
HAL Id: hal-00681128
https://hal.archives-ouvertes.fr/hal-00681128v2

Submitted on 11 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Equivalence between Herding and Conditional
Gradient Algorithms

Francis Bach, Simon Lacoste-Julien, Guillaume Obozinski

To cite this version:
Francis Bach, Simon Lacoste-Julien, Guillaume Obozinski. On the Equivalence between Herding and
Conditional Gradient Algorithms. ICML 2012 International Conference on Machine Learning, Jun
2012, Edimburgh, United Kingdom. 2012. <hal-00681128v2>

https://hal.archives-ouvertes.fr/hal-00681128v2
https://hal.archives-ouvertes.fr


On the Equivalence between Herding

and Conditional Gradient Algorithms

Francis Bach, Simon Lacoste-Julien, Guillaume Obozinski firstname.lastname@inria.fr
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Abstract

We show that the herding procedure
of Welling (2009b) takes exactly the form of
a standard convex optimization algorithm—
namely a conditional gradient algorithm min-
imizing a quadratic moment discrepancy.
This link enables us to invoke convergence
results from convex optimization and to con-
sider faster alternatives for the task of ap-
proximating integrals in a reproducing kernel
Hilbert space. We study the behavior of the
different variants through numerical simula-
tions. Our experiments shed more light on
the learning bias of herding: they indicate
that while we can improve over herding on
the task of approximating integrals, the orig-
inal herding algorithm approaches more often
the maximum entropy distribution.

1. Introduction

The herding algorithm has recently been presented
by Welling (2009b) as a computationally attractive al-
ternative method for learning in intractable Markov
random fields models (MRF). Instead of first estimat-
ing the parameters of the MRF by maximum like-
lihood / maximum entropy (which requires approxi-
mate inference to estimate the gradient of the partition
function), and then sampling from the learned MRF
to answer queries, herding directly generates pseudo-
samples in a deterministic fashion with the property of
asymptotically matching the empirical moments of the
data (akin to maximum entropy). The herding algo-
rithm generates pseudo-samples xt with the following
simple recursion:

xt+1 ∈ argmax
x∈X

〈wt,Φ(x)〉
wt+1 = wt + µ− Φ(xt+1),

(1)
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where X is the observation space; Φ is a feature map
from X to F , which could be viewed as the vector of
sufficient statistics for some exponential family, and µ
is a mean vector to match (the empirical moment vec-
tor of the same family). Unlike in frequentist learning
of MRFs, the parameter wt never converges to a point
in herding and actually follows a “weakly chaotic”
walk (Welling & Chen, 2010).

The herding updates can be motivated from two dif-
ferent perspectives. From the learning perspective, the
herding updates can be derived by performing fixed-
step-size subgradient ascent on the zero-temperature
limit of the annealed likelihood function of the MRF—
called the “tipi function” by Welling (2009b). From
this perspective, herding was later generalized to
MRFs with latent variables (Welling, 2009a) as well
as discriminative MRFs (Gelfand et al., 2010).

From the moment matching perspective, which has
been explored more in details by Chen et al. (2010),
the herding updates can be derived as an effective
way to choose greedily pseudo-samples xt in order
to quickly decrease the moment discrepancy Et .

=
‖µ − 1

t

∑t
i=1 Φ(xi)‖ (Chen et al., 2010). Under suit-

able regularity conditions, Et decreases as O(1/t) for
the herding updates—this is faster than i.i.d. sampling
from the distribution generating µ (e.g., the train-
ing data) which would yield the slower O(1/

√
t) rate.

This faster rate has been explained by negative auto-
correlations amongst the pseudo-samples and was used
by Chen et al. (2010) to sub-select a small collection of
representative “super-samples” from a much larger set
of i.i.d. samples. We make the following contributions:

– We show that herding as described by Eq. (1) is
equivalent to a specific type of conditional gradi-
ent algorithm (a.k.a. Frank-Wolfe algorithm) for the
problem of estimating the mean µ. This provides a
novel understanding and another explicit cost func-
tion that herding is minimizing.

– This interpretation yields improvements, for the
task of estimating means, with other faster variants
of the conditional gradient algorithm, which lead to
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non-uniform weights, one based on line-search, one
based on an active-set algorithm.

