Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff

Clément Mouhot, Robert Strain

To cite this version:

HAL Id: hal-00086958
https://hal.archives-ouvertes.fr/hal-00086958v2
Submitted on 21 Jul 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SPECTRAL GAP AND COERCIVITY ESTIMATES FOR LINEARIZED BOLTZMANN COLLISION OPERATORS WITHOUT ANGULAR CUTOFF

CLÉMENT MOUHOT & ROBERT M. STRAIN

ABSTRACT. In this paper we prove new constructive coercivity estimates for the Boltzmann collision operator without cutoff, that is for long-range interactions. In particular we give a generalized sufficient condition for the existence of a spectral gap which involves both the growth behavior of the collision kernel at large relative velocities and its singular behavior at grazing and frontal collisions. It provides in particular existence of a spectral gap and estimates on it for interactions deriving from the hard potentials $\phi(r) = r^{-(s-1)}$, $s \geq 5$ or the so-called moderately soft potentials $\phi(r) = r^{-(s-1)}$, $3 < s < 5$, (without angular cutoff). In particular this paper recovers (by constructive means), improves and extends previous results of Pao [46]. We also obtain constructive coercivity estimates for the Landau collision operator for the optimal coercivity norm pointed out in [34] and we formulate a conjecture about a unified necessary and sufficient condition for the existence of a spectral gap for Boltzmann and Landau linearized collision operators.

Mathematics Subject Classification (2000): 76P05 Rarefied gas flows, Boltzmann equation [See also 82B40, 82C40, 82D05].

Keywords: coercivity estimates, linearized Boltzmann operator, linearized Landau operator, quantitative, long-range interaction, non-cutoff, soft potentials, spectral gap.

Contents

1. Introduction 2
2. A technical estimate on L_8 11
3. Proof of Theorem 1.1 for $\varepsilon > 0$ 16
4. Proof of Theorem 1.1 for $\varepsilon = 0$ 20
5. Proof of Theorem 1.2 23
References 26

Date: July 21, 2006.
1. Introduction

This paper deals with the question of spectral gap and coercivity estimates for the Boltzmann and Landau integro-differential collision operators. This is motivated by the question of obtaining explicit constant in the recent new energy methods in [33, 34, 35, 36, 37, 47, 48, 45, 49, 50]. The starting points are the recent new constructive tools of works [11, 44]. As we shall explain this work recovers, improves, makes explicit and clarifies the works of Pao [46] three decades ago. Before entering into the details, let us introduce the mathematical objects.

1.1. The Boltzmann equation. The Boltzmann equation (Cf. [17, 19]) describes the behavior of a dilute gas when the only interactions taken into account are binary collisions. It reads in some space domain $\Omega \subset \mathbb{R}^N$:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = Q_B(f, f), \quad x \in \Omega, \quad v \in \mathbb{R}^N, \quad t \geq 0,$$

where $N \geq 2$ is the dimension. In equation (1.1), Q is the quadratic Boltzmann collision operator, defined by

$$Q_B(f, f) = \int_{\mathbb{R}^N \times S^{N-1}} \left[f(v') f(v'_*) - f(v) f(v_*) \right] B(|v - v_*|, \cos \theta) dv_* d\sigma$$

in the so-called “σ-representation” (see [53], Chapter 1, Section 4.6). In this representation the parametrization of the collision is

$$v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2} \sigma, \quad v'_* = \frac{v + v_*}{2} - \frac{|v - v_*|}{2} \sigma, \quad \sigma \in S^{N-1}$$

and the deviation angle is defined by $\cos \theta = (v'_* - v'_*) \cdot (v_* - v)/|v_* - v|^2$. Up to a jacobian factor $2^{N-2} \sin^{N-2}(\theta/2)$ (see again [53], Chapter 1, Section 4.6), one can also define the alternative so-called “ω-representation”

$$Q_B(f, f) = \int_{\mathbb{R}^N \times S^{N-1}} \left[f(v') f(v'_*) - f(v) f(v_*) \right] 2^{N-2} \sin^{N-2}(\theta/2) B(|v - v_*|, \cos \theta) dv_* d\omega$$

with the formula

$$v' = v + ((v_* - v) \cdot \omega) \omega, \quad v'_* = v_* - ((v_* - v) \cdot \omega) \omega, \quad \omega \in S^{N-1}.$$

Remark that this operator is local in x, and therefore all its functional study in the sequel shall be done with no space variable x.

Boltzmann’s collision operator has the fundamental properties of conserving mass, momentum and energy

$$\int_{\mathbb{R}^N} Q_B(f, f) \phi(v) dv = 0, \quad \phi(v) = 1, v, |v|^2$$
The functional \(-\int f \log f \, dv\) is the entropy of the solution. Boltzmann’s \(H\) theorem implies that at some point \(x \in \Omega\), any equilibrium distribution function, i.e., any function which is a maximum of the entropy, has the form of a locally Maxwellian distribution
\[
M(\rho, u, T)(v) = \frac{\rho}{(2\pi T)^{N/2}} \exp\left(-\frac{|v-u|^2}{2T}\right),
\]
where \(\rho, u, T\) are the density, mean velocity and temperature of the gas at the point \(x\), defined by
\[
\rho = \int_{\mathbb{R}^N} f(v) \, dv, \quad u = \frac{1}{\rho} \int_{\mathbb{R}^N} v f(v) \, dv, \quad T = \frac{1}{N\rho} \int_{\mathbb{R}^N} |v-u|^2 f(v) \, dv.
\]
For further details on the physical background and derivation of the Boltzmann equation we refer to [17, 19] and [55].

We consider collision kernels of the form
\[
B(|v-v_\ast|, \cos \theta) = |v-v_\ast|^\gamma b(\cos \theta), \quad \gamma \in (-N, +\infty)
\]
with
\[
b(\cos \theta) \sim_{\theta \to 0} b^\ast(\theta) (\sin \theta/2)^{-(N-1)-\alpha}, \quad \alpha \in [0, 2),
\]
where \(b^\ast(\theta)\) is non-negative, bounded and non-zero near \(\theta \sim 0\). When \(\alpha \geq 0\) the angular singularity is not integrable, the operator is said to be non-cutoff.

An important remark on the quadratic collision operator is: by using the change of variable \(\sigma \to -\sigma\) (which changes \(\theta\) into \(\pi - \theta\)) one can replace \(b\) by
\[
\tilde{b}(\cos \theta) = \frac{1}{2} [b(\cos \theta) + b(\cos(\pi - \theta))]
\]
(where \(1_E\) denotes the usual characteristic function of a set \(E\)). Therefore we shall consider without restriction in the sequel that \(b\) satisfies the singularity condition (1.5) above, and is 0 on \([\pi/2, \pi]\).

For particles interacting according to some spherical repulsive potential
\[
\phi(r) = r^{-(s-1)}, \quad s \in [2, +\infty),
\]
the collision kernel is not explicit but it can be shown that for the dimension \(N = 3\), \(B\) satisfies (1.4) with \(\gamma = (s-5)/(s-1)\) and (1.3) with \(\alpha = 2/(s-1)\) (see for instance [17, 19, 3]). Therefore as a convention one shall speak in (1.4) of hard potentials when \(s \geq 5\), maxwellian potential when \(s = 5\), soft potentials when \(2 < s < 5\), and elastic collisions when \(s = 1\).
Moreover among soft potentials we shall denote by *moderately soft potentials* the case when $3 \leq s < 0$.

Let us mention also for the sake of completeness that in the case of contact interactions (the so-called *hard spheres* model), the collision kernel is locally integrable and explicit: it takes the form (in dimension $N = 3$) $B(|v - v_*|, \cos \theta) = |v - v_*|$ (up to a normalization constant).

1.2. Linearized Boltzmann collision operator.

We denote by

$$
\mu = \mu(v) := (2\pi)^{-N/2}e^{-|v|^2/2}
$$

the normalized unique equilibrium with mass 1, momentum 0 and temperature 1. We consider fluctuations around this equilibrium of the form

$$
f = \mu + \mu^{1/2}g
$$

which results the following linearized collision operator (note the sign convention):

$$
L_B(g) = -\mu^{-1/2} \left[Q_B(\mu, \mu^{1/2}g) + Q_B(\mu^{1/2}g, \mu) \right].
$$

For the sake of simplification we shall always consider in the sequel the linearized collision operator around this normalized equilibrium. This is no restriction: a detailed discussion of the dependence of the spectral gap and coercivity estimates on this operator in terms of the mass, mean velocity and temperature can be found in [44].

