Lignin-carbohydrate complexes in forages: structure and consequences in the ruminal degradation of cell-wall carbohydrates

A Cornu, Jm Besle, P Mosoni, E Grenet

To cite this version:
Lignin–carbohydrate complexes in forages: structure and consequences in the ruminal degradation of cell-wall carbohydrates

A Cornu, JM Besle, P Mosoni, E Grenet

INRA-Theix, Unité Digestion Microbienne, 63122 Saint-Genès-Champanelle, France

(Received 9 March 1994; accepted 17 June 1994)

Summary — Lignin–carbohydrate complexes (LCCs) are recognised as key structures in forage degradability. Apart from ester bonds involving phenolic acids, which seem to play a major role in grasses, little is known about the other types of linkages that must exist but have proved difficult to demonstrate. The chemical nature of possible LCC linkages is presented and the various mechanisms through which LCCs in the cell-wall architecture may interfere with carbohydrate utilisation by rumen microorganisms are discussed.

INTRODUCTION

It is well known that lignins restrict cell-wall carbohydrate degradation in maturing forages. Several studies have shown a negative correlation between lignin content and cell-wall digestibility (Jarrige, 1980; Minson, 1982). However the mechanisms involved in the disproportionate effect on cell-wall digestibility exerted by relatively small amounts of lignins remain unexplained. The effect of lignins (see review by Besle et al, 1995) depends on plant variety and tissue. This is more marked with primary than with secondary walls (Engels and Schurmans, 1982).
1992). The chemical nature of lignins and how they are linked with the other cell-wall polymers seem as important as the total amount of lignin present. This organisation takes place when lignins become anchored to the primary wall (Yamamoto et al, 1989; Terashima, 1993), develops as lignification proceeds (Jung and Deetz, 1993), and continues during cell-wall ageing. It is hypothesized that the lignin–carbohydrate complexes (LCCs) included in the wall structure are key elements in explaining the impact of lignins on cell-wall degradation. Soluble LCCs with predominant lignin moieties have been isolated from the rumen liquor (Gaillard and Richards, 1975; Lomax et al, 1984). In a mechanistic model, Chesson (1993) explained the release of soluble LCCs as a consequence of the degradation of the surrounding carbohydrates. Cell walls were represented as discrete blocks with different compositions. As suggested by Wallace et al (1991), primary layer LCC structures differed from those of the secondary layer. While other aspects of direct and indirect roles of LCCs in cell-wall degradation have been reviewed by Chesson (1988) and Jung and Ralph (1990), this paper presents the state of knowledge about LCC structures in forages and recent concepts concerning their role in cell-wall degradation.

NATURE OF THE LINKAGES BETWEEN LIGNINS AND CARBOHYDRATES

There are numerous possibilities for the formation of lignin–carbohydrate linkages in cell walls. Firstly, the polymers themselves (polysaccharide and lignin) contain numerous functional groups: primary and secondary alcohols, carboxyls and carbonyls. In grasses, the phenolic hydroxyls of esterified phenolic acids constitute an additional type of functional group. Secondly, enzymes participating in building the cell-wall architecture, such as glycosyl-transferases and peroxidases, are present in multiple forms. Finally, the free radicals and quinone methides produced at the time of lignin polymerisation are very reactive species (see review by Leary, 1980), and have long been suspected of reacting with carbohydrates (Freudenberg and Neish, 1968). In this paper, frequent references will be made to radical and quinone methide reactions. Those reactions have been summarised in figure 1 to illustrate the mechanisms described in the text. Additional information can be found in the review by Ralph and Helm (1993). Other hypothetical reactions, which could lead to the formation of LCC bonds, and which are unrelated to lignin synthesis or occur in the cytoplasmic compartment, are also described.

Linkages involving phenolic acids

Phenolic acids are precursors of the phenylpropane units of lignins although free phenolic acids are rarely found in cell walls (Newby et al, 1980). However, such acids esterified to lignins or polysaccharides (compound 2 in fig 1) are relatively abundant in grasses and are often referred to as ‘non-core lignins’ (an inappropriate terminology as discussed by Ralph and Helm, 1993).

