
HAL Id: hal-00743270
https://inria.hal.science/hal-00743270v1

Submitted on 18 Oct 2012 (v1), last revised 19 Nov 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Enforcement of Timed Properties
Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, Antoine

Rollet, Omer Landry Nguena Timo

To cite this version:
Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, Antoine Rollet, et al.. Runtime
Enforcement of Timed Properties. 3rd International Conference on Runtime Verification, Sep 2012,
Istanbul, Turkey. �hal-00743270v1�

https://inria.hal.science/hal-00743270v1
https://hal.archives-ouvertes.fr

Runtime Enforcement of Timed Properties
Srinivas Pinisetty1, Yliès Falcone2, Thierry Jéron1, Hervé Marchand1,

Antoine Rollet3 and Omer Nguena Timo4

1 INRIA Rennes - Bretagne Atlantique, France First.Last@inria.fr
2 LIG, Université Grenoble I, France Ylies.Falcone@ujf-grenoble.fr

3 LaBRI, Université de Bordeaux - CNRS, France Antoine.Rollet@labri.fr
4 IRIT, France Omerlandry.Nguenatimo@enseeiht.fr

Abstract. Runtime enforcement is a powerful technique to ensure that a running
system respects some desired properties. Using an enforcement monitor, an (un-
trustworthy) input execution (in the form of a sequence of events) is modified into
an output sequence that complies to a property. Runtime enforcement has been
extensively studied over the last decade in the context of untimed properties.
This paper introduces runtime enforcement of timed properties. We revisit the
foundations of runtime enforcement when time between events matters. We show
how runtime enforcers can be synthesized for any safety or co-safety timed prop-
erty. Proposed runtime enforcers are time retardant: to produce an output se-
quence, additional delays are introduced between the events of the input sequence
to correct it. Runtime enforcers have been prototyped and our simulation experi-
ments validate their effectiveness.

1 Introduction

Runtime verification [1–6] (resp. enforcement [7–9]) refers to the theories, techniques,
and tools aiming at checking (resp. ensuring) the conformance of the executions of
systems under scrutiny w.r.t. some desired property. The first step of those monitoring
approaches consists in instrumenting the underlying system so as to partially observe
the events or the parts of its global state that may influence the property under scrutiny.
A central concept is the verification or enforcement monitor that is generally synthe-
sized from the property expressed in a high-level formalism. Then, the monitor can
operate either online by receiving events in a lock-step manner with the execution of
the system or offline by reading a log of system events. When the monitor is only dedi-
cated to verification, it is a decision procedure emitting verdicts stating the correctness
of the (partial) observed trace generated from the system execution.

Three categories of runtime verification frameworks can be distinguished accord-
ing to the formalism used to express the input property. In propositional approaches,
properties refer to events taken from a finite set of propositional names. For instance, a
propositional specification may rule the ordering of function calls in a program. Moni-
toring such kind of specifications has received a lot of attention. Parametric approaches
have received a growing interest in the last five years. Here, events are augmented with
formal parameters, instantiated at runtime. In timed approaches, the observed time be-
tween events may influence the truth-value of the property. It turns out that monitoring
of (continuous) time specifications is a much harder problem. Intuitively, when moni-
toring a timed specification, the problem that arises is that the overhead induced by the
monitor (i.e., the time spent executing monitor’s code) influences the truth-value of the
monitored specification. Consequently, not much information can be gained from the

verdicts produced by the monitor. Few attempts have been made on monitoring systems
w.r.t. timed properties (see Sec. 8 for related work). Two lines of work can be distin-
guished: synthesis of automata-based decision procedures for timed formalisms (e.g.,
[1, 3–5]), and, tools for runtime verification of timed properties [10, 11].

In runtime enforcement, an enforcement monitor (EM) is used to transform some
(possibly) incorrect execution sequence into a correct sequence w.r.t. the property of
interest. In the propositional case, the transformation performed by an EM should be
sound and transparent. Soundness means that the resulting sequence obeys the prop-
erty. Transparency means that, if the input sequence already conforms to the property,
the monitor has to modify it in a minimal way. According to how a monitor is allowed to
modify the input sequence (i.e., the primitives afforded to the monitor), several models
of enforcement monitors have been proposed [7–9]. In a nutshell, an EM can definitely
block the input sequence (as done by security automata), suppress an event from the
input sequence (as done by suppression automata), insert an event to the input sequence
(as done by insertion automata), or perform any of these primitives (as is the case with
edit-automata). Moreover, according to how transparency is effectively formalized, sev-
eral definitions of runtime enforcement have been proposed (see [9] for an overview).

In this paper we focus on online enforcement of timed properties. To the best of
our knowledge, no approach was proposed to enforce timed properties. Motivations for
extending runtime enforcement to timed properties abound. First, timed properties are a
more precise tool to specify desired behaviors of systems since they allow to explicitly
state how time should elapse between two events. Moreover, several applications of
runtime enforcement of timed properties can be considered. For instance, in the context
of security monitoring, enforcement monitors can be used as firewalls to prevent denial
of service attacks by ensuring a minimal delay between input events (carrying some
request for a protected server). On a network, enforcement monitors can be used to
synchronize streams of events together, or, ensuring that a stream of events conforms to
the pre-conditions of some service.

Contributions. We propose a context where, under some reasonable assumptions, run-
time enforcement of timed properties is possible. For this purpose, we adapt sound-
ness and transparency to a timed context. Runtime enforcement monitors are built from
safety and co-safety properties expressed by timed automata. In contrast with previ-
ous runtime enforcement approaches, we afford only the primitives of being able to
delay the input events to our enforcer. By possibly increasing delays between events
of the input sequence, the output timed sequence conforms to the property. Delays are
modified by monitors using an internal memory where (sequence of) events are stored
and released after appropriate delays. Experiments have been performed on prototype
monitors to show their effectiveness and the feasibility of our approach.

Paper organization. Section 2 introduces preliminaries and notation. Section 3 intro-
duces the notion of enforcement for timed properties. Sections 4 and 5 describe how
one can enforce safety and co-safety properties, respectively. Our prototype implemen-
tations of monitors and experiments are in Sec. 6 and Sec. 7, respectively. Section 8
discusses related work. Finally, conclusions and open perspectives are drawn in Sec. 9.

