Retrieval of Forest Stand Age From SAR Image Texture for Varying Distance and Orientation Values of the Gray Level Co-Occurrence Matrix
Isabelle Champion, Christian Germain, Jean-Pierre Da Costa, Arnaud Alborini, Pascale Dubois-Fernandez

To cite this version:

HAL Id: hal-00903994
https://hal.archives-ouvertes.fr/hal-00903994
Submitted on 13 Nov 2013
Retrieval of Forest Stand Age From SAR Image Texture for Varying Distance and Orientation Values of the Gray Level Co-Occurrence Matrix

Isabelle Champion, Christian Germain, Jean Pierre Da Costa, Arnaud Alborini, and Pascale Dubois-Fernandez

Abstract—Data on forest variables (e.g., biomass, trunk height, density) are necessary for environmental and forest management applications. It has been shown that texture can be used instead of the usual σ/age relationships at P-band to retrieve plantation forest parameters, but the analysis of σ, spatial characteristics has not been fully explored. The aim of this letter is to investigate the relationships between stand age (which is correlated to forest variables) and texture descriptors calculated from statistics generated by the gray-level co-occurrence matrix for varying distance d, and orientation α, values used to calculate the matrix. Synthetic aperture radar images are P-band airborne data acquired by the ONERA RAMSES instrument over a controlled homogeneous test site located in the Landes region, France. It is found that texture descriptors contrast, inverse difference moment, homogeneity, and correlation are strongly influenced by the parameters (d, α) related to forest stand structure (forest rows, stand density) and image resolution. In contrast, energy and entropy are observed to be highly correlated to stand age and displayed a stable performance whatever the distance and orientation parameters (d, α), thus rendering them a good contender as an alternative to the usual σ, based relationships applied to this type of forest.

Index Terms—Biomass, forestry, image texture analysis, radar applications, remote sensing, synthetic aperture radar (SAR).

I. INTRODUCTION

Interest in the world’s forests has risen to unprecedented heights, especially with increasing awareness of their role in the global carbon cycle and the necessity to regularly quantify carbon stocks as inferred from tree biomass. Synthetic aperture radar (SAR) systems have demonstrated their potential for discriminating biomass volumes in young to mature stands, especially at low frequencies, e.g., the L- or P-bands.

When such systems are not available, studies have shown that the spatial distribution of gray levels within an SAR image can also help in characterizing vegetation cover. During recent decades, texture features have been widely used in the field of image processing for forestry applications to improve land use classifications for various types of forests: temperate [7], boreal [8], [9], or naturally regenerating tropical forest [10], [11]. However, few studies have explored SAR image texture to directly infer age or related forest parameters (trunk diameter or biomass), as is generally done with σ/age relationships.

In the case of a temperate, even-aged, cultivated pine forest, it has been shown that significant relationships can be established between texture features and forest stand age [12] or aboveground biomass [13]. This suggests that texture could be used rather than the usual σ/age relationships, even for such mature stands where the highest biomass values reach around 140 t.ha−1.

These studies explored texture features derived from the statistics of pixel pairs captured in the gray-level co-occurrence matrix (GLCM) [14] computed for space shifts (d, α), where d is the distance between the pixels and α is the orientation of the translation vector defining the pixel pair.

The objective of this letter is therefore to evaluate the relationships between texture descriptors and forest stand age for different values of (d, α). After describing the dataset (Section II), the impacts of (d, α) values are analyzed (Section III) in terms of the spatial structures likely to produce image texture: forest row orientation, forest density, and image resolution.

Digital Object Identifier 10.1109/LGRS.2013.2244060

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 1, JANUARY 2014
II. MATERIALS AND METHODS

A. Radar Images

The SAR data analyzed are high resolution, complex polarimetric images acquired on January 21, 2004 using the airborne ONERA system [15] operating at P band (0.427 GHz). The weather was damp during the period preceding the flight, with rain on the previous days and a wind from west-north–west. On the day of measurement, it was cloudy with some bright intervals in the afternoon.

Single-look SAR data incidence angle varies within an image from 10° in the near range to 60° in the far range. Only stands lying within the incidence angle range of 20° to 40° were selected for the study. However, as illumination geometry could be responsible for some texture variations, an analysis of variance was performed [12] and showed that the image incidence angle does not significantly influence texture features.

