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Abstract

Factorial clustering methods have been developed in recent years thanks to the improving of com-

putational power. These methods perform a linear transformation of data and a clustering on

transformed data optimizing a common criterion. Factor PD-clustering is based on Probabilistic

Distance clustering (PD-clustering). PD-clustering is an iterative, distribution free, probabilis-

tic, clustering method. Factor PD-clustering makes a linear transformation of original variables

into a reduced number of orthogonal ones using a common criterion with PD-Clustering. This

paper demonstrates that Tucker3 decomposition permits to obtain this transformation. Factor PD-

clustering exploits alternatively Tucker3 decomposition and PD-clustering on transformed data

until convergence is achieved. This method can significantly improve the algorithm performance;

large datasets can thus be partitioned into clusters with increasing stability and robustness of the

results.

keyword

Multivariate analysis, Exploratory data analysis, Clustering, Factorial clustering, Non hierarchical

iterative clustering.

1 Introduction

In a wide definition Cluster Analysis is a multivariate analysis technique that seeks to organize

information about variables in order to discover homogeneous groups, or “clusters” into data.

The presence of groups in data depends on the association structure over the data. Clustering

algorithms aim at finding homogeneous groups with respect to their association structure among

variables. Proximity measures or distances can be properly used to separate homogeneous groups.

A measure of the homogeneity of a group is the variance. Dealing with numerical linearly inde-

pendent variables, clustering problem consists in minimising the sum of the squared Euclidean

distances within classes: within groups deviance.

“The term cluster analysis refers to an entire process where clustering maybe only a step”

[Gordon, 1999]. According to Gordon’s definition cluster analysis can be sketched in three main

stages:

• transformation of data into a similarity/dissimilarity matrix;

• clustering;

• validation.
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Transformation of data into similarity/dissimilarity measures depends on data type. On the trans-

formed matrix a clustering method can be applied. Clustering methods can be divided into three

main types: hierarchical, non hierarchical and fuzzy [Wedel and Kamakura, 1999]. Non hierarchi-

cal clustering methods are considered in this paper. Among them the most well-known and used

method is k-means. It is an iterative method that starts with a random initial partition of units and

keeps reassigning the units into clusters based on the squared distances between the units and the

clusters’ centers until the convergence is reached. Interested readers can refer to [Gordon, 1999].

Major k-means issues are that clusters can be sensitive to the choice of the initial centers and that

the algorithm could converge to local minima.

The choice of the number of clusters is a well known problem of non hierarchical methods,

this problem will not be dealt with in this paper where the number of clusters is assumed as a priori

known.

Non hierarchical clustering methods performance can be strongly affected by the dimensional-

ity. Let us consider an n× J data matrix X , with n number of units and J number of variables.

Non hierarchical methods easily deal with large n, however they can fail when J becomes large

or very large and when the variables are correlated. They do not converge or they converge into

a different solution at each iteration. To cope with these issues, French school of data analysis

[Lebart et al., 1984] suggested a strategy to improve the overall quality of clustering that consists

in two phases: variables transformation through a factorial method and clustering method on trans-

formed variables. Arabie and Hubert in 1996 [Arabie et al., 1996] fourthly formalized the method

and called it tandem analysis.

The choice of the factorial method is an important and tricky phase because it will affect the

results. Principal factorial methods are [Le Roux and Rouanet, 2004]:

• quantitative data;

– Principal Component Analysis (PCA);

• binary data;

– Principal Component Analysis (PCA);

– Correspondence Analysis (CA);

– Multiple Correspondence Analysis (MCA);

• nominal data;

– Multiple Correspondence Analysis (MCA);

The second phase of the tandem analysis consists in applying clustering methods.

Tandem analysis exploits the factor analysis capabilities that consist in obtaining a reduced num-

ber of uncorrelated variables which are linear transformation of the original ones. This method

gives more stability to the results and makes the procedure faster. However tandem analysis min-

imises two different functions that can be in contrast and the first factorial step can in part obscure

or mask the clustering structure.

This technique has the advantage of working with a reduced number of variables that are orthogo-

nal and ordered with respect to the borrowed information. Moreover dimensionality reduction per-

mits to visualize the cluster structure in two or three dimensional factorial space [Palumbo et al., 2008].

