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On Multivariate Extensions of Value-at-Risk

Areski Cousin1, Elena Di Bernardino2

Abstract

In this paper, we introduce two alternative extensions of the classical univariate Value-at-Risk
(VaR) in a multivariate setting. The two proposed multivariate VaR are vector-valued measures
with the same dimension as the underlying risk portfolio. The lower-orthant VaR is constructed
from level sets of multivariate distribution functions whereas the upper-orthant VaR is constructed
from level sets of multivariate survival functions. Several properties have been derived. In
particular, we show that these risk measures both satisfy the positive homogeneity and the
translation invariance property. Comparison between univariate risk measures and components
of multivariate VaR are provided. We also analyze how these measures are impacted by a change
in marginal distributions, by a change in dependence structure and by a change in risk level.
Illustrations are given in the class of Archimedean copulas.

Keywords: Multivariate risk measures, Level sets of distribution functions, Multivariate
probability integral transformation, Stochastic orders, Copulas and dependence.

Introduction

During the last decades, researchers joined efforts to properly compare, quantify and manage
risk. Regulators edict rules for bankers and insurers to improve their risk management and to
avoid crises, not always successfully as illustrated by recent events.

Traditionally, risk measures are thought of as mappings from a set of real-valued random vari-
ables to the real numbers. However, it is often insufficient to consider a single real measure to
quantify risks created by business activities, especially if the latter are affected by other external
risk factors. Let us consider for instance the problem of solvency capital allocation for financial
institutions with multi-branch businesses confronted to risks with specific characteristics. Under
Basel II and Solvency II, a bottom-up approach is used to estimate a “top-level” solvency capital.
This is done by using risk aggregation techniques who may capture risk mitigation or risk diver-
sification effects. Then this global capital amount is re-allocated to each subsidiaries or activities
for internal risk management purpose (“top-down approach”). Note that the solvability of each
individual branch may strongly be affected by the degree of dependence amongst all branches.
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Preprint submitted to Elsevier 4th April 2013



As a result, the capital allocated to each branch has to be computed in a multivariate setting
where both marginal effects and dependence between risks should be captured. In this respect,
the “Euler approach” (e.g., see Tasche, 2008) involving vector-valued risk measures has already
been tested by risk management teams of some financial institutions.

Whereas the previous risk allocation problem only involves internal risks associated with busi-
nesses in different subsidiaries, the solvability of financial institutions could also be affected by
external risks whose sources cannot be controlled. These risks may also be strongly heterogeneous
in nature and difficult to diversify away. One can think for instance of systemic risk or contagion
effects in a strongly interconnected system of financial companies. As we experienced during the
2007-2009 crisis, the risks undertaken by some particular institutions may have significant impact
on the solvability of the others. In this regard, micro-prudential regulation has been criticized
because of its failure to limit the systemic risk within the system. This question has been dealt
with recently by among others, Gauthier et al. (2010) and Zhou (2010) who highlights the benefit
of a “macro-prudential” approach as an alternative solution to the existing “micro-prudential”
one (Basel II) which does not take into account interactions between financial institutions.

In the last decade, much research has been devoted to risk measures and many extensions to
multidimensional settings have been investigated. On theoretical grounds, Jouini et al. (2004)
proposes a class of set-valued coherent risk measures. Ekeland et al., (2012) derive a multivariate
generalization of Kusuoka’s representation for coherent risk measures. Unsurprisingly, the main
difficulty regarding multivariate generalizations of risk measures is the fact that vector preorders
are, in general, partial preorders. Then, what can be considered in a context of multidimensional
portfolios as the analogous of a “worst case” scenario and a related “tail distribution”? This is
why several definitions of quantile-based risk measures are possible in a higher dimension. For
example, Massé and Theodorescu (1994) defined multivariate quantiles as half-planes and Koltch-
inskii (1997) provided a general treatment of multivariate quantiles as inversions of mappings.
Another approach is to use geometric quantiles (see, for example, Chaouch et al., 2009). Along
with the geometric quantile, the notion of depth function has been developed in recent years to
characterize the quantile of multidimensional distribution functions (for further details see, for
instance, Chauvigny et al., 2011). We refer to Serfling (2002) for a large review on multivari-
ate quantiles. When it turns to generalize the Value-at-Risk measure, Embrechts and Puccetti
(2006), Nappo and Spizzichino (2009), Prékopa (2012) use the notion of quantile curve which is
defined as the boundary of the upper-level set of a distribution function or the lower-level set of
a survival function.

In this paper, we introduce two alternative extensions of the classical univariate Value-at-Risk
(VaR) in a multivariate setting. The proposed measures are based on the Embrechts and Puccetti
(2006)’s definitions of multivariate quantiles. We define the lower-orthant Value-at-Risk at risk
level α as the conditional expectation of the underlying vector of risks X given that the latter
stands in the α-level set of its distribution function. Alternatively, we define the upper-orthant
Value-at-Risk of X at level α as the conditional expectation of X given that X stands in the
(1−α)-level set of its survival function. Contrarily to Embrechts and Puccetti (2006)’s approach,
the extensions of Value-at-Risk proposed in this paper are real-valued vectors with the same
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dimension as the considered portfolio of risks. This feature can be relevant from an operational
point of view.

Several properties have been derived. In particular, we show that the lower-orthant Value-at-Risk
and the upper-orthant Value-at-Risk both satisfy the positive homogeneity and the translation
invariance property. We compare the components of these vector-valued measures with the uni-
variate VaR of marginals. We prove that the lower-orthant Value-at-Risk (resp. upper-orthant
Value-at-Risk) turns to be more conservative (resp. less conservative) than the vector composed
of univariate VaR. We also analyze how these measures are impacted by a change in marginal
distributions, by a change in dependence structure and by a change in risk level. In particular, we
show that, for Archimedean families of copulas, the lower-orthant Value-at-Risk and the upper-
orthant Value-at-Risk are both increasing with respect to the risk level whereas their behavior is
different with respect to the degree of dependence. In particular, an increase of the dependence
amongts risks tends to lower the lower-orthant Value-at-Risk whereas it tends to widen the upper-
orthant Value-at-Risk. In addition, these two measures may be useful for some applications where
risks are heterogeneous in nature. Indeed, contrary to many existing approaches, no arbitrary
real-valued aggregate transformation is involved (sum, min, max,. . .).

The paper is organized as follows. In Section 1, we introduce some notations, tools and technical
assumptions. In Section 2, we propose two multivariate extensions of the Value-at-Risk measure.
We study the properties of our multivariate VaR in terms of Artzner et al. (1999)’s invariance
properties of risk measures (see Section 2.1). Illustrations in some Archimedean copula cases are
presented in Section 2.2. We also compare the components of these multivariate risk measures
with the associated univariate Value-at-Risk (see Section 2.3). The behavior of our VaR with
respect to a change in marginal distributions, a change in dependence structure and a change in
risk level α is discussed respectively in Sections 2.4, 2.5 and 2.6. In the conclusion, we discuss
open problems and possible directions for future work.

1. Basic notions and preliminaries

In this section, we first introduce some notation and tools which will be used later on.

Stochastic orders

From now on, let QX(α) be the univariate quantile function of a risk X at level α ∈ (0, 1).
More precisely, given an univariate continuous and strictly monotonic loss distribution function
FX , QX(α) = F−1

X (α), ∀α ∈ (0, 1). We recall here the definition and some properties of useful
univariate and multivariate stochastic orders.

Definition 1.1 (Stochastic dominance order) Let X and Y be two random variables. Then
X is said to be smaller than Y in stochastic dominance, denoted as X �st Y , if the inequality
QX(α) ≤ QY (α) is satisfied for all α ∈ (0, 1).