It is well-known (see [17] for instance) that L_B (acting in the velocity space) is an unbounded symmetric operator on L^2, such that its Dirichlet form satisfies

$$
D_B(g) := \langle L_Bg, g \rangle \geq 0,
$$

and that $D_B(g) = 0$ if and only if $g = P_g$ where

$$
P_g = (a + b \cdot v + c|v|^2)\mu^{1/2}
$$

(with $a, c \in \mathbb{R}$ and $b \in \mathbb{R}^N$) is the L^2 orthogonal projection onto the space of the so-called “collisional invariants”

$$
\text{Span}\{\mu^{1/2}, v_1\mu^{1/2}, \ldots, v_N\mu^{1/2}, |v|^2\mu^{1/2}\}.
$$

1.3. The Landau equation.

The Landau equation was written by Landau in 1936 ([42]). It is similar to the Boltzmann equation (1.1) but with a different collision operator Q_L. Indeed in the case of long-distance interactions, collisions occur mostly for very small θ. When all collisions become concentrated on $\theta = 0$, one obtains by the so-called *grazing collision limit* asymptotic (see for instance [10, 21, 22, 52, 7] for a detailed discussion) the *Landau collision operator*

$$
Q_L(f, f) = \nabla \cdot \left(\int_{\mathbb{R}^N} a(v - v_*)[f_*(\nabla f) - f(\nabla f)_*]dv_* \right),
$$

(1.6)
where $\nabla = (\partial_{v_1}, \ldots, \partial_{v_N})$, $f = f(v)$, $f_* = f(v_*)$ etc. The non-negative symmetric $N \times N$ matrix $a = a(z)$ is

$$a_{ij}(z) = \left\{ \delta_{ij} - \frac{z_i z_j}{|z|^2} \right\} |z|^{\gamma+2}.$$

(1.7)

This operator is used for instance in plasma physics in the case of a Coulomb potential where $\Phi(|z|) = |z|^{-3}$ in dimension $N = 3$ (for more details see [55, Chapter 1, Section 1.7] and the references therein). Indeed let us mention that for Coulomb interactions the Boltzmann collision operator does not make sense anymore (see [54, Annex 1, Appendix]). By analogy with the Boltzmann’s case, and even if the physical meaning of such collision kernel is not clear for the Landau collision operator, one shall speak of hard potentials when $\gamma > 0$, maxwellian potentials when $\gamma = 0$, and soft potentials when $\gamma < 0$. Moreover among soft potentials we shall denote by moderately soft potentials the case when $-2 \leq \gamma < 0$.

1.4. Linearized Landau collision operator. Consider again fluctuation around the equilibrium of the form

$$f = \mu + \mu^{1/2} g.$$

Then the linearized Landau collision operator is defined by

$$L_L g = -\mu^{-1/2} \left[Q_L(\mu, \mu^{1/2} g) + Q_L(\mu^{1/2} g, \mu) \right].$$

It was proved in [34, 39, 20] that L_L (acting on the velocity space) is an unbounded symmetric operator on L^2, such that its Dirichlet form satisfies

$$D_L(g) := \langle L_L g, g \rangle \geq 0$$

and $D_L(g) = 0$ if and only if $g = Pg$.

1.5. Previous results and motivations. The study of spectral gap estimates for the linearized Boltzmann and Landau collision operators has a long history, see for instance [38, 57, 15, 31, 32, 58, 14, 12] and we refer to [11, 44] for a more detailed discussion of it. Let us just emphasize some references directly related to this paper. For linearized Boltzmann collision operators with locally integrable collision kernel (which is satisfied for instance under the so-called Grad’s angular cutoff), the existence of a spectral gap is equivalent to $\gamma \geq 0$ (see [32, 14, 13] for non-constructive proofs). The question of obtaining polynomial or exponential rate of relaxation of the form $O(e^{-\lambda t^\beta})$ for $0 < \beta < 1$ and for soft potentials with cutoff was studied in [14, 51, 48, 49], and explicit spectral gap and generalized coercivity estimates were obtained in [11, 44].

For the sake of completeness let us also mention that Cercignani introduced an alternative “potential cutoff” to Grad’s angular cutoff in [16] for which results on the spectrum of the linearized collision operator were obtained in [18].
While the cutoff theory of the linearized collision operator (without space variable) is quite developed, for non locally integrable collision kernels, there are quite few works. First for the Boltzmann collision operator at the linearized level there are essentially the two papers by Pao [46]: he proved that the resolvent is compact for inverse power-laws interaction potentials with $s > 3$ (in our notation). His proof was using tools from pseudo-differential operators theory: the idea was to compute the symbol of the linearized operator L_B, and then to search for adequate condition for $L_B + C$ (for some constant $C > 0$) to be invertible with compact inverse, by reducing to the Maxwell case and decomposing along spherical harmonics. This fundamental work was critically reviewed in particular for the use of techniques from pseudo-differential operator theory in [40].

The critics of [40] on [46], together with the fact that the proof in [46] was highly technical, were probably the reasons for which the results in [46] were not considered as completely reliable, and this paper was somehow forgotten in the following decades.

One of our goal in this work is to clarify the discussion about the validity of the results [46], by recovering and improving strongly these results. Moreover we replace the question treated in [46] into the unified framework of quantitative coercivity estimates for the linearized collision operators, which is related to the works [11, 44] (for the Landau collision operator at the linearized level, let us mention the key works [20, 34] and the approach developed in [44] which shall be used here). A general motivation for this framework is to provide explicit rate of convergence to equilibrium in the energy methods which have emerged recently in the collisional kinetic theory: see [33, 34, 35, 36, 37, 47, 48, 45, 49, 50].

At the non-linear level, let us mention some breakthroughs related to non-cutoff interactions: in the spatially homogeneous Cauchy theory: [8, 9, 28, 52, 30], in the grazing collision limit from Boltzmann to Landau equation: [10, 22, 21], in the parabolic-like regularizing property in the velocity variable: [23, 24, 25, 41, 53, 5], in the construction of renormalized solutions (in the spirit of [27]): [6, 7].

In the spirit of the method of Pao, a systematic approach by Fourier transform and pseudo-differential operators for the study of linear and non-linear Boltzmann non-cutoff collision operators has been developed by Alexandre [1, 3, 4]. The applications of this technical tools are not clear at now, but they seem to have contributed to the understanding of the Boltzmann equation in two ways: in the development of a renormalization process adapted to the non-cutoff case ([2, 3]), and by providing some sharp estimates from above on the collision operator.

1.6. **Main theorems.** First we state our coercivity results for the linearized Boltzmann collision operator:

Theorem 1.1. Let B be a collision kernel satisfying (1.4, 1.5). Then
For any \(\varepsilon > 0 \) there is a constant \(C_{B,\varepsilon} \), constructive from our proof and depending on \(B \) and \(\varepsilon \), such that the Dirichlet form \(D_B \) of the linearized Boltzmann collision operator associated to \(B \) satisfies
\[
D_B(g) \geq C_{B,\varepsilon} \left\| [g - P g] (1 + |v|^2)^{(\gamma+\alpha-\varepsilon)/4} \right\|_{L^2(\mathbb{R}^N)}^2.
\]

There is a constant \(C_{B,0} \) (obtained by non-constructive means in our proof) such that
\[
D_B(g) \geq C_{B,0} \left\| [g - P g] (1 + |v|^2)^{(\gamma+\alpha)/4} \right\|_{L^2(\mathbb{R}^N)}^2.
\]

Second we state the constructive version of the coercivity result in [34] for the linearized Landau collision operator:

Theorem 1.2. Let \(\gamma \in (-N, +\infty) \). Then there is some constant \(C_{\gamma} \), constructive from our proof and depending on \(\gamma \), such that the Dirichlet form \(D_L \) of the associated linearized Landau collision operator satisfies:
\[
D_L(g) \geq C_{\gamma} \left\| [g - P g] \right\|_{\sigma}^2,
\]
where \(\| \cdot \|_{\sigma} \) is the following anisotropic norm:
\[
\left\| [g - P g] \right\|_{\sigma}^2 := \left\| (1 + |v|^2)^{\gamma/4} \Pi_v \nabla_v g \right\|_{L^2(\mathbb{R}^N)}^2 + \left\| (1 + |v|^2)^{(\gamma+\alpha)/4} \left[I - \Pi_v \right] \nabla_v g \right\|_{L^2(\mathbb{R}^N)}^2 + \left\| (1 + |v|^2)^{(\gamma+2)/4} g \right\|_{L^2(\mathbb{R}^N)}^2.
\]

1.7. Consequences on the spectrum. In a previous paper the first author has proved:

Theorem 1.3 ([44]). Let \(B \) be a collision kernel satisfying \(H_{\alpha} \) with \(\alpha > 0 \). Then there is a constant \(C_B \) (constructive from the proof and depending on \(B \)) such that the Dirichlet form \(D_B \) of the linearized Boltzmann collision operator associated to \(B \) satisfies
\[
D_B(g) \geq C_B \left\| [g - P g] \right\|_{H_{\alpha/2}(\mathbb{R}^N)}^2.
\]

Therefore as soon as \(\gamma + \alpha > 0 \) and \(\alpha > 0 \) it is straightforward by gathering Theorems [14] and [3] that the resolvent of \(L_B \) is compact and so that the spectrum is purely discrete and the eigenvectors basis is complete in \(L^2 \). In dimension \(N = 3 \) for interactions deriving from inverse-power laws potentials \(\phi(r) = r^{-(s-1)} \), the corresponding condition on \(s \) is: \((s - 5)/(s - 1) + 2/(s - 1) > 0 \), that is \(s > 3 \).
Hence we can recover completely the results of Pao [46], by constructive means and without tools of pseudo-differential operators.

