Ecopathology in aquaculture: risk factors in infectious disease outbreak
C Ortega, Jl Múzquiz, J Docando, E Planas, Jl Alonso, Mc Simón

To cite this version:

HAL Id: hal-00902306
https://hal.archives-ouvertes.fr/hal-00902306
Submitted on 1 Jan 1995

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Ecopathology in aquaculture: risk factors in infectious disease outbreak *

C Ortega **, JL Múzquiz, J Docando, E Planas, JL Alonso, MC Simón

Patología Infecciosa y Epidemiología, Departamento de Patología Animal, Facultad de Veterinaria, Miguel Servet, 177, 50013 Zaragoza, Spain

(Received 24 June1994; accepted 30 September 1994)

Summary — This paper describes a study of the risk factors associated with disease outbreaks in fish species of fish farms and rivers of north-east Spain. We focused our work on the isolation of fish pathogens (bacteria, virus), the water quality (physicochemical and microbiological quality) and management characteristics. We have observed 2 important viral diseases, infectious pancreatic necrosis and spring viraemia of carp, and 2 important bacterial ones, furunculosis (Aeromonas salmonicida) and bacterial kidney disease (BKD) (Renibacterium salmoninarum). Our preliminary results show that there are some potential risk factors associated with the main diseases of fish, such as fish age, fish species, production system, season and water temperature, but their role depends on the disease.

aquaculture / ecopathology / risk factor / fish / pathogen / environment

Résumé — Écopathologie en aquaculture. Facteurs de risque des maladies infectieuses. Les facteurs de risque associés à l’apparition de maladies chez les espèces de poissons d’élevage ou sauvages dans le nord-est de l’Espagne ont été étudiés. Les agents pathogènes (bactéries, virus) ont été isolés à partir des poissons, la qualité physico-chimique de l’eau et le type d’exploitation ont été aussi étudiés. Nous avons observé la présence de 2 maladies virales importantes, la nécrose pancréatique infectieuse et la virémie printanière de la carpe, et 2 maladies bactériennes importantes, la furonculose (Aeromonas salmonicida) et la rénibactériose (Renibacterium salmoninarum). Les résultats préliminaires sur l’étude des facteurs de risque ont montré une association entre quelques facteurs et les principales

* This article describes work presented during the International Symposium on Ecopathology and Animal Health Management (18–20 October, 1993) the proceedings of which were published in Vet Res 25, 81-360.
** Correspondence and reprints
maladies des poissons. Ces facteurs étaient : l’âge du poisson, l’espèce du poisson, le système de production, la saison et la température de l’eau ; mais le rôle de ces facteurs de risque observés était différent pour chaque maladie.

aquaculture / écopathologie / facteur de risque / poisson / pathogène / environnement

INTRODUCTION

High morbidity and mortality rates produced in the affected population are the most important ecological and economic consequences of viral diseases in aquaculture (McAllister, 1988; De Kinkelin et al, 1991). The main diseases affecting fish intensive production and/or wildlife fish are viral diseases, viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN), infectious pancreatic necrosis (IPN) and spring viraemia of carp (SVC); and bacterial diseases, furunculosis, bacterial kidney disease (BKD), red mouth (Yersinia ruckeri), and pasteurellosis (Pasteurella piscicida) (Bullock et al, 1976; McAllister, 1988; De Kinkelin et al, 1991). These aetiological agents are influenced by factors independent of the fish and the agent, such as environment, production system factors, nutrition, and others that play an important role as risk factors of the disease outbreak (Tufféry, 1977; Enzmann et al, 1992). The significance of these risk factors convinced us to carry out a study to define the health status and investigate the role of some risk factors predisposing disease outbreak in the intensive and wildlife aquaculture of Spain. The final aim of our study was to orientate fish intensive production and river repopulation according to these risk factors and the sanitary level of the different areas. The results of this paper are preliminary, and will be completed in the future.