Definition 1.2 (Stop-loss order) Let X and Y be two random variables. Then X is said
to be smaller than Y in the stop-loss order, denoted as X �sl Y , if for all t ∈ R,
E[(X − t)+] ≤ E[(Y − t)+], with x+ := max{x, 0}.
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Definition 1.3 (Increasing convex order) Let X and Y be two random variables. Then X
is said to be smaller than Y in the increasing convex order, denoted as X �icx Y , if E[f(X)] ≤
E[f(Y )], for all non-decreasing convex function f such that the expectations exist.

The stop-loss order and the increasing convex order are equivalent (see Theorem 1.5.7 in Müller
and Stoyan, 2001). Note that stochastic dominance order implies stop-loss order. For more de-
tails about stop-loss order we refer the interested reader to Müller (1997).

Finally, we introduce the definition of supermodular function and supermodular order for mul-
tivariate random vectors.

Definition 1.4 (Supermodular function) A function f : Rd → R is said to be supermodular
if for any x,y ∈ R

d it satisfies

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y),

where the operators ∧ and ∨ denote coordinatewise minimum and maximum respectively.

Definition 1.5 (Supermodular order) Let X and Y be two d−dimensional random vectors
such that E[f(X)] ≤ E[f(Y)], for all supermodular functions f : Rd → R, provided the expectation
exist. Then X is said to be smaller than Y with respect to the supermodular order (denoted by
X �sm Y).

This will be a key tool to analyze the impact of dependence on our multivariate risk measures.

Kendall distribution function

Let X = (X1, . . . ,Xd) be a d−dimensional random vector, d ≥ 2. As we will see later on, our
study of multivariate risk measures strongly relies on the key concept of Kendall distribution func-
tion (or multivariate probability integral transformation), that is, the distribution function of the
random variable F (X), where F is the multivariate distribution of random vector X. From now
on, the Kendall distribution will be denoted by K, so that K(α) = P[F (X) ≤ α], for α ∈ [0, 1].
We also denote by K(α) the survival distribution function of F (X), i.e., K(α) = P[F (X) > α].
For more details on the multivariate probability integral transformation, the interested reader is
referred to Capéraà et al., (1997), Genest and Rivest (2001), Nelsen et al. (2003), Genest and
Boies (2003), Genest et al. (2006) and Belzunce et al. (2007).

In contrast to the univariate case, it is not generally true that the distribution function K of F (X)
is uniform on [0, 1], even when F is continuous. Note also that it is not possible to characterize
the joint distribution F or reconstruct it from the knowledge of K alone, since the latter does not
contain any information about the marginal distributions FX1

, . . . , FXd
(see Genest and Rivest,

2001). Indeed, as a consequence of Sklar’s Theorem, the Kendall distribution only depends on
the dependence structure or the copula function C associated with X (see Sklar, 1959). Thus, we
also have K(α) = P[C(U) ≤ α] where U = (U1, . . . , Ud) and U1 = FX1

(X1), . . . , Ud = FXd
(Xd).

Furthermore:
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• For a d−dimensional random vector X = (X1, . . . ,Xd) with copula C, the Kendall dis-
tribution function K(α) is linked to the Kendall’s tau correlation coefficient via: τC =
2d E[C(U)]−1

2d−1−1
, for d ≥ 2 (see Section 5 in Genest and Rivest, 2001).

• The Kendall distribution can be obtain explicitly in the case of multivariate Archimedean
copulas with generator3 φ, i.e., C(u1, . . . , ud) = φ−1 (φ(u1) + · · ·+ φ(ud)) for all
(u1, . . . , ud) ∈ [0, 1]d. Table 1 provides the expression of Kendall distributions associ-
ated with Archimedean, independent and comonotonic d−dimensional random vectors (see
Barbe et al., 1996). Note that the Kendall distribution is uniform for comonotonic random
vectors.

Copula Kendall distribution K(α)

Archimedean case α+
∑d−1

i=1
1
i! (−φ(α))i

(

φ−1
)(i)

(φ(α))

Independent case α+ α
∑d−1

i=1

(

ln(1/α)i

i!

)

Comonotonic case α

Table 1: Kendall distribution in some classical d−dimensional dependence structure.

For further details the interested reader is referred to Section 2 in Barbe et al. (1996) and
Section 5 in Genest and Rivest (2001). For instance, in the bivariate case, the Kendall

distribution function is equal to α− φ(α)
φ′(α) , α ∈ (0, 1), for Archimedean copulas with differ-

entiable generator φ. It is equal to α (1− ln(α)) , α ∈ (0, 1) for the bivariate independence
copula and to 1 for the counter-monotonic bivariate copula.

• It holds that α ≤ K(α) ≤ 1, for all α ∈ (0, 1), i.e., the graph of the Kendall distribution
function is above the first diagonal (see Section 5 in Genest and Rivest, 2001). This is
equivalent to state that, for any random vector U with copula function C and uniform
marginals, C(U) �st Cc(Uc) where Uc = (U c

1 , . . . , U
c
d) is a comonotonic random vector

with copula function Cc and uniform marginals.

This last property suggests that when the level of dependence between X1, . . . ,Xd increases,
the Kendall distribution also increases in some sense. The following result, using definitions of
stochastic orders described above, investigates rigorously this intuition.

Proposition 1.1 Let U = (U1, . . . , Ud) (resp. U∗ = (U∗

1 , . . . , U
∗

d )) be a random vector with
copula C (resp. C∗) and uniform marginals.

If U �sm U∗, then C(U) �sl C
∗(U∗).

Proof: Trivially, U �sm U∗ ⇒ C(u) ≤ C∗(u), for all u ∈ [0, 1]d (see Section 6.3.3 in Denuit
et al., 2005). Let f : [0, 1] → R be a non-decreasing and convex function. It holds that

3Note that φ generates a d−dimensional Archimedean copula if and only if its inverse φ−1 is a d− monotone on
[0,∞) (see Theorem 2.2 in McNeil and Nešlehová, 2009).
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f(C(u)) ≤ f(C∗(u)), for all u ∈ [0, 1]d, and E[f(C(U))] ≤ E[f(C∗(U))]. Remark that since C∗

is non-decreasing and supermodular and f is non-decreasing and convex then f ◦ C∗ is a non-
decreasing and supermodular function (see Theorem 3.9.3 in Müller and Stoyan, 2001). Then,
by assumptions, E[f(C(U))] ≤ E[f(C∗(U))] ≤ E[f(C∗(U∗))]. This implies C(U) �sl C

∗(U∗).
Hence the result. �

From Proposition 1.1, we remark that U �sm U∗ implies an ordering relation between cor-
responding Kendall’s tau : τC ≤ τC∗ . Note that the supermodular order between U and U∗

does not necessarily yield the stochastic dominance order between C(U) and C∗(U∗) (i.e.,
C(U) �st C

∗(U∗) does not hold in general). For a bivariate counter-example, the interested
reader is referred to, for instance, Capéraà et al. (1997) or Example 3.1 in Nelsen et al. (2003).

Let us now focus on some classical families of bivariate Archimedean copulas. In Table 2, we
obtain analytical expressions of the Kendall distribution function for Gumbel, Frank, Clayton
and Ali-Mikhail-Haq families.

Copula θ ∈ Kendall distribution K(α, θ)

Gumbel [1,∞) α
(

1− 1
θ lnα

)

Frank (−∞,∞) \ {0} α+ 1
θ

(

1− eθα
)

ln
(

1−e−θ α

1−e−θ

)

Clayton [−1,∞) \ {0} α
(

1 + 1
θ

(

1− αθ
))

Ali-Mikhail-Haq [−1, 1) α−1+θ+(1−θ+θα)(ln(1−θ+θ α)+lnα)
θ−1

Table 2: Kendall distribution in some bivariate Archimedean cases.