Moreover Theorem 1.1 yields the first estimates on this spectral gap in the case $\gamma + \alpha > 0$ and answers to the question of the existence of a spectral gap in the limit case $\gamma + \alpha = 0$.

For the linearized Landau collision operator, it had been already shown in [34] that
\[
C_1 \| [g - Pg] \|_2^2 \leq D_\kappa(g) \leq C_2 \| [g - Pg] \|_2^2
\]
by non-constructive means (in fact the constant C_2 could be made explicit from the proof whereas the constant C_1 was obtained by a compactness argument). This implies straightforwardly that the resolvent is compact as soon as $\gamma > -2$ (which implies in this case that the spectrum is purely discrete and the eigenvectors basis is complete in L^2). Moreover spectral gap exists if and only if $\gamma \geq -2$.

In this context, Theorem 1.2 provides the first estimates on it for this whole region (as well as an explicit version of the coercivity estimate).

1.8. Conjecture and perspectives. For the linearized Boltzmann collision operator with angular cutoff, the existence of a spectral gap is equivalent to $\gamma \geq 0$ (see [32, 14, 19]). This situation can be loosely thought of as part of the limit case “$\alpha = 0$”. For the linearized Landau collision operator, the existence of a spectral gap is equivalent to $\gamma \geq -2$ as discussed above. This situation can be thought of as the limit case “$\alpha = 2$”.

From the necessary and sufficient condition in these two limit cases, and the sufficient condition of Theorem 1.1 in the intermediate cases, it is natural to state the following conjecture:

Conjecture. Let B be a collision kernel satisfying (1.4,1.5) with $\gamma \in (-N, +\infty)$ and $\alpha \in [0,2)$. Then the linearized Boltzmann collision operator associated to B admits a spectral gap if and only if $\gamma + \alpha \geq 0$. Moreover this statement is still valid if one includes formally the case of angular cutoff in “$\alpha = 0$”, and add the linearized Landau collision operator as the limit case “$\alpha = 2$”.

Let us remark that in the limit cases of the linearized Boltzmann collision operator with angular cutoff and the linearized Landau collision operator the conjecture is proved as discussed before. And Theorem 1.1 proves that the condition $\gamma + \alpha \geq 0$ is sufficient for the existence of a spectral gap.

Here are now some open questions linked with this conjecture:

1. In order to show that the condition is necessary, is it possible to find some particular sequence of functions g_n contradicting the spectral gap estimate when $\gamma + \alpha < 0$?
(2) A related and more difficult question is to identify and understand the coercivity norm for the non-cutoff linearized Boltzmann collision operator. This norm is likely to be intricate and anisotropic for the weight on the fractional derivative part (as for the linearized Landau collision operator). This point is related to the open question of constructing smooth perturbative solutions near equilibrium for the Boltzmann equation without angular cutoff (see the discussion in [45]).

(3) The spectrum is purely discrete in the case \(\gamma + \alpha > 0, \alpha > 0 \) (and we conjecture that this is also true on the non-cutoff borderline case \(\gamma + \alpha > 0, \alpha = 0 \)). In the angular cutoff case the geometry of the spectrum can be obtained by perturbation arguments (Cf. [32, 14, 19]). Hence there remains the region \(\gamma + \alpha \leq 0 \) for which there is no information on the geometry of the spectrum at now (including the linearized Landau collision operator when \(\alpha = 2 \) and \(\gamma < -2 \)).

Finally we shall put in perspective this conjecture with the non-linear case. A non-linear analogous of a spectral gap is provided by Cercignani’s conjecture:

\[
\mathcal{D}_B(f) \geq C_f H(f|M_f)
\]

where

\[
H(f|M_f) = H(f) - H(M_f) := \int_{\mathbb{R}^N} f \log \frac{f}{M_f} \, dv
\]

is the relative entropy between \(f \) and its associated Maxwellian equilibrium distribution, and

\[
\mathcal{D}_B(f) := -\int_{\mathbb{R}^N} Q_B(f, f) \log f \, dv \quad (\geq 0)
\]

denotes the entropy production functional (for more details we refer to [56]). It was shown in [29] that an equivalent version of this conjecture is true for the Landau collision operator when \(\gamma \geq 0 \), and it was shown in [56] that this conjecture for the Boltzmann collision operator for \(B(v - v_*, \cos \theta) \geq K_B (1 + |v - v_*|)^\gamma \) with \(\gamma \geq 2 \). From this two limit cases Villani “interpolated” the following conjecture:

Conjecture (Villani [56]). Cercignani’s conjecture is satisfied if and only if \(\gamma + \alpha \geq 2 \).

(The other part of the conjecture on the question of the existence of a spectral gap for the linearized collision operator was not correct –as shown by Theorem [17], which is likely to be explained by the confusion in the field about Pao’s results). Obviously this conjecture leaves more room than the one we made on the spectral gap, since it is not stated in which functional space the distribution \(f \) lives, but from the results in [56] and [13], it is reasonable to try to prove that Villani’s conjecture holds in spaces of nonnegative functions in \(L^1(1 + |v|^q) \cap H^k \) for any \(q, k \geq 0 \).
Still an interesting question is to know whether Cercignani’s conjecture could still be true for \(\gamma + \alpha < 2 \) in some functional space with “stretched exponential decay” (see the discussions in \([13, 43]\)). This is important since the condition \(\gamma + \alpha \geq 2 \) rules out all physical interactions.

Another important question, if Villani’s and our conjectures hold, would be to understand the reasons for this “gap” between the non-linear and linearized behavior of the entropy production for the Boltzmann equation.

1.9. Methods of the proof and plan of the paper. Section 2 is devoted to a technical estimate of decay on the kernel of the non-local part of the linearized Boltzmann collision operator, under the angular cutoff assumption. We show that its mixing effects can be quantified into a gain of polynomial weights (this phenomenon was noticed in \([32]\) and is here fully developed). This estimate has been isolated from the rest of the proof since it is the key step, and also since it can be of independent interest for researchers in the field.

Section 3 is devoted to the (constructive) proof of the coercivity estimate for the linearized Boltzmann collision operator when \(\varepsilon > 0 \) (first point in Theorem 1.1). The idea is to estimate from below the Dirichlet form by truncating the angular part \(b \) of the collision kernel on the angles \(\theta \in [0, \theta_0(|v-v_\ast|)] \) with \(\theta_0(|v-v_\ast|) \sim |v-v_\ast|^{-k} \) for some suitable \(k > 0 \), and then balance the lower bound on the local part (in which the polynomial weight results from a competing effect between the fact the lower bound on \(b \) is big in this region, and the fact that the size of this angular region is small), and the upper bound on the non-local part, for which the previous technical estimate plays a crucial role. The constructive coercivity estimates from \([44]\) are also used.

Section 4 is devoted to the (non-constructive) proof of the coercivity estimate for the linearized Boltzmann collision operator when \(\varepsilon = 0 \) (second point in Theorem 1.1). The idea is to reduce to a cutoff-like linearized Boltzmann collision operator with a different collision kernel, and then apply a strategy based on Weyl’s Theorem about compact perturbation of essential spectrum, in the spirit of \([32, 19]\).

Finally Section 5 is devoted to the (constructive) proof of the coercivity estimate for the linearized Landau collision operator (Theorem 1.2). The idea is to combine the estimates in \([14]\) on the different parts of the decomposition of the operator as “diffusive part + bounded part” (which involves the optimal coercivity norms), with the constructive coercivity estimates of \([14]\) obtained on the global operator, but with non-optimal coercivity norms.
2. A TECHNICAL ESTIMATE ON L_B

We assume in this section that the collision kernel B takes the particular form (sometimes named “variable hard spheres collision kernels”)

$$B_q(|v - v_*|, \cos \theta) = |v - v_*|^q, \quad q \in (-N, +\infty).$$

These collision kernels are non-physical except in the case $q = 1$ (hard spheres) but they shall play an important role in intermediate steps of our proof in the next sections. They satisfy the angular cutoff assumption, that is B_q is locally integrable in terms of v, v_*, σ. It is well-known that under this assumption the collision operator can be split into “gain” and “loss” parts.