It is now well known that grass arabinoxylans are esterified with ferulic acid. Smith and Hartley (1983) purified the first ‘FAX’ fragment (O-[5-O-(trans-feruloyl)-β-L-arabinofuranosyl]-1→2)-D-xylopyranose) from wheat bran enzyme hydrolysate. Similar structures, but with α-(1→3)-linked arabinose have since been isolated (table I). A feruloylated xyloglucan fragment ‘FXG’ (O-[4-O-(trans-feruloyl)-α-D-xylopyranosyl]-1→6)-D-glucopyranose), has also been isolated from bamboo by Ishii et al (1990). In addition to ferulic acid, grass arabinoxylans have been shown to contain p-coumaric esters, and corresponding typical fragments (eg, ‘PAXX’: O-[5-O-(trans-coumaroyl)-α-L-
Fig 1. Radical coupling and quinone methide condensation are recognised reactions for binding polysaccharides and phenolic acids to lignins.
Table I. p-Coumaroylated and feruloylated xylan fragments purified from monocots.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Reference</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kato and Nevins (1985)</td>
<td>FAXX</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>Oxalic acid- and driselase-treated zea shoot cell walls</td>
</tr>
<tr>
<td>Mueller-Harvey et al (1986)</td>
<td>FAXX</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>Cellulase-treated barley straw cell walls</td>
</tr>
<tr>
<td></td>
<td>PAXX</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>Cellulase-treated barley straw cell walls</td>
</tr>
<tr>
<td>Ishii et al (1990); Ishii and Hiroi (1990a)</td>
<td>PAXX</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>Driselase-treated bamboo-shoot cell walls</td>
</tr>
<tr>
<td>Ishii and Hiroi (1990b)</td>
<td>FAXX</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>Driselase-treated bamboo-shoot cell walls</td>
</tr>
<tr>
<td></td>
<td>FAXXX</td>
<td>OCH$_3$</td>
<td>H</td>
<td>βXylp</td>
<td>4-O-Xyl</td>
<td>Driselase-treated bamboo-shoot cell walls</td>
</tr>
<tr>
<td>Azuma et al (1990)</td>
<td>Ac FAXXX</td>
<td>OCH$_3$</td>
<td>OAc</td>
<td>βXylp</td>
<td>4-O-Xyl</td>
<td>Cellulase- and hemicellulase-treated sugar cane bagasse</td>
</tr>
<tr>
<td>Borneman et al (1992); Borneman et al (1990b)</td>
<td>PAXX</td>
<td>OCH$_3$</td>
<td>βXylp</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>Enzyme-treated coastal bermuda grass</td>
</tr>
<tr>
<td>Kato et al (1983)</td>
<td>FAXX</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>Enzyme-treated LCC fraction from bagasse</td>
</tr>
<tr>
<td>Kato et al (1987b)</td>
<td>FAXXX</td>
<td>OCH$_3$</td>
<td>H</td>
<td>βXylp</td>
<td>4-O-Xyl</td>
<td>Enzyme-treated LCC fraction from bagasse</td>
</tr>
<tr>
<td>Gubler et al (1985)</td>
<td>FAXX</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>GA$_3$-treated cultured aleurone from barley</td>
</tr>
<tr>
<td>Hartley et al (1990b)</td>
<td>FAXX</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>Enzyme-treated coastal bermuda grass</td>
</tr>
<tr>
<td></td>
<td>PAXX</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>4-O-Xyl</td>
<td>Enzyme-treated coastal bermuda grass</td>
</tr>
</tbody>
</table>
arabinofuranosyl)-(1→3)-O-β-D-xylopyra-
nosyl-(1→4)-D-xylopyranose) have been
isolated (table I). The frequency of esterifi-
cation of barley arabinoxylans has been
estimated to be about 1 arabinosyl residue
every 15 for ferulic acid, and 1 every 31 for
p-coumaric acid (Mueller-Harvey et al,
1986).