2

2 Preliminaries and Notation
Untimed notions. An alphabet is a finite set of elements. A (finite) word over an alphabet
A is a finite sequence of elements of A. The length of a word w is noted |w|. The empty
word over A is denoted by εA or ε when clear from context.The set of all (resp. non-
empty) words over A is denoted by A∗ (resp. A+). A language over A is a subset
L ⊆ A∗. The concatenation of two words w and w′ is noted w ·w′. For an interval [j, k]
in N, by

⊙
i∈[j,k](ai) we denote the concatenation aj ·aj+1 · · · ak. A wordw′ is a prefix

of a word w, noted w′ 4 w, whenever there exists a word w′′ such that w = w′ · w′′.
For a word w and 1 ≤ i ≤ |w|, the i-th letter (resp. prefix of length i, suffix starting at
position i) of w is noted w(i) (resp. w[···i], w[i···]) – with the convention w[···0]

def
= ε.

pref(w) denotes the set of prefixes of w and by extension, pref(L) def
= {pref(w) | w ∈

L} the prefix of L. L is said to be prefix-closed whenever pref(L) = L and extension-
closed whenever L = L · A∗. Given a tuple of symbols e = (e1, . . . , en), Πi(e) is the
projection of e on its ith element (Πi(e)

def
= ei).

Timed languages. Let R≥0 denote the set of non negative real numbers, and Σ a finite
alphabet of actions. A pair (δ, a) ∈ (R≥0×Σ) is called an event. We note del(δ, a) = δ
and act(δ, a) = a the projections of events on delays and actions, respectively. A
timed word over Σ is a finite sequence of events ranging over (R≥0 × Σ)∗. For σ =
(δ1, a1)·(δ2, a2) · · · (δn, an), δi (2 ≤ i ≤ n) is the delay between ai−1 and ai and δ1 the
time elapsed before the first action. Note that the alphabet is infinite in this case. Never-
theless, previous notions and notations defined above (related to length, concatenation,
prefix, etc) naturally extend to timed words. The sum of delays of a timed word σ is
noted time(σ). Given t ∈ R≥0, and a timed word σ ∈ (R≥0×Σ)∗, we define the obser-

vation of σ at time t as the timed word obs(σ, t)
def
= max{σ′ | σ′ 4 σ ∧ time(σ′) ≤ t},

i.e., the longest prefix of σ with a sum of delays less than t. The untimed projection of
σ is ΠΣ(σ)

def
= a1 · a2 · · · an in Σ∗ (i.e., delays are ignored). A timed language is any

subset L ⊆ (R≥0 × Σ)∗. We define the following order on timed words: σ′ delays σ
(noted σ′ 4d σ) if ΠΣ(σ

′) 4 ΠΣ(σ) and ∀i ≤ |σ′|,del(σ(i)) ≤ del(σ′(i)).

Timed Automata. Let X = {X1, . . . , Xk} be a finite set of clocks. A clock valuation
for X is a function ν from X to RX≥0 where RX≥0 denotes the valuations of X . For
ν ∈ RX≥0 and δ ∈ R≥0, ν + δ is the valuation assigning ν(Xi) + δ to each clock Xi

of X . Given a set of clocks X ′ ⊆ X , ν[X ′ ← 0] is the clock valuation ν where all
clocks in X ′ are assigned to 0. G(X) denotes the set of clock constraints defined as
boolean combinations of simple constraints of the form Xi ./ c with Xi ∈ X , c ∈ N
and ./∈ {<,≤,=,≥, >}. Given g ∈ G(X) and ν ∈ RX≥0, we write ν |= g when
g(ν) ≡ true.

Definition 1 (Timed automaton). A timed automaton (TA) is a tupleA = 〈L, l0, X,Σ,
∆,G〉, s.t. L is a finite set of locations with l0 ∈ L the initial location, X is a finite set
of clocks, Σ is a finite set of events, ∆ ⊆ L × G(X) × Σ × 2X × L is the transition
relation, and G ⊆ L is a set of accepting locations.

The semantics of a TA is a timed transition system [[A]] = 〈Q, q0, Γ,→, FG〉 where
Q = L × RX≥0 is the (infinite) set of states, q0 = (l0, ν0) is the initial state where ν0

3

l0 l1 l2

Σ1 \ {r}
r,

x := 0

Σ1 \ {r}

r, x ≥ 5,
x := 0

r, x<5

Σ1

(a) A safety TA for ϕ1

l0 l1

l2

l3
r, x := 0

Σ2 \ {r}

Σ2 \ {g},
x < 10 ∨ x > 15

g,
10≤x ≤15

Σ2

Σ2

(b) A co-safety TA for ϕ2

Fig. 1: Example of Timed Properties

is the valuation that maps every clock to 0, FG = G × RX≥0 is the set of of accepting
states, Γ = R≥0 ×Σ is the set of transition labels, i.e., pairs composed of a delay and
an action. The transition relation →⊆ Q × Γ × Q is a set of transitions of the form

(l, ν)
(δ,a)−−−→(l′, ν′) with ν′ = (ν + δ)[Y ← 0] whenever there exists (l, g, a, Y, l′) ∈ ∆

s.t. ν + δ |= g for δ ≥ 0.

In the following, we consider a timed automaton A = 〈L, l0, X,Σ,∆,G〉 with its
semantics [[A]].A is deterministic whenever for any (l, g1, a, Y1, l

′
1) and (l, g2, a, Y2, l

′
2)

in ∆, g1 ∧ g2 is false. A is complete whenever for any location l ∈ L and every event
a ∈ Σ, the disjunction of the guards of the transitions leaving l and labeled by a is true.
In the remainder of this paper, we shall consider only deterministic timed automata.

