
HAL Id: hal-00873987
https://hal.archives-ouvertes.fr/hal-00873987

Submitted on 16 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A full-wavelet approach for fluorescence diffuse optical
tomography with structured illumination

Nicolas Ducros, C. d’Andrea, G. Valentini, T. Rudge, S. Arridge, A. Bassi

To cite this version:
Nicolas Ducros, C. d’Andrea, G. Valentini, T. Rudge, S. Arridge, et al.. A full-wavelet approach for
fluorescence diffuse optical tomography with structured illumination. Optics Letters, Optical Society
of America, 2010, 35 (21), pp.3676–3678. �10.1364/OL.35.003676�. �hal-00873987�

https://hal.archives-ouvertes.fr/hal-00873987
https://hal.archives-ouvertes.fr


Full-wavelet approach for fluorescence
diffuse optical tomography
with structured illumination

Nicolas Ducros,1,* Cosimo D’andrea,1,2 Gianluca Valentini,1,2 Tim Rudge,3 Simon Arridge,3 and Andrea Bassi1

1Instituto di Fotonica e Nanotecnologie (IFN-CNR)—Dipartimento di Fisica, Politecnico di Milano,
Piazza Leonardo da Vinci 32, I-20133 Milan, Italy

2Italian Institute of Technology (IIT), Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
3Centre for Medical Image Computing, University College London, Malet Place, London WC1E 6BT, UK

*Corresponding author: nicolas.ducros@polimi.it

Received July 30, 2010; revised September 14, 2010; accepted September 29, 2010;

posted October 4, 2010 (Doc. ID 132612); published October 28, 2010

We present a fast reconstruction method for fluorescence optical tomography with structured illumination. Our
approach is based on the exploitation of the wavelet transform of the measurements acquired after wavelet-
patterned illuminations. This method, validated on experimental data, enables us to significantly reduce the acqui-
sition and computation times with respect to the classical scanning approach. Therefore, it could be particularly
suited for in vivo applications. © 2010 Optical Society of America
OCIS codes: 170.6960, 170.7050, 100.7410, 100.3190.

Diffuse optical tomography (DOT) is usually considered
in terms of measurements acquired by a set of point de-
tectors and illuminated by a set of point sources. How-
ever, the modality is now evolving toward the use of
spatially extended sources and detectors. Recently, spa-
tial light modulators and wide-field detectors have been
exploited for both absorption and fluorescence recon-
structions. In particular, digital micromirror devices
(DMDs), able to project any pattern of light onto a sam-
ple, have been involved in imaging [1] and tomographic
schemes [2–5]. Fast algorithms able to deal with very
large datasets have been proposed for this modality [6,7],
and it was observed that a limited number of patterns can
be used in contrast to a large number of point-source il-
luminations. In parallel, the concept of data compression
based on Fourier [8] or wavelet encoding [9,10] has been
recently applied to CCD measurements acquired with
point sources, in order to reduce the computational size
of the problem.
In this Letter, for the first time to our knowledge, we

apply compression techniques to the measurements ac-
quired with structured illuminations, implementing a sim-
ple approach that relies on the wavelet description of
both source and detection spaces. This approach is ex-
perimentally validated in the context of fluorescence
DOT (FDOT), regarding a solid phantom containing
two fluorescent inclusions. The success of wavelet algo-
rithms for a large number of applications in biomedical
imaging mainly lies in the compression properties of
wavelet bases [11]. Here, they are used (1) as a guide
to design sets of a few illumination patterns and (2) to
reduce the redundancy in the measurements. Limiting
the number of illumination patterns directly reduces ac-
quisition times. Limiting both the number of illumination
patterns and features extracted from the CCD measure-
ments reduces the size of the inverse problem to solve,
which speeds up the reconstruction times.
We consider a domain Ω with boundary ∂D and a light

source that illuminates a part ∂S⊂∂D of the surface. The
medium contains a fluorophore concentration cðrÞ,

r ∈ Ω, and the fluorescence light emitted from the sur-
face ∂D is recorded by a camera. Practically, structured
illumination in FDOT consists of four steps: (1) projec-
tion of the source pattern on ∂S, (2) collection of the
fluorescence light ϕm on ∂D, (3) transformation of the
raw data, and (4) reconstruction of the concentration
cðrÞ from the transformed data m. Discretizing the med-
ium Ω into N voxels leads to the discrete linear problem

m ¼ Wc; ð1Þ

where c is the concentration vector, m is the measure-
ment vector, and W is the weight matrix.