Under the SAR system, each data set refers to single-look complex images with cross (HV) and parallel polarizations (HH, VV) where the two letters indicate the polarization of both the transmit antenna and receiving antenna, with H being horizontal and V vertical. Pixels are $3.21 \times 2.46 \text{m}^2$, where 2.46 m is the radial projected resolution (at -3dB) and 3.21 m the projected azimuth resolution [15]. In order to correct the complex radar cross section values (RCS values m^2) for the incident angle, RCS imaginary and real parts (Im and Re) were transformed into σ_0 values as a function of the incidence angle θ, as shown in

$$
\sigma_0 = 10 \log \left(\frac{\text{Im}^2 + \text{Re}^2}{A} \right) \sin(\theta)/A \tag{1}
$$

where θ is a function of the sensor height and the pixel distance in the range direction and A is the resolution surface, i.e., the slant range resolution times the azimuth resolution.

Finally, the σ_0 images were transformed into intensity values of between 0 and 1 to enable comparisons between images and to calculate the gray-level co-occurrence matrix.

B. Ground Dataset

The INRA Nezer experimental test site is located in the northern part of the Landes forest in France. It contains well-defined planted stands of maritime pines (*Pinus pinaster*) (Ait.), which all receive identical sylvicultural treatments. Ranging from seedlings to mature trees, the pine trees are sown or planted in rows with 4-m spacing over a nearly flat surface. Each stand is rectangular in shape, delimited by fire protection clearings or access tracks, and covers about 25 ha. The stand ages are all known [12].

Within stands representing all ages, homogeneous patches—squares of equal size—were carefully selected using aerial photos from the French Geographical Institute (Institut Géographique National [IGN]) in order to eliminate any disturbances resulting from localized damages, such as windstorms or fire. The sampling had to cover a range of stand ages from 2 to 51 years old age to be representative of the forest. The patches needed to be large enough to capture spatial variations linked to crown growth and stand structure modifications over the years. In accordance with all these requirements, a sample of 16 homogeneous square patches with an area of 60×60 pixels is therefore selected (Fig. 1). The upper limit of the patch size is defined by the largest homogeneous zone within the oldest stands, most of these having been reduced in size by the Martin windstorm in December 1999.

C. Calculation of Texture Descriptors

The probability distribution of backscattering coefficients is determined by superposing scene radiometric and textural information along with speckle noise, the latter generally being considered a random process statistically independent of the textural variations associated with spatial variations in the scattering properties of visually uniform distributed targets [16]. As a result, image texture consists of two-layered information, involving tonal primitives of the image and their spatial organization [16].

In order to capture distribution modifications of the backscattering coefficient with stand age, we used texture descriptors for this study that were derived from GLCM. A GLCM represents the statistical dependence between two pixel pairs $(p_{ij}, p_{k+1,j+1})$, where i and j are the line and column numbers in the image, l and m are the distance between lines and columns from one pixel to the other. $(p_{ij}, p_{k+1,j+1})$ is defined by the same relative position: (l, m) in Cartesian coordinates or (d, a) in polar coordinates.

In short, a GLCM is a bidimensional histogram of the pixel pair gray levels from which various descriptors can be computed [14]. Six of these are explored for our purposes: energy (or uniformity), contrast, inverse difference moment (IDM), homogeneity, correlation, and entropy. These descriptors would capture the spatial dependence of pixel intensities, thus providing information about forest structures.

In order to compute the GLCM, the gray-tone image is quantified into 2^d levels with n usually varying from 3 to 6. In this letter, intensity images were quantified into $n = 32$ levels, which was a tradeoff between information and calculation time.

In general, only small distances and a few angles are considered, typically $d \in \{1,2\}$ and $a \in \{0°, 45°\}$. GLCMs...
III. RESULTS AND DISCUSSION

A. Variation of the Angle α

It can be seen from Fig. 2 that energy and entropy behaved similarly with regard to direction α, as well as IDM and homogeneity. Contrast and correlation behaved differently from the other descriptors. In particular, correlation varied considerably with α relative to tree row width and orientation.

