1 , . . . , v⋆zs}. An example of such sets of functions, obtained from conditional simulations,
is shown in Figure 2.2. Here s = 25 conditional simulations are computed on a 50 × 50
grid, leading to 25 functions z⋆i and v⋆zi , 1 ≤ i ≤ s. One clearly sees that the functions z⋆i
and v⋆zi have a higher dispersion when they are obtained from simulations conditioned on 10
observations (left plots). This suggests to use this dispersion as an indicator to quantify the
uncertainty, given the observations, on the true unknown functions f⋆ and v⋆f .

How to quantify the variability associated with a set of curves remains an open question,
to which various answers have been given throughout the literature of probability theory [25].
In the present work, we quantify this variability using the expectation of the distance between
2 (independently) simulated profile optimizers v⋆Z1

, v⋆Z2
or profile optimum functions Z⋆

1 , Z
⋆
2 :

Hv⋆
f :=E

[
‖v⋆Z1

− v⋆Z2
‖|ZX = z

]
(2.12)

Hf⋆ :=E [‖Z⋆
1 − Z⋆

2‖|ZX = z] ,(2.13)

1Cf. [19] for a discussion on the almost sure unicity of the optimizer for suitable Gaussian random field
models.
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where the considered norms are either the L2 or L∞ norm.Note that H
v⋆
f

n and Hf⋆

n can be
computed without knowing the true functions f⋆ or v⋆f . In Section 4 we will also compute the
so-called “risks”

rv
⋆
f :=E

[
‖v⋆Z1

− v⋆f‖|ZX = z
]
,(2.14)

rf
⋆

:=E [‖Z⋆
1 − f⋆‖|ZX = z] ,(2.15)

which require to know f⋆ and v⋆f , respectively. Table 2.2 gives these indicators on the studied
toy example using 1000 conditional simulations. It appears that the variability and the risk
are lower for 20-point design than for the 10-point design, as could be expected. In general,
one may expect the uncertainty to be reduced if more locations are evaluated. Under a limited
evaluation budget, the next evaluation location must be chosen carefully. The next section
tackles this issue and introduces a new sampling criterion, the Profile Expected Improvement.

Table 2.2
Risk and uncertainty indicators on the profile optima and optimizer functions, for the L2 and L∞ norms,

if the Branin-Hoo function is evaluated at 10 or 20 design points. The set up is the same as for Fig. 2.2.

norm indicator 10 obs. 20 obs.

L2 Hf⋆ 21 12
L2 rf

⋆
22 10

L2 Hv⋆
f 0.18 0.13

L2 rv
⋆
f 0.17 0.10

L∞ Hf⋆ 47 33

L∞ rf
⋆

46 26

L∞ Hv⋆
f 0.43 0.28

L∞ rv
⋆
f 0.39 0.21

3. Adaptive design of experiments for Bayesian profile curve reconstruction.

3.1. Problem set-up: how to choose the next point(s)?. We observed previously on
a toy example that quality of the profile functions reconstruction increased with the size of
the design of experiments, a feature corroborated by the variability of the simulated profiles
obtained by conditional simulations. Of course, no general conclusion may be drawn from a
single comparison with arbitrary settings, but this reflects what may reasonably be expected:
adding experiments generally tends to improve the profile estimates and reduce the associated
uncertainty. Note that in the example above, the two designs of experiments are generated
independently of each other. In practice, however, one rather needs to augment an existing
design with new well-chosen points, be it in a sequential (one point after the other, like in
[18]) or in a batch-sequential manner [14].

Several approaches have been explored for efficient sequential and batch-sequential strate-
gies dedicated to various goals, in the Gaussian process framework. A standard problem is to
design new experiments for reducing the integrated mean-squared error (IMSE), i.e. improv-
ing the predictivity of a Gaussian process model by treating all areas of the domain equally
[32]. Variants of IMSE criteria have been proposed, notably for learning contour lines of a
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Figure 2.2. Profile optimizers v⋆zi and profile optima functions z⋆i of s = 25 realizations zi, 1 ≤ i ≤ s of a
Gaussian process conditioned on 10 (left) and 20 (right) observations of the Branin-Hoo function.