MATERIALS AND METHODS

This study involves a 4-year survey (1993–1996) in fish farms and rivers located in north-east of Spain (Aragón and Navarra regions). The samplings were made every 3 months in 3 chosen pools of every fish farm. The studied fish species were rainbow trout (Oncorhinchus mykiss), brown trout (Salmo trutta), Atlantic salmon (Salmo salar), carp (Cyprinus carpio), nase (Chondrostoma toxostoma), gudgeon (Gobio gobio) and barb (Barbus graellsi). There were 4 levels in our study.

Epidemiological survey and data-base design

The epidemiological survey was designed according to the factors suspected of playing a role in fish health, using ecopathological concepts and principles (Martin et al, 1987; Thrusfield, 1990). This survey consists of the following parts: fish characteristics: age, sex, species, weight, size and physiological status; environmental information: water speed, algae, and muddiness; water quality: physicochemical and microbiological quality of water; management information: production cycles, raceway density, type of pools, treatments and desinfection systems; and isolated agents: bacterial, viral, mycotic and parasitic agents.

This information was introduced into a data base, designed within the epidemiological computer program EPI–INFO (WHO).

Infectious disease diagnosis

The fish assemblage in every sampling was determined with the tables of sample size (Ossiander and Wedemeyer, 1973; Simon and Schill, 1974). We concluded that it was necessary to take 15 fish from 3 different pools of the fish farms, and 10 fish from 2 points of the rivers, 1 site upstream and another downstream from the fish farm.

On the sampled animals, we performed a necropsy and took samples of the organs. Liver, spleen and kidney were cultured on bacterial media, tryptic soy agar, brain hearth infusion agar, marine agar, blood agar, cytophaga agar, and
KDM-C agar (Renibacterium salmoninarum isolation medium) (Austin, 1985). Isolated bacteria were identified by classical staining, biochemical and growing tests.

Samples from liver, spleen, kidney, brain, pyloric caeca and gonads, were inoculated in cell culture lines, bluegill fibroblast (BF-2), chinook salmon embryo (CHSE-214) and epithelioma papulosum cyprini (EPC), looking for viral agents (Wolf, 1988, EEC, 1992).

Water quality tests

Samples of water were taken to determine its physicochemical and microbiological quality from every site in the fish farms and rivers, upstream as well as downstream. Fourteen variables were measured: water temperature, pH, oxygen concentration, redox potential, conductivity, alkalinity, turbidity, hardness, ammonium, nitrate, nitrite, CO$_2$, phosphate and heavy metal concentrations (Stirling et al, 1985).

Data analysis

The information obtained previously was entered into the data base. The analysis was performed with the computer programs EPI-INFO (Analysis and Statview-See Graphics, using the statistical parameters chi-square distribution, Student’s t distribution and correlation coefficient, depending on the type of variable (statistical association means $P \leq 0.05$).

RESULTS

The aetiological agents reported as being the most frequent pathogens during the first year of the study are indicated in table I. We have observed that the most frequent bacterial disease, furunculosis, was located in the north-west of the study area, while the viral diseases were spread in the south-east of the geographical area of the study.

On the other hand, we have studied the risk factors associated with the isolated

<table>
<thead>
<tr>
<th>Table I. Isolated aetiological agents and their frequency.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
</tr>
<tr>
<td>Aeromonas salmonicida</td>
</tr>
<tr>
<td>Renibacterium salmoninarum</td>
</tr>
<tr>
<td>Aeromonas spp (motile)</td>
</tr>
<tr>
<td>Flavobacterium spp</td>
</tr>
<tr>
<td>Infectious pancreatic necrosis virus</td>
</tr>
<tr>
<td>Spring viraemia of carp virus</td>
</tr>
</tbody>
</table>

![Isolation frequency (%)](image)

Fish age

Fig 1. Role of age as risk factor in the most important detected diseases: ■ furunculosis; □ bacterial kidney disease (BKD); □ infectious pancreatic necrosis (IPN); ■ spring viraemia of carp (SVC).
agents. We observed a statistically significant relationship between pathogen isolation and the following risk factors: fish age, fish species, production system, season and water temperature. The role these factors played differed depending on the disease (table II; figs 1, 2).