A run ρ from q ∈ Q is a sequence of moves in [[A]] of the form: ρ = q0
(δ1,a1)−−−−→

q1 · · · qn−1
(δn,an)−−−−−→ qn. The set of runs from q0 ∈ Q is denotedRun(A) andRunFG

(A)
denotes the subset of runs accepted by A, i.e., ending in FG. The trace of a run ρ is the
timed word (δ1, a1) · (δ2, a2) · · · (δn, an). We note L(A) the set of traces of Run(A).
We extend this notation to LFG

(A) in a natural way.
Timed Properties A timed property is defined by a timed language ϕ ⊆ (R≥0 × Σ)∗.
Given a timed word σ ∈ (R≥0 × Σ)∗, we say that σ satisfies ϕ (noted σ |= ϕ) if
σ ∈ ϕ. In the sequel, we shall be interested in safety and co-safety timed properties. In-
formally, safety (resp. co-safety) properties state that “nothing bad should ever happen”
(resp. “something good should happen within a finite amount of time”). Safety (resp.
co-safety) properties can be characterized by prefix-closed (resp. extension-closed) lan-
guages. We consider only the sets of safety and co-safety properties that can be repre-
sented by timed automata (Definition 1).

Definition 2 (Safety and Co-safety TA). A complete and deterministic TA 〈L, l0, X,Σ,
∆,G〉, where G ⊆ L is the set of accepting locations, is said to be:

– a safety TA if @〈l, g, a, Y, l′〉 ∈ ∆, l ∈ L \G ∧ l′ ∈ G;
– a co-safety TA if @〈l, g, a, Y, l′〉 ∈ ∆, l ∈ G ∧ l′ ∈ L \G.

It is easy to check that safety and co-safety TAs define safety and co-safety properties.
Example 1 (Safety and co-safety TA). Fig. 1a and 1b present two properties formal-
ized with safety and co-safety TA. Accepting locations are represented by squares. The
safety TA formalizes the property ϕ1 defined over Σ1 = {a, r}: “There should be a
delay of at least 5 time units between any two user requests (r)”. The co-safety TA for-
malizes the property ϕ2 defined over Σ2 = {r, g, a}: “The user can perform an action
a only after a successful authentication, i.e., after sending a request r and receiving a
grant g. After an r, g should occur between 10 and 15 time units”.

4

3 Enforcement Monitoring in a Timed Context
Roughly speaking, both in the timed and untimed settings, the purpose of an enforce-
ment monitor (EM) is to read some (possibly incorrect) input sequence σ produced by a
running system (input to the enforcer), and to transform it into an output sequence o that
is correct w.r.t. a property ϕ, here modeled by a TA. From an abstract point of view, an
enforcement monitor realizes an enforcement function E that transforms timed words
into timed words according to global time.

Definition 3. For a given property ϕ, an enforcement function is a function E from
(R≥0 ×Σ)∗ × R≥0 to (R≥0 ×Σ)∗.

Enforcement
function

ϕ

σ, t E(σ, t) |= ϕ

Fig. 2: Enforcement functionE

An enforcement function E transforms some timed
word σ given as input and possibly incorrect w.r.t. the
desired property (see Fig. 2). The resulting outputE(σ, t)
at time t is a timed word with same actions, but possibly
increased delays between actions so that it satisfies the property. Similar to the untimed
setting, additional constraints on E(σ, t), namely soundness and transparency, are re-
quired on actions. However, in the timed setting, those constraints also depend on both
delays between events and the class of the enforced property, as we shall discuss later.

An enforcement function E is realized by an enforcement monitor EM . This mon-
itor is equipped with a memory and a set of enforcement operations used to store and
dump some timed events to and from the memory, respectively. The memory of an EM
is basically a queue containing a timed word, the received actions with increased delays
that have not been released yet. In addition, the EM also keeps track of the state of the
TA modeling the property, satisfaction of the property using a Boolean variable, and
some variables indicating the clock values used to count time between input and output
events.

The specific operations of the EM are the Store operation which stores in memory
the received action together with a possibly modified delay; the Dump operation which
releases the first action from the memory; and the optional Halt operation which stops
the enforcer, i.e., blocks the input sequence and stops producing outputs. Off operation
which turns off the enforcer. The Off and Halt operations can be added for optimization.
The Off can be used when we observe that the property will be satisfied for any future
input events. The Halt operation is useful if the property cannot be satisfied anymore.

In the following sections, we will present enforcement monitors for both safety and
co-safety properties and analyze constraints on the associated enforcement functions.

4 Enforcement of Safety Properties
In this section we focus on the enforcement of a safety property ϕ specified by a safety
automaton A = 〈L, l0, X,Σ,∆,G〉 and its associated semantics [[A]] = 〈Q, q0, Γ,→,
FG〉. Without loss of generality, we assume that the set of locations L \ G is reduced
to a singleton {Bad}. Given ϕ, and a timed word σ, an enforcement function E for ϕ
should satisfy the following soundness, transparency and optimality conditions.

Definition 4 (Soundness, transparency and optimality). Let E : (R≥0 × Σ)∗ ×
R≥0 → (R≥0 ×Σ)∗ be an enforcement function for a safety property ϕ. E is:
- sound if ∀σ ∈ (R≥0 ×Σ)∗,∀t ∈ R≥0, E(σ, t) |= ϕ;

5

- transparent if ∀σ ∈ (R≥0×Σ)∗,∀t ∈ R≥0,E(σ, t) 4d obs(σ, t)∧time(E(σ, t)) ≤ t.
If E is both sound and transparent, we say that it is optimal if, for any input σ ∈
(R≥0 ×Σ)∗, at any time t ∈ R≥0, the following constraints hold:

(Op1) @ω′, ω′ |= ϕ ∧ ω′ 4d obs(σ, t) ∧ |ω′| > |E(σ, t)|

(Op2) ∀i ∈ [1, |E(σ, t)|],@δ′′ ∈ R≥0, del(obs(σ, t)(i)) ≤ δ′′ ≤ del(E(σ, t)(i))
∧E(σ, t)[···i−1] · (δ′′, act(E(σ, t)(i))) |= ϕ

Soundness means that, at any time t, the produced timed word should satisfy the prop-
erty ϕ. Transparency means that, at any time instant t, the output E(σ, t) delays the
input obs(σ, t): the enforcement function should not modify the order of events, should
not reduce the delays between consecutive events, and should not produce outputs faster
than inputs. Optimality means that the enforcement function should provide the output
as soon as possible. The optimality condition (Op1) extends the requirement on the
output sequences of the enforcement function in the untimed case (cf. [9]): at any time
instant t, the output sequenceE(σ, t) should be the longest correct timed word delaying
the input sequence obs(σ, t). Here, taking physical time into account, (Op2) requires
that the input and output sequences are as close as possible w.r.t. physical observation,
i.e., every prefix of E(σ, t) has the shortest possible last delay.