function corresponding to a prescribed target level [29]. Another question that has inspired
a number of sequential and batch-sequential strategies is the global optimization of f , i.e.
both estimating the global maximum and locating the corresponding global maximizer(s).
Various infill sampling criteria for sequential optimization strategies using Gaussian process
models have been proposed [17], including the Probability of Improvement (PI), the Expected
Improvement (EI), and the expected conditional entropy of the maximizer [37]. Due to its
conceptual simplicity and its good empirical performances, EI has become very popular in the
past 15 years, for solving medium-dimensional non-convex global optimization problem under
a severely limited budget and a derivative-free framework. Even though it is known that the
optimality properties of EI are only in the one step lookahead framework [24, 13], there exists
some theoretical guarantees on the convergence of EI algorithms given a few restrictions on
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the family of used kernels [35]. Several variants of EI for constrained or batch-sequential
problems exist, and the criterion and its maximization are available in open source software
[31, 28].

3.2. Profile-EI: A variant of the expected improvement criterion. In the present work,
we aim at adapting EI in order to create an efficient infill sampling criterion for sequentially
learning the profile maxima and/or profile maximizer functions. Before looking more precisely
into the matter and presenting the so-called Profile-EI (PEI) criterion, let us briefly recall the
basics of EI. In EI settings, the variable x does not have to be split into two sub-groups (v
and α); everything happens as if there was no parameter α, so the domain of x reduces to
V . The goal being to globally maximize f , a quantity of interest after evaluation of f at
n points x1, . . . ,xn ∈ V is the current maximum max1≤i≤n f(xi). Sticking to the random
process notations, the EI criterion at an arbitrary point x ∈ X is then the average departure
above the current maximum of the response at the considered x, under the Gaussian field
model:

(3.1) EI(x) = E

[(
Zx − max

1≤i≤n
Zxi

)+ ∣∣ZX = z

]
= E

[
max

(
0, Zx − max

1≤i≤n
Zxi

) ∣∣ZX = z

]
.

A very practical aspect about the EI criterion defined in Eq. (3.1) is that a analytical for-
mula exists, that expresses EI in terms of a simple function of the kriging predictor and the
associated prediction variance at the point of interest only:

(3.2) EI(x) =

{
s(x) (u(x)Φ(u(x)) + φ(u(x))) if s2(x) 6= 0
0 else

where u(x) = m(x)−T

s(x) , T = max1≤i≤n f(xi), s
2(x) is the Ordinary Kriging prediction variance

(given by Eq. (2.11) for z = x), and Φ, φ respectively denote the cumulative distribution
function and probability density function of the standard Gaussian distribution.

Back to our motivating problem of profile estimation, distinguishing between α and v is
needed. Indeed, we do not wish our sequential strategy to target only regions with highest
response level over the whole domain A× V . What is needed is rather a strategy that visits
points having a potential for being points of profile maximum, for all values of the parameter
α. Hence, between two points corresponding to two different values of α, we would favour
the point that has the most potential of improvement with respect to the current maximum
corresponding to its α value. However, as no response value may have already obtained with
exactly the same α, our approach consists in calculating a profile EI (PEI), that compares
Z(α,v) with maxw∈V m(α,w), for any given v ∈ V and α ∈ A:

(3.3) PEI(α, v) := E

[(
Z(α,v) −min

(
max
w∈V

m(α,w), max
1≤i≤n

Z(αi,vi)

))+ ∣∣∣ZX = z

]

The ”cap” at the current maximum max1≤i≤n Z(αi,vi) is added for preventing the criterion to
vanish in regions where maxw∈V m(α,w) would artificially overshoot the data and prohibit
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Figure 3.1. EI(α, v) and PEI(α, v) functions obtained from a 20-point initial design of experiments (black
triangles). The blue dashed curves represents the actual v⋆f functions. EI and PEI are represented trough
grayscale contour lines (with colors ranging from dark to light gray with increasing criterion value).

global exploration of the input space (this cap is needed for the consistency proof given later
in this section). In turn, PEI inherits the tractability of EI, leading to the formula:

(3.4) PEI(α, v) =

{
s(α, v) (g(α, v)Φ(g(α, v)) + φ(g(α, v))) if s2(α, v) 6= 0
0 else

where g(α, v) := m(α,v)−t(α)
s(α,v) and t(α) := min (maxw∈V m(α,w),max1≤i≤n f(αi, vi)).

