Dense long-term motion estimation via Statistical Multi-Step Flow
Pierre-Henri Conze, Philippe Robert, Tomas Crivelli, Luce Morin

To cite this version:

HAL Id: hal-00910831
https://hal.archives-ouvertes.fr/hal-00910831
Submitted on 3 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dense long-term motion estimation via Statistical Multi-Step Flow

Pierre-Henri Conze1,2, Philippe Robert1, Tomáš Crivelli1 and Luce Morin2
1Technicolor, Cesson-Sevigne, France
2INSA Rennes, IETR/UMR 6164, UEB, Rennes, France
\{pierre-henri.conze, philippe.robert, tomas.crivelli\}@technicolor.com, luce.morin@insa-rennes.fr

Keywords: long-term motion estimation, dense point matching, statistical analysis, long-term trajectories, video editing

Abstract: We present statistical multi-step flow, a new approach for dense motion estimation in long video sequences. Towards this goal, we propose a two-step framework including an initial dense motion candidates generation and a new iterative motion refinement stage. The first step performs a combinatorial integration of elementary optical flows combined with a statistical candidate displacement fields selection and focuses especially on reducing motion inconsistency. In the second step, the initial estimates are iteratively refined considering several motion candidates including candidates obtained from neighboring frames. For this refinement task, we introduce a new energy formulation which relies on strong temporal smoothness constraints. Experiments compare the proposed statistical multi-step flow approach to state-of-the-art methods through both quantitative assessment using the Flag benchmark dataset and qualitative assessment in the context of video editing.

1 INTRODUCTION

Dense motion estimation has known significant improvements since early works but deals mainly with matching consecutive frames. Resulting dense motion fields, called optical flows, can straightforwardly be concatenated to describe the trajectories of each pixel along the sequence (Corpetti et al., 2002; Brox and Malik, 2010; Sundaram et al., 2010). However, both estimation and accumulation errors result in dense trajectories which can rapidly diverge and become inconsistent, especially for complex scenes including non-rigid deformations, large motion, zooming, poorly textured areas, illumination changes... Moreover, concatenating motion fields computed between consecutive frames does not allow to recover trajectories after temporary occlusions.

Recent works have contributed to the purpose of dense long-term motion estimation. Multi-frame optical flow formulations (Salgado and Sánchez, 2007; Papadakis et al., 2007; Werlberger et al., 2009; Volz et al., 2011) have been presented but their temporal smoothness constraints are generally limited to a small number of frames. (Sand and Teller, 2008) proposes a sophisticated framework to compute semi-dense trajectories using a particle representation but the full density is not achieved. To overcome these issues, Garg et al. describe in (Garg et al., 2013) a variational approach with subspace constraints to generate trajectories starting from a reference frame in a non-rigid context. They assume that the sequence of displacement of any point can be expressed as a linear combination of a low-rank motion basis. Therefore, trajectories are estimated assuming that they must lie close to this low dimensional subspace which implicitly acts as a long-term regularization. However, strong a-priori assumptions on scene contents must be provided and dense tracking of multiple objects is possible only if the reference frame is segmented.

The alternative concept of multi-step flow (Crivelli et al., 2012b; Crivelli et al., 2012a) focuses on how to construct dense fields of correspondences over extended time periods using multi-step optical flows (optical flows computed between consecutive frames or with larger inter-frame distances). Multi-step flow sequentially merges a set of displacement fields at each intermediate frame, up to the target frame. This set is obtained via concatenation of multi-step optical flows with displacement vectors already computed for neighbouring frames. Multi-step estimations can handle temporary occlusions since they can jump occluding objects. Contrary to (Garg et al., 2013), multi-step flow considers both trajectory estimation between a reference frame and all the images of the sequence (from-the-reference) and motion estimation to match each image to the reference frame (to-the-reference).

Despite its ability to handle both scenarios, multi-step flow has two main drawbacks. First, it performs the selection of displacement fields by relying only on classical optical flow assumptions that can sometimes fail between distant frames. Second, the candidate displacement fields are based on previous estimations. It ensures a certain temporal consistency but can also propagate estimation errors along the following frames of the sequence, until a new available step gives a chance to match with a correct location again.