We now design an enforcement monitor whose semantics effectively realizes the
enforcement function as described Definition 4.

Definition 5 (Enforcement Monitor for safety). An enforcement monitor for ϕ is a
transition system EM = 〈C,C0, ΓEM , ↪→〉 s.t.:

– C = (R≥0 ×Σ)∗ × R≥0 × R≥0 × B×Q is the set of configurations;
– the initial configuration is C0 = 〈ε, 0, 0, tt, q0〉 ∈ C;
– ΓEM =

(
(R≥0×Σ)∪{ε}

)
×Op×

(
(R≥0×Σ)∪{ε}

)
is the input-operation-output

alphabet, where Op = {store(·),dump(·),del(·)};
– ↪→⊆ C × ΓEM × C is the transition relation defined as the smallest relation ob-

tained by the following rules applied in the following order:

• store: 〈σs, δ, d, tt, q〉
(δ,a)/store(δ′,a)/ε

↪→ 〈σs · (δ′, a), 0, d, (δ′ 6=∞), q′〉 with:
∗ δ′ = updates(q, a, δ), where updates

5 is the function defined as:

Q×Σ × R≥0 → R≥0

(q, a, δ) 7→

∞ if ∀δ′ ∈ R≥0,∀q1 ∈ Q, (δ′ ≥ δ ∧ q
(δ′,a)→ q1)⇒ q1 6∈ FG

min{δ′ ∈ R≥0 | ∃q1 ∈ FG, q
(δ′,a)→ q1 ∧ δ′ ≥ δ}

∗ q′ is defined as q
(δ′,a)→ q′ if δ′ <∞ and q′ = q otherwise;

• dump:
〈
(δ, a) · σs, s, δ, b, q

〉 ε/dump(δ,a)/(δ,a)
↪→ 〈σs, s, 0, b, q〉 if δ 6=∞;

• delay: 〈σs, s, d, b, q〉
ε/del(δ)/ε
↪→ 〈σs, s+ δ, d+ δ, b, q〉.

5 The updates function computes the minimal delay δ′ ≥ δ, such that the safety-property
automaton still remains in an accepting state after processing the action a.

6

A configuration 〈σs, s, d, b, q〉 of the EM consists of the current stored sequence (i.e.,
the memory content) σs, two clock values s and d indicating respectively the time
elapsed since the last store and dump operations, a Boolean b indicating whether the
underlying enforced property is satisfied or not on the output sequence, and q the cur-
rent state of [[A]] reached after processing the sequence already released followed by
the timed word in memory. Regarding its alphabet, in the input (resp. output) sequence,
the EM either lets time elapse and no event is read or released, or reads and stores
(resp. dumps and releases) a symbol event after some delays. Semantics rules can be
understood as follows:

– The store rule is executed upon the reception of an event (δ, a). The timed event
(δ′, a) is appended to the memory content, where δ′ is the minimal delay that has to
be waited so that the property remains satisfied – if such a delay exists. The value
of s is then reinitialized to 0. If a delay can be found through the updates function,
q is updated to the state that will be reached by appending the timed event (δ′, a) to
the output sequence concatenated with the contents of the memory, and b remains
tt and becomes ff otherwise.

– The dump rule is executed when the value of d is equal to the delay of the first
timed event in the memory. The value of d is then reinitialized to 0. The first event
in memory is suppressed (and released from the enforcer). Other elements of the
configuration remain unchanged.

– The delay rule adds the time elapsed δ to the current values of s and d when no
store nor dump operation is possible.

Remark 1. The model of enforcement monitor presented in Definition 5 can be easily
extended by relaxing two hypothesis: in the store rule, we check whether there is a delay
greater than δ allowing the output sequence to stay in the accepting states of the property
(δ′ = ∞). Of course, this condition can be adapted to a given time bound in R≥0.
More complex conditions are also possible according to some desired quality of service.
Similarly, processing input and output actions is assumed to be done in zero time. Some
delay (either fixed or depending on additional parameters) can be considered for this
action by modifying the store rule.

We define the language of runs of an enforcement monitor EM :

L(EM) ⊆ (ΓEM)∗ =
((

(R≥0 ×Σ) ∪ {ε}
)
×Op×

(
(R≥0 ×Σ) ∪ {ε}

))∗
It is worth noticing that enforcement monitors are deterministic. Hence, given σ ∈

(R≥0 ×Σ)∗ and t ∈ R≥0, let w ∈ L(EM) be the unique maximal sequence such that

Πε

(⊙
i∈[1,|w|]

(Π1(w(i)))
)
= obs(σ, t),

where Πε is the projection that erases ε from words in ((R≥0 ×Σ) ∪ {ε})∗.
Now, we define the enforcement function E associated to EM as

∀σ ∈ (R≥0 ×Σ)∗, ∀t ∈ R≥0, E(σ, t) = Πε

(⊙
i∈[1,|w|]

(Π3(w(i)))
)

(1)

Proposition 1. Given an enforcement monitor EM for a safety property ϕ and E de-
fined as in Eq. (1), E verifies the soundness, transparency and optimality conditions of
Definition 4.