Remark 1 Bivariate Archimedean copula can be extended to d-dimensional copulas with d > 2
as far as the generator φ is a d-monotone function on [0,∞) (see McNeil and Nešlehová, 2009
for more details). For the d-dimensional Clayton copulas, the underlying dependence parameter
must be such that θ > − 1

d−1 (see Example 4.27 in Nelsen, 1999). Frank copulas can be extended
to d-dimensional copulas for θ > 0 (see Example 4.24 in Nelsen, 1999).

Note that parameter θ governs the level of dependence amongst components of the underlying
random vector. Indeed, it can be shown that, for all Archimedean copulas in Table 2, an increase
of θ yields an increase of dependence in the sense of the supermodular order, i.e., θ ≤ θ∗ ⇒
U �sm U∗ (see further examples in Joe, 1997 and Wei and Hu, 2002). Then, as a consequence
of Proposition 1.1, the following comparison result holds

θ ≤ θ∗ ⇒ C(U) �sl C
∗(U∗).

In fact, a stronger comparison result can be derived for Archimedean copulas of Table 2, as shown
in the following remark.

Remark 2 For copulas in Table 2, one can check that ∂K(α,θ)
∂θ ≤ 0, for all α ∈ (0, 1). This

means that, for these classical examples, the associated Kendall distributions actually increase
with respect to the stochastic dominance order when the dependence parameter θ increases, i.e.,

θ ≤ θ∗ ⇒ C(U) �st C
∗(U∗).
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In order to illustrate this property we plot in Figure 1 the Kendall distribution function K(·, θ) for
different choices of parameter θ in the bivariate Clayton copula case and in the bivariate Gumbel
copula case.

Figure 1: Kendall distribution K(·, θ) for different values of θ in the Clayton copula case (left) and the
Gumbel copula case (right). The dark full line represents the first diagonal and it corresponds to the
comonotonic case.

2. Multivariate generalization of the Value-at-Risk measure

From the usual definition in the univariate setting, the Value-at-Risk is the minimal amount of
the loss which accumulates a probability α to the left tail and 1 − α to the right tail. Then, if
FX denotes the cumulative distribution function associated with risk X and FX its associated
survival function, then

VaRα(X) := inf {x ∈ R : FX(x) ≥ α}

and equivalently,
VaRα(X) := inf

{

x ∈ R : FX(x) ≤ 1− α
}

.

Consequently, the classical univariate VaR can be viewed as the boundary of the set {x ∈ R :
FX(x) ≥ α} or, similarly, the boundary of the set

{

x ∈ R : FX(x) ≤ 1− α
}

.

This idea can be easily extended in higher dimension, keeping in mind that the two previous sets
are different in general as soon as d ≥ 2. We propose a multivariate generalization of Value-
at-Risk for a portfolio of d dependent risks. As a starting point, we consider Definition 17 in
Embrechts and Puccetti (2006). They suggest to define the multivariate lower-orthant Value-
at-Risk at probability level α, for a increasing function G : R

d → [0, 1], as the boundary of its
α–upper-level set, i.e., ∂{x ∈ R

d : G(x) ≥ α} and analogously, the multivariate upper-orthant
Value-at-Risk, for a decreasing function G : Rd → [0, 1], as the boundary of its (1−α)–lower-level
set, i.e., ∂{x ∈ R

d : G(x) ≤ 1− α}.
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Note that the generalizations of Value-at-Risk by Embrechts and Puccetti (2006) (see also Nappo
and Spizzichino, 2009; Tibiletti, 1993) are represented by an infinite number of points (an hy-
perspace of dimension d − 1, under some regularly conditions on the functions G and G). This
choice can be unsuitable when we face real risk management problems. Then, we propose more
parsimonious and synthetic versions of the Embrechts and Puccetti (2006)’s measures. In par-
ticular in our propositions, instead of considering the whole hyperspace ∂{x : G(x) ≥ α} (or
∂{x : G(x) ≤ 1 − α}) we only focus on the particular point in R

d
+ that matches the conditional

expectation of X given that X stands in this set. This means that our measures are real-valued
vectors with the same dimension as the considered portfolio of risks.

In addition, to be consistent with the univariate definition of VaR, we choose G (resp. G) as the
d−dimensional loss distribution function F (resp. the survival distribution function F ) of the
risk portfolio. This allows to capture information coming both from the marginal distributions
and from the multivariate dependence structure, without using an arbitrary real-valued aggregate
transformation (for more details see Introduction).

In analogy with the Embrechts and Puccetti’s notation we will denote VaR our multivariate
lower-orthant Value-at-Risk and VaR the upper-orthant one.

In the following, we will consider non-negative absolutely-continuous random vector4

X = (X1, . . . ,Xd) (with respect to Lebesgue measure λ on R
d) with partially increasing mul-

tivariate distribution function5 F and such that E(Xi) < ∞, for i = 1, . . . , d. These conditions
will be called regularity conditions.

However, extensions of our results in the case of multivariate distribution function on the entire
space R

d or in the presence of plateau in the graph of F are possible. Starting from these
considerations, we introduce here a multivariate generalization of the VaR measure.

Definition 2.1 (Multivariate lower-orthant Value-at-Risk) Consider a random vector X =
(X1, . . . ,Xd) with distribution function F satisfying the regularity conditions. For α ∈ (0, 1), we
define the multidimensional lower-orthant Value-at-Risk at probability level α by

VaRα(X) = E[X|X ∈ ∂L(α)] =







E[X1 |X ∈ ∂L(α) ]
...

E[Xd |X ∈ ∂L(α) ]






.

where ∂L(α) is the boundary of the set L(α) := {x ∈ R
d
+ : F (x) ≥ α}. Under the regularity

conditions, ∂L(α) is the α-level set of F , i.e., ∂L(α) = {x ∈ R
d
+ : F (x) = α} and the previous

4We restrict ourselves to R
d
+ because, in our applications, components of d−dimensional vectors correspond to

random losses and are then valued in R+.
5A function F (x1, . . . , xd) is partially increasing on R

d
+ \ (0, . . . , 0) if the functions of one variable g(·) =

F (x1, . . . , xj−1, ·, xj+1, . . . , xd) are increasing. About properties of partially increasing multivariate distribution
functions we refer the interested reader to Rossi (1973), Tibiletti (1991).
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definition can be restated as

VaRα(X) = E[X|F (X) = α] =







E[X1 |F (X) = α ]
...

E[Xd |F (X) = α ]






.

Note that, under the regularity conditions, ∂L(α) = {x ∈ R
d
+ : F (x) = α} has Lebesgue-measure

zero in R
d
+ (e.g., see Property 3 in Tibiletti, 1990). Then we make sense of Definition 2.1 using

the limit procedure in Feller (1966), Section 3.2:

E[Xi |F (X) = α ] = lim
h→0

E[Xi |α < F (X) ≤ α+ h ]

= lim
h→0

∫

∞

QXi
(α) x

(

∫ α+h
α f(Xi,F (X))(x, y) dy

)

dx
∫ α+h
α fF (X)(y) dy

, (1)

for i = 1, . . . , d.
Dividing numerator and denominator in (1) by h, we obtain, as h → 0

E[Xi |F (X) = α] =

∫

∞

QXi
(α) x f(Xi,F (X))(x, α) dx

K ′(α)
, (2)

for i = 1, . . . , d, whereK ′(α) = dK(α)
dα is the Kendall distribution density function. This procedure

gives a rigorous sense to our VaRα(X) in Definition 2.1. Remark that the existence of f(Xi,F (X))

and K ′ in (2) is guaranteed by the regularity conditions (for further details, see Proposition 1 in
Imlahi et al., 1999 or Proposition 4 in Chakak and Ezzerg, 2000).