Figure 3.1 highlights the differences between the Profile-EI and the classical EI, using
our toy example and a 20-point experimental design. The key difference here is that the
expectation of the improvement in the classical EI is usually computed with respect to the
current maximum observation max1≤i≤n Zxi

while, in the PEI, the threshold depends on α.
This feature allows a trade-off between global exploration and an intensified search of locations
that are expected to be close to the profile optimizer curve v⋆f .

3.3. Computation and maximization of Profile-EI. From Eq. (3.3), one sees that each
computation of PEI at one location (α, v) ∈ A × V involves a global optimisation over V
to find the threshold t(α). A brute-force maximization of PEI over A × V then appears to
be computationally very expensive. On the other hand, if, for a given α ∈ A, the threshold
t(α) is computed, then computing PEI at any (α, v), v ∈ V simply requires computing kriging
means and variances and to apply the (fast to evaluate) formula (3.4). To take advantage of
this, instead of maximizing the PEI over A× V , we equivalently maximize the profile PEI:

(3.5) PEI⋆(α) := max
w∈V

PEI(α,w),

which is defined on A (and not A×V ) and which computation requires 2 global optimizations:
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• one global optimization to find the threshold t(α),
• one global optimization to maximize PEI(α, ·) over V .

Once a global maximizer α⋆ of PEI⋆ is identified, we obtain a global maximizer of PEI by
taking (α⋆, v⋆), where v⋆ maximizes PEI(α⋆, ·).

The optimizations involved in the computation of PEI⋆ only require to compute kriging
means and variances. The latter can be computed in a large number of locations x1, . . . ,xp ∈
A×V by pre-computing the quantities that do not depend on them (in particular, the inverse
K−1 of the covariance matrix at the observation locations, and the matrix-vector product
between K−1 and the column vectors that do not involve x, see Eqs. (2.3), (2.11)). For
large p and with the proper precomputations, the computational cost is O(np) to compute
p kriging means and O(n2p) to compute p kriging variances, where n is the current number
of observations. In the present article, given the relative simplicity of the examples, the
two optimizations (over V) involved in Eq. (3.5) and the optimization of PEI⋆ (over A) are
handled through a regular grid of size p for both α and v, so that the optimal location (α⋆, v⋆)
can be found by computing (at the same time) p2 kriging mean and variances. However, given
the clear limitation of this approach when the dimension of the problem increases, our code
also permits to use other optimization methods, like the genetic algorithm implemented in
the genoud R package [23].

Figure 3.2 exhibits the sequence of points evaluated by sequentially maximizing PEI. The
20-point initial design of Section 2.2 and 3.2 is used. Then, 40 points are added sequentially.
One can see (bottom left and right plots) that after 40 iterations, both the true profile optima
and optimizer functions are well estimated (small bias). In addition, conditional simulations
exhibit a low variability, which means that the uncertainties Hf⋆ and Hv⋆

f have been reduced.
This uncertainty reduction is quantified (relying on 1000 conditional simulations) in Table 3.1,
and represented on Figure 3.3.

3.4. Convergence property with fixed mean and covariance. Here we follow the route of
[35] where convergence properties for the expected improvement algorithm under fixed mean
and covariance functions are given. Since our criterion departs to some extent from the class
of criteria considered in [35], we needed to revisit the results, which lead us to the proofs given
in this section. To facilitate back and forth switching between the present article and [35], we
temporarily (for the current subsection only) adopt their notations. A brief dictionary between
our notations and their notations is now given. The random field is denoted by ξ, instead of Z,
and Zx(ω) becomes ξ(x, ω) = ω(x) (where ω stands both for a probabilistic outcome and for
a path of ξ) while ξ(x) is used when the dependence on ω is implicit. Besides the set of points
(x1, . . . , xn) ∈ X

n (instead of x1, . . . ,xn ∈ D) is denoted in short by xn. The kriging mean at
point x of the function ω(·) after having observed xn is denoted ξ̂n(x, ω;xn), ξ̂n(x;xn), or ξ̂n(x)
in short, depending on the context. The mean-square prediction error (or kriging variance)

then writes σ2n(x;xn) := E

[(
ξ(x)− ξ̂n(x;xn)