– Based on existing results from convex optimization,
we extend and improve the convergence results of
herding. In particular, we provide a linear con-
vergence rate for the line-search variant in finite-
dimensional settings and show how the conditions
assumed by Chen et al. (2010) in fact never hold in
the infinite-dimensional setting.

– We run experiments that show that algorithms
which estimate faster the mean than herding gener-
ate samples that are not better (and typically worse)
than the ones obtained with herding when evaluated
in terms of the ability to approximate a sample with
large entropy, a property which (if or when satisfied
by herding) could be the basis for an interpretation
of herding as a learning algorithm (Welling, 2009b).

2. Mean estimation

We start with a similar setup as Chen et al. (2010),
where herding can be interpreted as a way to approx-
imate integrals of functions in a reproducing kernel
Hilbert space (RKHS). We consider a set X and a map-
ping Φ from X to a RKHS F . Through this mapping,
all elements of F may be identified with real func-
tions f on X defined by f(x) = 〈f,Φ(x)〉, for x ∈ X .
We denote by k : (x, y) 7→ k(x, y) the associated pos-
itive definite kernel. Note that the mapping Φ may
be explicit (classically in low-dimensional settings) or
implicit—where the kernel trick can be used, see Sec-
tion 4.3 and Chen et al. (2010).

Throughout the paper, we assume that the data is
uniformly bounded in feature space, that is, for all
x ∈ X , ‖Φ(x)‖ 6 R, for some R > 0; this condition is
needed for the updates of Eq. (1) to be well-defined.

We denote by M ⊂ F the marginal polytope
(Wainwright & Jordan, 2008; Chen et al., 2010), i.e.,
the convex-hull of all vectors Φ(x) for x ∈ X . Note
that for any f ∈ F , we have

sup
x∈X

f(x) = sup
g∈M

〈f, g〉,

and that |f(x)| = |〈f,Φ(x)〉| 6 ‖f‖R for all x ∈ X
and f ∈ F (i.e., all functions with finite norm are
bounded).

Extreme points of the marginal polytope. In
all the cases we consider in Section 5, it turns out that
all points of the form Φ(x), x ∈ X are extreme points
of M (see an illustration in Figure 1). This is indeed
always true when ‖Φ(x)‖ is constant for all x ∈ X (for
example for our infinite-dimensional kernels on [0, 1]
in Section 5.1); it is also true if Φ(x) contains both an

injective feature map Φ̃(x) and its self-tensor-product

µ

1

µ

−1

Figure 1. Marginal polytope in two situations: (left) fi-
nite number of extreme points (typical with discrete data),
(right) polynomial kernel in one dimension, with Φ(x) =
(x, x2) for x ∈ [−1, 1].

Φ̃(x)⊗ Φ̃(x), which is the case in the graphical model
examples in Section 5.2.

Mean element and expectation. We consider
a fixed probability distribution p(x) over X . Follow-
ing Chen et al. (2010), we denote by µ the mean ele-
ment (see, e.g., Smola et al., 2007):

µ = Ep(x)Φ(x) ∈ M.

Note that in the learning perspective, p is the empirical
distribution on the data and so µ is the corresponding
empirical moment vector to match. To approximate
this mean, we consider n points x1, . . . , xn ∈ X com-
bined linearly with positive weights w1, . . . , wn that
sum to one. These define p̂, the associated weighted
empirical distribution, and µ̂ the approximating mean:

µ̂ = Ep̂(x)Φ(x) =
∑n

i=1 wiΦ(xi) ∈ M. (2)

For all functions f ∈ F , we then have

Ep(x)f(x) = Ep(x)〈f,Φ(x)〉 = 〈µ, f〉,

and similarly Ep̂(x)f(x) = 〈µ̂, f〉. We thus get, using
Cauchy-Schwarz inequality,

supf∈F , ‖f‖=1 |Ep(x)f(x)− Ep̂(x)f(x)| = ‖µ− µ̂‖,

and controlling µ − µ̂ is enough to control the error
in computing the expectation for all f ∈ F with finite
norm. Note that a random i.i.d. sample from p(x)
would lead to an expected worst-case error which is
less than 4R√

n
—a classical result based on Rademacher

averages (see, e.g. Boucheron et al., 2005).