These limitations can be resolved by extending to the whole sequence the combinatorial multi-step
integration and the statistical selection described in
(Conze et al., 2013) for dense motion estimation be-
tween a pair of distant frames. The underlying idea is
to first consider a large set composed of combinations
of multi-step optical flows and then to study the spa-
tial redundancy of the resulting candidates through a
statistical selection to finally select the best matches.

Toward our goal of dense motion estimation in
long video shots, we present the statistical multi-step
flow two-step framework. First, it extends (Conze
et al., 2013) to generate several initial motion cor-
correspondences between the reference frame and each of
the subsequent images independently. Second, we
propose to provide an accurate final dense matching
by applying a new iterative motion refinement which
involves strong temporal smoothness constraints.

2 STATISTICAL MULTI-STEP
FLOW

Let us consider a sequence of $N + 1$ RGB images
$\{I_n\}_{n \in [0..N]}$ including I_{ref} considered as a reference
frame. In this work, we focus on dense motion es-
timation between the reference frame I_{ref} and each
frame I_n of the sequence and we aim at computing
from-the-reference and to-the-reference displacement
fields. From-the-reference displacement fields link
the reference frame I_{ref} to the other frames I_n and
therefore describe the trajectory of each pixel of I_{ref}
along the sequence. To-the-reference displacement
fields connect each pixel of I_n to locations into I_{ref}.

The proposed statistical multi-step flow performs
two main stages. The generation of several initial
dense motion correspondences for each pair of frames
$\{I_{ref}, I_n\}$ independently is described in Section 2.1.
Section 2.2 presents the iterative motion refinement
through strong temporal consistency constraints.

2.1 Initial motion candidates generation

The goal of the initial motion candidates generation
is to compute for each pixel x_{ref} (resp. x_n) of I_{ref}
(resp. I_n) K candidate positions in I_n (resp. I_{ref}).
Each pair of frames $\{I_{ref}, I_n\}$ is processed independen-
tly. Our explanations focus on the estimation of from-the-
reference displacement fields. In the following, we
describe the input data and recall the baseline method
(Conze et al., 2013) before focusing on how it has
been improved and extended to the whole sequence.

2.1.1 Input optical flows fields

As inputs, our method considers a set of optical flow
fields estimated from each frame of the sequence in-
cluding I_{ref}. These optical flows are previously
estimated between consecutive frames or with larger
steps (Crivelli et al., 2012b), i.e. larger inter-frame
distances. Let $S_n = \{s_1, s_2, \ldots, s_{Q_n}\} \subset \{1, \ldots, N - n\}$
be the set of Q_n possible steps at instant n. The follow-
ing set of optical flow fields starting from I_n is there-
fore available: $\{v_{n,n+s_1}, v_{n,n+s_2}, \ldots, v_{n,n+s_{Q_n}}\}$.

Input optical flow fields are provided with att-
tached occlusion and inconsistency masks. For the
pair $\{I_n, I_{n+s}\}$ with $s \in \{1, \ldots, N - n\}$, the occlusion
mask attached to the optical flow field $v_{n,n+s}$ indicates
the visibility of each pixel of I_n in I_{n+s}. The inconsis-
tency mask attached to $v_{n,n+s}$ distinguishes consistent
and inconsistent optical flow vectors among the ones
starting from pixels marked as visible (Robert et al.,
2012). This feature follows the idea that the backward
flow should be the exact opposite of the forward flow.

2.1.2 Baseline method (Conze et al., 2013)

The combinatorial multi-step integration and the sta-
tistical selection on which we rely on work as follows.

