Ike Antkare one of the great stars in the scientific firmament
Cyril Labbé

To cite this version:
Cyril Labbé. Ike Antkare one of the great stars in the scientific firmament. International Society for Scientometrics and Informetrics Newsletter, 2010, 6 (2), pp.48-52. <hal-00713564>
Ike Antkare one of the great stars in the scientific firmament

Cyril Labbé
Université Joseph Fourier
LIG Laboratory
14 april 2010

Contents

1 Introduction 1
2 The Holy Grail of a lazy scientist 2
3 Make it public 2
4 Conclusion 3
Appendices 4
A Screenshots 4
B Pages 1 and 3 of a fake document generated using scigen 7
C Ike Antkare’s publications 10

Abstract

How Ike Antkare became one of the most highly cited scientists in the modern world and how you could become like him.

1 Introduction

Google scholar is one of the most powerful tools that allows researchers to share and find scientific publications. It is also used as a means of measuring the individual output of researchers \(h - index \) \[7\], \(g - index \) e.g. \[5\], \(h_m - index \) \[9\], ...). Several tools (scholarometer \[4\], publish or perish \[6\], Scholar H-Index Calculator \[3\], H-view \[1\], scHolar index \[8\],...) computes these metrics using the data provided by Google Scholar.

Since the 8th of April 2010, these tools have allowed Ike Antkare to become one of the most highly cited scientists of the modern world (see figure \[\text{215}\]). According to Scholarometer, Ike Antkare has 102 publications (almost all in 2009) and has an h-index of 94, putting him in the 21st position of the most highly cited scientists. This score is less than Freud, in 1st position with a h-index of 183, but better than Einstein in 36th position with a h-index of 84. Best of all, in regards to the \(h_m \)-index Ike Antkare is in sixth position outclassing all scientists in his field (computer science).

This document explains why this is possible and how you could become as good as Ike Antkare. The first section demonstrates how relatively decent, fake scientific documents can be generated on the necessary scale. The second section explains what has to be done for these documents to be indexed by Google / Google scholar and thus Scholarometer, publish or perish,...
2 The Holy Grail of a lazy scientist

Scigen \cite{2} is an automatic generator of amazing and funny articles using the jargon of the computer science field. Scigen is based on hand-written context-free grammar and has been developed in the PDOS research group at MIT CSAIL. It was initially aimed at testing the selection process of contributions to apparently dubious conferences. Titles, authors, sections, bibliography, graphs and figures can be automatically generated. But titles and authors can also be chosen. In the production of Ike Antkare's bibliography, these tools were slightly modified to generate:

- a list of n titles,
- n articles titled using the previous titles. Each article cited the whole set of the n articles (itself included),
- a html page, providing titles, abstracts and links to pdf files.

3 Make it public

For an article to be indexed in Google Scholar it has to have at least one reference to an article already indexed in Google Scholar. For Ike Antkare's set of articles to be indexed, an extra reference to an already indexed article was added to each of them. This was achieved by generating a document referencing only real articles \cite{15} and by adding an extra reference to this document in each of the 100 generated articles \cite{82, 58, 13, 41, 32, 25, 96, 11, 106, 48, 16, 76, 22, 58, 102, 42, 70, 28, 80, 87, 56, 52, 84, 83, 105, 71, 53, 94, 20, 107, 73, 51, 89, 31, 14, 49, 14, 34, 12, 60, 78, 103, 29, 18, 63, 88, 60, 72, 99, 75, 24, 16, 66, 23, 100, 54, 67, 30, 65, 50, 98, 62, 15, 108, 104, 79, 35, 57, 27, 92, 91, 74, 47, 110, 95, 59, 21, 37, 40, 68, 36, 93, 81, 25, 77, 33, 10, 61, 19, 69, 109, 85, 39, 86, 64, 55, 97, 101, 17} (see figure 1).

As a final step, the html pages providing links to the 101 pdf files must be crawled by a Googlebot. This takes an undetermined time, however the fastest and guaranteed results...
are obtained by using http://www.google.com/addurl/. Theory says that Ike Antkare’s
$h − index = g − index = h_m − index = 1001$. But, as you know, theory and real world are
often slightly different.

4 Conclusion

At this point in time, tools computing individual researcher performance indices using
Google scholar are not reliable. This experiment shows how easily and to what extent
computed values can be distorted. It is worth noting that this distortion could have been
easily achieved using names of real people, thus helping them discreetly or discrediting them
noisily.

It is widely accepted that important decisions on the future of a scientist cannot be taken
based on these criteria. Moreover, the case of Ike Antkare implies that one takes a careful
look, not only at documents, but also at documents citing documents.

Acknowledgement: The author would like to thank Yves D. and Edward A. for their
help.

References

[5] Leo Egghe. Mathematical theory of the h- and g-index in case of fractional counting of
[9] Michael Schreiber. To share the fame in a fair way, h m modifies h for multi-authored

1or 99 without counting references of a document to itself
Appendices

A Screenshots

Figure 2: Ike Antkare’s h_{soc}-index according Scholarometer.
Figure 3: Ike Antkare’s h-index according Scholarometer.

Figure 4: Ike Antkare’s performance indices according Scholarometer.
Figure 5: Ike Antkare’s performance indices according Publish or Perish.

Figure 6: Ike Antkare scHolar index.
B. Pages 1 and 3 of a fake document generated using scigen
Developing the Location-Identity Split Using Scalable Modalities

Ike Antkare
International Institute of Technology
United States of Earth
Ike.Antkare@iit.use

Abstract

Systems engineers agree that event-driven information are an interesting new topic in the field of algorithms, and biologists concur. In fact, few information theorists would disagree with the analysis of redundancy, which embodies the practical principles of algorithms. We construct a large-scale tool for architecting neural networks, which we call RokyTue.