In dicots, ferulic and p-coumaric acids
are found mainly associated with the pectic
fraction and are about 10 times less abun-
dant than in grasses (Jung et al, 1983). Fer-
uloylated pectins have been identified in
sugar beet (Rombouts and Thibault, 1986).
Fry (1982) isolated 2 types of feruloylated
disaccharides: 3-O-(3-O-feruloyl-a-L-arab-
binopyranosyl)-D-arabinose and 4-O-(6-O-
feruloyl-β-D-galactopyranosyl)-D-galactose,
which accounted for more than 60% of the
total ferulic acid content of cultured spinach
primary cell walls.

Feruloylation invariably occurs at the
same position on polysaccharides, which
strongly suggests an enzyme-mediated,
site-specific phenomenon. Fry (1983) pro-
posed an intracellular esterification at the
non-reducing end of newly synthesised
spinach pectins. In parsley, in vitro esterifi-
cation of wall polysaccharides by radio-
labelled feruloyl-CoA has been shown to
occur in a microosomal fraction derived
However, Yamamoto et al (1989) observed
that the kinetics of cell-wall deposition in
grasses were different for arabinose and
ferulic acid, suggesting an extracytoplas-
ic esterification. Feruloyl-CoA however,
has never been detected in vivo in the cell
wall. Although further investigations are
needed in order to check if transesterification
can occur in the cell wall, different mecha-
nisms could be involved for individual
classes of polysaccharides; pectins, which
are abundant in primary walls of dicot-cul-
tured cells, may be feruloylated intracellu-
larly, whereas arabinoxylans and xylolu-
cans, predominating in the grass samples
studied, could be esterified in the cell wall.

Phenolic esters on cell-wall polysaccha-
rides may undergo 2 distinct types of dimeri-
sation. 5,5'-dehydrodiferulic acid was
obtained in vitro from an artificially esteri-
fied polysaccharide in the presence of per-
oxidase and H₂O₂ (Geissman and Neukom,
1971). Such biphenyl structures have been
observed bridging polysaccharides in
spinach (Fry, 1986), wheat flour (Markwalder
and Neukom, 1976) and bamboo (Ishii and
Hiroi, 1990a), and a diferuloyl hexasaccha-
ride [XXAF–FAXX] has been isolated from
bamboo by Ishii (1991). In the cell wall, difer-
ulic bridges probably participate in control-
ling cell-wall elongation (Fry and Miller,
1989). Diphenyl structures have not been
described for p-coumaric acid, whereas both
ferulic and p-coumaric acids have been
found in the cyclobutane dimers truxinic and
truxillic acid. These dimers are the result of
the photochemical coupling of esterified
hydroxycinnamic acids (Hartley and Ford,
They have mainly been observed in grasses
(Hartley et al, 1990a, b), but are also present
in minute amounts in lucerne and red clover
stems (Eraso and Hartley, 1990).

p-Coumaric acid may also be esterified to
lignins in wheat (Smith, 1955) and bamboo
(Shimada et al, 1971; Nakamura and
Higuchi, 1978). In these and in maize lignins,
evidence for ether-linked p-coumaric acid
has also been obtained (Nimz et al, 1981).
Ferulic acid has also been shown to be
etherified to lignins in an LCC fraction from
(1985) observed in wheat straw that more
ferulic acid (25–65%) than p-coumaric acid
(5%) was etherified to lignin.

Most of the ferulic acid linkages with
lignins are of the ether type while this acid is
abundantly esterified to polysaccharides. In
contrast, p-coumaric acid, mostly esterified
to lignins, does not seem to be etherified to
polysaccharides.
The location on lignin units of ester-linked \(p \)-coumaric acids has been studied in bamboo and grass by Shimada et al (1971) and Nakamura and Higuchi (1978). The resistance to methanolysis of \(p \)-coumaric acid esters in lignin fractions compared with that of model compounds indicates that bondings through the \(\gamma \)-position of the phenylpropane unit predominate over bondings through the \(\alpha \)-position.