For the current pair $\{I_{ref}, I_n\}$, the combinatorial
multi-step integration consists in first of all consider-
ing all the possible from-the-reference motion paths
which start from each pixel x_{ref}, run through the
sequence and end in I_n. These motion paths are
built by concatenating all the possible sequences of
un-occluded input multi-step optical flow vectors be-
tween I_{ref} and I_n. A reasonable number of N_c motion
paths are then selected through limitations in terms of
number of concatenations N_c and via a guided-
random selection. Each remaining motion path leads
to a candidate position in I_n (Fig. 1 top). Finally, we
obtain a set $T_{ref,n}(x_{ref}) = \{x_{i}^{n} \in [1..K_{x_{ref}}]\}$ of $K_{x_{ref}}$
candidate positions in I_n for each pixel x_{ref} of I_{ref}.
A statistical-based selection stage then selects the optimal candidate position among $T_{\text{ref,n}}(x_{\text{ref}})$. This procedure involves: 1) a statistical criterion which pre-selects a small set of candidates based on spatial density and intrinsic inconsistency values; 2) a global optimization which fuses these candidates to obtain the optimal one while including spatial regularization.

2.1.3 Improvements

The combinatorial multi-step integration and the statistical selection we briefly reviewed has been improved to provide further focus to inconsistency reduction between from/to-the-reference vectors. First, we use only multi-step optical flow vectors considered as consistent according to their inconsistency masks to generate motion paths between I_{ref} and I_n. Second, we introduce an outlier removal step before the statistical selection which orders the candidates of $T_{\text{ref,n}}(x_{\text{ref}})$ with respect to their inconsistency values. A percentage R_0 of bad candidates is removed and the selection is performed on the remaining ones. Third, at the end of the combinatorial integration and the selection procedure between I_{ref} and I_n, the optimal displacement field is incorporated into the processing between I_n and I_{ref} which aims at enforcing the motion consistency between from/to-the-reference fields.

Compared to (Conze et al., 2013), our displacement fields selection procedure combines differently statistical selection and global optimization. For each $x_{\text{ref}} \in I_{\text{ref}}$, we select among $T_{\text{ref,n}}(x_{\text{ref}}) K_{sp} = 2 \times K$ candidates through statistical selection, with $K_{sp} < K_{x_{\text{ref}}}$. Then, we randomly group by pairs these K_{sp} candidates and choose the K best ones $\mathbf{x}_n^k \forall k \in [0, \ldots, K-1]$ by pair-wise fusing them following a global flow fusion approach. Finally, this same global optimization method fuses these K best candidates to obtain an optimal one: x_n^*. In other words, these two last steps give a set of candidate displacement fields $\mathbf{x}_{\text{ref,n}}^k$ and finally $\mathbf{d}_{\text{ref,n}}^*$, the optimal one. For pairs of frames relatively close or in case of temporary occlusions, the statistical selection is not adapted due to the small amount of candidates. Therefore, between $K+1$ and K_{sp} candidates, we use only the global optimization up to obtain the K best ones.

Our approach is applied bi-directionally. An exactly similar processing between I_n and I_{ref} leads to K initial to-the-reference candidate displacement fields.

2.1.4 Extension to the whole sequence

This improved version of the combinatorial integration and the statistical selection of (Conze et al., 2013) processes independently all the pairs $\{I_{\text{ref}}, I_n\}$. Only N_c, the maximum number of concatenations, changes.

The guided-random selection (Conze et al., 2013) which selects for each pair of frames $\{I_{\text{ref}}, I_n\}$ one part of all the possible motion paths limits the correlation between candidates respectively estimated for neighbouring frames. This avoids the situation in which a single estimation error is propagated and therefore badly influences the whole trajectory. The example Fig. 1 shows the motion paths selected by the guided-random selection for pairs $\{I_{\text{ref}}, I_n\}$ and $\{I_{\text{ref}}, I_{n+1}\}$. We notice that motion paths between I_{ref} and I_{n+1} are not highly correlated with those between I_{ref} and I_n. Indeed, the sets of optical flow vectors involved in both cases are not the same except for $v_{\text{ref},n+1}$ and $v_{\text{ref},n-1}$ which are then concatenated with different vectors. v_{n-2} contributes for both cases but the considered vectors do not start from the same position. These considerations about the statistical independence of the resulting displacement fields are not addressed by existing methods for which a strong temporal correlation is inescapable.