To cope with these issues Vichi and Kiers [Vichi and Kiers, 2001] proposed Factorial k-means

analysis for two-way data. The aim of this method is to identify the best partition of the objects

and to find a subset of factors that best describe the classification according to the least squares

criterion. Two steps Alternating Least Squares algorithm (ALS) based on solves this problem. The
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advantage of Factorial k-means is that the two steps optimize a single objective function. However

the k-means algorithm itself, and as a consequence the tandem analysis and Factorial k-means,

is based on the arithmetic mean that gives rise to unsatisfactory solutions when clusters have not

spherical shape.

Probabilistic clustering methods may allow us to obtain better results under this condition

because they assign a statistical unit to a cluster according to a probability function that can be

independently defined with respect to the arithmetic mean.

Probabilistic Distance clustering (PD-clustering) [Ben-Israel and Iyigun, 2008] is an iterative, dis-

tribution free, probabilistic, clustering method. PD-clustering assigns units to a cluster according

to their probability of belonging to the cluster, under the constraint that the product between the

probability and the distance of each point to any cluster center is a constant.

When the number of variables is large and variables are correlated, PD-clustering becomes unsta-

ble and the correlation between variables can hide the real number of clusters. A linear transfor-

mation of original variables into a reduced number of orthogonal ones using common criteria with

PD-clustering can significantly improve the algorithm performance. The objective of this paper is

to introduce an improved version of PD-clustering called Factor PD-clustering (FPDC).

The paper has the following structure: section 2: detailed presentation of PD-clustering method;

section 3: presentation of our suggestion for a Factor PD-clustering method; section 4: application

of Factor PD-clustering on a simulated case study and comparison with k-means.

2 Probabilistic Distance Clustering

PD-clustering is a non hierarchical algorithm that assigns units to clusters according to their be-

longing probability to the cluster. According to Ben-Israel and Iyigun [Ben-Israel and Iyigun, 2008]

notation we introduce PD-clustering. Given some random centers, the probability of any point to

belong to each class is assumed to be inversely proportional to the distance from the centers of the

clusters. Given an X data matrix with n units and J variables, given K clusters that are assumed

not empty, PD-Clustering is based on two quantities: the distance of each data point xi from the K

cluster centers ck, d(xi,ck), and the probabilities for each point to belong to a cluster, p(xi,ck) with

k = 1, . . . ,K and i = 1, . . . ,n. The relation between them is the basic assumption of the method.

Let us consider the general term xi j of X and a center matrix C, of elements ck j with k = 1, . . . ,K,

i = 1, . . . ,n and j = 1, . . . ,J, their distance can be computed according to different criteria, the

squared norm is one of the most commonly used. The generic distance d(xi,ck) represents the

distance of the generic point i to the generic center k. The probability p(xi,ck) of each point to

belong to a cluster can be computed according to the following assumption: the product between

the distances and the probabilities is a constant depending on xi: F(xi).
For short we use pik = p(xi,ck) and dk(xi) = d(xi,ck); PD-clustering basic assumption is expressed

as:

pikdk(xi) = F(xi). (1)

for a given value of xi and for all k = 1, . . . ,K.

At the decreasing of the point closeness from the cluster center the belonging probability of

the point to the cluster decreases. The constant depends only on the point and does not depend on

the cluster k.

Starting from the 1 it is possible to compute pik:

pimdm(xi) = pikdk(xi); pim =
pikdk(xi)

dm(xi)
; ∀m = 1, . . . ,K (2)

3



The term pik is a probability so, under the constraint ∑K
m=1 pim = 1, the sum over m of 2 becomes:

pik

K

∑
m=1

(

dk(xi)

dm(xi)

)

= 1,

pik =

(

K

∑
m=1

(

dk(xi)

dm(xi)

)

)−1

=
∏m 6=k dm(xi)

∑K
m=1 ∏k 6=m dk(xi)

,k = 1, . . .K. (3)

Starting from the 1 and using 3 it is possible to define the value of the constant F(xi):

F(xi) = pikdk(xi),k = 1, . . .K,

F(xi) =
∏K

m=1 dm(xi)

∑K
m=1 ∏k 6=m dk(xi)

. (4)

The quantity F(xi), also called Joint Distance Function (JDF), is a measure of the closeness of

xi from all clusters’ centers. The JDF measures the classificability of the point xi with respect to

the centers ck with k = 1, . . . ,K. If it is equal to zero, the point coincides with one of the clusters’

centers, in this case the point belongs to the class with probability 1. If all the distances between

the point xi and the centers of the classes are equal to di, F(xi) = di/k and all the belonging prob-

abilities to each class are equal: pik = 1/K. The smaller the JDF value, the higher the probability

for the point to belong to one cluster.