)2
]
. Finally, the considered class of criteria

including the Expected Improvement as particular case writes ρn(x) = γ(ξ̂n(x) −Mn;σ
2
n(x))

where Mn is the maximum of the responses available at step n (i.e., max (ω(x1), . . . , ω(xn))),
and γ : R × [0,+∞) −→ [0,+∞) is a continuous function satisfying ∀z ≤ 0, γ(z, 0) = 0 and
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Figure 3.2. Plug-in estimate (solid dark curves) v⋆m (left) and m⋆ (right) together with the true functions v⋆f
and f⋆ (blue dashed curves) after having evaluated an initial 20-point design of experiments (black triangles) and
20 (top) or 40 (bottom) additional points (red triangles) chosen by sequentially maximizing PEI. In addition, 25
profile optima z⋆i and profile optimizers v⋆zi are printed (thin lines in various colors), obtained from Gaussian
process realizations conditioned on the available observations.

∀z ∈ R, ∀s > 0, γ(z, s) > 0. For the special case of the Expected Improvement, the γ function
is defined by

(3.6) γ(z, s) =

{ √
sφ(z/

√
s) + zΦ(z/

√
s) if s > 0,

z+ = max(z, 0) if s = 0.

Coming back to the criterion proposed in the present work, the profile EI now writes

(3.7) ρ⋆n(x) = γ(ξ̂n(x)−M⋆
n(x);σ

2
n(x))
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Table 3.1
Uncertainty, risk and bias indicators on the profile optimizer and optima functions after having evaluated

the Branin-Hoo function at a 20-point initial design of experiments, and after having added 20 and 40 additional
points by PEI maximization.

norm indicator 20 obs. 20 + 20 obs. 20 + 40 obs.

L2 Hf⋆ 11.4 1.6 0.6
L2 rf

⋆
9.6 1.3 0.5

L2 bf
⋆

3.9 0.4 0.1

L2 Hv⋆
f 0.13 0.07 0.04

L2 rv
⋆
f 0.10 0.05 0.03

L2 bv
⋆
f 0.04 0.02 0.01

L∞ Hf⋆ 32.2 4.5 1.8
L∞ rf

⋆
25.4 3.7 1.5

L∞ bf
⋆

10.2 1.4 0.3

L∞ Hv⋆
f 0.28 0.16 0.10

L∞ rv
⋆
f 0.21 0.12 0.08

L∞ bv
⋆
f 0.09 0.07 0.02
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Figure 3.3. Evolution of the uncertainty, risk and bias indicators for the estimated profile optima (left)
and optimizers functions (right) throughout the PEI algorithm (log. scale).

where M⋆
n(x) = M⋆

n(α) = min
(
Mn,maxv∈V ξ̂n((α, v))

)
(α being the decision parameter part

of x) and γ is taken as in Eq. 3.6. We are now ready to state and prove our convergence result
with fixed mean and covariance functions. Let us denote by H the reproducing Hilbert space
with kernel k, and write NEB for the No-Empty-Ball defined and discussed in [35] (Definition
3 and Section 4). Theorem 6 of [35] can now be adapted as follows:
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Theorem 3.1.Assume that the covariance function has the NEB property. Then, for all
xinit ∈ X and all ω ∈ H, the sequence (xn(ω))n≥1 generated by the algorithm

(3.8)

{
x1 = xinit
xn+1 = argmaxx∈X ρ

⋆
n(x)

is dense in X.

As noticed in [35] (Remark 5) for the EI criterion, even if there is no guarantee that the
maximizer of ρ⋆n is unique, considering algorithms that choose measurably xn+1 among the
maximizers of ρ⋆n would lead to the same result.