Let us define the set of functions S ¼ fsjg, j ¼ 1…J,
describing the source patterns projected on ∂S. For a gi-
ven source pattern sj, the physics of the problem obey
the coupled equations [12]

�

Pϕx
j ðrÞ ¼ sjðrÞ;

Pϕm
j ðrÞ ¼ ϕx

j ðrÞcðrÞdr;
ð2Þ

where appropriate boundary conditions must be taken
into account to complete the description. In Eqs. (2),
P denotes the propagation operator, and ϕx

j and ϕm
j

are the photon densities at the excitation and emission
wavelengths, respectively.

Let us now consider a set of functions D ¼ fdj;kg,
j ¼ 1…J, k ¼ 1…K , defined on ∂D and referred to as de-
tection patterns. Note that the detection patterns can
vary from source pattern to source pattern. Then, we de-
fine the measurements as the projections of the fluores-
cence photon densities ϕm

j onto the detection patterns, i.
e., for a given source–detection pattern pair:

mj;k ¼

Z

∂D
ϕm
j ðrÞdj;kðrÞdr: ð3Þ

In practice, the source patterns sj and the mea-
sured fluorescence density ϕm

j are images that can be
represented using a wavelet basis. The wavelet transform
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(WT) of an image at scale s is obtained by projecting this
image onto an appropriate set of functions fas; bsg. The
set of scaling functions fasg provides a multiresolution
approximation of the space function, i.e., approximated
versions of an image at higher resolutions for increasing
scale s. The set of wavelet functions fbsg provides the
complementary details that are not comprised in the ap-
proximated image. Here, the source patterns are chosen
as the wavelet scaling functions at a given scale, while
the detection patterns are determined by performing
the WT of the fluorescence images.
The detailed scheme of our full-wavelet algorithm is

the following.

Step 1. Illumination/Acquisition: at scale s, J wavelet
source patterns sj are computed and successively pro-
jected onto the medium. The resulting J fluorescence
light images ϕm

j are acquired.
Step 2. Compression: the fluorescence light image ϕm

j
is wavelet transformed and the K largest absolute com-
ponents in the transformed image are retained. The cor-
responding K wavelet functions form the set of the
detection patterns associated to the jth source pattern,
which is noted Dj. Applying this procedure to the J fluor-
escence light images ends up with a measurement vector
m of size JK. The whole set of detection patterns is
D ¼ ⋃jDj , whose number of elements is at most JK,
but can be reduced to J due to redundancy in the detec-
tion patterns.
Step 3.Weight matrix computation: the weight matrix

W of size ðJK × NÞ is computed from the knowledge of
the source and detection patterns. Indeed, the ðj; kÞth
row of W, which maps c onto mj;k, is the product of a
direct and an adjoint field computation given by

wj;k ¼ ðφj∘ψ j;kÞ
T ; ð4Þ

where ∘ stands for the entrywise (Hadamard) product.
The source and detection photon density vectors φj

and ψ j;k are taken from the matrices Φ ¼ ½φ1…φj…φJ �
and Ψ ¼ ½ψ1;1…ψ j;k…ψJ;K � obtained by inverting the
two systems

PΦ ¼ S; ð5aÞ

PΨ ¼ D: ð5bÞ

In Eq. (5), S ¼ ½s1…sj…sJ � is the source matrix, D ¼
½d1;1…dj;k…dJ;K � is the detection matrix, and P results
from the discretization of the propagation operator P ac-
counting for the boundary conditions. Here, the propaga-
tion matrix P was calculated by solving the diffusion
approximation equation with the finite-element TOAST
package [13].
Step 4. Inversion: as an estimate of the concentration

vector, the underdetermined Tikhonov regularized solu-
tion c� is considered, i.e.,

c� ¼ WT ðWWT þ αIÞ−1 m; ð6Þ

where α is the regularization parameter. In the following,
α was set to 10−5 tr WWT .