The whole clustering problem consists in the identification of the centers that minimises the JDF.

Without loss of generality the PD-Clustering optimality criterium can be demonstrated according

to k = 2.

min
(

d1(xi)p2
i1 +d2(xi)p2

i2

)

(5)

s.t. pi1 + pi2 = 1

pi1, pi2 ≥ 0

The probabilities are squared because it is a smoothed version of the original function. The La-

grangian of this problem is:

L (pi1, pi2,λ ) = d1(xi)p2
i1 +d2(xi)p2

i2−λ (pi1 + pi2−1) (6)

Setting to zero the partial derivates with respect to pi1 and pi2, substituting the probabilities 3 and

considering the principle pi1d1(xi) = pi2d2(xi) we obtain the optimal value of the Lagrangian.

L (pi1, pi2,λ ) =
d1(xi)d2(xi)

d1(xi)+d2(xi)
. (7)

This value coincides with the JDF, the matrix of centers that minimises this principle minimises

the JDF too. Substituting the generic value dk(xi) with ‖xi− ck‖, we can find the equations of the

centers that minimise the JDF (and maximize the probability of each point to belong to only one

cluster).

ck = ∑
i=1,...,N

(

uk(xi)

∑ j=1,...,N uk(x j)

)

xi, (8)

where

uk(xi) =
p2

ik

dk(xi)
. (9)
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As showed before, the value of JDF at all centers k is equal to zero and it is necessarily positive

elsewhere. So the centers are the global minimiser of the JDF. Other stationary points may exist

because the function is not convex neither quasi-convex, but they are saddle points.

There are alternative ways for modeling the relation between probabilities and distances, for

example the probabilities can decay exponentially as distances increase. In this case the probabil-

ities pik and the distances dk(xi) are related by:

pikedk(xi) = E(xi), (10)

where E(xi) is a constant depending on xi.

Many results of the previous case can be extended to this case by replacing the distance dk(xi) with

edk(xi). Interested readers are referred to Ben-Israel and Iyigun [Ben-Israel and Iyigun, 2008].

The optimization problem presented in 5 is the original version proposed by Ben-Israel and

Iyigun. Notice that in the optimization problem the probabilities pk are considered in squared

form. The Authors affirm that it is possible to consider dk as well d2
k . Both choices have some

advantages and drawbacks. Squared distances offer analytical advantages due to linear derivates.

Using simple distances endures more robust results and the optimization problem can be recon-

ducted to a Fermat-Weber location problem. The Fermat-Weber location problem aims at finding

a point that minimises the sum of the Euclidean distances from a set of given points. This problem

can be solved with the Weiszfeld method [Weiszfeld, 1937]. Convergence of this method was es-

tablished by modifying the gradient so that it is always defined [Khun, 1973]. The modification is

not carried out in practice. The global solution is guaranteed only in case of one cluster. Dealing

with more than one cluster, in practice, the method converges only for a limited number of centers

depending on the data.

In this paper we consider the squared form:

dk(xi) =
J

∑
j=1

(xi j− ck j)
2, (11)

where k = 1, . . . ,K and i = 1, . . . ,N. Starting from the 11 the distance matrix D of order n×K is

defined, where the general element is dk(xi). The final solution ˆJDF is obtained minimising the

quantity:

JDF =
n

∑
i=1

K

∑
k=1

dk(xi)p2
ik =

n

∑
i=1

J

∑
j=1

K

∑
k=1

(xi j− ck j)
2 p2

ik, (12)

ˆJDF = arg min
C;P

n

∑
i=1

J

∑
j=1

K

∑
k=1

(xi j− ck j)
2 p2

ik. (13)

Where ck is the generic center and dk(xi) is defined in 11.

The solution of PD-clustering problem can be obtained through an iterative algorithm.

The algorithm convergence is demonstrated in [Iyigun, 2007].