Before proving Theorem 3.1, let us enounce and prove a lemma, analogue of the Lemma
12 of [35], that will play a crucial role in the proof of 3.1. Always following [35], let us denote
ν⋆n = supx∈X ρ

⋆
n(x) where ρ⋆n is the profile EI as recalled in Eq. 3.7, and remark that for all

n ≥ 1, ν⋆n = ρ⋆n(xn+1) = γ(ξ̂n(xn+1)−M⋆
n(xn+1);σ

2
n(xn+1)).

Lemma 3.2.For all ω ∈ H, lim infn→+∞ ν⋆n(ω) = 0.

Proof. For any arbitrary ω ∈ H, set sn = σ2n(xn+1, ω) and z
⋆
n = ξ̂n(xn+1, ω) −M⋆

n(xn+1),
so that ν⋆n(ω) = γ(z⋆n, sn). Let y

⋆ ∈ X be an accumulation point of (xn) and let (xφn) be any
subsequence of (xn) converging to y⋆. We are going to prove not that νφn−1 → 0 as in [35] but
rather that νφψn−1 → 0 for some further extraction (i.e. increasing) function ψ : N → N. We

know from [35] (Proof of lemma 12) that ξ̂φn−1(xφn , ω) −→ ω(y⋆) and that (Mφn−1(ω)) is a
bounded increasing sequence (and so converges) with a limit lower-bounded by ω(y⋆). We will

now prove that the sequence
(
M⋆

φn−1(xφn)
)
=

(
min

(
Mφn−1,maxv∈V ξ̂φn−1((αφn , v), ω)

))
is

bounded. As it is clearly upper-bounded by any upper bound of (Mφn−1(ω)), it suffices to

prove that
(
maxv∈V ξ̂φn−1((αφn , v), ω)

)
is lower-bounded. This last point follows from the fact

that maxv∈V ξ̂φn−1((αφn , v) ≥ ξ̂φn−1(xφn) −→ ω(y⋆).
(
M⋆

φn−1(xφn)
)
being bounded, we can

extract from it a converging subsequence
(
M⋆

φψn−1(xφψn )
)
. Since by continuity, ω(xφψn−1

) −→

ω(y⋆), M⋆
φψn−1(xφψn ) ≥ min

(
ω(xφψn−1

), ξ̂φψn−1
(xφψn )

)
−→ ω(y⋆), and we get that

lim
n→+∞

z⋆φψn−1 = lim
n→+∞

ξ̂φψn−1(xφψn , ω)− lim
n→+∞

M⋆
φψn−1(xφψn ) ≤ 0.

Finally, noting that sφψn−1 → 0 we conclude in a similar way than [35] that

νφψn−1 = γ
(
z⋆φψn−1, sφψn−1

)
→ γ

(
lim

n→+∞
z⋆φψn−1, 0

)
= 0.

which completes the proof of the lemma.

Proof. [Proof of Theorem 3.1] We follow closely again the proof scheme of [35] (Theorem
6), with a slight adaptation due to specificities of PEI. Let us fix ω ∈ H and assume that
(xn(ω)) is not dense in X. Then there exists a point y⋆ ∈ X which is not adherent to (xn(ω)),
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and so by the NEB property infn≥1 σ
2
n(y

⋆, ω) > 0. Besides, by the same argument as in [35],

the sequence (ξ̂n(y
⋆, ω)) is bounded. We now use the fact that the specific γ of Eq. 3.6 is a

decreasing function of the first variable for any fixed positive value of the second one to get
that, for any k ≥ 1, γ(ξ̂k(y

⋆, ω) −M⋆
k (y

⋆, ω), σ2k(y
⋆, ω)) ≥ γ(ξ̂k(y

⋆, ω) −Mk(ω), σ
2
k(y

⋆, ω)) as
M⋆

k ≤Mk(ω) and σ
2
k(y

⋆, ω) > 0. We then obtain that

ρ⋆n(y
⋆, ω) ≥ inf

k≥1
γ
(
ξ̂k(y

⋆, ω)−M⋆
k (y

⋆, ω), σ2k(y
⋆, ω)

)
≥ inf

k≥1
γ
(
ξ̂k(y

⋆, ω)−Mk(ω), σ
2
k(y

⋆, ω)
)
> 0,

which is in contradiction with Lemma 3.2, and hence concludes the proof.

