
HAL Id: hal-00848245
https://hal.archives-ouvertes.fr/hal-00848245

Submitted on 25 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preventing Memory Errors in Networked Vehicle
Services Through Diversification

Héctor Marco, Juan-Carlos Ruiz, David De Andrés, Ismael Ripoll

To cite this version:
Héctor Marco, Juan-Carlos Ruiz, David De Andrés, Ismael Ripoll. Preventing Memory Errors in
Networked Vehicle Services Through Diversification. Matthieu ROY. SAFECOMP 2013 - Workshop
CARS (2nd Workshop on Critical Automotive applications : Robustness

Safety) of the 32nd International Conference on Computer Safety, Reliability and Security, Sep 2013,
Toulouse, France. pp.NA, 2013. <hal-00848245>

https://hal.archives-ouvertes.fr/hal-00848245
https://hal.archives-ouvertes.fr

Preventing Memory Errors in Networked

Vehicle Services Through Diversification

Héctor Marco‡, Juan Carlos Ruiz†, David de Andrés†, and Ismael Ripoll∗

† Instituto de Aplicaciones de las TIC Avanzadas (ITACA),
∗ Instituto Tecnológico de Informática (ITI)

‡ Departamento de Informática de sistemas y computadores (DISCA)
Univ. Politècnica de València (UPV), Campus de Vera s/n, 46022, Valencia, Spain

Phone: +34 96 3877007 Ext {75774, 75752, 79707}, Fax: +34 96 3877579
{hecmargi, iripoll, jcruizg, ddandres}@disca.upv.es

Abstract. Car-to-X communication stands for the communication of
different vehicles (vehicle-to-vehicle) as well as for the communication of
vehicles and infrastructure (vehicle-to-infrastructure). The development
of these technologies promotes the emergence of new car infotainment
and telematic services of added value for users. The side effect is the
exposure of vehicles to a number of new threats, such as memory er-
rors. Among other consequences, the exploitation of memory errors may
lead to code-reuse attacks, where intruders reuse existing non-malicious
code with malicious purposes, such as gaining complete car control. Since
memory error exploits usually rely on highly specific processor charac-
teristics, the same exploit rarely works on different hardware architec-
tures. This paper proposes a strategy to thwart memory error exploita-
tion by combining the diversification of HW through processor emulation
with the creation of Service variants using off-the-shelf cross-compilation
suites.

Keywords: Car-to-X communications, memory errors, HW virtualiza-
tion, Cross-compilation

1 Introduction

Modern automobiles are pervasively computerized and hence potentially vulner-
able to attack. As reported in [1], presupposing an attacker’s ability to physically
connect to a car’s internal computer network to gain car control is unrealistic.
This statement of prime importance with the advent of new vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) systems. These systems rely on the
use on wireless networks (sometimes also called vehicular ad-hoc networks, or
VANETs) to offer added value networked services to users. However, the ex-
pand at the same time the conventional attack surface to be considered and
raise a number of security issues, like derived from memory errors, for future

transportation solutions [2].

Memory errors [3] have been around for over 30 years and, despite research
and development efforts carried out by academia and industry, they are still in-
cluded in the CWE SANS top 25 list of the most dangerous software errors [4].
Today, the exploitation of these errors has evolved towards code-reuse attacks,
where no malicious code is injected to enable the activation and reused of le-
gitimate code for malicious purposes [5]. Most of approaches proposed so far
to eradicate or mitigate memory errors, such as countermeasures to prevent
overwriting memory locations, detect code injections at early stagesor prevent
attackers from finding, using, or executing injected code , lead protected systems
or applications to crash in case of detecting a memory error. In addition, the
effectiveness of these mechanisms against brute force attacks is quite limited.

In fact, very limited actions are usually taken when brute force attacks are
detected in automotive systems: either the affected service is shutdown, with the
subsequent unavailability effect, or it keeps running and an alert is issued to the
car user, who may not be able to react fast enough to prevent a successful intru-
sion. The proposal presented in this paper builds on the principle that the ex-
ploitation of memory errors relies on highly specific processor characteristics, so
the same procedure rarely works on different hardware architectures. Obviously,
diversifying the hardware also means diversifying the considered software. Soft-
ware diversification, i.e. the production of server variants, will be obtained using
off-the-shelf cross-compilation suites, whereas hardware diversification relies on
the emulation of different processor architectures. In this way, some vulnerabili-
ties, which manifest on a given architecture, could be removed just by changing
the execution platform to another particular architecture where existing soft-
ware faults do not constitute a vulnerability anymore. So, basically, a variant
replacement policy is deployed upon detecting a process crash issued from mem-
ory errors. The approach can be seamlessly combined with existing protection
techniques to complement a highly secure mechanism against memory errors
exploitation. The rest of this paper describes in detail this proposal.