7

ε/(ε, 0, 0, tt, < l0, 0 >)/(1, a) · (3, r) · (1, r)

ε/(ε, 1, 1, tt, < l0, 1 >)/(1, a) · (3, r) · (1, r)
del(1)

ε/((1, a), 0, 1, tt, < l0, 1 >)/(3, r) · (1, r)
store

(1, a)/(ε, 0, 0, tt, < l0, 1 >)/(3, r) · (1, r)
dump

(1, a)/(ε, 3, 3, tt, < l0, 4 >)/(3, r) · (1, r)
del(3)

(1, a)/((3, r), 0, 3, tt, < l1, 0 >)/(1, r)

store

t = 0

t = 1

t = 1

t = 1

t = 4

t = 4

(1, a) · (3, r)/(ε, 0, 0, tt, < l1, 0 >)/(1, r)

(1, a) · (3, r)/(ε, 1, 1, tt, < l1, 1 >)/(1, r)

del(1)

(1, a) · (3, r)/((5, r), 0, 1, tt, < l1, 0 >)/ε

store

(1, a) · (3, r)/((5, r), 4, 5, tt, < l1, 4 >)/ε

del(4)

(1, a) · (3, r) · (5, r)/(ε, 4, 0, tt, < l1, 4 >)/ε

dump

dump

t = 4

t = 5

t = 5

t = 9

t = 9

Fig. 3: Enforcer configuration evolution
Example 2. Let us illustrate how these rules are applied to enforce ϕ1 (represented
by the TA in Fig. 1a with Σ1= {a, r}). Let us consider the input timed word σ =
(1, a) · (3, r) · (1, r). Figure 3 shows how successive rules are applied and the evolution
of the configurations of the EM . The variable t describes global time. The input is
represented on the right-hand (resp. left-hand) side of the configuration.

5 Enforcement of Co-safety Properties
Let us now focus on the enforcement of co-safety properties. We assume a co-safety
property ϕ specified by a co-safety timed automaton A = 〈L, l0, X,Σ,∆,G〉 and its
associated semantics [[A]] = 〈Q, q0, Γ,→, FG〉. An enforcer function E for a co-safety
property ϕ should satisfy new soundness, transparency and optimality conditions.

Before defining those constraints, the notion of a sequence delaying another has to
be modified in the context of co-safety properties. Let σ, σ′ ∈ (R≥0×Σ)∗ be two timed
sequences, we note σ′ 4c σ for ΠΣ(σ

′) = ΠΣ(σ)∧∀i ≤ |σ′|,del(σ′(i)) ≥ del(σ(i)).
This order between timed words shall be used in the transparency and optimality con-
ditions below to constrain the sequences produced by an enforcer. We define γ(σ) def

=
{σ′ 4c σ | σ′ |= ϕ}, the set of sequences delaying σ and satisfying the property ϕ and
γt(σ)

def
= {time(σ′) | σ′ ∈ γ(σ)} the set of sums of delays of these sequences.

Definition 6 (Soundness, transparency, optimality). An enforcement function E :
(R≥0 ×Σ)∗ × R≥0 → (R≥0 ×Σ)∗ for a co-safety property ϕ is
- sound if ∀σ ∈ (R≥0 ×Σ)∗, ∀t ∈ R≥0, E(σ, t) 6= ε⇒ (∃t′ ≥ t, E(σ, t′) |= ϕ).
- transparent if ∀σ ∈ (R≥0 ×Σ)∗,∀t ∈ R≥0, E(σ, t) 6= ε⇒ (∃t′ ≥ t,
E(σ, t′) 4c obs(σ, t)).

If E is sound and transparent, it is optimal if for any input σ ∈ (R≥0×Σ)∗, at any
time t ∈ R≥0, the following constraints hold:

(Op1) γ
(
obs(σ, t)

)
6= ∅ ∧ ∀t′ < t, γ(obs(σ, t′) = ∅)⇒(

∃t′ ≥ t, |E(σ, t′)| = |obs(σ, t)| ∧ t′ = t+ time(E(σ, t′))
)
;

(Op2) E(σ, t) 6= ε⇒ (1) ∧ (2), where
let E(σ, t)[···n] be the smallest prefix of E(σ, t) s.t. E(σ, t)[···n] |= ϕ in

(1) @(δ′1, . . . , δ′n),
n∑
i=1

δi
′ ≤

n∑
i=1

del(E(σ, t)(i))

∧
⊙

i∈[1,n](δi
′, act((σ(i)))) |= ϕ ∧ ∀i ∈ [1, n],del(σ(i)) ≤ δi′

(2) E(σ, t) |= ϕ⇒
(
E(σ, t) = E(σ, t)[···n] · obs(σ, t)[n+1···|E(σ,t)|]

)
8

Soundness means that if a timed word is released by the enforcement function, in the
future, the output timed word of the enforcement function should satisfy the property
ϕ. 6 Transparency means that the enforcement function should not change the order of
events, and the delay between any two consecutive events cannot be reduced.

Optimality means that the output is produced as soon as possible: Op1 means
that if t is the first time instant at which there is a timed word that delays obs(σ, t)
and satisfies ϕ, then, in the future at time t′ = t + time(E(σ, t′)), the enforcement
monitor should have output exactly all the observed events until time t. Op2-1 means
that if E(σ, t) 6= ε is released by the enforcement function, for the smallest prefix
E(σ, t)[···n] that satisfies ϕ, the total amount of time spent to trigger E(σ, t)[···n] should
be minimal.Op2-2 means that the delay between the remaining actions obs(σ, t)[n+1···]
(i.e., when the property is satisfied) should not be changed. Similarly to safety proper-
ties, we expect the enforcement function to minimally alter the initial sequence: after
correcting an incorrect prefix, the remainder of the sequence should be the same for
events and delays between them.

Before presenting the definition of enforcement monitor, we introduce updatec as
a function from (R≥0 ×Σ)+ → R+

≥0 × B such that for σ ∈ (R≥0 ×Σ)+

updatec(σ)
def
=

(
(δ1, . . . , δ|σ|), tt

)
s.t.

|σ|∑
i=1

δi = min{γt(σ)}, if γ(σ) 6= ∅(
(del(σ(1)), . . . ,del(σ(|σ|))), ff

)
, otherwise

Definition 7 (Enforcement Monitor for co-safety properties). An enforcement mon-
itor EM for ϕ is a transition system 〈C,C0, Γ, ↪→〉 s.t.:

– C = (R≥0 ×Σ)∗ × R≥0 × R≥0 × B is the set of configurations
and the initial configuration is C0 = 〈ε, 0, 0, ff〉 ∈ C;

– ΓEM = (R≥0×Σ)×Op× (R≥0×Σ) is the “input-operation-output” alphabet,
where Op = {store-ϕ(·), store-ϕinit(·), store-ϕ(·),dump(·),delay(·)};

– ↪→⊆ C × ΓEM × C is the transition relation defined as the smallest relation ob-
tained by the following rules applied with the priority order below:

1. store-ϕ: 〈σs, δ, d, ff〉
(δ,a)/store−ϕ(δ,a)/ε

↪→ 〈σs · (δ, a), 0, d, ff〉
if Π2

(
updatec(σs · (δ, a))

)
= ff

2. store-ϕinit: 〈σs, δ, d, ff〉
(δ,a)/store−ϕinit(δ

′,a)/ε
↪→ 〈σ′s, 0, 0, tt〉

if Π2

(
updatec(σs · (δ, a))

)
= tt with

• δ′ = Π1

(
updatec(σs · (δ, a))

)
• σ′s =

⊙
i∈[1,|σs|](Πi(δ

′), act(σs(i))) · (δ′|σs|+1, a)

3. store-ϕ: 〈σs, δ, d, tt〉
(δ,a)/store−ϕ(δ,a)/ε

↪→ 〈σs · (δ, a), 0, d, tt〉

4. dump:
〈
(δ, a) · σs, s, δ, tt

〉 ε/dump(δ,a)/(δ,a)
↪→ 〈σs, s, 0, tt〉

5. delay: 〈σs, s, d, b〉
ε/delay(δ)/ε

↪→ 〈σs, s+ δ, d+ δ, b〉.

6 As usual in runtime enforcement, either it is assumed that the empty sequence ε does belong
to the property or the soundness constraint does not take ε into account.

9

ε/(ε, 0, 0, ff)/(1, r) · (8, g) · (5, a)

ε/(ε, 1, 1, ff)/(1, r) · (8, g) · (5, a)
delay(1)

ε/((1, r), 0, 1, ff)/(8, g) · (5, a)
store-¬ϕ

ε/((1, r), 8, 9, ff)/(8, g) · (5, a)
delay(8)

ε/((1, r) · (10, g), 0, 0, tt)/(5, a)
store-ϕinit

ε/((1, r) · (10, g), 1, 1, tt)/(5, a)
delay(1)

(1, r)/((10, g), 1, 0, tt)/(5, a)

dump

t = 0

t = 1

t = 1

t = 9

t = 9

t = 10

t = 10

(1, r)/((10, g), 5, 4, tt)/(5, a)

(1, r)/((10, g) · (5, a), 0, 4, tt)/ε
store-ϕ

(1, r)/((10, g) · (5, a), 6, 10, tt)/ε
delay(6)

(1, r) · (10, g)/((5, a), 6, 0, tt)/ε
dump

(1, r) · (10, g)/((5, a), 11, 5, tt)/ε
delay(5)

(1, r) · (10, g) · (5, a)/(ε, 11, 0, tt)/ε
dump

delay(4)

t = 14

t = 14

t = 20

t = 20

t = 25

t = 25

Fig. 4: Enforcer configuration evolution
The EM either lets time elapse when no event is read or released as output, or reads
and stores (resp. dumps and outputs) an event after some delay. Semantic rules can be
understood as follows:
- Upon reception of an event (δ, a), one of the three store rules is executed. The rule
store-ϕ is executed if b ff and the property still remains unsatisfied after this new
event (i.e., when the updatec function returns ff). If the updatec function returns
tt (indicating that the ϕ can now be satisfied), then the rule store-ϕinit is executed.
When executing this rule, d is reset to 0, indicating that the enforcer can start out-
putting events. The rule store-ϕ is executed if the Boolean in the current configura-
tion is tt, which indicates that the property is already satisfied by the inputs received
earlier. So, in this case, it is not necessary to invoke the updatec function, and the
event (δ, a) is appended to the memory.

- The dump rule is similar to the one of the enforcement of safety properties except that
we wait that the Boolean indicating property satisfaction becomes tt.

- The delay rule adds the time elapsed to the current clock values s and d.
Note that, in this case, time measured in output starts elapsing upon property satisfaction
by the memory content (contrarily to the safety case, where it starts with the enforcer).

As was the case in the previous section, from EM , we can define an enforcement
function E as in Eq. (1), such that the following proposition holds:

Proposition 2. Given an enforcement monitor EM for a co-safety property and E de-
fined as in Eq (1), E is sound, transparent and optimal as per Definition 6.

Example 3. Let us illustrate how these rules are applied to enforce ϕ2 (Fig. 1b), with
Σ2= {r, g, a}. Let us consider the input timed word σ = (1, r) · (8, g) · (5, a). Figure 4
shows how semantic rules are applied, and the evolution of the configurations of the
EM . The input is shown on the right of the configuration, and the output is presented
on the left. The variable t describes global time. The resulting output is E(σ) = (1, r) ·
(10, g) · (5, a), which satisfies the property ϕ presented in Fig. 1b.

6 Implementation

10

Enforcement Monitor

Store
Process

Dump
ProcessMemory

σ, t E(σ, t)

Fig. 5: Realizing an EM

Let us now provide the algorithms showing how
enforcement monitors can be implemented. As
shown in Fig. 5, the implementation of an en-
forcement monitor (EM) consists of two processes
running concurrently (Store and Dump) and a

memory. The Store process models the store rules. The memory contains the timed
words σs. The Dump process reads events stored in the memory and releases them
as output after the required amount of time. To define the enforcement monitors, the
following algorithms assume a TA A = 〈L, l0, X,Σ,∆,G〉.

Algorithm 1 DumpProcesssafety

d← 0
while tt do

await (|σs| ≥ 1)
(δ, a)← dequeue (σs)
wait (δ − d)
dump (a)
d← 0

end while

Algorithm 2 StoreProcesssafety

(l,X)← (l0, [X ← 0])
while tt do

(δ, a)← await event
if (post(l,X, a, δ) /∈ G) then
δ′ ← update(l,X, a, δ)
if δ′ =∞ then

terminate StoreProcess
end if

else
δ′ ← δ

end if
(l,X)← post(l, a,X, δ′)
enqueue (δ′, a)

end while

Algorithm 3 DumpProcessco−safety

await startDump
d← 0
while tt do

await (|σs| ≥ 1)
(δ, a)← dequeue (σs)
wait (δ − d)
dump (a)
d← 0

end while

Algorithm 4 StoreProcessco−safety

goalReached ← ff

while tt do
(δ, a)← await (event)
enqueue(δ, a)
if goalReached = ff then

(newDelays, R)← updatec(σs)
if R = tt then

modify delays
goalReached ← tt

notify (startDump)
end if

end if
end while

We now describe these processes for safety properties.
- The DumpProcesssafety algorithm (see Algorithm 1) is an infinite loop that scrutinizes

the memory and proceeds as follows: Initially, d is set to 0. If the memory is empty
(|σs| = 0), it waits until a new element (δ, a) is stored in memory, otherwise it
proceeds with the first element in memory. Meanwhile, d keeps track of the time
elapsed since the last dump operation. The DumpProcesssafety waits for (δ − d) time
units before releasing the action a and resets d.