In this paper, we will try to find a good estimate µ̂ of
µ based on a weighted set of points from {Φ(x), x ∈
X}, generalizing Chen et al. (2010), and show how this
relates to herding.

3. Related work

This paper brings together three lines of work, namely
the approximation of integrals, herding and convex op-
timization. The links between the first two were clearly
outlined by Chen et al. (2010), while the present pa-
per provides the novel interpretation of herding as a
well-established convex optimization algorithm.
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3.1. Quadrature/cubature formulas

The evaluation of expectation, or equivalently of in-
tegrals, is a classical problem in numerical analysis.
When the input space X is a compact subset of Rp

and p(x) is the density of the distribution with re-
spect to the Lebesgue measure, then this is equivalent
to evaluating the integral

∫
X f(x)p(x)dx. Quadrature

formulas are aimed at computing such integrals as a
weighted combinations of values of f at certain points,
which is exactly the problem we consider in Section 2.

Although a thorough review of quadrature formulas is
outside of the scope of this paper, we mention two
methods which are related to our approach. First,
given a positive definite kernel and a given set of points
(typically sampled i.i.d. from a given distribution), the
Bayes-Hermite quadrature of O’Hagan (1991) essen-
tially computes an orthogonal projection of µ onto the
affine hull of this set of points. This does not lead to
positive quadrature weights, and one may thus replace
the affine hull by the convex hull to obtain such non-
negative weights, which we do in our experiments in
Section 5.

Moreover, quasi-Monte Carlo methods consider se-
quences of so-called “quasi-random” quadrature points
so that the empirical average approaches the inte-
gral. These quasi-random sequences are such that
the approximation error goes down as O(1/n) (up
to logarithmic terms) for functions of bounded vari-
ation, as opposed to O(1/

√
n) for a random sequence.

In simulations, we used a Sobol sequence (see, e.g.,
Morokoff & Caflisch, 1994).

3.2. Franke-Wolfe algorithms

Given a smooth (twice continuously differentiable)
convex function J on a compact convex set M with
gradient J ′, Frank-Wolfe algorithms are a class of it-
erative optimization algorithms that only require (in
addition to the computation of the gradient J ′) to be
able to optimize linear functions on M. The first class
of such algorithms is often referred to as conditional
gradient algorithms: given an iterate gt, the minimum
of 〈J ′(gt), g〉 over g ∈ M is computed, and the next
iterate is taken on the segment between gt and g, i.e.,
gt+1 = ρtgt+(1−ρt)g, where ρt ∈ [0, 1]. There are two
natural choices for ρt, (a) simply taking ρt = 1/(t+1)
and (b) performing a line search to find the point in
the segment with optimal value (either for J or for a
quadratic upper-bound of J). These are illustrated in
Figure 2, and convergence rates are detailed in Sec-
tion 4.2. Moreover, for quadratic functions, the condi-
tional gradient algorithm with step sizes ρt = 1/(t+1)
has a dual interpretation as subgradient ascent (see,
e.g., Bach, 2011), which we outline in Section 4.1.

1g
µ

g2
g3

1g µ
2g

g3

Figure 2. Two versions of two iterations of conditional gra-
dient after moving to an initial corner g1; left: ρt = 1

t+1
,

right: line search. The minimum-norm-point algorithm
would have converged to µ after two iterations.

Finally, in order to minimize the number of iterations,
a variant known as the minimum-norm-point algo-
rithm will find gt+1 that minimizes J on the convex
hull of all previously visited points, using a specific
active-set algorithm (see Bach, 2011, Sec. 6, for de-
tails). For convex sets with finitely many extreme
points, it converges in a finite number of iterations
with higher (though still polynomial) iteration com-
putational cost (Wolfe, 1976).