Table I shows the strength of the relationships between texture descriptors and stand age for various α for $d = 1$ at HH, VV and HV polarizations. R^2 values were generally lower for the VV polarization. HH and HV displayed similar variations except for contrast, where HH was slightly better than HV. The linear regressions between energy and stand age, and between entropy and stand age, were highly significant, with p-values < 0.0001, whatever the polarization and direction α considered in the GLCM calculation. On the other hand, contrast, homogeneity, and IDM R^2 values varied with α, especially regarding the correlation for which regression with stand age produced R^2 values up to 0.5 for $\alpha = 0^\circ$, and which decreased drastically when $\alpha = 90^\circ$.

Contrast, homogeneity, IDM, and correlation were therefore strongly influenced by the direction of the pixel pairs defined by α, which were accounted for in the GLCM calculation. The tracking direction of the airborne SAR was oriented perpendicular to the tree rows, which were themselves aligned to the image lines (range direction). Parameters $d = 1$, $\alpha = 0^\circ$ concerned pixel pairs oriented along the tree rows, while parameters $d = 1$, $\alpha = 90^\circ$ involved pixel pairs oriented across the rows. It appears that some texture indicators extracted from the GLCM, i.e., correlation, IDM, contrast and, to a lesser extent, homogeneity were markedly impacted by tree rows.

B. Variation of the Distance d

When d increased from 1 to 15, it can be seen from Fig. 3 that energy and entropy showed quite significant and stable regressions (R^2 between 0.7 and 0.8) whatever the distance d in the GLCM calculation. However, R^2 was strongly impacted by the d values for contrast, IDM, homogeneity, and correlation. It displayed regular variations of over 3 or 4 pixels along ($\alpha = 0^\circ$) or across the rows ($\alpha = 90^\circ$), especially for IDM and homogeneity.
The variations in regression quality observed in Fig. 3 were probably related to a combination of stand structure (tree size, row size, stand density) and image resolution. Image resolution was 3.21 m in the east–west line (α = 0°) along the rows. Radial image resolution was 2.46 m along the image columns (α = 90°), i.e., across the tree rows in the north–south direction.

Consequently, across the rows, regular variations of R^2 were observed for IDM, homogeneity and contrast over a distance of about 8 to 10 m, which was a multiple of the row width for younger stands with well-marked rows.

Along the rows, a space of 14 pixels was equivalent to approximately five or six tree crowns for mature stands with the highest backscattering coefficients. Stands older than 25 years had a density ranging from about 300 tree ha$^{-1}$ down to less than 200 tree ha$^{-1}$, i.e., about one tree for every two or three pixels in the azimuth direction provided that the thinning pattern was regular.

Finally, the best regressions was observed for energy or entropy that could then be used as regressands (Fig. 4) to predict stand age. For this example ($d = 1$, isotropic, polarization HV), stand age could be retrieved with an uncertainty of less than six years when using these texture descriptors.

IV. Conclusion

Texture descriptors, namely, GLCM were computed on an SAR P band image of the Landes pine forest, at cross and parallel polarizations. Various pixel pair configurations were considered for calculation of the GLCM, i.e., the relative
orientation (α) and distance (d) separating the two pixels. The results showed that energy and entropy were highly correlated with stand age. For both indicators, texture/stand age regressions were not markedly impacted by the method used to calculate the GLCM and regressions did not reveal any marked optimum or minimum for distance d or direction α that would enhance or reduce regression quality. Finally, no matter how the co-occurrence matrices were calculated, stand age varied linearly as a function of energy or entropy, with confidence levels superior to 95%, and could be retrieved with an error lower than six years. Energy, and, particularly entropy, was therefore shown to be good candidates for the remote sensing of forest age using SAR images.

However, contrast, IDM, homogeneity, and correlation were strongly influenced by α direction and increasing mesh size (pixels separated by 1 to 15 pixels). These results could be related to image resolution and forest stand structure and architecture (crown size, thinning patterns, row width, direction, etc.). The sensitivity of contrast, IDM, homogeneity, and correlation could now be explored as a function of stand structure, with further analyses on separate stands and by applying other analytical methods (Fourier transform, wavelet transform, etc.) to extract stand density and structure from image textures.

ACKNOWLEDGMENT

The authors would like to thank the RAMSES Team and the INRA Ground Team for this dataset. Data acquisitions were made possible by the French Procurement Agency (CNES).

REFERENCES