Therefore one can decompose the linearized collision operator L_B corresponding to B_q as follows

$$L_B g = \nu_B g - K_B g$$

with the non-local part

$$K_B g := \int_{\mathbb{R}^N \times S^{N-1}} \left[g(v') \mu^{1/2}(v'_*) + g(v'_*) \mu^{1/2}(v') \right. - \left. g(v_*) \mu^{1/2}(v) \right] \mu^{1/2}(v_*) B_q(|v - v_*|) \, dv_* \, d\sigma$$

and the following multiplicative function for the local part

$$\nu_B(v) := \int_{\mathbb{R}^N \times S^{N-1}} \mu(v) B_q(|v - v_*|) \, dv_* \, d\sigma = |S^{N-1}| \left(| \cdot |^q \ast \mu \right)(v).$$

The non-local part K_B itself splits into a pure convolution part

$$K_B^c g := \left| S^{N-1} \right| \left[| \cdot |^q \ast \left(\mu^{1/2} \mu \right) \right](v) \mu^{1/2}(v)$$

and a “gain” part (denoted so since it flows from the gain part of the original non-linear operator)

$$K_B^+ g := \int_{\mathbb{R}^N \times S^{N-1}} \left[g(v') \mu^{1/2}(v'_*) + g(v'_*) \mu^{1/2}(v') \right] \mu^{1/2}(v_*) B_q(|v - v_*|) \, dv_* \, d\sigma.$$

Note that using the change of variable $\sigma \to -\sigma$, the latter writes also

$$K_B^+ g := 2 \int_{\mathbb{R}^N \times S^{N-1}} g(v') \mu^{1/2}(v'_*) \mu^{1/2}(v_*) B_q(|v - v_*|) \, dv_* \, d\sigma.$$

We shall focus on the kernel of the K_B^+ part. For any locally integrable collision kernel B we can define $k_B = k_B(v, v')$ such that

$$\forall v \in \mathbb{R}^N, \quad K_B^+ g(v) = \int_{\mathbb{R}^N} g(v') k_B(v, v') \, dv'.$$
and we denote by \(k_q := k_{B_q} \) the kernel obtained for the particular collision kernel \(B_q \) above. Note that this definition is independent of the representation we use for the collision operator, either using the “\(\sigma \)” or “\(\omega \)” parametrization of the unit vector on the sphere.

Then we have the

Proposition 2.1. The kernel \(k_q \) is symmetric:

\[
\forall v, v' \in \mathbb{R}^N, \quad k_q(v, v') = k_q(v', v),
\]

and for \(q > -1 \) and for any \(s \in \mathbb{R} \) it satisfies the control

\[
\forall v \in \mathbb{R}^N, \quad \int_{\mathbb{R}^N} k_q(v, v') (1 + |v'|)^s \, dv' \leq C_{q,s} (1 + |v|)^{q+s-(N-1)}
\]

for some explicit constant \(C_{q,s} \) depending only on \(q, s \).

Let us first compute the kernel \(k_q \) using well-known changes of variable (see for instance [32]).

Lemma 2.2. We have, for \(q > -1 \), the explicit formula (let us recall that \(\omega = (v' - v)/|v' - v| \)):

\[
k_q(v, v') = \frac{2^N}{|v' - v|} \left(\frac{2\pi}{N} \right)^{N/2} \exp \left\{ -\left| \frac{|v' - v|^2}{8} - \frac{|v' - v + 2(v \cdot \omega)\omega|^2}{8} \right\} \right.
\]

\[
\times \left(\int_{\omega^\perp} |v' - v + z|^{q-(N-2)} \exp \left\{ -\left| z + (v - (v \cdot \omega)\omega) \right|^2 \right\} \, dz \right).
\]

Proof of Lemma 2.2. We start from the \(\omega \)-representation of \(K^+_B \):

\[
I := 2 \int_{\mathbb{R}^N \times S^{N-1}} g(v') (\mu_\ast \mu'_\ast)^{1/2} B_q \, dv_\ast \, d\sigma
\]

\[
= 2^{N-1} \int_{\mathbb{R}^N \times S^{N-1}} g(v') (\mu_\ast \mu'_\ast)^{1/2} |v - v_\ast|^q \sin^{N-2}(\theta/2) \, dv_\ast \, d\omega
\]

\[
= 2^{N-1} \int_{\mathbb{R}^N \times S^{N-1}} g(v') (\mu_\ast \mu'_\ast)^{1/2} |v - v_\ast|^q \sin^{N-2} \, dv_\ast \, d\omega.
\]

Then we perform the change variable \(v_\ast \to V = v_\ast - v \) (with \(\omega \) fixed), and the change of variable \(V = r \omega + z \) with \(z \in \omega^\perp \) (with \(\omega \) fixed). These two changes of variables have jacobian equal to 1. We obtain

\[
I = 2^{N-1} \int_{\mathbb{R} \times S^{N-1}} g(v + r \omega) |v|^{N-2} \left(\int_{\omega^\perp} (\mu_\ast \mu'_\ast)^{1/2} |r \omega + z|^{q-(N-2)} \, dz \right) \, dr \, d\omega.
\]
Finally we make the spherical change of variable \((r, \omega) \in \mathbb{R} \times S^{N-1} \to W = r\omega \in \mathbb{R}^N\) with jacobian \(2r^{-\frac{(N-1)}{2}}\) (a factor 2 comes from the fact that \(r \in \mathbb{R}\)), which yields

\[
I = 2^N \int_{\mathbb{R}^N} g(v + W) |W|^{-1} \left(\int_{W^\perp} (\mu_s \mu_s')^{1/2} |W + z|^{q-\frac{(N-2)}{2}} \, dz \right) \, dW.
\]

Let us rewrite the argument of the exponential term:

\[
|v_s|^2 + |v_s'| = |v + W + z|^2 + |v + z|^2 = \frac{1}{2} |W + 2(v + z)|^2 + \frac{1}{2} |W|^2
\]

\[
= \frac{1}{2} |W + 2(v \cdot \omega)\omega|^2 + 2|z + (v - (v \cdot \omega)\omega)|^2 + \frac{1}{2} |W|^2
\]

where \(\omega = W/|W|\) (in the last equality we have used that \(z \perp W\)). We deduce that

\[
(\mu_s \mu_s')^{1/2} = \frac{1}{(2\pi)^{N/2}} \exp \left\{ -\frac{|W|^2}{8} - \frac{|z + (v - (v \cdot \omega)\omega)|^2}{2} - \frac{|W + 2(v \cdot \omega)\omega|^2}{8} \right\}.
\]

We deduce the formula. One checks that the integral on \(z\) is well-defined for \(q > -1\) since in this case \(q - (N - 2) > -(N - 1)\).

Proof of Proposition 2.1. The fact that \(k_q\) is symmetric is easily checked from the formula. Let us turn to the bound from above.

First let us assume that \(q - (N - 2) \geq 0\). We estimate the integral over \(z \in \omega^\perp\) in terms of \(v\):

\[
\int_{\omega^\perp} |v' - v + z|^{q-\frac{(N-2)}{2}} \exp \left\{ -\frac{|z + (v - (v \cdot \omega)\omega)|^2}{2} \right\} \, dz
\]

\[
= \int_{\omega^\perp} |v' - v + \bar{z} - (v - (v \cdot \omega)\omega)|^{q-\frac{(N-2)}{2}} \exp \left\{ -\frac{|ar{z}|^2}{2} \right\} \, d\bar{z}
\]

\[
\leq C (1 + |v - (v \cdot \omega)\omega|)^{q-\frac{(N-2)}{2}} (1 + |v' - v|)^{q-\frac{(N-2)}{2}}
\]

\[
\leq C (1 + |v|)^{q-\frac{(N-2)}{2}} (1 + |v' - v|)^{q-\frac{(N-2)}{2}}.
\]

We deduce that

\[
\int_{\mathbb{R}^N} k_q(v, v') (1 + |v'|)^s \, dv'
\]

\[
\leq C (1 + |v|)^{q-\frac{(N-2)}{2}} \int_{\mathbb{R}^N} |v' - v|^{-1} (1 + |v'|)^s (1 + |v' - v|)^{q-\frac{(N-2)}{2}} \exp \left\{ -\frac{|v' - v|^2}{8} - \frac{|v' - v + 2(v \cdot \omega)\omega|^2}{8} \right\} \, dv'
\]

and we use the elementary inequality

\[
(1 + |v'|)^s \leq C (1 + |v|)^s (1 + |v' - v|)^{|s|}
\]
to get
\[\int_{\mathbb{R}^N} k_q(v, v') (1 + |v'|)^s \, dv' \leq C \left(1 + |v|\right)^{q + s - (N-2)} J \]
with
\[J := \int_{\mathbb{R}^N} |v' - v|^{-1} (1 + |v' - v|)^{|s|+q-(N-2)} \exp \left\{ -\frac{|v' - v|^2}{8} - \frac{|v' - v + 2(v \cdot \omega)|^2}{8} \right\} \, dv'. \]

Now in the term J we perform the change of variable $v' \to u = v' - v$ and then the spherical change of variables $u = r \omega$, $r \in \mathbb{R}_+$, $\omega \in S^{N-1}$, choosing v as the north pole vector in the angle parametrization (note that this is not the same parametrization as the one used to define the deviation angle). It yields
\[J = |S^{N-2}| \int_0^{+\infty} r^{N-2} (1 + r)^{|s|+q-(N-2)} e^{-r^2/8} \int_0^\pi e^{-(r+2|v| \cos \varphi)^2} \sin^{N-2} \varphi \, d\varphi \, dr. \]

Then for technical reasons we treat separately the case $N = 2$ and $N \geq 3$.