4. Herding as a Frank-Wolfe algorithm

To relate herding with conditional gradient algorithms,
we consider the following optimization problem:

min
g∈M

J(g) =
1

2
‖g − µ‖2, (3)

with the trivial unique solution µ. A conditional gradi-
ent algorithm to solve this optimization problem with
stepsize ρt = 1/(t+ 1) use the iterates

ḡt+1 ∈ arg min
g∈M

〈gt − µ, g〉,
gt+1 = (1− ρt) gt + ρt ḡt+1. (4)

But these updates are exactly the same as herding via
the change of variable gt = µ − wt/t. Indeed, the
minimizer of a linear function of a convex set ḡt+1

can be restricted to be an extreme point of M; this
implies that ḡt+1 = Φ(xt+1) for a certain xt+1. The
herding updates in Eq. (1) are thus equivalent to the
conditional gradient minimization of J with step size
given by ρt = 1/(t+ 1).

With this choice of step size, we get (t + 1)gt+1 =

tgt+Φ(xt+1), that is gt =
1
t

∑t
u=1 Φ(xu), and we thus

get uniform weights in Eq. (2).

For general step-sizes ρt ∈ [0, 1], if we assume that
we start the algorithm with ρ0 = 1 (which implies

g1 = Φ(x1)), then we get that gt =
∑t

u=1

(∏t−1
v=u(1 −

ρv−1)ρu−1

)
Φ(xu), which thus leads to non-uniform

weights in Eq. (2), though they still sum to one. The
conditional gradient updates in Eq. (4) can thus be
seen as a generic algorithm to obtain a weighted set
of points to approximate µ, and traditional herding is
the ρt = 1/(t+ 1) step-size case.

A second choice of step-size for t ≥ 1 is to use a line
search, which leads in this setting (where the global
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unconstrained minimum happens to belong to M) to

ρt =
〈gt−µ,gt−ḡt+1〉

‖ḡt+1−gt‖2 ∈ [0, 1]. This leads to a variant of

herding with non-uniform weights.

We finally comment on the initialization g0 for the
updates in Eq. (4). In the kernel herding algorithm
of Chen et al. (2010), the authors use w0 = µ as this
is required to interpret the herding updates as greedily
minimizing Et (with the additional assumptions that
‖Φ(x)‖ is constant). In our setting, this corresponds to
choosing g0 = 0 (which might be outside ofM, though
this is not problematic in practice). Another stan-
dard choice (for MRFs in particular) is to use w0 = 0
(g0 = µ), which means that the first point x1 is chosen
randomly from the extreme points of M—this is the
scheme we used. As is common in convex optimiza-
tion, we didn’t see any qualitative difference in our
experiments between the two types of initialization.

4.1. Dual problem and subgradient descent

Welling (2009b) proposed originally an algorithmic in-
terpretation of herding as performing subgradient as-
cent with constant step size on a function obtained
as the zero temperature limit of the log-likelihood of
an exponential model that he called the “tipi func-
tion”. Our interpretation of the procedure as a Frank-
Wolfe algorithm might therefore appear as a conflict-
ing interpretation at first sight. To establish a natu-
ral connection between these two interpretations, we
can compute the Fenchel-dual optimization problem
to Eq. (3). Indeed, we have (with standard arguments
for swapping the min and max operations):

min
g∈M

1

2
‖g − µ‖2 = min

g∈M
max
f∈F

f⊤(g − µ)− 1

2
‖f‖2

= max
f∈F

min
g∈M

f⊤(g − µ)− 1

2
‖f‖2

= max
f∈F

{
min
x∈X

f(x)− 〈f, µ〉 − 1

2
‖f‖2

}
.

The dual function f 7→ minx∈X f(x)−〈f, µ〉− 1
2‖f‖2 is

1-strongly concave and non-differentiable, and a nat-
ural algorithm to maximize it is thus subgradient as-
cent with a step size equal to 1

t+1 , which is known
to be equivalent to the primal conditional gradient al-
gorithm with step sizes ρt = 1/(t + 1) (Bach, 2011,
App. A). It is therefore not surprising that herding
is equivalent to subgradient ascent with a decreas-
ing stepsize on this function (with the identification
ft = gt − µ = −wt/t). The presence of the squared
norm which is added to the “tipi function” merely re-
flects the change of scaling between gt and wt. It is
worthwhile mentioning that other functions, like Breg-
man divergences, would have led to a different dual
function hence adding a different term than a squared
norm to the “tipi function”.