2.2 Iterative motion refinement

The previous stage guarantees a low correlation between the initial motion candidates respectively estimated for pairs $\{I_{\text{ref}}, I_n\}$. Without losing this key characteristic, this second stage aims at iteratively refining the initial estimates while enforcing the temporal smoothness along the sequence.

We propose to question the matching between each pixel x_{ref} (resp. x_n) of I_{ref} (resp. I_n) and the
selected position \(x^*_n \) (resp. \(x^* \)) in \(I_n \) (resp. \(I_{ref} \)) established during the previous iteration (or the initial motion candidates generation stage if the current iteration is the first one). For this task, we generate several competing candidates which are compared to \(x^*_n \) (resp. \(x^* \)) through a global optimization approach.

2.2.1 Competing candidates

The competing candidates used to question \(x^*_n \) (resp. \(x^* \)) are illustrated in Fig. 2 and deals with:

- the \(K \) initial candidate positions \(X^*_n \) (resp. \(X^* \)) ∀\(k \in \{0, \ldots, K - 1\} \) (obtained Section 2.1),
- a candidate position coming from the previous estimation of \(d^*_n,ref \) (resp. \(d^*_{ref,n} \)) which is inverted to obtain \(x^*_n \) (resp. \(x^* \)), as illustrated in Fig. 2.
- candidates from neighbouring frames to enforce temporal smoothing. Let \(W \) be the temporal window of width \(w \) centered around \(I_n \). Between \(I_{ref} \) and \(I_n \), we use the optical flow fields \(v_{m,n} \) between \(I_m \) and \(I_n \) with \(m \in \{n - \frac{w}{2}, \ldots, n + \frac{w}{2}\} \) and \(m \neq n \) to obtain from \(x^*_m \) in \(I_m \) the new candidate \(x^*_n \) in \(I_n \).

2.2.2 Global optimization approach

We perform a global optimization method in order to fuse the previously described competing candidates into a single optimal displacement field.

In the from-the-reference case, we introduce \(L = \{I_{ref}\} \) as a labeling of pixels \(x_{ref} \) where each label indicates \(l_{ref} \), one of the candidates listed above. Let \(d^*_{ref,n} \), the corresponding motion vector. We define the energy in Eq. (2) and minimize it with respect to \(L \) using fusion moves (Lempitsky et al., 2010):

\[
E_{ref,n}(L) = E^d_{ref,n}(L) + E^r_{ref,n}(L) = \sum_{x_{ref}} \rho_d(v^d_{ref,n}(x_{ref})) + \sum_{x_{ref},y_{ref}} \alpha_{x_{ref},y_{ref}} \rho_r(\left\| d^*_{ref,n}(x_{ref}) - d^*_{ref,n}(y_{ref}) \right\|_1) \tag{2}
\]

The data term \(E^d_{ref,n} \), described with more details in Eq. (3), involves both matching cost and inconsistency value with respect to \(d^*_{ref,n} \) (Conze et al., 2013). In addition, we propose to introduce strong temporal smoothness constraints into the energy formulation:

\[
E^r_{ref,n} = C(x_{ref}, d^*_{ref,n}(x_{ref})) + \text{Inc}(x_{ref}, d^*_{ref,n}(x_{ref}))
+ \sum_{m=m-n}^{m+n} \sum_{\frac{w}{2} \neq m} C(x_m^{l_{ref}}, x_m - x^*_{ref}) + ed_{m,n} + ed_{n,m} \tag{3}
\]

The temporal smoothness constraints translate into three new terms which are computed with respect to each neighbouring candidate \(x^*_m \) defined for the frames inside the temporal window \(W \). These terms are illustrated in Fig. 3 and deal more precisely with:

- the matching cost between \(x^*_{ref} \) in \(I_n \) and \(x^*_m \) of \(I_m \).
- the euclidean distance \(ed_{m,n} \) between \(x^*_m \) and the ending point of the optical flow \(v_{m,n} \), starting from \(x^*_m \) (see Eq. (4)). \(ed_{m,n} \) encourages the selection of \(x^*_m \), the candidate coming from \(I_m \) via the optical flow field \(v_{m,n} \) and therefore tends to strengthen the temporal smoothness. Indeed, for \(x^*_m \), the euclidean distance \(ed_{m,n} \) is equal to 0.