In analogy with Definition 2.1, we now introduce another possible generalization of the VaR
measure based on the survival distribution function.

Definition 2.2 (Multivariate upper-orthant Value-at-Risk) Consider a random vector X =
(X1, . . . ,Xd) with survival distribution F satisfying the regularity conditions. For α ∈ (0, 1), we
define the multidimensional upper-orthant Value-at-Risk at probability level α by

VaRα(X) = E[X|X ∈ ∂L(α)] =







E[X1 |X ∈ ∂L(α) ]
...

E[Xd |X ∈ ∂L(α) ]






.

where ∂L(α) is the boundary of the set L(α) := {x ∈ R
d
+ : F (x) ≤ 1 − α}. Under the regularity

conditions, ∂L(α) is the (1 − α)-level set of F , i.e., ∂L(α) = {x ∈ R
d
+ : F (x) = 1 − α} and the

previous definition can be restated as

VaRα(X) = E[X|FX(X) = 1− α] =







E[X1 |F (X) = 1− α ]
...

E[Xd |F (X) = 1− α ]






.
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As for ∂L(α), under the regularity conditions, ∂L(α) = {x ∈ R
d
+ : F (x) = 1− α} has Lebesgue-

measure zero in R
d
+ (e.g., see Property 3 in Tibiletti, 1990) and we make sense of Definition 2.2

using the limit Feller’s procedure (see Equations (1)-(2)).

From now on, we denote by VaR1
α(X), . . ., VaRd

α(X) the components of the vector VaRα(X) and

by VaR
1
α(X), . . ., VaR

d
α(X) the components of the vector VaRα(X).

Note that ifX is an exchangeable random vector, VaRi
α(X) = VaRj

α(X) and VaR
i
α(X) = VaR

j
α(X)

for any i, j = 1, . . . , d. Furthermore, given a univariate random variable X, E[X |FX(X) = α] =
E[X |FX(X) = 1−α] = VaRα(X), for all α in (0, 1). Hence, lower-orthant VaR and upper-orthant
VaR are the same for (univariate) random variables and Definitions 2.1 and 2.2 can be viewed
as natural multivariate versions of the univariate case. As remarked above, in Definitions 2.1-2.2
instead of considering the whole hyperspace ∂L(α) (or ∂L(α)), we only focus on the particular
point in R

d
+ that matches the conditional expectation of X given that X falls in ∂L(α) (or in

∂L(α)).

2.1. Invariance properties

In the present section, the aim is to analyze the lower-orthant VaR and upper-orthant VaR in-
troduced in Definitions 2.1-2.2 in terms of classical invariance properties of risk measures (we
refer the interested reader to Artzner et al., 1999). As these measures are not the same in general
for dimension greater or equal to 2, we also provide some connections between these two measures.

We now introduce the following results (Proposition 2.1 and Corollary 2.1) that will be useful in
order prove invariance properties of our risk measures.

Proposition 2.1 Let the function h be such that h(x1, . . . , xd) = (h1(x1), . . . , hd(xd)).

- If h1, . . . , hd are non-decreasing functions, then the following relations hold

VaRi
α(h(X)) = E[hi(Xi) |FX(X) = α ], i = 1, . . . , d.

- If h1, . . . , hd are non-increasing functions, then the following relations hold

VaRi
α(h(X)) = E[hi(Xi) |FX(X) = α ], i = 1, . . . , d.

Proof: From Definition 2.1, VaRi
α(h(X)) = E[hi(Xi) |Fh(X)(h(X)) = α ], for i = 1, . . . , d. Since

Fh(X)(y1, . . . , yd) =

{

FX(h
−1(y1), . . . , h

−1(yd)), if h1, . . . , hd are non-decreasing functions,

FX(h
−1(y1), . . . , h

−1(yd)), if h1, . . . , hd are non-increasing functions,

then we obtain the result. �

From Proposition 2.1 one can trivially obtain the following property which links the multivariate
upper-orthant Value-at-Risk and lower-orthant one.
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Corollary 2.1 Let h be a linear function such that h(x1, . . . , xd) = (h1(x1), . . . , hd(xd)).

- If h1, . . . , hd are non-decreasing functions then then it holds that

VaRα(h(X)) = h(VaRα(X)) and VaRα(h(X)) = h(VaRα(X)).

- If h1, . . . , hd are non-increasing functions then it holds that

VaRα(h(X)) = h(VaR1−α(X)) and VaRα(h(X)) = h(VaR1−α(X)).

Example 1 If X = (X1, . . . ,Xd) is a random vector with uniform margins and if, for all i =
1, . . . , d, we consider the functions hi such that hi(x) = 1−x, x ∈ [0, 1], then from Corollary 2.1,

VaR
i
α(X) = 1−VaRi

1−α(1−X) (3)

for all i = 1, . . . , d, where 1 − X = (1 − X1, . . . , 1 − Xd). In this case, VaRα(X) is the point
reflection of VaR1−α(1 − X) with respect to point I with coordinates (12 , . . . ,

1
2). If X and 1 −

X have the same distribution function, then X is invariant in law by central symmetry and
additionally the copula of X and its associated survival copula are the same. In that case VaRα(X)
is the point reflection of VaR1−α(X) with respect to I. This property holds for instance for
elliptical copulas or for the Frank copula.

Finally, we can state the following result that proves positive homogeneity and translation invari-
ance for our measures.

Proposition 2.2 Consider a random vector X satisfying the regularity conditions. For α ∈
(0, 1), the multivariate upper-orthant and lower-orthant Value-at-Risk satisfiy the following prop-
erties:

Positive Homogeneity: ∀ c ∈ R
d
+,

VaRα(cX) = cVaRα(X), VaRα(cX) = cVaRα(X)

Translation Invariance: ∀ c ∈ R
d
+,

VaRα(c+X) = c+VaRα(X), VaRα(c+X) = c+VaRα(X)

The proof comes down from Corollary 2.1.

2.2. Archimedean copula case

Surprisingly enough, the VaR and VaR introduced in Definitions 2.1-2.2 can be computed analyt-
ically for any d−dimensional random vector with an Archimedean copula dependence structure.
This is due to McNeil and Nešlehová’s stochastic representation of Archimedean copulas.
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Proposition 2.3 (McNeil and Nešlehová, 2009) Let U = (U1, . . . , Ud) be distributed according
to a d-dimensional Archimedian copula with generator φ, then

(φ(U1), . . . , φ(Ud))
d
= RS , (4)

where S = (S1, . . . , Sd) is uniformly distributed on the unit simplex
{

x ≥ 0 |
∑d

k=1 xk = 1
}

and R

is an independent non-negative scalar random variable which can be interpreted as the radial part
of (φ(U1), . . . , φ(Ud)) since

∑d
k=1 Sk = 1. The random vector S follows a symmetric Dirichlet

distribution whereas the distribution of R
d
=

∑d
k=1 φ(Uk) is directly related to the generator φ

through the inverse Williamson transform of φ−1.

Recall that a d-dimensional Archimedean copula with generator φ is defined by C(u1, . . . , ud) =
φ−1(φ(u1) + · · · + φ(ud)), for all (u1, . . . , ud) ∈ [0, 1]d. Then, the radial part R of representation
(4) is directly related to the generator φ and the probability integral transformation of U, that
is,

R
d
= φ(C(U)).