4. Applications, industrial test case in physics.

4.1. Random close packing of granular matter.

4.1.1. General context. Granular materials are large conglomerations of discrete macro-
scopic particles, a few examples include sand, powder, rocks, cereals or pharmaceutical pills.
They play an important role in different industries such as civil engineering, agriculture,
pharmaceutical engineering or energy production. In the framework of nuclear safety, the fuel
pellets after many years in a nuclear reactor develop many cracks because of thermal stresses.
In addition, during an hypothetical nuclear accident, additional fragmentation is postulated to
occur because of the thermal - mechanical response to the transient. The fuel pellets stacked
into tubes-can are thus considered as close-packed granular clusters.

The complex static and flow properties have been extensively studied during the last
decades [10]. In particular, the arrangement of the grains has a significant influence on these
properties. The density, which is the volume fraction filled by the particles, permits to char-
acterize the state of these materials.

The test case deals with the random close packing limiting density. The granular material
is represented here by a configuration of hard spheres subjected to unilateral contacts. In a
monodisperse case, the close packing density in two dimensions is known and is about 0.907
(crystalline arrangements). In the literature, few studies focuses on polydispersity and the
impact on mechanical behaviour. For a polydisperse granular media, the close packing density
is not clear and in particular depends on the random geometry [9, 30]. It is called the random
close packing limiting density and is defined statistically. The probability to obtain an ordered
geometrical configuration as local crystalline arrangement is low. So, the close packing can be
viewed as a maximum of a geometric problem. This state is numerically obtained by assuming
granulars without friction and hydrostic stress on the sample [21, 1].

In this paper, the previous statistical framework is applied to the study of model random
close packing of a bidisperse sample in two dimensions. The contact interactions between
the grains are treated using the Non Smooth Contact Dynamics approach [26, 16]. The
numerical developments have been performed in the framework of the LMGC90 platform [20].
The main asset of LMGC90 is its large range of contact laws already implemented and its
ability to consider more complex surface interactions (as cohesion, wear, etc) without neither
regularization nor penalization schemes.
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4.1.2. Description of the test case. The initial domain is a square randomly filled with
3000 hard disks of radius R1 = 0.1m and R2. The two input parameters are the radius ratio

R1/R2 and the density of large disks
N1 R2

1

N1 R2

1
+N2 R2

2

where N1 (resp. N2) is the number of

spheres of radius R1 (resp. R2 ≤ R1). They are respectively denoted X and W and their
range of variation is respectively [4, 10] and [0.1, 0.9]. Moreover, a pressure stress P = 106Pa
is prescribed on the top and the right faces and the left and bottom faces are blocked (see
Figure 4.1).

Figure 4.1. Random close packing of 3000 hard disks

We focus in this study on a topological optimization problem. More precisely, for any
given ratio X, the goal is to exhibit the corresponding density W leading to the maximum
of the code response. Coming back to Expression (1.2), it can be reformulated as a problem
of reconstruction of profile optimizers where f is the maximal packing fraction, α := X and
v :=W . The computational cost of one simulation is about 4 hours. Therefore, for industrial
studies, an adaptive design of experiment appears to be an approprate alternative to classical
DoE since it is compulsory to reduce as much as possible the number of simulations while
ensuring an accurate reconstruction of the curve of interest. Before considering the DoE
construction, a first step in our analysis consists in estimating the map of profile optimizers
from a large set of simulations. This will then be used to evaluate the capability of the
adaptive DoE obtained by our procedure. All the numerical tests have been performed using
the R statistical software and an application programming interface between LMGC90 and R
developed in Python language thanks to the rPython R package [12]
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4.2. Estimation of the function of profile optimizers. The range of variation associated
with the input parameters is discretized using a full factorial design with 25 (resp. 41) levels in
the α (resp. v) directions. Figure 4.2, left, displays the simulated maximum packing fraction
obtained after kriging on a 200 × 200 regular grid from the original data of this design.
It points out a strong spatial variability due to the random initial configuration of the hard
spheres [9, 30]. From a statistical point of view, the results are non-deterministic and lead to a
perturbated curve of interest. Therefore, a post-processing is applied in order to integrate this
variability in the data modelling by using kriging with homogeneous noise variance (recalled
in Section 2). The noise variance τ2 is assumed constant on the whole domain and has been
estimated to 10−5 using the nugget estimation procedure of the DiceKriging package [31].