4.2. Convergence analysis

Without further assumptions on the problem, then the
two choices of step sizes lead to a convergence rate of
the form (Dunn, 1980; Bach, 2011):

1

2
‖gt − µ‖2 6 4

R2

t
,

where R is diameter of the marginal polytope. Note
that the convergence in O(1/t) does not lead to im-
proved estimation of integrals over random sampling.
Moreover, without further assumptions, current theo-
retical analysis does not allow to distinguish between
the two forms of conditional gradient algorithms (al-
though they differ a bit in practice, see Section 5).

However, if we assume that within the affine hull of
M, there exists a ball of center µ and radius d > 0
that is included in M (i.e., µ is in the relative inte-
rior of M), then both choices of step sizes yield faster
rates than random sampling. For the version with
line search, we actually obtain a linear convergence
rate (Beck & Teboulle, 2004):

1

2
‖gt − µ‖2 6 R2 exp

(
− d2t

R2

)
.

For the version without line search (ρt = 1/(t + 1)),
Chen et al. (2010) shows the slower convergence rate
in O(1/t2):

1

2
‖gt − µ‖2 6 2R4

d2t2
.

Concerning the assumption that µ is in the relative
interior of M, we now show that in finite-dimensional
settings, this assumption is always satisfied under rea-
sonable conditions, while it is never satisfied in a large
class of infinite-dimensional settings (namely for Mer-
cer kernels).

We first provide an equivalent definition of this condi-
tion which is used in the proofs. Let A be the affine
hull of M, µ0 the orthogonal projection of 0 on A,
and F̃ the space of directions (or difference space) of

A (i.e., F̃ = A− µ0).
1 Now there exists d > 0 so that

any element of A which is at distance less than d of µ
is in M if and only if ∀f ∈ F , the maximum of f⊤g
over g ∈ A and ‖g− µ‖ 6 d is less than the maximum

of f⊤g over g ∈ M. Given the properties of A and F̃ ,
this is equivalent to:

∀f ∈ F̃ , max
‖g−µ‖6d

f⊤g 6 max
g∈M

f⊤g

⇔ ∀f ∈ F̃ , 〈µ, f〉+ d‖f‖ 6 max
x∈X

f(x). (5)

Proposition 1 Assume that F is finite-dimensional,
that X is a compact topological measurable space with

1It turns out that µ0 is a function taking a constant
value since the orthogonality condition yields 〈µ0,Φ(x) −
Φ(y)〉 = 0, i.e., µ0(x) = µ0(y) for all x, y ∈ X , by the
reproducing property of F .
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a continuous kernel function, and that the distribution
p has full support on X . Then ∃d > 0 so that Eq. (5)
is true.
Proof sketch. It is sufficient to show that
Ω : f 7→ maxx∈X f(x) − 〈µ, f〉 is a norm on F̃ :
as all norms are equivalent in finite dimensions, we get
d‖f‖ ≤ Ω(f) for some d > 0, yielding Eq. (5). Ω is con-
vex and positively homogeneous by construction. Now
Ω(f) = 0 implies that Ep(x)[f(x) − maxy f(y)] = 0,
and thus f(x) = maxy f(y) for x in the support of p
(assumed to be X ) using the fact that f is continuous
(since the kernel is continuous), and so f is a constant
function. We then have two possibilities: either
µ0 = 0, in which case one can show that there is no
non-zero constant functions in F ; otherwise f = αµ0

for some α and thus the orthogonality condition
〈f, µ0〉 = 0 implies that α = 0. Both cases imply
f = 0, hence Ω is a norm.

Proposition 2 Assume X is a compact subspace of
R

d, and that the kernel k is a continuous function on
X × X . If F is infinite-dimensional, then there exists
no d > 0 so that Eq. (5) is true.
Proof sketch. We can apply Mercer theorem to the
kernel k̃(x, y) of the projection onto the orthogonal of
{µ, µ0}. This kernel is also a Mercer kernel, and we get
an orthonormal basis (ek)k>1 of L2(X ) with countably
many eigenvalues λk that are summable. Moreover,

(λ
1/2
k ek)k>1 is known to be an orthonormal basis of the

associated feature space F (Cucker & Smale, 2002),

and for all x, y ∈ X , k̃(x, y) =
∑

k>1 λkek(x)ek(y),
with uniform convergence. This implies that for fk =

λ
1/2
k ek, we have ‖fk‖ = 1, and 〈fk, µ0〉 = 〈fk, µ〉 = 0.