As a result, any random vector U = (U1, . . . , Ud) which follows an Archimedean copula with
generator φ can be represented as a deterministic function of C(U) and an independent random
vector S = (S1, . . . , Sd) uniformly distributed on the unit simplex, i.e.,

(U1, . . . , Ud)
d
=

(

φ−1 (S1φ (C(U))) , . . . , φ−1 (Sdφ (C(U)))
)

. (5)

The previous relation allows us to obtain an easily tractable expression of VaRα(X) for any
random vector X with an Archimedean copula dependence structure.

Corollary 2.2 Let X be a d-dimensional random vector with marginal distributions F1, . . . , Fd.
Assume that the dependence structure of X is given by an Archimedian copula with generator φ.
Then, for any i = 1, . . . , d,

VaRi
α(X) = E

[

F−1
i

(

φ−1(Siφ(α))
)]

(6)

where Si is a random variable with Beta(1, d − 1) distribution.

Proof: Note that X is distributed as (F−1
1 (U1), . . . , F

−1
d (Ud)) where U = (U1, . . . , Ud) fol-

lows an Archimedean copula C with generator φ. Then, each component i = 1, . . . , d of
the multivariate risk measure introduced in Definition 2.1 can be expressed as VaRi

α(X) =
E
[

F−1
i (Ui) | C(U) = α

]

. Moreover, from representation (5) the following relation holds

[U | C(U) = α]
d
=

(

φ−1 (S1φ (α)) , . . . , φ−1 (Sdφ (α))
)

(7)

since S and C(U) are stochastically independent. The result comes down from the fact that the
random vector (S1, . . . , Sd) follows a symmetric Dirichlet distribution. �
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Note that, using (7), the marginal distributions of U given C(U) = α can be expressed in a very
simple way, that is, for any k = 1, . . . , d,

P(Uk ≤ u | C(U) = α) =

(

1−
φ(u)

φ(α)

)d−1

for 0 < α < u < 1. (8)

The latter relation derives from the fact that Sk, which is Beta(1, d− 1)- distributed, is such that

Sk
d
= 1− V

1

d−1 where V is uniformly-distributed on (0, 1).

We now adapt Corollary 2.2 for the multivariate upper-orthant Value-at-Risk, i.e., VaRα.

Corollary 2.3 Let X be a d-dimensional random vector with marginal survival distributions
F 1, . . . , F d. Assume that the survival copula of X is an Archimedean copula with generator φ.
Then, for any i = 1, . . . , d,

VaR
i
α(X) = E

[

F
−1
i

(

φ−1(Siφ(1− α))
)

]

(9)

where Si is a random variable with Beta(1, d − 1) distribution.

Proof: Note that X is distributed as (F
−1
1 (U1), . . . , F

−1
d (Ud)) where U = (U1, . . . , Ud) fol-

lows an Archimedean copula C with generator φ. Then, each component i = 1, . . . , d of

the multivariate risk measure introduced in Definition 2.2 can be expressed as VaR
i
α(X) =

E

[

F
−1
i (Ui) | C(U) = 1− α

]

. Then, relation 7 also holds for U and C, i.e.,
[

U | C(U) = 1− α
] d
=

(

φ−1 (S1φ (1− α)) , . . . , φ−1 (Sdφ (1− α))
)

. Hence the result. �

In the following, from (6) and (9), we derive analytical expressions of the lower-orthant and the
upper-orthant Value-at-Risk for a random vector X = (X1, . . . ,Xd) distributed as a particular
Archimedean copula. Let us first remark that , as Archimedean copulas are exchangeable, the
components of VaR (resp. VaR) are the same. Moreover, as far as closed-form expressions are
available for the lower-orthant VaR of X, it is also possible to derive an analogue expression for
the upper-orthant VaR of X̃ = (1−X1, . . . , 1−Xd) since from Example 1

VaR
i
α(X̃) = 1−VaRi

1−α(X). (10)

Clayton family in dimension 2:

As a matter of example, let us now consider the Clayton family of bivariate copulas. This family
is interesting since it contains the counter-monotonic, the independence and the comonotonic
copulas as particular cases. Let (X,Y ) be a random vector distributed as a Clayton copula with
parameter θ ≥ −1. Then, X and Y are uniformly-distributed on (0, 1) and the joint distribution
function Cθ of (X,Y ) is such that

Cθ(x, y) = (max{x−θ + y−θ − 1, 0})−
1

θ , for θ ≥ −1, (x, y) ∈ [0, 1]2. (11)

Table 3 gives analytical expressions for the first (equal to the second) component of VaR as
a function of the risk level α and the dependence parameter θ. For θ = −1 and θ = ∞ we
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obtain the Fréchet-Hoeffding lower and upper bounds: W (x, y) = max{x + y − 1, 0} (counter-
monotonic copula) and M(x, y) = min{x, y} (comonotonic random copula) respectively. The
settings θ = 0 and θ = 1 correspond to degenerate cases. For θ = 0 we have the independence
copula Π(x, y) = x y. For θ = 1, we obtain the copula denoted by Π

Σ−Π in Nelsen (1999), where
Π

Σ−Π(x, y) =
x y

x+y−x y .

Copula θ VaR1
α,θ(X,Y )

Clayton Cθ (−1,∞) θ
θ−1

αθ
−α

αθ−1

Counter-monotonic W −1 1+α
2

Independent Π 0 α−1
lnα

Π
Σ−Π 1 α lnα

α−1

Comonotonic M ∞ α

Table 3: VaR1

α,θ(X,Y ) for different dependence structures.

Interestingly, one can readily show that
∂VaR1

α,θ

∂α ≥ 0 and
∂VaR1

α,θ

∂θ ≤ 0, for θ ≥ −1 and α ∈ (0, 1).
This proves that, for Clayton-distributed random couples, the components of our multivariate
VaR are increasing functions of the risk level α and decreasing functions of the dependence para-
meter θ. Note also that the multivariate VaR in the comonotonic case corresponds to the vector
composed of the univariate VaR associated with each component. These properties are illustrated
in Figure 2 (left) where VaR1

α,θ(X,Y ) is plotted as a function of the risk level α for different val-
ues of the parameter θ. Observe that an increase of the dependence parameter θ tends to lower
the VaR up to the perfect dependence case where VaR1

α,θ(X,Y ) = VaRα(X) = α. The latter
empirical behaviors will be formally confirmed in next sections.

In the same framework, using Equation 10, one can readily show that
∂VaR

1

α,θ

∂α ≥ 0 and
∂VaR

1

α,θ

∂θ ≥ 0,
for θ ≥ −1 and α ∈ (0, 1). This proves that, for random couples with uniform margins and
Clayton survival copula, the components of our multivariate VaR are increasing functions both
of the risk level α and of the dependence parameter θ. Note also that the multivariate VaR in the
comonotonic case corresponds to the vector composed of the univariate VaR associated with each

component. These properties are illustrated in Figure 2 (right) where VaR
1
α,θ(X,Y ) is plotted as

a function of the risk level α for different values of the parameter θ. Observe that, contrary to the
lower-orthant VaR, an increase of the dependence parameter θ tends to increase the VaR. The

upper bound is represented by the perfect dependence case where VaR
1
α,θ(X,Y ) = VaRα(X) = α.

The latter empirical behaviors will be formally confirmed in next sections.