2 Memory Errors: Prevention and Brute Force Attacks

Memory errors usually derive from the exploitation of vulnerabilities existing in
a given application due to software faults introduced during its implementation.
The most common software faults leading to memory errors include off-by-one,
integer, and buffer overflowvulnerabilities [3] .

Most effective protection techniques known today to fight against memory
errors include, although they are not limited to, Address-Space Layout Randomi-
sation (ASLR [6]), Stack-Smashing Protection (SSP [7]) and Non-Executable Bit
(NX [8]). These mechanisms are effective against multitude of attacks, like those
relying on the precise knowledge of the absolute address of a library function,
like ret2libc, those trying to overwrite the saved return address that has been
stored for a function in the stack, or those trying to execute code in only write-
able memory regions.

In all the cases, the aforementioned protection mechanisms abort the execu-
tion of the affected service.The decision of aborting a networked service, or more
precisely the process running it, to hinder an attack can be however put into
question, in particular in the case of automotive systems. On one hand, assuming
the intervention of a system administrator is unrealistic in these systems. On the
other hand, the system can be easily compromised in the presence of brute force
attacks. This happens because depending on the protection technique and how
the targeted application is internally architected, the number of tries or guesses
required to find the secret key information of the target networked service varies
but in many cases, it is not very high. For instance, it takes only 216 seconds
to bypass a memory protection mechanism, such as Address Space Layout Ran-
domization, a feature included today in most unix-based operating systems to
manage processes memory [9].

In summary, although several techniques have been proposed so far to prevent
the successful exploitation of memory errors, the truth is that all these mecha-
nisms can be bypassed one way or another. So, additional effort is required to
complement them with features to cope with service crashes and enable memory
error tolerance.

3 Security Strategy

The core idea consists of having the same application compiled for different
processors and replace the executable process when an error is detected. Each
variant is executed in sequential order on the same host by a fast processor em-
ulator. In the case of a malicious attack, since code execution is highly processor
dependant, changing the processor that runs the application greatly hinders at-
tack success. The proposed architecture has the following elements:

1. A set of cross-compiler suites for creating the set of variants.
2. A set of emulators for running the variants.
3. An error detection mechanism, which triggers the variant replacement.
4. The recovery strategy, which selects the variant that will be used once an

error has been detected.

The approach ensures the service continuity while trying to fix the fault, in
the case that the fault does not manifest in one of the variants.

Figure 1 illustrates this approach as a simple mechanical device: i) the source
code, which presents software faults, is cross-compiled for different architectures
to build the pool of variants (note that some variants do not manifest the error),
ii) the existing protection mechanisms (the grid), like those introduced in the
previous section, prevent the successful exploitation of memory errors by crash-
ing the affected process, iii) the monitor, which is an external program, detects
the crash events and activates the variant replacement mechanism (the pulleys),
according to a established security policy.

The rest of this section details each one of the aforementioned aspects.

!"#$%&'#()*"+&,&-+.+/.(01

2"03"#44(13
&+""0"$

501(.0"

(678&#..#/9$

(678 22! :;#"/

<=5

:0*"/+&/0-+

!"#$%&'()*+,+&#-

Fig. 1. High-Level view of the security approach

– SW diversification: The production of the SW variants relies on a on the
use of off-the-self compiles, thus incurring in a reduced investment. ust by
compiling the application source code for different target processors, the par-
ticular architecture of each processor will provide variants with different i)
endianness and instruction set, so raw data and machine code injected by
attackers will be differently interpreted, ii) register set, thus changing the
stack layout (on non-orthogonal architectures), iii) data and code alignment,
so unaligned instructions and word data type will raise an exception, iv) ad-
dress layout, which results in different positions for functions and main data
structures according to resulting code size and data layout, and v) compiler

optimisations, some generic and some processor specific, resulting in register
allocation, instruction reordering, or function reordering. Furthermore, the
libraries liked to services during compilation can be also diversified whenever
several alternatives are available. This will i) increase the degree of diversi-
fication among them, and let the resulting variant to ii) get rid of specific
software faults that are not present in some libraries. This form of binary
diversification preserves the semantic behaviour on each variant, it is easy
to implement because of the reuse of widely available and tested software,
and it provides a strong differentiation between resulting binaries.

– HW diversification: Providing a proper execution environment for result-
ing variants, including the operating system API, system calls convention,
processor instruction set, and the executable file format, is not a so difficult
task. In fact, the native variant, the one compiled for the physical processor
and operating system hosting the server, will run on the native execution
environment. However, as the rest of variants have been built for different
processors, it is necessary to create a virtual execution environment to run
them all.