Yamamoto et al (1989) proposed 2 mechanisms for ether bond formation, involving the phenolic group of ferulic acid, which is already esterified on polysaccharide chains. The first was a radical coupling that produces an ether linkage between the phenolic group of the acid and the \(\beta \)-carbon of the lignin unit (compound 7 in fig 1). The second was described by Scalbert et al (1986), and consists of a nucleophilic reaction resulting in an \(\alpha \)-ether (compound 9 in fig 1). Both reactions result in bridging lignins to polysaccharides. The existence of [polysaccharide-ester-ferulic-ether-lignin] structures now seems to be established for wheat (Iiyama et al, 1990), ryegrass (Kondo et al, 1990a) and Phalaris (Lam et al, 1992a).

Likewise, dehydrodiferulic bridges between polysaccharides become etherified to cell-wall polymers during maturation (Lam et al, 1992b), a reaction involving the free phenolic hydroxyls of the dimer and quinone methides.

Ester and ester linkages of phenolic acids can be differentiated by sequential treatments with sodium hydroxide (Iiyama et al, 1990). Ester-only-, ether-only- and ester-ether-linked phenolic acids can be distinguished using the method of Lam et al (1992a). The authors confirmed with this method that \(p \)-coumaric acid, unlike ferulic acid, does not form ester-ether bridges. They also measured the content of esterified and total phenolic acids in internode segments of Phalaris varying in maturity. Ferulic acid appeared at a very early stage of cell-wall building and its total amount quickly stabilised. The proportion of etherified ferulic acid increased more gradually. \(p \)-Coumaric acid remained mainly in the saponifiable form, and its total content increased continuously during cell-wall building (Lam et al, 1992b). Similar observations were made in ryegrass harvested at different stages of maturity (Kondo et al, 1990a), and in growing culms of sugar cane and rice (He and Terashima, 1991). Ferulic acid can therefore be considered as a component of certain wall polysaccharides, acting as a group for anchoring hydrophobic lignins to hydrophilic carbohydrates, whereas \(p \)-coumaric acid behaves as a fourth lignin unit. The origin and significance of this individual specialisation of phenolic acids is not clear.

In dicots, the rarity of phenolic acids suggests that lignin anchoring proceeds in a different way and other types of linkages predominate. Joseleau and Gancet (1981) observed in aspen wood alkali-stable lignin-araban complexes held together by alkali-labile lignin-glucuronoxylan linkages, indicating the coexistence of esters with ethers or glycosides.

Linkages involving uronic acids

Glucuronic acid and its 4-\(O \)-methyl derivative occur as side groups in most xylans. In jute fibre (Das et al, 1984a) and in other dicots (Das et al, 1984b; Fry, 1986), they have been shown to be largely, if not totally, involved in ester linkages. The partner molecule was presumed to be a lignin, because lignins were solubilised by treatments that cleave ester bonds.

Esterification of uronic acid side chains of xylans may occur in the cell wall at the time of lignin polymerisation. Tanaka et al (1979) showed in vitro that carboxyl groups (in comparison to secondary and primary alcohols) are the groups most reactive with quinone
methides leading to the formation of benzylic ester linkages (compound 12 in fig 1).

Experiments made by Stewart (1973) on eucalyptus wood indicate that uronic acids are also involved in an indirect lignin–xylan bridging: 4-O-methyl-glucoronoxylans bear alkali-labile uronic acid residues (ester-linked to the xylan backbone). Some of these residues were linked to lignins by acid-resistant ether bonds. As many as 7 esterified uronic acids were estimated in each 100 xylose units, 3 of which were etherified to lignins.

Chesson et al (1983) measured the hemi-cellulosic hydroxyls liberated by an alkaline treatment and estimated that about 30% of the alkali-labile substituents in grasses as well as in dicots, were not accounted for by acetic and phenolic acids recovered in the extracts. These alkali-labile substituents could have been linked to lignins by alkali-resistant bonds.