- The StoreProcesssafety algorithm (see Algorithm 2) is an infinite loop that scrutinizes
the system for input events. It proceeds as follows. Let (l,X) be the state of the

11

property automaton, where l represents the location and X is the current clock val-
ues initialized to (l0, 0). The function post takes a state of the property automaton
(l,X), an event (δ, a), and computes the state reached by the property automaton.
The update function computes a new delay δ′ such that the property automaton will
reach an accepting state in an optimal way by triggering (δ′, a).

We now describe these processes for co-safety properties.
- The DumpProcessco−safety algorithm for co-safety properties (see Algorithm 3) re-

sembles the one of the safety case. The only difference is that the infinite loop starts
only after receiving the startDump notification from the StoreProcessco−safety.

- In the StoreProcessco−safety algorithm (see Algorithm 4), goalReached is a Boolean,
used to indicate if the goal location is visited by the input events which were already
processed. It is initialized to ff. The updatec function takes all events stored in
the enforcer memory, and returns new delays and if the goal location is reachable.
startDump is a notification message sent to the DumpProcessco−safety, to indicate
that it can start dumping the events stored in the memory. Note that the updatec can
be easily implemented using the optimal path routine of UPPAAL.

7 Evaluation
Enforcement monitors for safety and co-safety properties, based on the algorithms pre-
sented in the previous section, have been implemented in prototype tool of 500 LOC
using Python. The tool also uses UPPAAL [12] as a library to implement the update
function and the pyuppaal library to parse UPPAAL models written in XML.

We present some performance evaluation on a simulated system where the input
timed trace is generated. As described in Sec. 6, enforcement monitors for safety and
co-safety properties are implemented by two concurrent processes. The TA represent-
ing the property is a UPPAAL model, and is an input to the enforcement monitor. The
UPPAAL model also contains another automaton representing the sequence of events
received by the enforcement monitor. The update function of the StoreProcess uses
UPPAAL. Experiments were conducted on an Intel Core i7-2720QM at 2.20GHz CPU,
and 4 GB RAM running on Ubuntu 12.04 LTS. Note that the implementation is a pro-
totype, and there is still scope for improving the performance.

Results of the performance analysis of our running example properties are presented
in Tables 1a and 1b. The values are presented in seconds. Average values are computed
over multiple runs. The length of the input trace is denoted by |tr|. The entry t tr rep-
resents the time taken by the system simulator process to generate the trace. The entry
t update (resp. t Post) indicates the time taken for one call to the update (resp. post)
function when the last event of the input trace is received. The entry t EM presents the
total time from the start of the simulation until the last event is dumped by the enforcer.
The throughput shows how many events can be processed by the enforcer (|tr|/t EM).

We observe that the throughput decreases with the length of the input trace. This
unexpected behavior stems from the external invocation of UPPAAL to realize post and
update functions. Indeed, after each event, the length of the automaton representing the
trace grows, and, as indicated in Table 1a, the time taken by update and post functions
also increases, unnecessarily starting the computation from the initial location each
time an event is received. Future implementations will avoid this by realizing the post
and update functions online from the current state. Performance and throughput shall

12

Table 1: Performance analysis of enforcement monitors
(a) For ϕ1

|tr| t update t post t tr t EM throughput

100 0.0433 0.0383 0.00483 2.648 37
200 0.08196 0.07158 0.0087 9.135 21.89
300 0.121 0.1065 0.0118 19.42 15.46
400 0.1696 0.1525 0.0133 34.314 11.65
500 0.2148 0.1891 0.0142 53.110 9.41
600 0.2668 0.2334 0.0166 77.428 7.75
700 0.3164 0.2789 0.0178 107.61 6.50
800 0.3669 0.3289 0.0198 143.53 5.57
900 0.4256 0.3810 0.0237 181.06 4.97

1000 0.4878 0.4352 0.0259 229.12 4.36

(b) For ϕ2

|tr| t update t tr t EM

100 0.063 0.0026 1.28
200 0.17 0.0065 8
300 0.33 0.0081 25
400 0.54 0.0115 58
500 0.79 0.0131 109
600 1.11 0.0157 186
700 1.50 0.0186 297
800 1.96 0.0209 462
900 2.40 0.0234 623

1000 2.84 0.0341 852

be independent from the trace length. Further experiments have been carried out on
different examples similarly demonstrating feasibility and scalability.

For co-safety properties, regarding the total time t EM, note that the most expensive
operation update is called upon each event. Moreover, examining the column t update
in Table 1b, the time taken by the update function increases with the number of events.
This behavior is expected for co-safety properties, as we check for an optimal output
from the initial state after each event. Please note that in case of a co-safety property,
once the property is satisfied (a good location is reached), it is not necessary to invoke
the update function. From that point onwards, the increase in total time t EM per
event will be very less (since we just add the received event to the output queue), and
t update will be zero for the events received later on.

8 Related Work

This work is by no means the first to address monitoring of timed properties. Matteucci
inspires from partial-model checking techniques to synthesize controller operations to
enforce safety and information-flow properties using process-algebra [13]. Monitors
are close to Schneider’s security automata [7]. The approach targets discrete-time prop-
erties and systems are modelled as timed processes expressed in CCS. Compared to
our approach, the description of enforcement mechanisms remains abstract, directly re-
stricts the monitored system, and no description of monitor implementation is proposed.

Other research efforts aim to mainly runtime verify timed properties and we shall
categorize them into i) rather theoretical efforts aiming at synthesizing monitors, and ii)
tools for runtime monitoring of timed properties.