First for $N \geq 3$, we have $\sin^{N-2} \varphi \leq \sin \varphi$, and thus
\[J \leq C \int_0^{+\infty} r^{N-2} (1 + r)^{|s|+q-(N-2)} e^{-r^2/8} \int_0^\pi e^{-(r+2|v| \cos \varphi)^2} \sin \varphi \, d\varphi \, dr. \]

Then we do the change of variable $y = (r + 2|v| \cos \varphi)$ in the φ integral, to get
\[J \leq C |v|^{-1} \int_0^{+\infty} r^{N-2} (1 + r)^{|s|+q-(N-2)} e^{-r^2/8} \, dr \int_{-\infty}^{+\infty} e^{-y^2/8} \, dy \leq C |v|^{-1} \]
which yields the conclusion for large v (the estimate for small v is immediate).

Second for $N = 2$, we perform the same changes of variable which yields
\[J \leq C |v|^{-1} \int_0^{+\infty} (1 + r)^{|s|+q-(N-2)} e^{-r^2/8} \]
\[\int_{(r-2|v|)}^{(r+2|v|)} e^{-y^2/8} \left(1 - \frac{y - r}{2|v|}\right)^2 \, dy \, dr \]
\[\leq C \int_0^{+\infty} (1 + r)^{|s|+q-(N-2)} e^{-r^2/8} \int_{(r-2|v|)}^{(r+2|v|)} e^{-y^2/8} \left(4|v|^2 - (y - r)^2\right)^{-1/2} \, dy \, dr. \]

Finally we split into two parts: $|y - r| \leq |v|$ and $|y - r| \geq |v|$. On the first part we have $(4|v|^2 - (y - r)^2)^{-1/2} \leq |v|^{-1}$ which yields the result. On the second part we have either $r \geq |v|/2$ or $|y| \geq |v|/2$ which gives an exponential decay in v thanks to
the terms $e^{-\frac{r^2}{2}}$ and $e^{-\frac{r^2}{8}}$ in the integrand. This concludes the proof in dimension $N = 2$.

Now let us come back to the case $q - (N - 2) < 0$. Then we have

$$\int_{\omega^\perp} |v' - v + z|^{q-(N-2)} \exp \left\{ -\frac{|z + (v - (v \cdot \omega)\omega)|^2}{2} \right\} \, dz$$

$$= \int_{\omega^\perp} |v' - v + z - (v - (v \cdot \omega)\omega)|^{q-(N-2)} \exp \left\{ -\frac{|z|^2}{2} \right\} \, d\bar{z}$$

$$\leq C (1 + |v - (v \cdot \omega)\omega|)^{q-(N-2)} (1 + |v' - v|)^{q-(N-2)}.$$

The additional difficulty will be therefore to obtain decay in v since the weight in this formula only involves the projection of v on ω^\perp.

Let us follow the computations as before: we have

$$\int_{\mathbb{R}^N} k_q(v, v') (1 + |v'|)^s \, dv'$$

$$\leq C \int_{\mathbb{R}^N} |v' - v|^{-1} (1 + |v'|)^s (1 + |v - (v \cdot \omega)\omega|)^{q-(N-2)} (1 + |v' - v|)^{q-(N-2)}$$

$$\times \exp \left\{ -\frac{|v' - v|^2}{8} - \frac{|v' - v + 2(v \cdot \omega)\omega|^2}{8} \right\} \, dv'.$$

We use again the inequality

$$(1 + |v'|)^s \leq C (1 + |v|)^s (1 + |v' - v|)^{|s|}$$

to get

$$\int_{\mathbb{R}^N} k_q(v, v') (1 + |v'|)^s \, dv' \leq C (1 + |v|)^s J'$$

with

$$J' := \int_{\mathbb{R}^N} |v' - v|^{-1} (1 + |v' - v|)^{|s|+q-(N-2)} (1 + |v - (v \cdot \omega)\omega|)^{q-(N-2)}$$

$$\exp \left\{ -\frac{|v' - v|^2}{8} - \frac{|v' - v + 2(v \cdot \omega)\omega|^2}{8} \right\} \, dv'.$$

Again we perform the change of variable $v' \to u = v' - v$ and then the spherical change of variables $u = r \omega$, $r \in \mathbb{R}_+$, $\omega \in S^{N-1}$, choosing v as the north pole vector.
in the angle parametrization. It yields
\[J' = |S^{N-2}| \int_0^{\infty} r^{N-2} (1 + r)^{|s|+|q-(N-2)|} e^{-r^2} \]
\[\int_0^\pi (1 + |v| \sin \varphi)^q-(N-2) e^{-\frac{(r+2|v| \cos \varphi)^2}{8}} \sin^{N-2} \theta d\varphi dr. \]

Then we split between \(|\cos \varphi| \leq 1/\sqrt{2}\) and \(|\cos \varphi| \geq 1/\sqrt{2}\). In the first case we have \(\sin \varphi \geq 1/\sqrt{2}\) and thus
\[(1 + |v| \sin \varphi)^{q-(N-2)} \leq C (1 + |v|)^{q-(N-2)} \]
and the end of the proof is strictly similar to above. In the second case, we have
\[\frac{(r+2|v| \cos \varphi)^2}{8} \geq \frac{|v|^2}{12} - \frac{r^2}{16} \]
which implies exponential decay in \(v\) for \(J'\).

3. Proof of Theorem 1.1 for \(\varepsilon > 0\)

Let us first consider a (non locally integrable) collision kernel of the form (in \(\sigma\)-representation)
\[B_{\gamma,\alpha}(|v-v_*|, \cos \theta) = |v-v_*|^\gamma \sin^{-(N-1)-\alpha}(\theta/2) \]
with \(\gamma \in (-N, +\infty)\) and \(\alpha \in [0, 2)\).

The Dirichlet form of the corresponding linearized collision operator \(L_B\) is
\[D_{\gamma,\alpha}(g) := \langle L_B g, g \rangle_{L^2(\mathbb{R}^N)} \]
\[= \frac{1}{4} \int_{\mathbb{R}^N \times \mathbb{R}^N \times S^{N-1}} \left[\frac{g(v')}{\mu(v')}^{1/2} + \frac{g(v)}{\mu(v)}^{1/2} - \frac{g(v)}{\mu(v')}^{1/2} - \frac{g(v)}{\mu(v)}^{1/2} \right]^2 \times |v-v_*|^\gamma \sin^{-(N-1)-\alpha}(\theta/2) \mu(v) \mu(v_*) d\nu d\nu_* d\sigma. \]

We want to prove the

Proposition 3.1. For any \(\varepsilon > 0\), there is an explicit constant \(C_{\gamma,\alpha,\varepsilon} > 0\) such that
\[D_{\gamma,\alpha}(g) \geq C_{\gamma,\alpha,\varepsilon} \int_{\mathbb{R}^N} |g - P g|^2 (1 + |v|)^{\gamma+\alpha-\varepsilon} dv. \]

Proof of Proposition 3.1. For any \(\beta \in (0, (N-1) + \alpha)\), we introduce the following angular truncation domain (which depends on \(|v-v_*|\)):
\[C_\beta = \{ \sigma \in S^{N-1} ; \sin^{-(N-1)-\alpha}(\theta/2) \geq |v-v_*|^\beta \}. \]
One checks easily that C_{β} is invariant under the pre-post collisional change of variables and the change of variable $(v, v_{s}, \sigma) \to (v_{s}, v, -\sigma)$ (for the different classical changes of variable we refer to [55, Chapter 1, Section 4]).