Thus, ester linkages seem to play an important part in LCCs. Esters are relatively easy to detect, due to their characteristic infrared absorption at 1730 cm⁻¹, and their sensitivity to mild alkali treatments. It is more difficult to distinguish uronic acid from phenolic acid esters. Borohydride is known to reduce hemicellulosic uronic acid esters to give the corresponding neutral sugar residue. When applied to fibrous material, however, the low yield obtained (Das et al, 1984a, b), suggests a poor accessibility to some ester linkages in situ. Takahashi and Koshijima (1988) showed with model compounds that the use of a high pH buffer greatly enhances the reduction yield. When applied to LCC fractions from grasses, borohydride does not cleave phenolic acid esters (Morrison, 1974; Tanner and Morrison, 1983; Ford, 1989, 1990). This property, confirmed on model compounds submitted to several hydride reducters, is due to the presence of the conjugated double bond (Lam et al, 1992a). Finally the ester’s partner molecule and its linkage position on this molecule need to be identified. Methanolation or mercaptolysis could prove an interesting method, since the liberated hydroxyl is consequently methylated or thioacylated. Moreover, esters on the α-position of a lignin are cleaved, whereas in the γ-position they are resistant (Nakamura and Higuchi, 1978).

Ether and glycosidic linkages

It is extremely probable that direct ether and glycosidic bonds occur in LCCs, but conclusive evidence is difficult to obtain for 2 major reasons: they are likely to be very infrequent; and their properties do not allow them to be readily distinguished from intrapolymeric linkages.

Hayashi (1961) reported that β-glucosidases released new reducing ends as well as new phenolic groups in an LCC from wheat, suggesting the occurrence of phenylglycosidic linkages. Enoki et al (1983) showed that a glycosidic linkage at any position of the lignol could indeed be cleaved by glycanase treatment. Ford (1990) suggested that arabinoxylans from pangola grass could be glycosidically linked to lignins, since borohydride treatment of an LCC fraction resulted in no detectable alditol. In an LCC from aspen wood, Joseleau and Kesraoui (1986) observed monomeric arabinofuranose glycosidically linked to lignin.

Soluble LCCs have been found in the rumen liquor of steers fed on tropical grass (Gaillard and Richards, 1975; Neilson and Richards, 1982). Structural investigations indicated that in these complexes, glucose, xylose and rhamnose were glycosidically linked to lignins (Lomax et al, 1984). In a study on soluble LCCs from the rumen of sheep fed ryegrass, Conchie et al (1988) found reducing xylose and glucose residues, which were thought to be ether-bound to lignins. These fractions also contained rhamnose and appreciable amounts of nitrogen.
Nordkvist et al (1989) obtained such soluble complexes after in vitro incubation. These LCCs had very low carbohydrate contents and could thus be enriched in sugars directly linked to lignins. However, it is inadvisable to draw conclusions about plant LCC from rumen-soluble LCC studies, due to the lack of knowledge on the microbial transformations that could take place. For example, in aerobic systems, glycosylations occur concomitantly with lignin degradation (Jeffries, 1990). In the rumen, however, lignins are known to be poorly degraded, and such reactions have not been reported.

Benzylethers have been demonstrated in wood lignin–glucomannan and lignin–arabinoxylan complexes by Watanabe et al (1986). Primary alcohol groups of glucose and mannose, and hydroxyls in positions 2 and 3 of xylose were involved, as shown by methylation. These results were obtained by using a selective degradation method with DDQ (2,3-dichloro-5,6-dicyanobenzoquinone) developed for LCC studies by Koshijima et al (1984). DDQ oxidatively cleaves benzylic bonds in the para-position with an electron-donating group. Benzylesters (Watanabe and Koshijima, 1988) and benzylglycosides (Cornu, 1989) are also cleaved by DDQ oxidation.