\[
ed_{m,n} = \left\| (x_{ref} + d^*_{ref,n}(x_{ref}) - (x_{ref} + d^*_{ref,m} + v_{m,n}) \right\|_2 \tag{4}
\]

- the euclidean distance \(ed_{n,m} \) between \(x^*_m \) and the ending point of the optical flow vector \(v_{n,m} \) starting from \(x^*_m \) (see Eq. (5)). If \(v_{m,n} \) is consistent, i.e. \(v_{m,n} = -v_{n,m} \), \(ed_{n,m} \) is approximately equal to 0 for \(x^*_m \), the candidate coming from \(I_m \) whose selection is again promoted.

\[
ed_{n,m} = \left\| (x_{ref} + d^*_{ref,m}(x_{ref}) - (x_{ref} + d^*_{ref,n} + v_{m,n}) \right\|_2 \tag{5}
\]

The regularization term \(E^r_{ref,n} \) involves motion similarities with neighboring positions, as shown in Eq. (2). \(\alpha_{x_{ref},y_{ref}} \) accounts for local color similarities in the reference frame \(I_{ref} \). The robust functions \(\rho_d \) and \(\rho_r \) are respectively the negative log of a Student-t distribution and the Geman-McClure function.

The refinement of to-the-reference displacement fields with our approach is straightforward except that the data term involves neither the matching cost between the current candidate and the temporal neighbouring one nor the euclidean distance \(ed_{m,n} \) due to trajectories which can not be handled in this direction.

The global optimization method fuses the displacement fields by pairs and finally chooses to update or not the previous estimations with one of the
previously described candidates. The motion refinement phase consists in applying this technique for each pair of frames \([I_{ref}, I_n]\) in from-the-reference and to-the-reference directions. The pairs \([I_{ref}, I_n]\) are processed in a random order in order to encourage temporal smoothness without introducing a sequential correlation between the resulting displacement fields.

This motion refinement phase is repeated iteratively \(N_t\) times where one iteration corresponds to the processing of all the pairs \([I_{ref}, I_n]\). The proposed statistical multi-step flow is done once the initial motion candidates generation and the \(N_t\) iterations of motion refinement have been performed.

3 EXPERIMENTS

Our experiments focus on the following sequences: MPI S1 (Granados et al., 2012) Fig.4 and 6a-h, Hope Fig.6i-p, Newspaper Fig.6q-t, Walking Couple Fig.7 and Flag (Garg et al., 2013) Fig.8. The proposed statistical multi-step flow is referred to as StatFlow in the following. For the experiments, the following parameters have been used: \(N_c = 7, N_q = 100, R_{ag} = 50\%, K = 3, \alpha_0 = 3, \alpha_1 = 15, w = 5\). The set of steps and input optical flow estimators will be specified for each experiment and each sequence.

Experiments have been conducted as follows. In Section 3.1, we evaluate the performance of our extended version of the combinatorial integration and the statistical selection (Conze et al., 2013) through registration and PSNR assessment. The effects of the iterative motion refinement are also studied. Then, we compare StatFlow to state-of-the-art methods through quantitative assessment using the Flag dataset (Garg et al., 2013) (Section 3.2) and qualitative assessment via texture propagation and tracking (Section 3.3).

3.1 Registration and PSNR assessment

The first experiment aims at showing how the improvements we made with respect to (Conze et al., 2013) impacts the quality of the displacement fields. We focus on frames pairs taken from MPI S1 and Newspaper (NP). The sets of steps are \(1, 5, 10\) (NP), \(15\) (MPI S1), \(20\) (NP) and \(30\) (NP). The algorithms are performed taking input multi-step optical flows computed with a 2D version of the disparity estimator described in (Robert et al., 2012), referred to as 2D-DE.