Ali-Mikhail-Haq in dimension 2:

Let (X,Y ) be a random vector distributed as a Ali-Mikhail-Haq copula with parameter θ ∈
[−1, 1). In particular, the marginal distribution of X and Y are uniform. Then, the distribution
function Cθ of (X,Y ) is such that

Cθ(x, y) =
x y

1− θ (1− x)(1− y)
, for θ ∈ [−1, 1), (x, y) ∈ [0, 1]2.
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Figure 2: Behavior of VaR1

α,θ(X,Y ) = VaR2

α,θ(X,Y ) (left) and VaR
1

α,θ(1−X, 1−Y ) = VaR
2

α,θ(1−X, 1−Y )
(right) with respect to risk level α for different values of dependence parameter θ. The random vector
(X,Y ) follows a Clayton copula distribution with parameter θ. Note that, due to Equation 10, the two
graphs are symmetric with respect to the point (1

2
, 1

2
)

Using Corollary 2.2, we give in Table 4 analytical expressions for the first (equal to the second)
component of the VaR, i.e., VaR1

α,θ(X,Y ). When θ = 0 we obtain the independence copula
Π(x, y) = x y.

Copula θ VaR1
α,θ(X,Y )

Ali-Mikhail-Haq copula Cθ [−1, 1) (θ−1) ln(1−θ(1−α))
θ(ln(1−θ(1−α))−ln(α))

Independent Π 0 α−1
ln(α)

Table 4: VaR1

α,θ(X,Y ) for a bivariate Ali-Mikhail-Haq copula.

Clayton family in dimension 3:

We now consider a 3-dimensional vector X = (X1,X2,X3) with Clayton copula and parameter
θ > −1

2 (see Remark 1) and uniform marginals. In this case we give an analytical expression of
VaRi

α,θ(X1,X2,X3) for i = 1, 2, 3. Results are given in Table 5.

As in the bivariate case above, one can readily show that
∂VaR1

α,θ

∂α ≥ 0,
∂VaR1

α,θ

∂θ ≤ 0 when X is

distributed as a 3−dimensional Clayton copula. In addition, using Equation 10,
∂VaR

1

α,θ

∂α ≥ 0

and
∂VaR

1

α,θ

∂θ > 0 when X admits a trivariate Clayton survival copula. Then, the results obtained
above in the bivariate case are confirmed also in higher dimension. These empirical behaviors
will be formally confirmed in next sections.
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Copula θ VaRi
α,θ(X1,X2,X3)

Clayton Cθ (−1/2,∞) 2
θ ((θ−1)α2 θ+(1−2θ)αθ+θα)
(2 θ−1)(θ−1)(α2 θ−2αθ+1)

Independent Π 0 −2 1−α+ln(α)

(ln(α))2

Table 5: VaR1

α,θ(X1, X2, X3) for different dependence structures.

2.3. Comparison of univariate and multivariate VaR

Note that, using a change of variable, each component of the multivariate VaR can be repres-
ented as an integral transformation of the associated univariate VaR. Let us denote by FXi

the
marginal distribution functions of Xi for i = 1, . . . , d and by C (resp. C) the copula (resp.
the survival copula) associated with X. Using the Sklar’s theorem we have F (x1, . . . , xd) =
C(FX1

(x1), . . . , FXd
(xd)) (see Sklar, 1959). Then the random variables Ui defined by Ui =

FXi
(Xi), for i = 1, . . . , d, are uniformly distributed and their joint distribution is equal to C.

Using these notations and since F−1
Xi

(γ) = VaRγ(Xi), we get

VaRi
α(X) =

1

K ′(α)

∫ 1

α
VaRγ(Xi)f(Ui,C(U))(γ, α) dγ, (12)

for i = 1, . . . , d, where K ′ is the density of the Kendall distribution associated with copula C and
f(Ui,C(U)) is the density function of the bivariate vector (Ui, C(U)).

As for the upper-orthant VaR, let Vi = FXi
(Xi), for i = 1, . . . , d. Using these notations and since

F
−1
Xi

(γ) = VaR1−γ(Xi), we get

VaR
i
α(X) =

1

K ′

C
(1− α)

∫ 1−α

0
VaR1−γ(Xi)f(Vi,C(V))(γ, 1− α) dγ, (13)

for i = 1, . . . , d, where K ′

C
the density of the Kendall distribution associated with the survival

copula C and f(Vi,C(V)) is the density function of the bivariate vector (Vi, C(V)).

Remark that the bounds of integration in (12) and (13) derive from the geometrical properties of
the considered level curve, i.e., ∂L(α) (resp. ∂L(α)) is inferiorly (resp. superiorly) bounded by
the marginal univariate quantile functions at level α.

The following proposition allows us to compare the multivariate lower-orthant and upper-orthant
Value-at-Risk with the corresponding univariate VaR.

Proposition 2.4 Consider a random vector X satisfying the regularity conditions. Assume that
its multivariate distribution function F is quasi concave6. Then, for all α ∈ (0, 1), the following
inequalities hold

6A function F is quasi concave if the upper level sets of F are convex sets. Tibiletti (1995) points out families
of distribution functions which satisfy the property of quasi concavity. For instance, multivariate elliptical dis-
tributions and Archimedean copulas are quasi concave functions (see Theorem 4.3.2 in Nelsen, 1999 for proof in
dimension 2; Proposition 3 in Tibiletti, 1995, for proof in dimension d).

16



VaR
i
α(X) ≤ VaRα(Xi) ≤ VaRi

α(X), (14)

for i = 1, . . . , d.

Proof: Let α ∈ (0, 1). From the definition of the accumulated probability, it is easy to show that
∂L(α) is inferiorly bounded by the marginal univariate quantile functions. Moreover, recall that
L(α) is a convex set in R

d
+ from the quasi concavity of F (see Section 2 in Tibiletti, 1995). Then,

for all x = (x1, . . . , xd) ∈ ∂L(α), x1 ≥ VaRα(X1), · · · , xd ≥ VaRα(Xd) and trivially, VaRi
α(X)

is greater than VaRα(Xi), for i = 1, . . . , d. Then VaRi
α(X) ≥ VaRα(Xi), for all α ∈ (0, 1) and

i = 1, . . . , d. Analogously, from the definition of the survival accumulated probability, it is easy
to show that ∂L(α) is superiorly bounded by the marginal univariate quantile functions at level
α. Moreover, recall that L(α) is a convex set in R

d
+. Then, for all x = (x1, . . . , xd) ∈ ∂L(α),

x1 ≤ VaRα(X1), · · · , xd ≤ VaRα(Xd) and trivially, VaR
i
α(X) is smaller than VaRα(Xi), for all

α ∈ (0, 1) and i = 1, . . . , d. Hence the result �

Proposition 2.4 states that the multivariate lower-orthant VaRα(X) (resp. the multivariate upper-
orthant VaRα(X)) is more conservative (resp. less conservative) than the vector composed of the
univariate α-Value-at-Risk of marginals. Furthermore, we can prove that the previous bounds in
(14) are reached for comonotonic random vectors.

Proposition 2.5 Consider a comonotonic non-negative random vector X. Then, for all α ∈
(0, 1), it holds that

VaR
i
α(X) = VaRα(Xi) = VaRi

α(X),

for i = 1, . . . , d.