Each unit is then assigned to the kth cluster according to the highest probability that is computed a

posteriori using the formula in equation 3.
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Algorithm 1 Probabilistic Distance Clustering Function

1: function PDC(X ,K)

2: C← rand(K,J) ⊲ Matrix CK,J is randomly initialised

3: JDF ← 1/eps ⊲ JDF is initialised to the maximum

4: D← 0 ⊲ Initialise the array D, of dimension n×K, to 0

5: p← 1
k

⊲ Initialise to 1
k

the probability vector p of n elements

6: repeat

7: for k = 1,K do

8: Dk← distance(X ,C(k)) ⊲ Dk distances of all units from the centre k according to formula 11

9: end for

10: JDF0← JDF ⊲ Current JDF is stored in JDF0

11: C←C∗ ⊲ Centres are updated according to formula 8

12: JDF ← jd f (D) ⊲← jd f (D) implements the formula 4

13: until JDF0 > JDF

14: P← compp(D) ⊲ function compp implements the formula 3

return C,P,JDF

15: end function

3 Factor PD-Clustering

When the number of variables is large and variables are correlated, PD-Clustering becomes very

unstable and the correlation between variables can hide the real number of clusters. A linear

transformation of original variables into a reduced number of orthogonal ones can significantly

improve the algorithm performance. Combination of PD-Clustering and variables linear transfor-

mation implies a common criterion.

This section shows how the Tucker3 method [Kroonenberg, 2008] can be properly adopted for

the transformation into the Factor PD-Clustering; an algorithm is then proposed to perform the

method.

3.1 Theoretical approach to Factor PD-clustering

Firstly we demonstrate that the minimization problem in 12 corresponds to the Tucker3 decompo-

sition of the distance matrix G of general elements gi jk = |xi j−ck j|. It is a 3-way matrix n×J×K

where n is the number of units, J the number of variables and K the occasions. For any ck with

k = 1, . . . ,K, a Gk n× J distances matrix is defined. In matrix notation:

Gk = X−hck (14)

where h is an n× 1 column vector with all terms equal to 1; X and ck (k = 1, . . . ,K) have been

already defined in section 2.

Tucker3 method decomposes the matrix G in three components, one for each mode, in a full

core array Λ and in an error term E .

gi jk =
R

∑
r=1

Q

∑
q=1

S

∑
s=1

λrqs(uirb jqvks)+ ei jk, (15)

where λrqs and ei jk are respectively the general terms of the three way matrix Λ of order R×S×Q

and E of order n× J×K;

uir, b jq and vks are respectively the general terms of the matrix U of order n×R, B of order

J×Q and V of order K×S, with i = 1, . . . ,n, j = 1, . . . ,J, k = 1, . . . ,K.

As in all factorial methods, factorial axes in Tucker3 model are sorted according to explained

variability. The first factorial axes explain the greatest part of the variability, latest factors are

influenced by anomalous data or represent the ground noise. For this reason the choice of a
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number of factors lower than the number of variables makes the method externally robust. Ac-

cording to [Kiers and Kinderen, 2003] the choice of the parameters R, Q and S is a ticklish prob-

lem because they define the overall explained variability. The interested readers are referred to

[Kroonenberg, 2008] for the theoretical aspects concerning this choice. We use an heuristic ap-

proach to cope with this crucial issue: we choose the minimum number of factors that corresponds

to a significant value of the explained variability.

The coordinates x∗iq of the generic unit xi into the space of variables obtained through Tucker3

decomposition are obtained by the following expression:

x∗iq =
J

∑
j=1

xi jb jq. (16)

Finally on these x∗iq coordinates a PD-Clustering is applied in order to solve the clustering problem.

Let us start considering the expression 12; it is worth noting that minimising the quantity:

JDF = ∑n
i=1 ∑J

j=1 ∑K
k=1(xi j− ck j)

2 p2
ik s.t. ∑n

i=1 ∑K
k=1 p2

ik ≤ n, (17)

is equivalent to compute the maximum of −∑n
i=1 ∑J

j=1 ∑K
k=1(xi j − ck j)

2 p2
ik, under the same con-

straints.

Taking into account the Proposition 1 (proof in A.1) and the following lemma, we demonstrate

that the Tucker3 decomposition is a consistent linear variable transformation that determines the

best subspace according to the PD-clustering criterion.

Proposition 1 Given an unknown matrix B of generic element bim and a set of coefficients 0 ≤
ψim ≤ 1, with m = 1, . . . ,M and i = 1, . . . ,n. Maximising

−
M

∑
m=1

n

∑
i=1

bimψ2
im,

s.t.∑M
m=1 ∑n

i=1 ψ2
im ≤ n is equivalent to solve the equation

M

∑
m=1

n

∑
i=1

bimψim = µ
M

∑
m=1

n

∑
i=1

ψim,

where µ ≥ 0.