Model compound experiments by Enoki et al (1983) showed that glycosidic linkages in γ-, benzylic or phenolic positions are resistant to mild alkali except in the case of syringyl units where they are partially cleaved. Ether bonds in the γ-position are stable, while benzylethers are more labile (varying with the molecular environment); the presence of a methyl substituent on the phenolic hydroxyl considerably enhances the resistance of benzylether linkages (Enoki et al, 1983; Taneda et al, 1987). Takahashi and Koshijima (1988) observed that sodium hydroxide released significant amounts of xylose from a beechwood LCC, but only traces after methylation of the LCC. DDQ treatment released sugars in proportions similar to those released by alkali, xylose being linked to lignins at O-3 or O-2. Thus the term ‘alkali-labile linkages’ includes not only esters, but also some phenolic benzylethers and glycosides involving syringyl units. Morrison (1973) found arabinoxylan-lignin complexes in ryegrass alkali-extracts, whereas Al Katrib et al (1988) extracted LCC from NaOH-treated straw, showing the occurrence in these plants of alkali-resistant bonds. From the model experiments of Enoki et al (1983), γ-ethers would be the most easily distinguishable linkages, since they resist most of the cleavage conditions tested, including strong mineral acid hydrolysis (H₂SO₄ 1 N, 100°C, 6 H).

Benzylethers, like benzylesters, can arise from a reaction between polysaccharide hydroxyl or carboxyl groups and quinone methides (compound 11 in fig 1). Benzylethers also arise spontaneously when phenolic compounds are mixed with sugars (Hemmingson, 1979; Leary et al, 1983). The reactivity of the sugar functional groups decreases from carboxyls to secondary alcohols to primary alcohols, and benzylglycosidic linkages are not favoured (Tanaka et al, 1979). Glycosidic linkages, however, have been obtained in vitro during dehydropolymerisation of coniferyl alcohol by a crude enzyme extract from aspen in the presence of free sugars (Joseleau and Kesraoui, 1986). These authors observed a greater reactivity of arabinofuranose compared to glucopyranose.

A possible mechanism for the formation of glycosidic linkages has recently been described by Kondo et al (1990b), who showed in vitro that β-glucosidases, which occur in cell walls, catalyse the transfer of a glycosyl residue on acceptor lignols. This reaction is much more efficient if the donor molecule already contains a glycosidic linkage, but has also been observed with free glucose. Primary alcohols (γ) are more reactive acceptors than secondary ones (α), and
the presence of a phenolic hydroxyl results in greater efficiency.

ROLE OF LCC IN RUMEN DEGRADATION OF CELL WALLS

Mechanistic model of cell-wall degradation

Chesson (1993) has proposed a precise model for the degradation of lignified cell walls. Cell walls are schematised as being built of bricks representing potentially degradable polysaccharides, with other scattered bricks representing LCCs in the secondary and primary layers. Since cell-wall degradation is considered as a superficial process, the external blocks are removed first by microbial action. Some bricks representing LCCs are released in the rumen medium when the surrounding degradable carbohydrate has been removed, while others remain bound to the cell wall. As degradation proceeds, LCC bricks accumulate at the surface of plant particles, preventing further degradation. The primary wall remains almost intact, either due it being shielded by the external layer, or because the LCC present have a different structure from those in the secondary wall and offer greater resistance (Wallace, 1989). Differences in the rate of formation of the inert layer explains differences in digestibility observed between cell walls. This model also suggests that LCCs may have both negative and positive effects on degradation.

Negative effects of LCCs

Since lignin preparations added to an *in vitro* fermentation system do not impede cell-wall degradation (Han et al, 1975; Op den Camp, 1988), the inhibition caused by phenolics is evidently due, directly or indirectly, to linkages between phenolics and carbohydrates. Hypotheses concerning the role of the diverse structural features of cell walls in preventing polysaccharide degradation have been reviewed by Besle et al (1995). In addition to the physical barrier effect of lignins, lignin–carbohydrate linkages constitute a biochemical barrier sterically hindering glycanases (Jung and Deetz, 1993). _In vitro_ experiments by Gressel *et al* (1983) have shown that polyethylene, a lignin model polymer, inhibits cellulolysis only if it is linked to cellulose. Esterification of cinnamic acids to either isolated hemicelluloses (Jung, 1988a) or cellulose (Jung and Sahl, 1986) will also inhibit glycanolysis. Phenyl-esterases are produced by rumen fungi (Borneman *et al*, 1990a) and bacteria (Akin *et al*, 1993; McDermid *et al*, 1990). Feruloyl esterases liberate ferulic acid from xylan oligomers, synergistically with xylanases, which must first liberate oligomers in the medium (Faulds and Williamson, 1991).