Nowadays, there are two different virtualisation solutions (see Figures ??)
to build a complete execution environment: i) platform emulation, where
the emulator provides a virtual hardware to execute the guest operating
system managing the guest application, and ii) user mode emulation,
where the emulator provides both, processor virtualisation and operating
system services, translating guest system calls into host system calls that
are forwarded to the host operating system. User-mode emulation is a less
common form of emulation but offers better performance since the operating

system code is directly executed by the host processor. This is basically why
it is the one adopted in our proposal.

– Memory error detection: The proposed approach relies on the existing
protection mechanisms (SSP, ASLR, etc.) for memory error detection. As
previously explained, that detection leads to the crash of the compromised
process. A monitor will be in charge of detecting these crash-related events
and triggering the established variants replacement strategy according to the
defined security policy.
It must be noted that, although those techniques were initially developed to
face malicious faults, they also provide a good coverage for accidental faults,
like wild pointers. Accordingly, the accidental activation of software faults
leading to memory errors will also crash the process, and give the system a
chance to deal with them.
The precise diagnosis of whether the problem is related to an accidental
or malicious fault and its precise origin (kind of attack), to define a more
specific reaction, is still an issue for further research.

– Selection of variants: The widely used multi-process architecture of the
networking servers provides an ideal scenario for deploying different secu-
rity policies for variants replacement upon detection of memory errors. The
proposed policy enables the service to run in either a normal or a degraded
mode, thus identifying the following states (see Figure 2):
1. High performance service, where the service is natively executed at the

maximum speed.
2. Fault avoidance, where the system commutes only when an attack or

a fault leading to a crash is detected. After a while, the native variant
is placed again in execution, thus limiting the penalty induced by the
approach. If the attack persist we move to the following state.

3. Confuse the attacker, where for each memory error detection the variant
is changed. After a while, if no additional error detection is detected the
native varian is placed again into execution.

Fig. 2. Variants replacements policy

4 Conclusions and future work

The increasing communication capabilities embedded in new generation of vehi-
cles are promising the proliferation of networked services of added value for user.

The side effect is that transportation solutions will be more and more exposed
to many different threats, such as memory errors.

Nowadays, memory errors keep ranking among the top dangerous software
errors despite vast research efforts from academia and industry. Although exist-
ing protection mechanisms work quite well in most of the cases, their inability
to ensure a complete protection of in-car systems leads to an unsafety situation
claiming for complementary mitigation solutions. The ongoing work presented
in this paper, relies on diversification to complements existing protection mech-
anisms in situation when they simply crash affected vehicle services.

Contrarily to most automatic diversification techniques which customise the
compiler or even the resulting executable binary, the use of cross-toolchains
provides a simple and powerful solution for software diversification, while the re-
quired processor diversification can be done in an efficient way thanks to current
advances on processor emulation techniques.

The approach is promising and a first implementation of the strategy is cur-
rently under implementation.

References

1. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: Proceedings of the 20th USENIX con-
ference on Security. SEC’11, Berkeley, CA, USA, USENIX Association (2011) 6–6

2. Rouf, I., Miller, R., Mustafa, H., Taylor, T., Oh, S., Xu, W., Gruteser, M., Trappe,
W., Seskar, I.: Security and privacy vulnerabilities of in-car wireless networks: a tire
pressure monitoring system case study. In: Proceedings of the 19th USENIX con-
ference on Security. USENIX Security’10, Berkeley, CA, USA, USENIX Association
(2010) 21–21

3. van der Veen, V., dutt Sharma, N., Cavallaro, L., Bos, H.: Memory errors: The
past, the present, and the future. In: In the Proceedings of the 15th International
Symposium on Research in Attacks Intrusions and Defenses (RAID). (September
2012)

4. CWE/SANS: Top 25 most dangerous software errors (2011)
5. Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the ex-

pressiveness of return-into-libc attacks. In: Proceedings of the 14th international
conference on Recent Advances in Intrusion Detection. RAID’11, Berlin, Heidelberg,
Springer-Verlag (2011) 121–141

6. Pax Team: PaX address space layout randomization (ASLR) (2003)
7. Cowan, C., Pu, C., Maier, D., Hintongif, H., Walpole, J., Bakke, P., Beattie, S.,

Grier, A., Wagle, P., Zhang, Q.: Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In: Proc. of the 7th USENIX Security Sym-
posium. (Jan 1998) 63–78

8. Paulson, L.D.: New chips stop buffer overflow attacks. Computer 37(10) (2004)
28–30

9. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
conference on Computer and communications security. CCS ’04, New York, NY,
USA, ACM (2004) 298–307