Lemma. Tucker3 decomposition permits to define the best subspace for the PD-clustering.

We consider the proposition of the Proposition 1 where:

M = K

bik =
J

∑
j=1

(xi j− ck j)
2 (18)

and

ψik = pik, with i = 1, . . . ,n : k = 1, . . . ,K

Let us assume that ck j and pik are known, replacing (xi j − ck j) with gi jk in 17 we develop the

following squared form:

max
(

−∑K
k=1 ∑n

i=1

(

∑J
j=1 g2

i jk

)

p2
ik

)

s.t. ∑K
k=1 ∑n

i=1 p2
ik ≤ n
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according to the Theorem 1 we obtain:

K

∑
k=1

n

∑
i=1

(

J

∑
j=1

g2
i jk

)

pik = µ
K

∑
k=1

n

∑
i=1

pik (19)

The value of µ that optimize the 19 can be find trough the singular value decomposition of the

matrix G, which is equivalent to the following Tucker3 decomposition:

gi jk =
R

∑
r=1

Q

∑
q=1

S

∑
s=1

λrqs(uirb jqvks)+ ei jk,

with i = 1, . . . ,n, j = 1, . . . ,J, k = 1, . . . ,K.

Defining with: R number of components of U , Q number of components of B and S number of

components of V .

In matrix notation:

G =UΛ(V ′⊗B′)+E (20)

It can be verified that the second derivate is not positive, see section A.2.

�

The Proposition 1 and the Lemma 1 demonstrate that the Tucker3 transformation of the dis-

tance matrix G minimises the JDF. The following subsection presents an iterative algorithm to

alternatively calculate ck j and pik on one hand, and b jq on the other hand, until the convergence is

reached. In A.2 we empirically demonstrate that the minimisation of the quantity in the formula

17 converges at least to local minima.

3.2 Factor PD-clustering iterative algorithm

Let us start considering the equation 13, where we apply the linear transformation xi jb jq to xi j

according to 16:

ˆJDF = argmin
C;B

n

∑
i=1

Q

∑
q=1

K

∑
k=1

(x∗iq− ckq)
2 p2

ik. (21)

Let us note that in formula 21:

xi j and b jq are the general elements of the matrices X and B that have been already defined in

section 3.1;

ckq is the general element of the matrix C, (see eq. 8).

It is worth to note that C and B are unknown matrices and pik is determined as C and B are fixed.

The problem does not admit a direct solution and an iterative two steps procedure is required. The

two alternative steps are:

• Linear transformation of original data;

• PD-Clustering on transformed data.

The procedure starts with a pseudorandomly defined centre matrix C of elements ck j with k =
1, . . . ,K and j = 1, . . . ,J. Then a first solution for probabilities and distance matrices is computed

according to 14. Given the initial C and X , the matrix B is calculated; once B is fixed the matrix

C is updated (and the values pik are consequently updated). Last two steps are iterated until the

convergence is reached: ˆJDF
(t)− ˆJDF

(t−1)
> 0, where t indicates the number of iterations.

Here under the procedure is presented according to the usual flow diagram notation:

Remark that the Tucker3 function is in MatLab Toolbox N-way [Chen, 2010].
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Algorithm 2 Factor Probabilistic Distance Clustering

1: function FPDC(X ,K)

2: JDF ← 1/eps ⊲ JDF is initialised to the maximum

3: G← 0 ⊲ Initialise the array G, of dimension n×J×K, to 0

4: P← 1
k ⊲ Initialise to 1

k the probability vector p of n elements

5: C← rand(K,J) ⊲ Matrix CK,J is randomly initialised

6: repeat

7: for k = 1,K do

8: Gk← distance(X ,C(k)) ⊲ Gk distances of all units from the centre k

9: end for

10: B← Tucker3(G) ⊲ Tucker3 fun. in MatLab Toolbox N-way [Chen, 2010]

11: X∗← XB

12: JDF0← JDF ⊲ Current JDF is stored in JDF0

13: (C,P,JDF)← PDC(X∗,K) ⊲ PDC() function is defined by the algorithm 1

14: until JDF0 > JDF

return C,P
15: end function

4 Application on a simulated dataset

In order to evaluate the performance of FPDC it has been applied on a simulated dataset. The

dataset has been created according to Maronna and Zamar [Maronna and Zamar, 2002] procedure

and notations.