If we assume that there exists d > 0 so that Eq. (5) is
true, then we have for all k > 1, maxx∈X |fk(x)| > d.
Since X is compact, there exists a cover of F with
finitely many balls of radius d/4R. Let Y be the finite
set of centers. Since all functions fk are Lipschitz-
continuous with constant 2R, then for all k > 1,
maxx∈Y |fk(x)| > d − 2R × d/4R = d/2. Since Y is
finite, there exists x ∈ Y so that |fk(x)| > d/2 > 0
for infinitely many values of k; this contradicts the
summability of

∑
k>1 fk(x)

2. Hence the result.

The last proposition shows that the current theory
only supports the slower rates of O(1/t) for the two
conditional gradient algorithms in infinite-dimensional
settings. On the other hand, we note that, in some
cases, traditional herding performs empirically better
without known theoretical justification (see Section 5).

4.3. Computational issues

In order to run a herding algorithm, there are two
potential computational bottlenecks:

Computing expectations 〈µ,Φ(x)〉: in a learning

context (empirical moment matching), these are done
through an empirical average. In an integral evalua-
tion context, in finite-dimensional settings, one needs
to compute Ep(x)Φ(x); while in an infinite-dimensional
setting, following Chen et al. (2010), expectations of
the form Ep(x)k(x, y) need to be computed. This can
be done for some pairs of kernels/distributions, like
the ones we choose in Section 5, but not in general.

Minimizing 〈gt − µ,Φ(x)〉 with respect to x ∈ X :
in general, this computation may be relatively hard (it
is for example NP-hard in the context of the graph-
ical models we consider in Section 5). In practice,
Chen et al. (2010) and Welling (2009a) perform local
search, while another possibility is to perform the min-
imization through exhaustive search in a finite sam-
ple. Note that a convex relaxation through variational
methods (Wainwright & Jordan, 2008) could provide
an interesting alternative.

5. Experiments

The goals of these simulations are (a) to compare the
different algorithms aimed at estimating integrals, i.e.,
assess herding for the task of mean estimation (Sec-
tion 5.1 and Section 5.2), and (b) to briefly study the
empirical relationship with maximum entropy estima-
tion in a learning context (Section 5.3).

5.1. Kernel herding on X = [0, 1]

Problem set-up. In this section, we consider

X = [0, 1] and the norm ‖f‖2 =
∫ 1

0 [f
(ν)(x)]2dx on the

infinite-dimensional space of functions with zero mean
and whose ν-th derivative exists and is in L2([0, 1]).
As shown by Wahba (1990), the associated kernel is

equal to B2ν(x−y−⌊x−y⌋)
(2ν)! , where B2ν is the (2ν)-th

Bernoulli polynomial, with B2(x) = x2 − x + 1
6 and

B6(x) = x6 − 3x5 + 5
2x

4 − 1
2x

2 + 1
42 .

We consider either the uniform density on [0, 1], or
a randomly selected density of the form p(x) ∝(∑d

i=1 ai cos(2iπx) + bi sin(2iπx)
)2
, for which all re-

quired expectations may be computed in closed form.
In particular, the mean element is computed as µ :
x 7→ E[k(Y, x)] which may be computed in closed
form by expanding all terms in the Fourier basis. As
for the optimization step, it consists in minimizing
gt(x)− µ(x) over the interval [0, 1] which can be done
efficiently with exhaustive search.

Comparison of mean estimation procedures.
We compare in Figure 3 two kernels, i.e., with ν =
1 (left and middle plots) and ν = 3 (right plot),
the following mean estimation procedures, and plot
log10 ‖µ̂ − µ‖, for two densities, the uniform den-
sity (middle and right) and a randomly selected non-
uniform density (left). We compare the following:
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– cg-1/(t+1): conditional gradient procedure with
ρt = 1

t+1 , which is the original herding procedure

of Welling (2009a), leading to uniform weights.
– cg-l.search: conditional gradient procedure with
line search (with non-uniform weights).

– min-norm-point: Minimum-norm point algorithm.
This leads to non-uniform weights.