We compare the optimal displacement fields obtained in output of our initial motion estimates generation (Section 2.1) with those resulting from (Conze et al., 2013). The comparison is done through registration and PSNR assessment. For a given pair \([I_{ref}, I_n]\), the final fields are used to reconstruct \(I_{ref}\) from \(I_n\) through motion compensation and color

<table>
<thead>
<tr>
<th>Frame pairs</th>
<th>(Conze et al., 2013)</th>
<th>21.83</th>
<th>24.98</th>
<th>25.56</th>
<th>25.83</th>
</tr>
</thead>
<tbody>
<tr>
<td>StatFlow initial phase</td>
<td>29.02</td>
<td>28.4</td>
<td>27.27</td>
<td>27.23</td>
<td></td>
</tr>
<tr>
<td>Frame pairs</td>
<td>(Conze et al., 2013)</td>
<td>25.04</td>
<td>24.83</td>
<td>24.48</td>
<td>24.3</td>
</tr>
<tr>
<td>StatFlow initial phase</td>
<td>26.84</td>
<td>26.33</td>
<td>26.1</td>
<td>25.69</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Registration and PSNR assessment with the combinatorial integration and the statistical selection introduced in (Conze et al., 2013) and the proposed extended version described in Section 2.1 (initial phase of StatFlow). PSNR scores are computed on the kiosk of MPI S1 (Fig. 4).

<table>
<thead>
<tr>
<th>Frame pairs</th>
<th>(Conze et al., 2013)</th>
<th>160.180</th>
<th>160.190</th>
<th>160.200</th>
</tr>
</thead>
<tbody>
<tr>
<td>StatFlow initial phase</td>
<td>22.70</td>
<td>21.39</td>
<td>19.28</td>
<td></td>
</tr>
<tr>
<td>StatFlow</td>
<td>22.93</td>
<td>22.18</td>
<td>20.25</td>
<td></td>
</tr>
<tr>
<td>Frame pairs</td>
<td>(Conze et al., 2013)</td>
<td>160.210</td>
<td>160.220</td>
<td>160.230</td>
</tr>
<tr>
<td>StatFlow initial phase</td>
<td>17.12</td>
<td>15.87</td>
<td>15.76</td>
<td></td>
</tr>
<tr>
<td>StatFlow</td>
<td>18.21</td>
<td>17.12</td>
<td>16.58</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Registration and PSNR assessment with: 1) combinatorial integration and statistical selection introduced in (Conze et al., 2013), 2) proposed extended version (StatFlow init. phase), 3) whole StatFlow method. PSNR scores are computed on whole images of Newspaper (Fig.6q-t).

PSNR scores are computed between \(I_{ref}\) and the registered frame for non-occluded pixels.

 Tables 1 and 2 show the PSNR scores for various distances between \(I_{ref}\) and \(I_n\) respectively on the kiosk of MPI S1 (Fig.4) and on whole images of Newspaper (Fig.6q-t). Results on MPI S1 show that the initial phase of StatFlow outperforms the combinatorial integration and the statistical selection of (Conze et al., 2013) for all pairs. An example of registration on the kiosk for a distance of 20 frames is given Fig.4. Multi-step estimations deal satisfactorily with the temporary occlusion. Experiments on Newspaper reveal the same finding: the novelty in terms of inconsistency reduction improves the displacement fields quality. Moreover, the iterative motion refinement stage \((N_t = 9)\) allows to obtain better PSNR scores for all pairs compared to the initial stage of StatFlow.

3.2 Comparisons with Flag dataset

Quantitative results have been obtained using the dense ground-truth optical flow data provided by the Flag dataset (Garg et al., 2013) for the Flag sequence (Fig. 8). Experiments focus on:

- direct estimation between each pair \([I_{ref}, I_n]\) using LDOF (Brox and Malik, 2011), ITV-L1 (Wedel et al., 2009) and the keypoint-based non-rigid registration of (Pizarro and Bartoli, 2012),
- concatenation of optical flows computed between consecutive frames using LDOF (LDOF acc),
For the comparison task, Tab. 3 gives for all the previously described methods the RMS (root mean square) endpoint errors between the respective obtained displacement fields and the ground-truth data. RMS errors are estimated for all the foreground pixels and for all the pairs of frames \(\{I_{ref}, I_n\} \) together. RMS errors computed for each pair of frames are shown in Fig.5 for all the methods based on LDOF: LDOF direct, LDOF acc, MSF (LDOF) and StatFlow (LDOF). The last two multi-step strategies have considered as inputs steps 1 – 5, 8, 10, 15, 20, 25, 30, 40 and 50.