Proof: Let α ∈ (0, 1). If X = (X1, . . . ,Xd) is a comonotonic non-negative random vec-
tor then there exists a random variable Z and d increasing functions g1, . . . , gd such that X is
equal to (g1(Z), . . . , gd(Z)) in distribution. So the set {(x1, . . . , xd) : F (x1, . . . , xd) = α} be-
comes {(x1, . . . , xd) : min{g−1

1 (x1), . . . , g
−1
d (xd)} = QZ(α)}, where QZ is the quantile function

of Z. So, trivially, VaRi
α(X) = E[Xi |F (X) = α ] = QXi

(α), for i = 1, . . . , d and VaR
i
α(X) =

E[gi(Z)|FX(X) = 1 − α] = E[gi(Z)|F (Z,...,Z)(Z, . . . , Z) = 1 − α]. Since F (Z,...,Z)(u1, . . . , ud) =

FZ(maxi=1,...,d ui), then VaR
i
α(X) = E[gi(Z)|FZ(Z) = α] = VaRα(Xi), for i = 1, . . . , d. Hence

the result. �

Remark 3 For bivariate independent random couple (X,Y ), Equations (12) and (13) become
respectivley

VaR1
α(X,Y ) =

1

− ln(α)

∫ 1

α

VaRγ(X)

γ
dγ,

VaR
1
α(X,Y ) =

1

− ln(1− α)

∫ 1−α

0

VaR1−γ(X)

γ
dγ,

then, obviously, in this case the X-related component only depends on the marginal behavior of
X. For further details the reader is referred to Corollary 4.3.5 in Nelsen (1999).
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2.4. Behavior of the multivariate VaR with respect to marginal distributions

In this section we study the behavior of our VaR measures with respect to a change in marginal
distributions. Results presented below provide natural multivariate extensions of some classical
results in the univariate setting (see, e.g., Denuit and Charpentier, 2004).

Proposition 2.6 Let X and Y be two d–dimensional continuous random vectors satisfying the

regularity conditions and with the same copula C. If Xi
d
= Yi then it holds that

VaRi
α(X) = VaRi

α(Y), for all α ∈ (0, 1),

and
VaR

i
α(X) = VaR

i
α(Y), for all α ∈ (0, 1).

The proof of the previous result directly comes down from Equation (12) and (13). From Pro-

position 2.6, we remark that, for a fixed copula C, the i-th component VaRi
α(X) and VaR

i
α(X)

do not depend on marginal distributions of the other components j with j 6= i.

In order to derive the next result, we use the definitions of stochastic orders presented in Section 1.

Proposition 2.7 Let X and Y be two d–dimensional continuous random vectors satisfying the
regularity conditions and with the same copula C. If Xi �st Yi then it holds that

VaRi
α(X) ≤ VaRi

α(Y), for all α ∈ (0, 1),

and
VaR

i
α(X) ≤ VaR

i
α(Y), for all α ∈ (0, 1).

Proof: The proof comes down from formulas (12)- (13) and Definition 1.1. Furtheremore, we

remark that if Xi �st Yi then F−1
Xi

(x) ≤ F−1
Yi

(x) for all x, and F
−1
Xi

(y) ≤ F
−1
Yi

(y) for all y. Hence
the result. �

Note that, the result in Proposition 2.7 is consistent with the one-dimensional setting (see Section
3.3.1 in Denuit et al., 2005). Indeed, as in dimension one, an increase of marginals with respect
to the first order stochastic dominance yields an increase in the corresponding components of
VaRα(X).

As a result, in an economy with several interconnected financial institutions, capital required for
one particular institution is affected by its own marginal risk. But, for a fixed dependence struc-
ture, the solvency capital required for this specific institution does not depend on marginal risks
bearing by the others. Then, our multivariate VaR implies a “fair” allocation of solvency capital
with respect to individual risk-taking behavior. In other words, individual financial institutions
may not have to pay more for risky business activities undertook by the others.
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2.5. Behavior of multivariate VaR with respect to the dependence structure

In this section we study the behavior of our VaR measures with respect to a variation of the
dependence structure, with unchanged marginal distributions.

Proposition 2.8 Let X and X∗ be two d–dimensional continuous random vectors satisfying the
regularity conditions and with the same margins FXi

and FX∗

i
, for i = 1, . . . , d, and let C (resp.

C∗) denote the copula function associated with X (resp. X∗) and C (resp. C
∗

) the survival copula
function associated with X (resp. X∗).

Let Ui = FXi
(Xi), U

∗

i = FXi
∗(X∗

i ), U = (U1, . . . , Ud) and U∗ = (U∗

1 , . . . , U
∗

d ).

If [Ui|C(U) = α] �st [U
∗

i |C
∗(U∗) = α] then VaRi

α(X) ≤ VaRi
α(X

∗).

Let Vi = FXi
(Xi), V

∗

i = FXi
∗(X∗

i ), V = (V1, . . . , Vd) and V∗ = (V ∗

1 , . . . , V
∗

d ).

If [Vi|C(V) = 1− α] �st [V
∗

i |C
∗

(V∗) = 1− α] then VaR
i
α(X) ≥ VaR

i
α(X

∗).

Proof: Let U1
d
= [Ui|C(U) = α] and U2

d
= [U∗

i |C
∗(U∗) = α]. We recall that U1 �st U2 if and

only if E[f(U1)] ≤ E[f(U2)], for all non-decreasing function f such that the expectations exist
(see Denuit et al., 2005; Proposition 3.3.14). We now choose f(u) = F−1

Xi
(u), for u ∈ (0, 1). Then,

we obtain

E[F−1
Xi

(Ui)|C(U) = α ] ≤ E[F−1
Xi

(U∗

i )|C
∗(U∗) = α ],

But the right-hand side of the previous inequality is equal to E[F−1
X∗

i
(U∗

i )|C
∗(U∗) = α ] since Xi

and X∗

i have the same distribution. Finally, from formula (12) we obtain VaRi
α(X) ≤ VaRi

α(X
∗).

Let now V1
d
= [Vi|C(V) = 1 − α] and V2

d
= [V ∗

i |C
∗

(V∗) = 1 − α]. We now choose the non-

decreasing function f(u) = −F
−1
Xi

(u), for u ∈ (0, 1). Since Xi and X∗

i have the same distribution,
we obtain

E[F
−1
Xi

(Vi)|C(V) = 1− α ] ≥ E[F
−1
Xi

(V ∗

i )|C
∗

(V∗) = 1− α ],

Hence the result. �

We now provide an illustration of Proposition 2.8 in the case of d−dimensional Archimedean
copulas.

Corollary 2.4 Consider a d–dimensional random vector X, satisfying the regularity conditions,
with marginal distributions FXi

, for i = 1, . . . , d, copula C and survival copula C.

If C belongs to one of the d-dimensional family of Archimedean copulas introduced in Table 2, an
increase of the dependence parameter θ yields a decrease in each component of VaRα(X).

If C belongs to one of the d-dimensional family of Archimedean copulas introduced in Table 2, an
increase of the dependence parameter θ yields an increase in each component of VaRα(X).
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Proof: Let Cθ and Cθ∗ be two Archimedean copulas of the same family with generator φθ and φθ∗

such that θ ≤ θ∗. Given Proposition 2.8, we have to check that the relation [U∗

i |Cθ∗(U
∗) = α] �st

[Ui|Cθ(U) = α] holds for all i = 1, . . . , d where (U1, . . . , Ud) and (U∗

1 , . . . , U
∗

d ) are distributed
(resp.) as Cθ and Cθ∗ . However, using formula (8), we can readily prove that the previous
relation can be restated as a decreasing condition on the ratio of generators φθ∗ and φθ, i.e.,

[U∗

i |Cθ∗(U
∗) = α] �st [Ui|Cθ(U) = α] for any α ∈ (0, 1) ⇐⇒

φθ∗

φθ
is a decreasing function.