– random: Random selection of points (from p(x)),
averaged over 10 replications.

– sobol: a classical quasi-random sequence, with uni-
form weights. For non-uniform densities, we first
apply the inverse cumulative distribution function.

For all of these (except for min-norm-point), we also
consider an extra a posteriori projection step (denoted
by the -proj suffix), which computes the optimal set
of non-uniform weights by finding the best approxima-
tion of µ in the convex hull of the points selected by
the algorithm. We can draw the following conclusions:

– Min-norm-point algorithms always perform best.
– Conditional gradient with line search is performing
slightly worse than regular herding. (Note that we
are in the infinite-dimensional setting and so they
both have O(t−1) as theoretical rate.)

– The extra projection step always significantly im-
proves performance, and sometimes enough that
random selection of point combined with a reprojec-
tion outperforms regular herding (at least for ν = 3,
i.e., with a smaller feature space).

– On the right plot, it turns out that the Sobol se-
quence is known to achieve the optimal rate of
O(t−2) for ‖µ − µ̂‖2 for the associated Sobolev
space (Wahba, 1990). In this situation, regular
herding empirically achieves the same rate; how-
ever, the theoretical analysis provided in the present
paper or by Chen et al. (2010) does not allow to ex-
plain or support this statement theoretically.

Estimation from a finite sample. In Figure 4,
we compare three of the previously mentioned herd-
ing procedures when all quantities are computed from
a random sample of size 1000. In plain, testing er-
rors are computed (using exact expectations) while in
dashed, the training errors are computed. All meth-
ods eventually fit the empirical mean, with no further
progress on the testing error, this behavior happening
faster with the min-norm-point algorithm.

5.2. Estimation on graphical models

We consider X = {−1, 1}d and a random variable com-
puted as the sign (in {−1, 1}) of a Gaussian random
vector in R

d, together with Φ(x) composed of x and of
all of its pairwise products xx⊤. In this set-up, we can
compute the expectation Ep(x)Φ(x) in closed form, as
the mass assigned to the positive orthant by a bivari-
ate Gaussian distribution with correlation ρ, which is
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Figure 4. Comparison of estimated (from a finite sample)
herding procedures for kernels on [0, 1] with ν = 3 and
non-uniform density.
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Figure 5. Comparison of herding procedures on graphical
models with 100 binary variables. See Section 5.2.

equal to 1
4 +

1
2π sin−1 ρ (Abramowitz & Stegun, 1964).

We are here in the finite-dimensional setting and the
faster rates derived in Section 4.2 apply.

We generated 10000 samples from such a distribution
and performed herding with exact expectations but
with minima with respect to x computed over this sam-
ple (by exhaustive search over the sample). We plot
results in Figure 5, where we see the superiority of the
min-norm-point procedure over the two other proce-
dures (which include regular herding). Note that the
line-search algorithm is slower than the 1/(t+1)-rule,
which seems to contradict the bounds. The bounds
depend on the distance d between the mean and the
boundary of the marginal polytope. If this is too small
(much like if the strong convexity constant is too small
for gradient descent), the linear convergence rate can
only be seen for larger numbers of iterations.

5.3. Herding and maximum/minimum entropy

Given a moment vector µ obtained from the empirical
mean of Φ(x) on data, the goal of herding is to produce
a pseudo-sample whose moments match µ without
having to estimate the canonical parameters of the cor-
responding model. A natural candidate for such a dis-
tribution is the maximum entropy distribution and we
will compare it to the results of herding in cases where
it can be easily computed, namely for X = {−1, 1}d
(with d 6 10) and either Φ(x) = x ∈ [−1, 1]d or
Φ(x) = (x, xx⊤). In this setup, following Welling
(2009a), the distribution on x ∈ X is estimated by

the empirical distribution
∑t

i=1 wiδ(x = xi).
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Figure 3. Comparison of population herding procedures for kernels on [0, 1]. From left to right: ν = 3 and non-uniform

density, ν = 3 and uniform density, ν = 1 decay of eigenvalues and uniform density. Best seen in color.