Every cluster has been obtained generating uncorrelated normal data xi ∼ N(0, I) where I is a

J×J identity matrix. Each element xi has been transformed into yi = Σxi where Σ2 is a covariance

matrix with Σ j j = 1 and Σ jr = ρ for r 6= j. For every cluster 100 vectors yi with 7 variables

have been generated. Every cluster has been centered on points which are uniformly distributed

on a hypersphere. Each cluster has been contaminated at a level ε = 20%, cluster contamination

is generated according to a normal distribution yi ∼ N(ra0

√
J,Σk) where a0 is a unitary vector

generated orthogonal to (1,1, . . . ,1)T . The parameter r measures the distance between the outliers

and the cluster center. To avoid that outliers overlap the elements of the clusters the minimum

value of r is rmin =

(

1.2
√

χ2
J,1−α+

√

χ2
J,1−α

)

√
J

. In this case we have chosen r = 4 that verifies r > rmin.

In order to evaluate the stability of the results each method has been iterated 100 times, JDF has

been measured at each iteration; results are represented in fig. 2.

The modal percentile is obtained in 59% of cases, the JDF is included in the interval [975,983].
In this percentile the maximum variation in clustering structure is 1% that corresponds to six units.

In 59% of cases the error term is in the interval [0,21%,1,5%]. The clustering structure on the

first three variables is represented in fig. 3.

A well known problem in cluster analysis is the validation of clustering structure. There is

no index that measures clustering results because each clustering method optimizes a different

function. In order to evaluate the cluster partition a density based silhouette plot (dbs) can be

used. According to this method the dbs index is measured for all the observations xi, all the clusters

are sorted in a decreasing order with respect to dbs and plotted on a bar graph, fig. 4. Usually

euclidean distance is used to measure the distance between clusters center and each datapoint;

however Euclidean distance is not suitable dealing with probabilistic clustering. A measure of dbs

for probabilistic clustering method is proposed in Menardi [Menardi, 2011]. An adaptation of this

measure for FPDC is the following one:

dbsi =
log
(

pimk

pim1

)

maxi=1,...,n |log
(

pimk

pim1

)

|
, (22)
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Figure 1: Scatter plot matrix of the simulated dataset. The dataset represents 4 normally generated

cluster with a level of contamination of 20% and correlated according to the scheme in the section

4. Displayed data have been standardized.

where mk is such that xi belongs to cluster k and m1 is such that pim1
is maximum for m 6= mk. The

graphic shows that the clustering structure is correct.

Although an index that compares clustering structure does not exist, in order to point out the

quality of FPDC the dataset has been partitioned using k-means method too. The method has been

iterated 100 times, the within variance has been measured at each iteration, results are represented

in fig. 5.

The results have an high variability, the modal case is obtained 15% of times, the first per-

centile is obtained 24% of times. In all resulting clustering structures there is high percentage of

error due to outliers. Results obtained in the modal case are represented in fig. 6.

5 Conclusion and perspectives

In this paper a new factorial two-step clustering method has been brought up: Factor PD-clustering.

This method can be inlaid into a new field of clustering techniques which has been developed in

recent years: iterative clustering methods. Two-step clustering methods were proposed by French

school of data analysis in order to cope with some clustering issues. Thanks to computer de-

veloping, recently, iterative clustering methods have been introduced. These methods optimize

10



970 980 990 1000 1010 1020 1030 1040
0

2

4

6

8

10

12

JDF

F
re

qu
en

cy

Figure 2: The bar-graph represents the distribution of JDF obtained through 100 FPDC iterations

on the simulated dataset. The picture shows the stability of the results. The modal percentile is

[975,983] and corresponds to 59% of cases.
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Figure 3: The figure shows the FPDC results of the simulated dataset composed by 4 clusters. The

axes correspond to the first 3 simulated variables see also 1. Colors and symbols are referred to

FPDC results. The misclassification error rate is [0,21%,1,5%].

a common criterion iteratively performing a linear transformation of data and a clustering opti-

mizing a common criterion. Factor PD-clustering performs a linear transformation of data and