Phenolic acids released in the rumen medium may have a limited antimicrobial effect, which has been shown *in vitro* (Chesson *et al*, 1982; Jung and Fahey, 1983; review of Martin, 1990). Likewise, isolated LCCs decrease microbial activity (Cherney *et al*, 1992). However, except in microenvironments, phenolic acids are produced in subtoxic amounts (Jung and Ralph, 1990) and transformed to phenylpropanoic acid which is considered as a growth factor (Hungate and Stack, 1982). As shown by Besle *et al* (1988) in a semi-continuous fermentor, it is doubtful that any consequent inhibitory effect appears *in vivo*. A reduction in microbial adhesion is also possible (Varel and Jung, 1986), but this effect is not significant (Roger and Fonty, personal communication).

Positive effects of LCCs

Release of soluble LCCs could have positive effects, limiting the shielding of structural
polysaccharides by lignins. Soluble LCCs accounting for 43% of the total lignin intake have been found in the rumen liquor of steers fed tropical grass (Gaillard and Richards, 1975). LCCs were also found in the rumen of sheep fed ryegrass (Conchie et al, 1988) and after in vitro incubation of wheat straw (Nordkvist et al, 1989). It is not known if the carbohydrate moiety is further degraded in the rumen, but these compounds probably precipitate in the acidic conditions found in the abomasum (Neilson and Richards, 1978) and the lignin portion is indistinguishable from other lignins in the faeces. Chesson (1981) has shown that an alkali treatment releasing 40% of barley straw lignin in association with carbohydrates, was sufficient to result in nearly complete in situ degradation of the remaining carbohydrates. Mosoni et al (1993) observed a similar degradation of wheat straw apical internode after a sodium hydroxide extraction that gave 76% delignification. The positive effect of LCC release in the rumen on carbohydrate hydrolysis may therefore be high. This effect could, however, be partly counterbalanced by some inhibitory effect of soluble LCCs on rumen enzyme activities (Jung, 1988b). An analytical study of the net effect of transformations undergone by LCCs in the digestive tract should be of relevance.

Heterogeneity of the effects of LCCs

Chesson's model (Chesson, 1993) shows a possible variation of the nature and effects of LCCs within the different layers of the cell wall. Likewise, structural heterogeneity corresponding to diverse cell-wall architecture may also produce different effects on degradation between plant species. This is the case, for example, for differences in cell-wall degradation kinetics observed between grasses and legumes. After glycanolysis of Björkman LCCs, the insoluble residue from ryegrass was enriched in phenolic acids and contained more carbohydrates (arabinose and xylose) than that from alfalfa (Kondo et al, 1990c). The authors suggested that ferulic acid could be responsible for the enzyme-resistant bonds in ryegrass LCC. The low phenolic acid content observed in legumes means that direct linkages between lignins and polysaccharides are enhanced. Titgemeyer et al (1992) identified gluconoxylan fractions from alfalfa stems with a high resistance to degradation, probably due to ester linkages of the uronic side chains with lignins.

No soluble LCCs were found in the rumen of steers eating high quality alfalfa and coastal bermudagrass hay (Windham et al, 1989). Thus, the undigestible residue of these highly digestible forages may contain all the original lignin (8.7 and 3.7% respectively). This lignin could be of a different type from that found in soluble LCCs of less digestible forages. It could be localised in walls that lignify first, less in weight but more inhibitory.

It should be emphasized that the effects of LCCs on cell-wall degradation, for specific conditions of microbial attack, reflect not only the frequency of recalcitrant linkages, but also result (if a holistic approach is taken) from the combined effects of the various factors determining the cell-wall environment, namely architecture, tissue arrangement, and presence of minerals (silica).

CONCLUSION

Lignins and hemicelluloses are linked through several types of covalent bonds. Heterogeneity of linkages is observed across plant families and species and within tissues and cell walls. The types of LCCs in the wall are determined by the monomers present and by the process of lignification. Several structures have been suggested or indirectly proposed. Some of these structures are cleaved by the enzymic activities
present in the rumen and it is not known if totally resistant LCC bonds occur.