Hence we have

$$D_{\gamma, \alpha}(g) \geq \frac{1}{4} \int_{\mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathcal{C}_{\beta}} \left[\left(\frac{g(v')}{\mu(v')^{1/2}} \right) + \left(\frac{g(v_{s})}{\mu(v_{s})^{1/2}} \right) - \left(\frac{g(v)}{\mu(v)^{1/2}} \right) - \left(\frac{g(v_{s})}{\mu(v_{s})^{1/2}} \right) \right]^{2} \times |v - v_{s}|^{\gamma + \beta} \mu_{1}(v_{s}) \, dv_{s} \, dv \, d\sigma$$

$$= \int_{\mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathcal{C}_{\beta}} \left[- \left(\frac{g(v')}{\mu(v')^{1/2}} \right) - \left(\frac{g(v_{s})}{\mu(v_{s})^{1/2}} \right) + \left(\frac{g(v)}{\mu(v)^{1/2}} \right) + \left(\frac{g(v_{s})}{\mu(v_{s})^{1/2}} \right) \right] \left(\frac{g(v)}{\mu(v)^{1/2}} \right) \times |v - v_{s}|^{\gamma + \beta} \mu(v_{s}) \, dv_{s} \, dv \, d\sigma$$

$$\geq \int_{\mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathcal{C}_{\beta}} g^{2} |v - v_{s}|^{\gamma + \beta} \mu(v_{s}) \, dv_{s} \, dv \, d\sigma$$

$$+ \int_{\mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathcal{C}_{\beta}} g g_{s} |v - v_{s}|^{\gamma + \beta} \mu^{1/2}(v) \mu^{1/2}(v_{s}) \, dv_{s} \, dv \, d\sigma$$

$$- \int_{\mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathcal{C}_{\beta}} g g_{s} |v - v_{s}|^{\gamma + \beta} \mu^{1/2}(v_{s}) \mu^{1/2}(v_{s}) \, dv_{s} \, dv \, d\sigma$$

$$- \int_{\mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathcal{C}_{\beta}} g g_{s} |v - v_{s}|^{\gamma + \beta} \mu^{1/2}(v_{s}) \mu^{1/2}(v_{s}) \, dv_{s} \, dv \, d\sigma$$

$$=: D_{1} + D_{2} + D_{3} + D_{4}.$$

In the following we shall bound D_{1} from below, and D_{2}, D_{3}, D_{4} from above.

For D_{1} we have

$$D_{1} \geq \int_{\mathbb{R}^{N} \times \mathbb{R}^{N}} g^{2} |v - v_{s}|^{\gamma + \beta} \mu(v_{s}) \left(\int_{\sigma \in \mathcal{C}_{\beta}} d\sigma \right) \, dv \, dv_{s}.$$

An easy computation yields

$$\int_{\sigma \in \mathcal{C}_{\beta}} d\sigma = C \int_{0}^{\alpha} \sin^{N-2} \theta \, d\theta$$

with $a = 2 \arcsin \left(|v - v_{s}|^{-\beta/(N-1) + \alpha} \right) \geq C \, |v - v_{s}|^{-\beta/(N-1) + \alpha}$, and thus

$$\int_{\sigma \in \mathcal{C}_{\beta}} d\sigma \geq C \int_{0}^{\alpha} \theta^{N-2} \, d\theta = C \alpha^{N-1} \geq C \, |v - v_{s}|^{-\beta/(N-1) + \alpha}.$$
Hence we deduce
\[
D_1 \geq C \int_{\mathbb{R}^N} g^2 \left(\int_{\mathbb{R}^N} |v - v_*|^{\gamma + \beta} \frac{\mu(v_*)}{(N - 1)^{\gamma + \beta}} dv_* \right) dv \\
\geq C \int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma + \beta} dv.
\]

This completes the estimate for the first term \(D_1\).

Let us consider the second term \(D_2\).
\[
D_2 = \int_{\mathbb{R}^N \times \mathbb{R}^N} g g_* |v - v_*|^{\gamma + \beta} \mu^{1/2}(v) \mu^{1/2}(v_*) dv dv_*
\]
\[
\leq \int_{\mathbb{R}^N \times \mathbb{R}^N} g^2 \mu^{1/2}(v) \mu^{1/2}(v_*) |v - v_*|^{\gamma + \beta} dv dv_*
\]
\[
\leq C \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^\gamma dv \right).
\]

Let us consider the terms \(D_3\) and \(D_4\). We remove the truncation \(C_\beta\) by bounding from above by the collision kernel without truncation, and we have
\[
|D_3| + |D_4| \leq \int_{\mathbb{R}^N \times \mathbb{R}^N} |g(v)||g(v')| k_{\gamma + \beta}(v, v') dv dv'
\]
(once the truncation is removed, the kernel is invariant under the change of variable \((v, v_*, \sigma) \to (v, v_*, -\sigma)\) which allows to reduce to the same term).

Hence we can write
\[
|D_3| + |D_4| \leq C \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma + \beta - (N - 1)} dv \right)^{1/2}
\]
\[
\times \left[\int_{\mathbb{R}^N} (1 + |v|)^{-\gamma + \beta - (N - 1)} \left(\int_{\mathbb{R}^N} k_{\gamma + \beta}(v, v') |g(v')| dv' \right)^2 dv \right]^{1/2}
\]
\[
\leq C \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma + \beta - (N - 1)} dv \right)^{1/2}
\]
\[
\times \left[\int_{\mathbb{R}^N} (1 + |v|)^{-\gamma + \beta - (N - 1)} \left(\int_{\mathbb{R}^N} k_{\gamma + \beta}(v, v') dv' \right) \left(\int_{\mathbb{R}^N} k_{\gamma + \beta}(v, v'') g(v'')^2 dv'' \right) dv \right]^{1/2}.
\]

Then we want to use Proposition \[2.1\] to get
\[
(3.1) \quad (1 + |v|)^{-\gamma + \beta - (N - 1)} \left(\int_{\mathbb{R}^N} k_{\gamma + \beta}(v, v') dv' \right) \leq C.
\]
It is possible as soon as $\gamma + \beta > -1$, i.e., $\beta > -\gamma - 1$. Since $\gamma > -N$ it is enough that $\beta > (N - 1)$. Since $\alpha > 0$ by assumption, it is always possible to pick β such that

$$(N - 1) < \beta < (N - 1) + \alpha.$$

For this choice of β, one can apply Proposition 2.1 to get (3.1). Thus

$$|D_3| + |D_4| \leq C \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma + \beta - (N - 1)} dv \right)^{1/2}$$

$$\times \left[\int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} k_{\gamma + \beta} (v, v'') g(v'')^2 dv'' \right) dv \right]^{1/2}$$

$$\leq C \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma + \beta - (N - 1)} dv \right)^{1/2}$$

$$\times \left[\int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} k_{\gamma + \beta} (v, v'') dv \right) g(v'')^2 dv'' \right]^{1/2}.$$

Using again Proposition 2.1 we have

$$\left(\int_{\mathbb{R}^N} k_{\gamma + \beta} (v, v'') dv \right) \leq C (1 + |v''|)^{\gamma + \beta - (N - 1)}$$

which yields finally

$$|D_3| + |D_4| \leq C \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma + \beta - (N - 1)} dv \right).$$

But the choice $\beta \in ((N - 1), (N - 1) + \alpha)$ implies straightforwardly

$$\gamma < \gamma + \beta - (N - 1) < \gamma + \frac{\beta \alpha}{(N - 1) + \alpha}.$$

Hence by trivial interpolation we get for any $\delta > 0$ there is an explicit constant $C_\delta > 0$ such that

$$|D_3| + |D_4| \leq C_\delta \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma} dv \right) + \delta \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma + \frac{\beta \alpha}{(N - 1) + \alpha}} dv \right).$$

Then by taking δ smaller than the constant in the bound from below for D_1 we deduce that

$$D_{\gamma, \alpha} (g) \geq C_+ \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma + \frac{\beta \alpha}{(N - 1) + \alpha}} dv \right) - K_- \left(\int_{\mathbb{R}^N} g^2 (1 + |v|)^{\gamma} dv \right).$$
To conclude the proof we finally use the coercivity estimates in [44]. In this paper it is proved that (under our assumption on the collision kernel)

\[D_{\gamma,\alpha}(g) \geq C_0 \left(\int_{\mathbb{R}^N} [g - Pg]^2 (1 + |v|)^\gamma \, dv \right) \]

for some explicit constant \(C_0 > 0 \).

By combining these two last inequalities, one deduces that

\[D_{\gamma,\alpha}(g) \geq C_1 \left(\int_{\mathbb{R}^N} [g - Pg]^2 (1 + |v|)^{\gamma + \frac{\beta \alpha}{(N-1) + \alpha}} \, dv \right) \]

for some explicit constant \(C_1 > 0 \) (depending on \(\beta \)). Since \(\beta \) can be taken as close as wanted to \((N-1) + \alpha\), the weight exponent \(\gamma + \frac{\beta \alpha}{(N-1) + \alpha} \) can be taken as close as wanted to \(\gamma + \alpha \). This concludes the proof. \(\square \)

Proof of the first point in Theorem [1.1]. To conclude the proof of the first point in Theorem [1.1], it is enough to remark that the proof of Proposition [3.1] can be modified easily in order to start from a collision kernel \(B \) such that

\[B \geq K_{B_{\gamma,\alpha}} 1_{\theta \in [0,\theta_0]} \]

for some constants \(K > 0, \theta_0 \in (0, \pi] \) and

\[B_{\gamma,\alpha}(|v - v_*|, \cos \theta) = |v - v_*|^{\gamma} \sin^{-(N-1)-\alpha}(\theta/2), \quad \gamma \in (-N, +\infty), \quad \alpha \in [0, 2), \]

defined as in the beginning of this section. The assumptions of Theorem [1.1] imply such a control.