Probabilistic D-clustering iteratively. Probabilistic D-clustering is an iterative, distribution free,

probabilistic, clustering method. When the number of variables is large and variables are cor-
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Figure 4: The figure represents density based silhouette plot on clusters obtained in the modal

value of the JDF on 100 FPDC iterations. The graphic shows that points have been rightly classi-

fied.
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Figure 5: The bar-graph represents the distribution of within variance obtained through 100 k-

means iterations on the simulated dataset. The picture shows the stability of the results. The

modal percentile corresponds to 24% of cases.

related PD-Clustering becomes unstable and the correlation between variables can hide the real

number of clusters. A linear transformation of original variables into a reduced number of or-

thogonal ones using common criteria with PD-Clustering can significantly improve the algorithm

performance. Factor PD-clustering allows to work with large dataset improving the stability and
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Figure 6: The figure shows the k-means results of the simulated dataset composed by 4 clusters.

The axes correspond to the first 3 simulated variables (see also 1). Colors and symbols are referred

to k-means results. The method does not find the right clustering structure in the dataset.

the robustness of the method.

An important issue in the future research is the FPDC generalization to the case of categorical

data. Dealing with big nominal and binary data matrices, the sparseness of data and the non-

linearity in the association can be more prejudicial to the overall cluster stability. In this context,

Factor clustering represents a suitable solution. Some methods have been already presented, it

is worth mentioning the contributions of Hwang et al. [Hwang et al., 2006] and of Palumbo and

Iodice D’Enza [Iodice D’Enza and Palumbo, 2010], in the case of nominal data and of binary data,

respectively.

A Appendix

This appendix contains two proves: the first for proposition 1 and the second for second order

optimality condition demonstration.

A.1 Proof of the Proposition 1

Proposition 1 Given an unknown matrix B of generic element bim and a set of coefficients 0 ≤
ψim ≤ 1, with m = 1, . . . ,M and i = 1, . . . ,n. Maximising

−
M

∑
m=1

n

∑
i=1

bimψ2
im,

s.t.∑M
m=1 ∑n

i=1 ψ2
im ≤ n is equivalent to solve the equation

M

∑
m=1

n

∑
i=1

bimψim = µ
M

∑
m=1

n

∑
i=1

ψim,

13



where µ ≥ 0.

Proof (Proposition 1). To prove the proposition we introduce the Lagrangian function:

L =−
M

∑
m=1

n

∑
i=1

bimψ2
im +µ(

M

∑
m=1

n

∑
i=1

ψ2
im−n)

where µ is the Lagrange multiplier. Let us consider the first derivative of L w.r.t. ψim equal to 0 :

∂L

∂ψim

=−2
M

∑
m=1

n

∑
i=1

bimψim +2µ
M

∑
m=1

n

∑
i=1

ψim = 0

which is equivalent to
M

∑
m=1

n

∑
i=1

bimψim = µ
M

∑
m=1

n

∑
i=1

ψim

�

A.2 FPD-Clustering algorithm convergence

In general the proof of the algorithm convergence requires the demonstration of the convexity

of the objective function. Dealing with multivariate data, the analytical proof of the convexity

becomes a complex issue. In most multivariate situations the empirical evidence is a satisfactory

approach to verify the algorithm convergence. Moreover the high capacity of modern CPU permits

to get the minimum, avoiding local minima, through the multiple starts of the algorithm. This

section aims at empirically showing the procedure convergence whereas a simulation study has

been conducted by [Tortora and Marino, 2011]. The proposition states that the convergence to a

global or to a local maximum is guaranteed. Two data sets are generated; the first one is the one

used in section 4. The second one is a simulated 450× 2 four clusters dataset where variables

are independent (see fig. 8). The four clusters have been generated according to four normal

distributions with different number of elements.
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Figure 7: The displays represent the JDF behavior at each iteration of FPDC algorithm obtained

along 100 iterations on two simulated datasets.

Figure 7 represents the following results: on the left-hand side the convergence of the dataset

one, the right-hand side of the dataset two. The horizontal axis represents the number of iterations,

the vertical refers to the value of JDF. Each broken line represents the value of the criterion at each

iteration. When convergence is reached the line is straight and parallel to the horizontal axis. In

both cases the procedure converges in a limited number of iterations. It is worth to note that the

first iteration is not counted.
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Figure 8: The figure represent the simulated 450×2 four clusters dataset.
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