The corresponding post-processed maximum packing fraction is depicted on Figure 4.2,
right. As expected, the spatial variability in the reconstructed surface has been reduced,
leading to a simple curve of profile optimizers that reads v⋆f (α) ≈ 0.7 with a very small
dependence on the dispersity ratio α, which is consistent with the literature [11].

Figure 4.2. Maximum packing fraction obtained from a 1025-point full factorial design. The surfaces are
reconstructed by kriging with homogeneous noise on the original data. 25 functions of profile optimizers v⋆zi
and profile optima z⋆i of s = 25 conditional realizations zi, 1 ≤ i ≤ s of a Gaussian random field conditioned on
1025 observations of the test function are also represented.

Since the reference map of profile optimizers and profile optimum function are estimated
after kriging, they are subject to uncertainty. As an example, Figure 4.2 shows these two
quantities obtained from s = 25 realizations zi, 1 ≤ i ≤ s of a Gaussian process conditioned
on 1025 observations. Moreover, the third column of Table 4.1 displays the values of the
associated uncertainty, risk and bias measures computed from 1000 simulations.

4.3. Construction and performance evaluation of the adaptive DoE based on Profile-
EI. We now want to compare the performances of our criterion based on the PEI with other
evaluation strategies like the Integrated Mean Squared Error (IMSE) minimization (see, e.g.,
[29]), the classical Expected Improvement maximization, or pure uniform random sampling.
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A total of 100 random initial design of 20 points are used. They are generated with the
optimumLHS function of the LHS R package. Each strategies is tested on these 100 designs
and the results are averaged. We evaluate sequentially a total of 40 additional points and
compare the results in terms of uncertainty, risk ans bias. To do so, we assume that the
reference map of profile optimizers and profile optimum function are the ones obtained after
having evaluated the function on the full design of 1025 points. An ordinary kriging model
is always used, with a separable Matérn(3/2) covariance kernel. The parameters of this
covariance kernel are estimated, plugged-in and renewed at each iteration using maximum
likelihood estimates.

Table 4.1
Comparison of the decrease of the model uncertainty, risk and bias obtained from different sequential

evaluation strategies.

norm indicator full design initial designs random IMSE EI PEI
(1025 points) (20 points)

L2 Hf⋆ 0.18 0.80 0.56 0.52 0.79 0.39

L2 rf
⋆

0.13 0.93 0.56 0.54 0.90 0.43

L2 bf
⋆

0 0.78 0.40 0.41 0.61 0.32

L2 Hv⋆
f 4.4 35 20 21 32 18

L2 rv
⋆
f 3.1 28 16 17 26 15

L2 bv
⋆
f 0 15.6 7.3 6.8 17.4 7.6

L∞ Hf⋆ 0.16 0.70 0.50 0.46 0.69 0.33

L∞ rf
⋆

0.11 0.86 0.54 0.49 0.91 0.36

L∞ bf
⋆

0 0.67 0.38 0.36 0.57 0.27

L∞ Hv⋆
f 3.3 35 25 26 35 23

L∞ rv
⋆
f 2.4 25 17 19 24 16

L∞ bv
⋆
f 0 13.5 7.5 6.7 17.2 4.5

Many conclusions can be drawn from the results given on Table 4.1. It appears that
the evaluation strategy based on the PEI maximization provides good performances for both
estimating the profile optimizer and profile optimum functions. In particular, PEI clearly
outperforms the other strategies for the estimation of f⋆. However, although the performances
of PEI remain good in terms of estimation of v⋆f , its domination over the are other criteria
is less marked than for f⋆. Similarly to the Expected Improvement - which is more suited to
find the maximum of a function than the maximizer (see, e.g., [36]) - the PEI is more adapted
to find the profile optimum function f⋆ than the profile optimizer. Another important remark
is that the covariance parameters of our Matérn obtained after the 40 sequential evaluations
are not the same for all strategies as they are always re-estimated from the new observations.
This might introduce a bias for our measure of uncertainty, if, e.g. one strategy tends to
evaluate locations leading to a higher range estimate. For completeness, we also provide in
Appendix a replicate of Table 4.1 where the covariance parameters are estimated from the
initial design of experiment of 20 points and not re-estimated afterwards (see, Table A.1). In
this setup, it appears that the performances of all the tested strategies (except the random
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sampling) are slightly worse than previously. However, this does not change the ranking of
the performances and our latter conclusions are unchanged.