Indeed one first reduces to the collision kernel \(K_{B_{\gamma,\alpha}} 1_{\theta \in [0,\theta_0]} \) by monotonicity of the Dirichlet form. Then the bound from above on \(D_2, D_3, D_4 \) are unchanged, and the bound from below on \(D_1 \) is still valid since one gets straightforwardly

\[\int_{\sigma \in C_{\beta}} 1_{\theta \in [0,\theta_0]} \, d\sigma \geq \min \left\{ C_1 |v - v_*|^{-\frac{\beta (N-1)}{(N-1) + \alpha}}; C_2 \right\} \]

for some constants \(C_1, C_2 > 0 \). Finally the coercivity estimates of [44] used in the proof are also still valid for a collision kernel \(K_{B_{\gamma,\alpha}} 1_{\theta \in [0,\theta_0]} \). \(\square \)

4. **Proof of Theorem [1.1] for \(\varepsilon = 0 \)**

We start again from some collision kernel which satisfies

\[B \geq K_{B_{\gamma,\alpha}} 1_{\theta \in [0,\theta_0]} \]

for some constants \(K > 0, \theta_0 \in (0, \pi] \) and

\[B_{\gamma,\alpha}(|v - v_*|, \cos \theta) = |v - v_*|^{\gamma} \sin^{-(N-1)-\alpha}(\theta/2), \quad \gamma \in (-N, +\infty), \quad \alpha \in [0, 2). \]

We shall prove the
Proposition 4.1. There is some constant \(C_{B,0} > 0 \) (obtained in our proof by compactness argument) such that

\[
D_B(g) \geq C_{B,0} \int_{\mathbb{R}^N} [g - P g]^2 (1 + |v|)^{\gamma + \alpha} \, dv.
\]

The second point in Theorem 1.1 follows immediately from Proposition 4.1.

Proof of Proposition 4.1. We introduce the following angular truncation domain (which depends on \(|v|, v_* \)):

\[
\tilde{C} = \{ \sigma \in S^{N-1}; \ |v - v'| \leq 1 \}.
\]

One checks easily that \(\tilde{C} \) is invariant under the pre-post collisional change of variables and the change of variable \((v, v_*, \sigma) \to (v_*, v, -\sigma) \). Remark that this truncation domain \(\tilde{C} \) corresponds to the limit case \(\beta = (N - 1) + \alpha \) in the truncation domain \(\tilde{C}_\beta \) previously introduced.

Hence we have

\[
D_{\gamma, \alpha}(g) \geq \frac{K}{4} \int_{\mathbb{R}^N \times \mathbb{R}^N \times \tilde{C}} \left[\frac{g(v')}{\mu(v')^{1/2}} + \frac{g(v'_*)}{\mu(v'_*)^{1/2}} - \frac{g(v)}{\mu(v)^{1/2}} - \frac{g(v_*)}{\mu(v_*)^{1/2}} \right]^2 \times |v - v'|^{\gamma+\alpha+(N-1)} 1_{\theta \in [0, \theta_0]} \mu(v) \mu(v_*) \, dv \, dv_*, \, d\sigma
\]

\[
= K \int_{\mathbb{R}^N \times \mathbb{R}^N \times \tilde{C}} \left[- \frac{g(v')}{\mu(v')^{1/2}} - \frac{g(v'_*)}{\mu(v'_*)^{1/2}} + \frac{g(v)}{\mu(v)^{1/2}} + \frac{g(v_*)}{\mu(v_*)^{1/2}} \right] \times |v - v'|^{\gamma+\alpha+(N-1)} 1_{\theta \in [0, \theta_0]} \mu(v) \mu(v_*) \, dv \, dv_*, \, d\sigma
\]

with a fictitious self-adjoint operator \(\hat{L} \) on \(L^2 \) defined by

\[
\hat{L} g(v) = \int_{\mathbb{R}^N \times S^{N-1}} \left[- \frac{g(v')}{\mu(v')^{1/2}} - \frac{g(v'_*)}{\mu(v'_*)^{1/2}} + \frac{g(v)}{\mu(v)^{1/2}} + \frac{g(v_*)}{\mu(v_*)^{1/2}} \right] \times |v - v'|^{\gamma+\alpha+(N-1)} 1_{|v - v'| \leq 1} 1_{\theta \in [0, \theta_0]} \mu^{1/2}(v) \mu(v_*) \, dv \, d\sigma.
\]

Using the same decomposition as in Section 2 this operator can be split as

\[
\hat{L} = \hat{\nu} - \hat{K}^+ + \hat{K}^\circ
\]

where the multiplicative function \(\hat{\nu} \) is

\[
\hat{\nu}(v) = \int_{\mathbb{R}^N \times S^{N-1}} |v - v'|^{\gamma+\alpha+(N-1)} 1_{|v - v'| \leq 1} 1_{\theta \in [0, \theta_0]} \mu(v_*) \, dv_* \, d\sigma
\]

which satisfies by similar computations as above

\[
\hat{\nu}(v) \geq C (1 + |v|)^{\gamma + \alpha}, \quad C > 0.
\]
Then we shall show that the remaining terms satisfy some compactness property.

Let us assume first for the sake of clarity that \(\gamma + \alpha = 0 \). Then the multiplication function \(\hat{\nu} \) is bounded from below by a positive constant \(\hat{\nu}_0 > 0 \), and it is straightforward that \(\hat{K}^c \) is a Hilbert-Schmidt operator (we leave these computations to the reader). Let us show that the part \(\hat{K}^+ \) can be written as a limit of Hilbert-Schmidt operators (hence showing that it is compact in \(L^2 \)). The kernel of \(\hat{K}^+ \) is by inspection

\[
\hat{k} := k_{(N-1)}(v, v') 1_{|v-v'| \leq 1} 1_{\theta \in [0, \theta_0]}
\]

\[
= \frac{2^N}{|v' - v| (2\pi)^{3/2}} \exp \left\{ -\frac{|v' - v|^2}{8} - \frac{|v' - v + 2(v \cdot \omega)|^2}{8} \right\}
\times \left(\int_{\omega \perp} |v' - v + z| \exp \left\{ -\frac{|z + (v - (v \cdot \omega)\omega)|^2}{2} \right\} \, dz \right) 1_{|v-v'| \leq 1} 1_{\theta \in [0, \theta_0]}
\]

(where \(k_q, q \in (-N, 1] \) was the kernel computed in Section 2). We approximate this kernel (and correspondingly the operator \(\hat{K}^+ \)) as follows:

\[
\hat{k} = \hat{k}^c + \hat{k}^r
\]

with

\[
\hat{k}^c = \left(1_{|v-v'| \geq \varepsilon} \times 1_{|v - (v \cdot \omega)\omega| \geq \varepsilon} \right) \hat{k}
\]

and

\[
\hat{k}^r = \hat{k} - \hat{k}^c.
\]

By similar straightforward computations as in the proof of Proposition 2.1 we get that \(\hat{k}^r \) is symmetric in \(v, v' \) and

\[
\sup_{v \in \mathbb{R}^N} \int_{\mathbb{R}^N} |\hat{k}^r| \, dv' \quad \overset{\varepsilon \rightarrow 0}{\longrightarrow} \quad 0
\]

and therefore \(\hat{K}^{+,c} \rightarrow \hat{K}^+ \) in \(L^2 \) as \(\varepsilon \rightarrow 0 \). Hence it is enough to show that \(\hat{K}^{+,c} \) is compact. But the kernel \(\hat{k}^c \) satisfies (using the same representation as in
Proposition 2.1)
\[
\int_{\mathbb{R}^N \times \mathbb{R}^N} (\hat{k}^c \varepsilon)^2 \, dv \, dv' \leq C \int_{v \in \mathbb{R}^N} \left(\int_{\varepsilon}^{1} r^{N-3} (1 + r)^2 (1 + |v| \sin \theta)^2 e^{-r^2/4} \right.
\int_{0}^{\pi} e^{-\varepsilon^2 |v| \cos \theta} \sin^{N-2} \theta \, d\theta \left. \right) \leq C \int_{v \in \mathbb{R}^N} (1 + |v|)^2 e^{-\varepsilon^2 |v|^2} \, dv < +\infty.
\]

Therefore \(\hat{K}^{+,c}\) is a Hilbert-Schmidt operator and the result is proved. By applying Weyl’s theorem (exactly as in \[32, 19\]), we deduce that \(\hat{L}\) and \(\hat{\nu}\) have the same essential spectrum, which is included in \([\hat{\nu}_0, +\infty)\), and therefore, since \(\hat{L} \geq 0\), that \(0\) is an isolated eigenvalue, which concludes the proof.