Synthesis of timed automata from timed logical formalisms Bauer et al. propose an
approach to runtime verify timed-bounded properties expressed in a variant of Timed
Linear Temporal Logic [4]. Contrarily to TLTL, the considered logic, TLTL3, processes
finite timed words and the truth-values of this logic are suitable for monitoring. After
reading some timed word u, the monitor synthesized for a TLTL3 formula ϕ state the
verdict > (resp. ⊥) when there is no infinite timed continuation w such that u · w

13

satisfy (resp. does not satisfy) ϕ. Another variant of LTL in a timed context is the
metric temporal logic (MTL), a dense extension of LTL. Nickovic et al. [14, 3] proposed
a translation of MTL to timed automata. The translation is defined under the bounded
variability assumption stating that, in a finite interval, a bounded number of events can
arrive to the monitor. Still for MTL, Thati et al. propose an online monitoring algorithm
by rewriting of the monitored formula and study its complexity [1]. Later, Basin et al.
propose an improvement of this approach having a better complexity but considering
only the past fragment of MTL [5].

Runtime enforcement of timed properties as presented in this paper is compatible
with the previously described approaches. These approaches synthesize automata-based
decision procedures for logical formalisms. Decision procedures synthesized for safety
and co-safety properties could be used as input to our framework.

Tools for runtime monitoring of timed properties The Analog Monitoring Tool [10] is
a tool for monitoring specifications over continuous signals. The input logic of AMT is
STL/PSL where continuous signals are abstracted into propositions and operations are
defined over signals. Input signal traces can be monitored in an offline or incremental
fashion (i.e., online monitoring with periodic trace accumulation).

LARVA [15, 11] takes as input properties expressed in several notations, e.g., Lus-
tre, duration calculus. Properties are translated to DATE (Dynamic Automata with
Timers and Events) which basically resemble timed automata with stop watches but
also feature resets, pauses, and can be composed into networks. Transitions are aug-
mented with code that modify the internal system state. DATE target only safety prop-
erties. In addition, LARVA is able to compute an upper-bound on the overhead induced
on the target system. The authors also identify a subset of duration calculus, called
counter-examples traces, where properties are insensitive to monitoring [16].

Our monitors not only differ by their objectives but also by how they are inter-
faced with the system. We propose a less restrictive framework where monitors asyn-
chronously read the outputs of the target system. We do not assume our monitors to be
able to modify the internal state of the target program. The objective of our monitors is
rather to correct the timed sequence of output events before this sequence is released to
the environment (i.e., outside the system augmented with a monitor).

9 Conclusion and Future Work
This paper introduces runtime enforcement for timed properties and provides a com-
plete framework. We consider safety and co-safety properties described by timed au-
tomata. We propose adapted notions of enforcement monitors with the possibility to
delay some input actions in order to satisfy the required property. For this purpose, the
enforcement monitor can store some actions during a certain time period. We propose
a set of enforcement rules ensuring that outputs not only satisfy the required property
(if possible), but also with the “best” delay according to the current situation. We de-
scribe how to realize the enforcement monitor using concurrent processes, how it has
been prototyped and experimented. This paper introduced the first steps to runtime en-
forcement of (continuous) timed properties. However, several research questions remain
open. As this approach targets explicitly safety and co-safety properties, it seems desir-
able to investigate whether more expressive properties can be enforced, and if so, pro-

14

pose enforcement mechanisms for them. We expect to extend our approach to Boolean
combinations of timed safety and co-safety properties, and more general properties.
The question requires further investigation since the update function would have to
be adapted. A precise characterization of enforceable timed properties would thus be
possible, as was the case in the untimed setting [4, 17]. Also related to expressiveness
is the question of how the set of timed enforceable properties is impacted when the
underlying memory is limited and/or the primitives operations endowed to the monitor
are modified. A more practical research perspective is to study the implementability of
the approach proposed in this paper, e.g., using robustness of timed automata.

References

1. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications. Electr.
Notes Theor. Comput. Sci. 113 (2005) 145–162

2. Chen, F., Rosu, G.: Parametric trace slicing and monitoring. In Kowalewski, S., Philippou,
A., eds.: TACAS. Volume 5505 of LNCS., Springer (2009) 246–261

3. Nickovic, D., Piterman, N.: From MTL to deterministic timed automata. In Chatterjee, K.,
Henzinger, T.A., eds.: FORMATS. Volume 6246 of LNCS., Springer (2010) 152–167

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology 20 (2011) 14

5. Basin, D.A., Klaedtke, F., Zalinescu, E.: Algorithms for monitoring real-time properties. In
Khurshid, S., Sen, K., eds.: RV. Volume 7186 of LNCS., Springer (2011) 260–275

6. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified Event Au-
tomata: Towards Expressive and Efficient Runtime Monitors. In: FM 2012: 18th Interna-
tional symposium on Formal Methods. (2012) Accepted for publication. To appear.

7. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-
tem Security 3 (2000)

8. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans-
action Information System Security. 12 (2009)

9. Falcone, Y.: You should better enforce than verify. In: Runtime Verification. (2010) 89–105
10. Nickovic, D., Maler, O.: AMT: A property-based monitoring tool for analog systems. In:

Formal Modeling and Analysis of Timed Systems. (2007) 304–319
11. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time java pro-

grams (tool paper). In: SEFM. (2009) 33–37
12. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on Software

Tools for Technology Transfer (STTT) 1 (1997) 134–152
13. Matteucci, I.: Automated synthesis of enforcing mechanisms for security properties in a

timed setting. Electron. Notes Theor. Comput. Sci. 186 (2007) 101–120
14. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In Asarin, E., Bouyer,

P., eds.: FORMATS. Volume 4202 of LNCS., Springer (2006) 274–289
15. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring of real-

time and contextual properties. In: FMICS. (2008) 135–149
16. Colombo, C., Pace, G.J., Schneider, G.: Safe runtime verification of real-time properties.

In: Formal Modeling and Analysis of Timed Systems, 7th International Conference (FOR-
MATS). Volume 5813 of LNCS., Budapest, Hungary (2009) 103–117

17. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at runtime?
STTT 14 (2012) 349–382

15