We can firstly observe that LDOF acc rapidly diverge. This is due to both estimation errors which are propagated along trajectories and accumulation errors inherent to the interpolation process. Moreover, the results obtained through direct motion estimation are reasonably good, especially for (Pizarro and Bartoli, 2012). LDOF direct gives a lower RMS endpoint error than LDOF acc (1.74 against 4). However, it is not possible to draw conclusions in the light of the Flag sequence because the flag comes back approximately to its initial position at the end of the sequence (Fig.8a,d). Motion estimation for complex scenes cannot generally rely only on direct estimation and combining optical flow accumulations and direct matching is clearly a more suitable strategy.

Table 3: RMS endpoint errors for different methods on the Flag benchmark dataset (Garg et al., 2013)

<table>
<thead>
<tr>
<th>Method</th>
<th>RMS endpoint error (pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>StatFlow (LDOF)</td>
<td>0.69</td>
</tr>
<tr>
<td>MSF (Crivelli et al., 2012a)</td>
<td>1.41</td>
</tr>
<tr>
<td>LDOF direct (Brox and Malik, 2011)</td>
<td>1.74</td>
</tr>
<tr>
<td>LDOF acc (Brox and Malik, 2011)</td>
<td>4</td>
</tr>
<tr>
<td>MFSF-PCA (Garg et al., 2013)</td>
<td>0.69</td>
</tr>
<tr>
<td>MFSF-DCT (Garg et al., 2013)</td>
<td>0.80</td>
</tr>
<tr>
<td>(Pizarro and Bartoli, 2012) direct</td>
<td>1.24</td>
</tr>
<tr>
<td>ITV-LI direct (Wedel et al., 2009)</td>
<td>1.43</td>
</tr>
</tbody>
</table>

- **multi-frame subspace flow (MFSF)** (Garg et al., 2013) using PCA or DCT basis,
- **multi-step flow fusion (MSF)** (Crivelli et al., 2012a) with LDOF multi-step optical flows,
- **StatFlow** \((N_t = 3)\) with LDOF optical flows.

For the comparison task, Tab. 3 gives for all the previously described methods the RMS (root mean square) endpoint errors between the respective obtained displacement fields and the ground-truth data. RMS errors are estimated for all the foreground pixels and for all the pairs of frames \(\{I_{ref}, I_n\} \) together. RMS errors computed for each pair of frames are shown in Fig.5 for all the methods based on LDOF: LDOF direct, LDOF acc, MSF (LDOF) and StatFlow (LDOF). The last two multi-step strategies have considered as inputs steps 1 – 5, 8, 10, 15, 20, 25, 30, 40 and 50.

We can firstly observe that LDOF acc rapidly diverge. This is due to both estimation errors which are propagated along trajectories and accumulation errors inherent to the interpolation process. Moreover, the results obtained through direct motion estimation are reasonably good, especially for (Pizarro and Bartoli, 2012). LDOF direct gives a lower RMS endpoint error than LDOF acc (1.74 against 4). However, it is not possible to draw conclusions in the light of the Flag sequence because the flag comes back approximately to its initial position at the end of the sequence (Fig.8a,d). Motion estimation for complex scenes cannot generally rely only on direct estimation and combining optical flow accumulations and direct matching is clearly a more suitable strategy.