Eventually, we have check that, for all Archimedean family introduced in Table 2, the function
defined by φθ∗

φθ
is indeed decreasing when θ ≤ θ∗. We immediately obtain from Proposition 2.8

that each component of VaRα(X) is a decreasing function of θ. The proof of the second statement
of Corollary 2.4 follows trivially usign the same arguments. �

Example 2 From Corollary 2.4 the multivariate VaR (resp. VaR) for copulas in Table 2 is in-
creasing (resp. decreasing) with respect to the dependence parameter θ (coordinate by coordinate).
In particular, this means that, in the case of Archimedean copula, limit behaviors of dependence
parameters are associated with bounds for our multivariate risk measure. For instance, let (X,Y )
be a bivariate random vector with a Clayton dependence structure and fixed margins and (X̃, Ỹ )
be a bivariate random vector with a Clayton survival copula and the same margins as (X,Y ).

If we denote by VaR1
(α,θ)(X,Y ) (resp. VaR

1
(α,θ)(X̃, Ỹ )) the first component of the lower-orthant

VaR (resp. upper-orthant VaR) when the dependence parameter is equal to θ, then the following
comparison result holds for all α ∈ (0, 1) and all θ ∈ (−1,∞):

VaR
1
(α,−1)(X̃, Ỹ ) ≤ VaR

1
(α,θ)(X̃, Ỹ ) ≤ VaR

1
(α,+∞)(X̃, Ỹ )

= VaR1
(α,+∞)(X,Y ) ≤ VaR1

(α,θ)(X,Y ) ≤ VaR1
(α,−1)(X,Y ).

Note that the upper bound corresponds to comonotonic random variables, so that VaR
1
(α,+∞)(X,Y )

= VaR1
(α,+∞)(X,Y ) = VaRα(X) = α, for a random vector (X,Y ) with uniform marginal distri-

butions.

2.6. Behavior of multivariate VaR with respect to risk level

In order to study the behavior of the multivariate lower-orthant Value-at-Risk with respect to
risk level α, we need to introduce the positive regression dependence concept. For a bivariate
random vector (X,Y ) we mean by positive dependence that X and Y are likely to be large or
to be small together. An excellent presentation of positive dependence concepts can be found in
Chapter 2 of the book by Joe (1997). The positive dependence concept that will be used in the
sequel has been called positive regression dependence (PRD) by Lehmann (1966) but most of the
authors use the term stochastically increasing (SI) (see Nelsen, 1999; Section 5.2.3).

Definition 2.3 (Positive regression dependence) A bivariate random vector (X,Y ) is said
to admit positive regression dependence with respect to X, PRD(Y |X), if

[Y |X = x1] �st [Y |X = x2], ∀x1 ≤ x2. (15)
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Clearly condition in (15) is a positive dependence notion (see Section 2.1.2 in Joe, 1997).
From Definition 2.3, it is straightforward to derive the following result.

Proposition 2.9 Consider a d–dimensional random vector X, satisfying the regularity condi-
tions, with marginal distributions FXi

, for i = 1, . . . , d, copula C and survival copula C. Let
Ui = FXi

(Xi), U = (U1, . . . , Ud), Vi = FXi
(Xi) and V = (V1, . . . , Vd). Then it holds that :

If (Ui, C(U)) is PRD(Ui|C(U)) then VaRi
α(X) is a non-decreasing function of α.

If (Vi, C(V)) is PRD(Vi|C(V)) then VaR
i
α(X) is a non-decreasing function of α.

Proof: If α1 ≤ α2, we have [Ui|C(U) = α1] �st [Ui|C(U) = α2] and [Vi|C(V) = 1 − α2] �st

[Vi|C(V) = 1− α1]. As in the proof of Proposition 2.8,

E[F−1
Xi

(Ui)|C(U) = α1 ] ≤ E[F−1
Xi

(Ui)|C(U) = α2 ].

and

E[F
−1
Xi

(Vi)|C(V) = 1− α1 ] ≤ E[F
−1
Xi

(Vi)|C(V) = 1− α2 ].

Then VaRi
α1
(X) ≤ VaRi

α2
(X) and VaR

i
α1
(X) ≤ VaR

i
α2
(X), for any α1 ≤ α2 which proves that

VaRi
α(X) and VaR

i
α(X) are non-decreasing functions of α. �

Note that behavior of the multivariate VaR with respect to a change in the risk level does not
depend on marginal distributions of X.

The following result proves that assumptions of Proposition 2.9 are satisfied in the large class of
d-dimensional Archimedean copulas.

Corollary 2.5 Consider a d–dimensional random vector X, satisfying the regularity conditions,
with marginal distributions FXi

, for i = 1, . . . , d, copula C and survival copula C.

If C is a d-dimensional Archimedean copula, then VaRi
α(X) is a non-decreasing function of α.

If C is a d-dimensional Archimedean copula, then VaR
i
α(X) is a non-decreasing function of α.

Proof: Let Ui = FXi
(Xi), U = (U1, . . . , Ud), Vi = FXi

(Xi) and V = (V1, . . . , Vd). If C is the
copula of X, then U is distributed as C and if C is Archimedean, P[Ui > u |C(U) = α] is a
non-decreasing function of α from formula (8). In addition, if C is the survival copula of X, then
V is distributed as C and if C is Archimedean, P[Vi > u |C(V) = α] is a non-decreasing function
of α from the same argument. The result then derives from Proposition 2.9. �
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Conclusion and perspectives

In this paper, we proposed two multivariate extensions of the classical Value-at-Risk for
continuous random vectors. As in the Embrechts and Puccetti (2006)’s approach, the introduced
risk measures are based on multivariate generalization of quantiles but they are able to quantify
risks in a much more parsimonious and synthetic way: the risk of a d-dimensional portfolio is
evaluated by a point in R

d
+. The proposed multivariate risk measures may be useful for some

applications where risks are heterogeneous in nature or because they cannot be diversify away
by an aggregation procedure.

We analyzed our multivariate risk measures in several directions. Interestingly, we showed that
many properties satisfied by the univariate VaR expand to the two proposed multivariate versions
under some conditions. In particular, the lower-orthant VaR and the upper-orthant VaR both
satisfy the positive homogeneity and the translation invariance property which are parts of the
classical axiomatic properties of Artzner et al. (1999). Using the theory of stochastic ordering, we
also analyzed the effect of some risk perturbations on these measures. In the same vein as for the
univariate VaR, we proved that an increase of marginal risks yield an increase of the multivariate
VaR. We also gave the condition under which an increase of the risk level tends to increase
components of the proposed multivariate extensions and we show that these conditions are
satisfied for d-dimensional Archimedean copulas. We also study the effect of dependence between
risks on individual contribution of the multivariate VaR and we prove that for different families
of Archimedean copulas, an increase of the dependence parameter tends to lower the components
of the lower-orthant VaR whereas it widens the components of the upper-orthant VaR. At the
extreme case where risks are perfectly dependent or comonotonic, our multivariate risk meas-
ures are equal to the vector composed of univariate risk measures associated with each component.

Due to the fact that the Kendall distribution is not known analytically for elliptical random
vectors, it is still an open question whether components of our proposed measures are increasing
with respect to the risk level for such dependence structures. However, numerical experiments
in the case of Gaussian copulas support this hypothesis. More generally, the extension of the
McNeil and Nešlehová’s representation (see Proposition 2.3) for a generic copula C and the study
of the behavior of distribution [U |C(U) = α], with respect to α, are potential improvements to
this paper that will be investigated in a future work.

In a future perspective, it should also be interesting to discuss the extensions of our risk measures
to the case of discrete distribution functions, using “discrete level sets” as multivariate defin-
itions of quantiles. For further details the reader is referred, for instance, to Laurent (2003).
Another subject of future research should be to introduce a similar multivariate extension but for
Conditional-Tail-Expectation and compare the proposed VaR and CTE measures with existing
multivariate generalizations of risk measures, both theoretically and experimentally. An article
is in preparation in this sense.
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