DISCUSSION

Principal diseases detected

The study of the sanitary state of the aquaculture of north-east Spain showed that
furunculosis, BKD, IPN and SVC were the most frequent diseases in the studied area, a result that is similar to those observed by other authors in a screening in the regions of Aragón and Galicia (Ortega, 1991; Bandin et al., 1992) which detected *Aeromonas salmonicida* and IPN virus as the principal pathogens.

Risk factors associated with disease outbreak

The observed results presented in table II showed that there were some important associations to consider.

Furunculosis, BKD and IPN were related to intensive production of rainbow trout, brown trout, Atlantic salmon, and other fish species living upstream and downstream from the fish farms, nase and gudgeon. SVC was only associated with wild carp due to the absence of carp fish farms of intensive production. Our results agree with McAllister (1988) and De Kinkelin et al. (1991) who maintain that intensive production is an important risk factor in outbreaks of fish diseases.

Season and water temperature were 2 important risk factors that seemed to be associated with disease outbreak. In general, we can conclude that viral diseases were associated with low temperatures, and bacterial diseases with high ones, except for SVC (viral disease), which was more frequent in high temperatures, because carp live in warmer water than salmonids. The same results were observed in previous studies in the region of Aragón (Ortega, 1991).

The association between disease outbreak and temperature involves an indirect association between season and disease. We could therefore detect bacterial diseases during seasons with high temperatures, and viral diseases during seasons of low temperatures. Nevertheless, the most important periods of risk are the seasons when important changes in temperature take place, i.e. spring and autumn. This situation produces stress and immunosuppression of the fish defense mechanisms, as observed Van Muiswinkel et al. (1985) in different fish species.

The age of the fish acted as another important risk factor in disease outbreak. We observed that IPN was detected in animals younger than 6 months old, whereas furunculosis was associated with animals older than 6 months old; BKD and SVC were associated with animals older than 1 year. In contrast to our results, some authors observed SVC in animals of all ages, including younger than 6 months old (McAllister, 1988; Wolf, 1988).

The fish species affected by the different diseases is the last risk factor we will discuss. We only observed SVC in carp, which means that the rest of the studied species were not sensitive to the disease. Furunculosis was mainly detected in brown trout, which confirms it as one of the most sensitive fish species, together with rainbow trout. Therefore, brown trout can act as an asymptomatic carrier in rivers where fish farms are located maintaining the infection for long periods of time.

Upstream and downstream from rainbow trout farms in which IPN virus was detected, we could isolate this pathogen from nase and gudgeon, fish species living in the rivers. This means that these species act as asymptomatic carriers of the virus, as observed in previous studies (Ortega, 1991).

BKD was detected in rainbow trout and Atlantic salmon, which were the principal sensitive species (Bandin et al., 1992). It was not observed in nase, which could be an important asymptomatic carrier in rivers where susceptible salmonids are located.

Our preliminary results allow us to conclude that disease outbreaks in northeast
Spain are conditioned by some common risk factors, which play a different role depending on the disease. We are presently continuing our analysis of other suspected risk factors and their association with disease outbreak in the aquaculture of north-east Spain.

ACKNOWLEDGMENTS

We would like to thank J Oros, R Claver, JJ Gimenez and M Lamuela, and also the government of Aragon and Navarra, which supported the project economically.

REFERENCES

Commission of the European Communities (1992) Proposal for a council regulation (EEC) concerning the animal health conditions governing the placing on market of aquaculture animals and products (Com 92/458 final). 16 November, Brussels, Belgium

Ortega C (1991) Papel de diversas especies icticas no naturalmente sensibles a la Necrosis Pancreatica Infecciosa (IPN) que habitan los rios aragoneses como portadores del virus IPN, y su detección mediante diferentes técnicas diagnosticas. Doctoral Thesis, Facultad de Veterinaria, Universidad de Zaragoza, Spain

Simon RG, Schill WB (1974) Tables of sample size requirements for detection of fish infected by pathogens: three confidence levels for different infection prevalence and various population size. *J Fish Dis* 7, 515-520

Tufféry G (1977) Recherches sur la Bucéphalose à *Bucephalus polymorufus* Baer 1827. Introduction à l’écopathologie des systèmes piscicoles. Thèse pour le diplômes de Docteurs de 3e cycle, université de Paris VI, France