3.3 Texture propagation and tracking

We aim now at showing that our method provides satisfying results in a wide set of complex scenes. Moreover, we focus on the comparison between StatFlow \((N_t = 9)\) and MSF (Crivelli et al., 2012a) to prove that StatFlow performs a more efficient integration and selection procedure compared to MSF using the same optical flows as inputs. Experiments have been firstly conducted in the context of video editing: we evaluate the accuracy of both methods by motion compensating in \(I_n \) \(\forall n\) textures/logos manually inserted in \(I_{ref} \). In Fig. 6 and 7, textures/logos have been respectively inserted in \(I_{115} \) of MPI S1, \(I_{5036} \) of Hope, \(I_{1230} \) of Newspaper and \(I_0 \) of Walking Couple. To-the-reference fields computed with StatFlow (2D-DE) and MSF (2D-DE) serve to propagate textures/logos up to respectively \(I_{137} \), \(I_{5063} \), \(I_{170} \) and \(I_{40} \). 2D-DE has been
Figure 6: Texture/logo insertion in I_{115} (resp. I_{5036} and I_{230}) and propagation along the MPI-S1 (resp. Hope and Newspaper) sequence up to I_{137} (resp. I_{5063} and I_{170}) using: 1) multi-step flow fusion (MSF) (Crivelli et al., 2012a) with multi-step optical flow fields from (Robert et al., 2012) (2D-DE): MSF(2D-DE); 2) the proposed statistical multi-step flow (StatFlow) with 2D-DE multi-step optical flow fields: StatFlow (2D-DE).
Figure 7: Texture insertion in I_0 and propagation up to I_{40} (Walking Couple sequence). We compare: d-f) concatenation of LDOF (Brox and Malik, 2011) optical flow fields computed between consecutive frames ($LDOF \text{ acc}$); g-i) multi-step flow fusion (MSF) (Crivelli et al., 2012a) using multi-step optical flow fields from (Robert et al., 2012) ($2D-DE$); j-l) the proposed statistical multi-step flow (StatFlow) using $2D-DE$ multi-step optical flow fields.

Figure 8: Source frames of the Flag sequence (Garg et al., 2013).

Figure 9: Point tracking from I_{115} up to I_{138}, MPI-S1 sequence (Granados et al., 2012). We compare: b) multi-step flow fusion (MSF) (Crivelli et al., 2012a) using multi-step optical flow fields from (Robert et al., 2012) ($2D-DE$); c) the proposed statistical multi-step flow (StatFlow) method using $2D-DE$ multi-step optical flow fields.
chosen for its good results for video editing tasks. The steps involved are: 1 – 5.8 (Hope), 10, 15 (except for NP), 20 (Hope, NP), 30 (MPI S1, NP).

Given these results, it appears that MSF sometimes distorts structures (bottom left zoom Fig.6c-e, Fig.6.m), makes shadow textures appear (bottom right zoom Fig.6c-e) and does not estimate motion with accuracy (top right zoom Fig.6.e, Fig.6.m). Visual results with StatFlow reveal a better long-term propagation (see also Fig.6r-t). Fig.7 compares StatFlow(2D-DE) and MSF(2D-DE) with LDOF acc. We observe that LDOF acc badly performs motion estimation for periodic structures. MSF encounters also matching issues (Fig.7h) whereas StatFlow performs propagation without any visible artifacts.

Finally, StatFlow and MSF are assessed through point tracking. In Fig. 9, the bottom right part of the woman face is tracked from truth data and qualitative assessment via texture propagation through quantitative assessment using dense ground-truth data and qualitative assessment via texture propagation and tracking for a wide set of complex scenes.

4 CONCLUSION

We present statistical multi-step flow, a two-step framework which performs dense long-term motion estimation. Our method starts by generating initial dense correspondences with a focus on inconsistency reduction. For this task, we perform a combinatorial integration of consistent optical flows followed by an efficient statistical selection. This procedure is applied independently between a reference frame and each frame of the sequence. It guarantees a low temporal correlation between the resulting correspondences respectively estimated for each of these pairs. We propose then to enforce temporal smoothness through a new iterative motion refinement. It considers several motion candidates including candidates from neighboring frames and involves a new energy formulation with temporal smoothness constraints. Experiments evaluate the effectiveness of our approach compared to state-of-the-art methods through quantitative assessment using dense ground-truth data and qualitative assessment via texture propagation and tracking for a wide set of complex scenes.

REFERENCES