The method is validated experimentally on an epoxy
phantom chosen to mimic the size and optical properties
of a small animal. The light generated (625 nm, 500 mW)
by an LED (M625L2, Thorlabs, USA) is bandpass filtered
(XF1208, Omega, USA) and projected on a DMD (DMD
Discovery 1100, Vialux, Germany). The desired source
pattern is uploaded on the DMD and projected onto
the phantom [3]. The fluorescence light is bandpass fil-
tered (XF3076, Omega, USA) and collected by an objec-
tive lens (f ¼ 50 mm, f -number ¼ 2:8, Nikon Co., Japan).
It is then integrated for 30 s by a 16 bit CCD camera
(Versarray 512, Princeton Instruments, Trenton, N.J.)
cooled to −40 °C. A parallelepiped phantom of size
32 mm × 64 mm × 15 mm, absorption coefficient μa ¼
0:012 mm−1, reduced scattering coefficient μ0s ¼
0:827 mm−1, and refractive index n ¼ 1:54 is considered.
Two cylindrical chambers (diameter 3 mm and length
3 mm) were drilled into the phantom. The first one is cen-
tered at position r1 ¼ ½17; 20; 3� mm and the second one
at position r2 ¼ ½20; 40; 8� mm. The two chambers are
each filled with 21 μL of Nyle Blue in water solution
at 34 μM.

We first investigate the compression ability of different
WTs for the acquired fluorescence images [14]. In Fig. 1,
we consider the fluorescence image acquired for a uni-
form source pattern [see Fig. 1(a)]. Applying different
kinds of WTs and retaining only 16 coefficients indicates
the compression performance on this image [Fig. 1(b)].
The Battle–Lemarié functions achieve compression of
fluorescence images with the least degradation of those
tested. This is therefore the basis considered in the fol-
lowing, as also used in [9].

Next, we perform three-dimensional (3-D) reconstruc-
tions according to the scheme previously described. The
simulated data have been corrupted by a Poisson noise
model assuming an integration time giving a maximum

Fig. 1. Wavelet compression of fluorescence images. (a)
Fluorescence image acquired with a uniform source pattern.
(b) From top to bottom, Haar, Daubechie, and Battle–Lemarié
wavelets are considered. On the left, we display the 16 retained
wavelet patterns. On the right, the compressed version of the
upper image is depicted.
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of 4000 counts. In Fig. 2, we present reconstruction
obtained from a scanning acquisition with 1 mm spacing
[Fig. 2(a)] and reconstructions obtained from the projec-
tion of a limited number of wavelet source patterns
[Figs. 2(b) and 2(c)]. As a quantitative evaluation of
the different reconstruction qualities, we estimate the re-
construction error ϵ ¼ ∥ctrue − c�∥2=∥ctrue∥

2 and report its
value in Fig. 2. The computation times of the reconstruc-
tions are detailed in Table 1. When the 2048 point sources
are considered, the total reconstruction time is about
18 min, while less than 10 s are required considering
the 32 wavelet patterns. As can be observed on the sec-
tions at different depths and on the 3-D plots of Fig. 2, the
bottom inclusion is less resolved when the 32 wavelet
patterns are considered. However, the reconstruction
quality obtained with the wavelet approach is compar-
able to that resulting from the raster scanning. Moreover,
the reconstruction performed from experimental data is
very close to that obtained from the simulated data.
In conclusion, we have introduced and demonstrated

on experimental data a fast algorithm for structured illu-
mination in FDOT. Our approach consists of illuminating
the medium with only a few wavelet patterns and com-
pressing the acquired images by means of a wavelet
transform. Compared to the classical raster scanning

method, the proposed approach enables us to drastically
reduce both acquisition and reconstruction times with-
out sacrificing the reconstruction quality. Hence this ap-
proach could be relevant for in vivo applications for
which time is a critical point. In further work, we will ap-
ply this approach to the cylindrical geometry and show
how it compares to the state of the art.

This work was supported in part by the Royal Society
International Joint Project 2009/R2 and the CARIPLO
Foundation (grant 2009-2626).
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Fig. 2. (Color online) Reconstruction for different source patterns. The fluorescence images have been compressed to 24 Battle–
Lemarié wavelet coefficients. (a) Standard scanning approach using 2048 sources positions (simulated); ϵ ¼ 0:58. (b) Wavelet
approach using 32 patterns (simulated); ϵ ¼ 0:70. (c) Wavelet approach using 32 patterns (experimental); ϵ ¼ 0:99.

Table 1. Computation Times (s) of the
Reconstructions Presented in Fig. 2

a

Step 2 Step 3 Step 4

m D P Φ Ψ W c�

Point 5 3 0.8 95 25 60 876
Wavelet 0.1 <0:1 0.8 3.4 3.4 0.8 0.5

a
m, time for wavelet transform of all acquired image data; D, time for

generation of wavelet source patterns; P, time for construction of pro-

pagation matrix;Φ, solve time for all source photon densities [Eq. (5a)];

Ψ, solve time for all detection photon densities [Eq. (5b)];W, construc-

tion of weight matrix [Eq. (4)]; c�, solve time for reconstruction [Eq. (6)].
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