Mechanisms explaining the role of LCCs have been suggested. The superficial release of LCCs would have several consequences on cell-wall degradation. The frequency of linkages probably explains a part of the wall resistance but the importance of this resistance is related to all the factors of the cell-wall environment.

Further work is needed to define the structures and to elucidate cell-wall resistance mechanisms. Moreover, it should be worthwhile enhancing the positive effect of LCC release and studying the fate of LCCs in the digestive tract in relation to carbohydrate digestion. A more complete understanding of the nature and effects of LCCs may have diverse agronomic consequences: in plant breeding, prediction of nutritional value, and utilisation of low-quality forage. It must be noted, however, that the resistance of cell walls to microbial degradation, a drawback in ruminant nutrition, may be an advantage for the plant.

REFERENCES

Cornu A (1989) Synthèse et biosynthèse de composés modèles de complexes lignine-polysaccharides. Thèse de doctorat, Université Joseph Fourier, Grenoble, France

Das NN, Das SC, Mukherjee AK (1984a) On the ester linkage between lignin and 4-O-methyl-D-glucuronoxylan in jute fiber (Corchorus capsularis). Carbohydr Res 127, 345-348

Faulds CB, Williamson G (1991) The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenic. J Gen Microbiol 137, 2339-2345

Ford CW (1989) A feruloylated arabinoxylan liberated from cell walls of Digitaria decumbens (pangola grass) by treatment with borohydride. Carbohyd Res 190, 137-144

Fry SC (1983) Feruloylated pectins from the primary cell wall: their structure and possible functions. Planta 157, 111-123

Jung HG (1988a) Inhibition of hemicellulose fermentation by esterified cinnamic acids. J Dairy Sci 71 (suppl 1), 182

Lam TBT, Iiyama K, Stone BA (1992b) Changes in phenolic acids from internode walls of wheat and phalaris during maturation. Phytochemistry 31, 2655-2658

Martin SA (1990) Effect of phenolic compounds on fiber-degrading enzymes from rumen bacteria. In: Microbial and plant opportunities to improve lignocellulose utilization by ruminants (DE Akin et al, eds) Elsevier NY, USA, 289-300

Markwalder HU, Neukom H (1976) Diferulic acid as a possible crosslink in hemicelloses from wheat germ. Phytochemistry 15, 656-657

Morrison IM (1973) Isolation and analysis of lignin-carbohydrate complexes from Lolium multiflorum. Phytochemistry 12, 2979-2984

Nakamura Y, Higuchi T (1978) Ester linkage of p-coumaric acid in bamboo lignin. II. Synthesis of...
coniferyl p-hydroxybenzoate and coniferyl p-coumarate as possible precursors of aromatic acid esters in lignin. Cellulose Chem Technol 12, 199-208

Shimada M, Fukuzuka T, Higuchi T (1971) Ester linkages of p-coumaric acid in bamboo and grass lignins. TAPPI 54, 72-78

Stewart CM (1973) Complexes of glucuronoxylan, uronic acid and lignin in eucalypt wood. Cellulose Chem Technol 7, 691-701

Takahashi N, Koshijima T (1988) Molecular properties of lignin-carbohydrate complexes from beech (Fagus crenata) and pine (Pinus densiflora) woods. Wood Sci Technol 22, 177-189

Tanaoka K, Nakatsubo F, Higuchi T (1979) Reactions of guaiacylglycerol-β-guaiacyl ether with several sugars. II. Reactions of quinonemethide with pyranohexoses. Mokuzai Gakkaiishi 25, 653-659

Tanner GR, Morrison IM (1983) The effect of saponification, reduction and mild acid hydrolysis on the cell walls and cellulase-treated cell walls of Lolium perenne. J Sci Food Agric 34, 137-144

Terashima N (1993) Formation and ultrastructure of lignified plant cell walls. ISWPC 1, 24-33