Learning independent bits. We first consider
Φ(x) = x and some specific feasible moment µ ∈ M.
It is well-known that the maximum entropy distri-
bution is the one with independent bits. In the top
panels of Figure 6, we compare the norm between the
maximum entropy probability vector and the one esti-
mated by two versions of herding, namely conditional
gradient with stepsize ρt = 1/(t + 1) (regular herd-
ing with uniform weights) and with line search (with
non-uniform weights)—the min-norm-point algorithm
leads to quantitatively similar results. We show re-
sults in Figure 6 for a mean vector µ which is a ran-
dom uniform vector in [−1, 1]d (left plots), and for a
mean µ which is random with uniform (µi + 1)/2 val-

ues in {1, 2, 3, 4, 5}× 2
√
2

3 (middle plots), and for mean
values µ which is are random with uniform (µi + 1)/2
values in {1, 2, 3, 4, 5}/6 (right plots). Note that the
difference between rational and irrational means was
already brought up by Welling & Chen (2010) through
the link between herding and Sturmian sequences.

For each of the mean vector, we plot in the top plots,
the error in estimating the full maximum entropy dis-
tribution (a vector of size 2d), and in the bottom plots,
the error in estimating the feature means (a vector of
size d). We can draw the following conclusions:

– For a random vector µ (left plots), then regular
herding (with no line search) empirically converges
to the maximum entropy distribution.

– For rational ratios between the means (but irra-
tional means, middle plots), then there is no con-
vergence to the maximum entropy distribution.

– For rational means (right), there is no convergence
either, but the behavior is more erratic.

– The line-search procedure never converges to the
maximum entropy procedure. On the opposite, it
happens to be close to a minimum entropy solution,
where many states have probability zero.

Experiments considered in Figure 6 considered a single
draw of the mean vector µ, but similar empirical con-
clusions may be drawn from other random samples,
and we conjecture that for almost surely all random

vectors µ ∈ [−1, 1]d (which would avoid rational ratios
between mean values), then regular herding converges
to the maximum entropy distribution. The next ex-
periment shows that this is not the case in general.

Learning non-independent bits. We now con-
sider Φ(x) = (x, xx⊤), and a certain random feasi-
ble moment µ ∈ M. As before, we compare the
norm between the maximum entropy probability vec-
tor and the one estimated by the two versions of herd-
ing. We present results in Figure 7 for a mean vec-
tor obtained by the corresponding exponential family
distribution with zero weights for the features x and
constant weights on the features xx⊤. We see that the
herding procedures, while leading to a consistent esti-
mation of the mean vector, does not converge to the
maximum entropy distribution and other unreported
experiments have led to similar results.

6. Conclusion

We showed that herding generates a sequence of points
which give in sequence the descent directions of a con-
ditional gradient algorithm minimizing the quadratic
error on the moment vector. Therefore, if herding
is only assessed in terms of its ability to approxi-
mate the moment vector, it is outperformed by other
more efficient algorithms. Clearly, herding was orig-
inally defined with another goal, which was to gen-
erate a pseudo-sample whose distribution could ap-
proach the maximum entropy distribution with a given
moment vector. Our experiments suggest empirically,
that while this is the case in certain cases, herding
fails in other case, which are not chosen to be par-
ticularly pathological. This probably prompts for a
further study of herding.

Our experiments also show that algorithms that are
more efficient than herding at approximating the mo-
ment vector fail more blatantly to approach a maxi-
mum entropy distribution and they present character-
istics which would rather suggest a minimization of the
entropy. This suggests the question of whether there is
a tradeoff between approximating most efficiently the
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Figure 6. Comparison of herding procedures on the independent bit problem with d = 10 binary variables. Top: estimation
of the maximum entropy distribution, bottom: estimation of the mean of the features Φ(x). From left to right: Mean
values are selected uniformly at random on [−1, 1], mean values are equal to

√
2 times random rational numbers in [−1, 1],

mean values are equal to random rational numbers in [−1, 1].
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Figure 7. Comparison of herding procedures on graphical
models with 10 binary variables. Top: estimation of the
maximum entropy distribution, bottom: estimation of the
mean of the features Φ(x).

mean vector and approximating well the maximum en-
tropy distribution, or if the two goals are in fact rather
aligned? In any case, we hope that formulating herd-
ing as an optimization problem can help form a better
understanding of its goals and its properties.
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