When \(\gamma + \alpha\) is different from 0, one considers (in the spirit of \[29\]) the following symmetric weighted modification of \(\hat{L}\):
\[
\tilde{L} = (1 + |\cdot|)^{-(\gamma+\alpha)/2} \hat{L} \left((1 + |\cdot|)^{-(\gamma+\alpha)/2} \cdot \right)
\]
and the corresponding splitting \(\tilde{L} = \hat{\nu} - \hat{K}^+ + \hat{K}^c\). Then \(\hat{\nu}\) is strictly positive uniformly (and bounded from above) and it is straightforward again that \(\hat{K}^c\) is a Hilbert-Schmidt operator. Let us focus on the term \(\hat{K}^+\). Its kernel is
\[
(1 + |v|)^{-(\gamma+\alpha)/2} k_{\gamma+\alpha+N} (v, v') (1 + |v'|)^{-(\gamma+\alpha)/2} 1_{|v-v'| \leq 1} 1_{\theta \in [0, \theta_0]}
\]
and similar computations as above show again that \(\hat{K}^+\) can be written as a limit of Hilbert-Schmidt operators (remark that thanks to the truncation \(|v - v'| \leq 1\), weights on \(v\) and \(v'\) can be interchanged up to a constant).

We then conclude by applying Weyl’s Theorem to \(\tilde{L}\) (as in \[29\]). We deduce thus that \(0\) is an isolated eigenvalue of \(\tilde{L} \geq 0\), and therefore we obtain the existence of the inequality in Proposition 4.1.

5. Proof of Theorem 1.2

In \[34\] it was shown via compactness arguments that there is a constant \(C_\gamma^1 > 0\) such that
\[
\langle L^c g, g \rangle \geq C_\gamma^1 \| [g - \mathbb{P} g] \|_\sigma^2.
\]
where \(\| \cdot \|_\sigma\) is the following anisotropic norm:
\[
\|g\|_\sigma^2 := \int_{\mathbb{R}^N} \left((1 + |v|)^\gamma \| \Pi_v \nabla v g \|^2 + (1 + |v|)^{\gamma+2} \| [\mathbb{I} - \Pi_v] \nabla v g \|^2 + (1 + |v|)^{\gamma+2} g^2 \right) \, dv
\]
with
\[\Pi_v \nabla g = \left(\frac{v}{|v|} \cdot \nabla g \right) \frac{v}{|v|}. \]

In particular this lower bound implies a spectral gap for the linearized Landau collision operator as soon as \(\gamma \geq -2 \).

On the other hand, in \([44]\) the first author derived the following explicit coercivity estimate:
\[(5.2) \quad \langle L^\gamma [\mu^{1/2} h], [\mu^{1/2} h] \rangle \geq C_\gamma^2 \int_{\mathbb{R}^N} \left(1 + |v|^2 \right)^{\gamma/2} \left(|\nabla_v h|^2 + h^2 \right) \mu(v) \, dv = C_\gamma^2 \| h \|_{L^2(\mu)}. \]

This holds for all \(h = h - \hat{P} h \), where \(\hat{P} \) is the orthogonal projection in \(L^2(\mu) \) given by
\[\hat{P} h = a + b \cdot v + c|v|^2 \]
with \(a, c \in \mathbb{R} \) and \(b \in \mathbb{R}^N \). This estimate originates from the alternate (but equivalent) linearization
\[f = \mu(1 + h). \]

Proof of Theorem 1.2. Letting \(h = \mu^{-1/2} g \), we first translate the estimate of \([44]\) into a coercivity estimate for \(g \): the r.h.s. of (5.2) is given by
\[\| \mu^{-1/2} g \|_{H^2(\mu)} = \int_{\mathbb{R}^N} \left(1 + |v|^2 \right)^{\gamma/2} \left(\left| \nabla_v g + \frac{1}{2} v g \right|^2 + g^2 \right) \, dv \]
\[= \int_{\mathbb{R}^N} \left(1 + |v|^2 \right)^{\gamma/2} \left(|\nabla_v g|^2 + \frac{1}{4} |v|^2 |g|^2 + (v \cdot \nabla_v g) g + g^2 \right) \, dv. \]

We focus our attention on the term without a definite sign:
\[\int_{\mathbb{R}^N} \left(1 + |v|^2 \right)^{\gamma/2} (v \cdot \nabla_v g) g \, dv = \frac{1}{2} \int_{\mathbb{R}^N} \left(1 + |v|^2 \right)^{\gamma/2} v \cdot \nabla_v (g^2) \, dv \]
\[= - \frac{1}{2} \int_{\mathbb{R}^N} \nabla \cdot \left(v(1 + |v|^2)^{\gamma/2} \right) g^2 \, dv. \]

Now we look at the derivative of the polynomial
\[\nabla \cdot \left(v(1 + |v|^2)^{\gamma/2} \right) = (1 + |v|^2)^{\gamma/2} \left(N + \gamma |v|^2 \frac{1}{1 + |v|^2} \right). \]

Further notice that
\[\left| N + \gamma |v|^2 \frac{1}{1 + |v|^2} \right| \leq N + |\gamma| \].
Plug in these last few computations to obtain
\[
\|\mu^{-1/2}g\|_{H^1_\gamma(\mu)} \geq \frac{1}{4} \int_{\mathbb{R}^N} \left((1 + |v|^2)^{\frac{3}{2}} |\nabla_v g|^2 + (1 + |v|^2)^{\frac{3}{2}} g^2 \right) dv
\]
\[
- \frac{1}{2} (N + |\gamma|) \int_{\mathbb{R}^N} (1 + |v|^2)^{\frac{3}{2}} g^2 dv.
\]
On the other hand
\[
\|\mu^{-1/2}g\|_{H^1_\gamma(\mu)} \geq \int_{\mathbb{R}^N} (1 + |v|^2)^{\frac{3}{2}} g^2 dv.
\]
Combining the two last inequalities we thus conclude
\[
\|\mu^{-1/2}g\|_{H^1_\gamma(\mu)} \geq C \int_{\mathbb{R}^N} \left[(1 + |v|^2)^{\frac{3}{2}} |\nabla_v g|^2 + (1 + |v|^2)^{\frac{3}{2}} g^2 \right] dv.
\]
Combine this with (5.2) to obtain an explicitly computable constant $C > 0$ such that for any $g = g - P_0 g$, we have
\[
\langle L^\ell g, g \rangle \geq C \int_{\mathbb{R}^N} \left[(1 + |v|^2)^{\frac{3}{2}} |\nabla_v g|^2 + (1 + |v|^2)^{\frac{3}{2}} g^2 \right] dv.
\]
While the power is the same as in (5.1) for the term with no derivative, the derivative term still has a better power in (5.1).

Guo [34] computes that
\[
\langle L^\ell g, g \rangle = \|g\|_\sigma^2 - \langle \partial_i \sigma^i g, g \rangle - \langle Kg, g \rangle.
\]
Here we will not give precise definitions of $\partial_i \sigma^i$ and K, we will only use an estimate with explicitly computable constants for these terms to get an explicit lower bound in the σ norm.

The [34, Lemma 5] implies that for any $m > 1$, there is an (explicit) $0 < C(m) < \infty$ such that
\[
|\langle \partial_i \sigma^i g, g \rangle| + |\langle Kg_1, g_2 \rangle| \leq \frac{1}{m} \|g\|_\sigma^2 + C(m) \|1_{|v| \leq C(m)} g\|_{L^2}^2.
\]
We deduce
\[
|\langle \partial_i \sigma^i g, g \rangle| + |\langle Kg_1, g_2 \rangle| \leq \frac{1}{m} \|g\|_\sigma^2 + C'(m) \langle L^\ell g, g \rangle
\]
for another explicit constant $C'(m) > 0$ thanks to (5.3). Taking for instance $m = 2$ we deduce
\[
\|g\|_\sigma^2 = \langle L^\ell g, g \rangle + \langle \partial_i \sigma^i g, g \rangle + \langle Kg, g \rangle \leq (1 + C'(2)) \langle L^\ell g, g \rangle + \frac{1}{2} \|g\|_\sigma^2,
\]
which concludes the proof. □
Acknowledgments: This work was initiated while the first author was visiting Brown University, and he wishes to thank its Department of Applied Mathematics, in particular Yan Guo and Robert Strain for their hospitality. The second author, while finishing this work, was partially supported by a National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship.

References

C. Mouhot
CEREMADE, Univ. Paris IX Dauphine
Place du Maréchal de Lattres de Tassigny
75775 Paris cedex 16
FRANCE

E-MAIL: cmouhot@ceremade.dauphine.fr

R. M. Strain
Harvard University
Department of Mathematics
One Oxford Street
Cambridge, MA 02138
USA

E-MAIL: strain@math.harvard.edu