Conclusion. We proposed a novel approach for estimating and quantifying uncertainty
on profile optima and optimizers relying on Gaussian random field models. The proposed
approach gave very convincing results on the considered two-dimensional test cases, as it
allowed to efficiently reconstruct the curves of interest in reasonable evaluation budget, and
could additionally quantify the reconstruction error in a sensible way through conditional
simulations. Of course, the relevance of the error quantification relies on the choice and the
estimation of an adequate Gaussian field model. Bootstrapping on covariance parameters [8]
or a full Bayesian approach [3] are possible enhancements, easily adaptable to the presented
methods, for mitigating the risk of model misspecification. Note however that for the final
test case, re-estimating the covariance parameters did not lead to significant differences (See
Section A), so that basing parameter estimation solely on initial evaluations appeared to be
enough for a successful model building.

An infill sampling criterion for sequentially learning the profile optima function was intro-
duced, namely the Profile Expected Improvement (PEI) criterion, that generalizes the popular
Expected Improvement [24, 18] criterion to our specific set-up. PEI partially inherits the ana-
lytical tractability from EI (up to the calculation of the kriging mean’s profile optimum), and
also its consistency properties, as proven in Section 3. Besides, experimental results obtained
on both a toy function from the literature and on a realistic physics case study illustrate that
PEI clearly outperforms standard criteria such as IMSE or EI for the specific task of learning
the curve of profile optima. A good surprise is that PEI performs well also for learning the
curve of profile optimizers, even though it is not directly conceived for it. Significant improve-
ments for learning profile optimizer function might be obtained, e.g. by applying the principles
of Sequential Uncertainty Reduction (SUR) strategies [2] to an uncertainty measure directly
defined on the notion of profile optimizer. From a practical perspective, PEI algorithms may
also be developed further by proposing parallelization schemes, e.g. by simultaneously eval-
uating the objective function for different values of the nuisance variable at each iteration.
Finally, tackling further case studies in higher dimensions (such as the polydisperse sphere
problem with a higher number of different radii) will probably lead to new computational
challenges, be it in terms of conditional simulations or of internal optimizations needed to
calculate curves of profile optima associated with kriging means.
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contribution to preliminary numerical experiments.

Appendix A. Evaluation strategies comparison with no covariance parameters re-
estimation.
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Table A.1
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norm indicator full design initial designs random IMSE EI PEI
(1025 points) (20 points)

L2 Hf⋆ 0.18 0.80 0.56 0.52 0.69 0.39

L2 rf
⋆

0.13 0.93 0.61 0.58 0.79 0.45

L2 bf
⋆

0 0.78 0.46 0.47 0.58 0.36

L2 Hv⋆
f 4.4 35 21 22 25 19

L2 rv
⋆
f 3.1 28 17 17 23 17

L2 bv
⋆
f 0 15.6 8.7 6.9 14.2 9.0

L∞ Hf⋆ 0.16 0.70 0.51 0.46 0.60 0.34

L∞ rf
⋆

0.11 0.86 0.57 0.53 0.75 0.38

L∞ bf
⋆

0 0.67 0.41 0.41 0.54 0.29

L∞ Hv⋆
f 3.3 35 25 28 29 24

L∞ rv
⋆
f 2.4 25 18 20 21 18

L∞ bv
⋆
f 0 13.5 8.6 6.0 12.0 5.6

[1] I. Agnolin and J.N. Roux, Internal states of model isotropic granular packings., Physical Review E, 76
(2007).

[2] J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez, Sequential design of computer exper-
iments for the estimation of a probability of failure, Statistics and Computing, 22(3) (2012), pp. 773–
793.

[3] R. Benassi, Nouvel algorithme doptimisation bayésien utilisant une approche Monte-Carlo séquentielle,
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