I. Introduction

The implications of atomic communication have been far-reaching and pervasive. The notion that steganographers connect with “smart” archetypes is continuously considered intuitive. Along these same lines, this is a direct result of the development of the World Wide Web. Thus, the investigation of write-back caches and DHCP have paved the way for the refinement of e-business.

A confirmed method to overcome this challenge is the theoretical unification of interrupts and online algorithms. Our framework provides the construction of operating systems [4], [16], [23], [32], [49], [49], [73], [73], [73], [87]. Similarly, the usual methods for the evaluation of IPv6 do not apply in this area. Furthermore, it should be noted that our framework turns the virtual technology sledgehammer into a scalpel. As a result, our application is based on the construction of information retrieval systems.

Here, we argue that the much-touted ubiquitous algorithm for the study of 802.11 mesh networks runs in $\Omega(n)$ time. Next, despite the fact that conventional wisdom states that this challenge is rarely fixed by the refinement of interrupts, we believe that a different method is necessary. Contrarily, this solution is often well-received. Similarly, for example, many heuristics construct the exploration of I/O automata. Though such a hypothesis at first glance seems counterintuitive, it is derived from known results. The flaw of this type of approach, however, is that the location-identity split and the UNIVAC computer can agree to address this quagmire. Thusly, our algorithm is copied from the principles of cryptography.

Further, we motivate new “fuzzy” configurations (RokyTue), showing that the foremost modular algorithm for the improvement of XML by Andrew Yao et al. is optimal.

The rest of this paper is organized as follows. To start off with, we motivate the need for Scheme. On a similar note, to accomplish this objective, we show that even though robots and the memory bus are rarely incompatible, Internet QoS can be made atomic, decentralized, and symbiotic. Finally, we conclude.

II. Related Work

In this section, we discuss related research into telephony, probabilistic communication, and perfect configurations. This solution is less expensive than ours. Li and Harris suggested a scheme for architecting low-energy epistemologies, but did not fully realize the implications of random symmetries at the time [19], [37], [43], [47], [61], [71], [74], [75], [78], [96]. The choice of cache coherence in [11], [13], [22], [34], [42], [62], [64], [80], [85], [98] differs from ours in that we study only robust technology in our approach [3], [5], [25], [35], [40], [51], [69], [75], [87], [94].

Our method is related to research into stable symmetries, the understanding of Internet QoS, and perfect modalities [9], [15], [20], [54], [63], [66], [79]–[81], [90]. Further, instead of developing the producer-consumer problem, we realize this ambition simply by exploring model checking [7], [14], [21], [40], [44], [45], [57], [58], [85], [91]. However, these approaches are entirely orthogonal to our efforts.

III. RokyTue Deployment

Suppose that there exists efficient theory such that we can easily deploy low-energy models. Similarly, consider the early model by Kumar and Zhao; our methodology is similar, but will actually surmount this grand challenge. See our existing technical report [26], [36], [41], [48], [53], [56], [70], [89], [95], [99] for details.

Furthermore, our method does not require such a confusing allowance to run correctly, but it doesn’t hurt. This seems to hold in most cases. We assume that the synthesis of the location-identity split can enable lossless configurations without needing to explore DNS. We carried out a 8-year-long trace demonstrating that our framework is unfounded.
we asked (and answered) what would happen if topologically Bayesian multi-processors were used instead of spreadsheets; (2) we ran fiber-optic cables on 93 nodes spread throughout the 1000-node network, and compared them against Byzantine fault tolerance running locally; (3) we dogfooed RokyTue on our own desktop machines, paying particular attention to effective optical drive speed; and (4) we ran superpages on 49 nodes spread throughout the Internet network, and compared them against online algorithms running locally.

We first explain experiments (3) and (4) enumerated above as shown in Figure 3. We scarcely anticipated how accurate our results were in this phase of the evaluation. We scarcely anticipated how precise our results were in this phase of the performance analysis. Similarly, note that Figure 3 shows the effective and not effective provably randomized effective tape drive throughput.

Shown in Figure 3, the first two experiments call attention to RokyTue’s instruction rate. The data in Figure 3, in particular, proves that four years of hard work were wasted on this project. Next, Gaussian electromagnetic disturbances in our mobile telephones caused unstable experimental results. The results come from only 2 trial runs, and were not reproducible.

Lastly, we discuss experiments (1) and (3) enumerated above. Of course, all sensitive data was anonymized during our bioware deployment. Even though this might seem counterintuitive, it is supported by previous work in the field. Note how deploying superpages rather than emulating them in courseware produce less jagged, more reproducible results [2], [4], [16], [23], [32], [49], [73], [73], [87]. Bugs in our system caused the unstable behavior throughout the experiments.

VI. CONCLUSION

In this position paper we confirmed that consistent hashing and A* search are generally incompatible [4], [13], [29], [33], [37], [39], [67], [93], [97], [97]. We have a better understanding how expert systems can be applied to the refinement of e-commerce. We verified that redundancy and A* search can cooperate to answer this grand challenge. In fact, the main contribution of our work is that we disconfirmed that although the famous trainable algorithm for the development of access points by Kenneth Iverson et al. [19], [43], [47], [61], [71], [73], [75], [78], [87], [87] follows a Zipf-like distribution, web browsers and congestion control can interfere to realize this objective.

In conclusion, in this position paper we verified that compilers and forward-error correction can collude to address this issue. Next, we also explored a novel framework for the development of Moore’s Law. Our architecture for architecting cache coherence is shockingly promising. To realize this objective for the synthesis of DHTs, we proposed new knowledge-base algorithms. Continuing with this rationale, we constructed a heterogeneous tool for improving Boolean logic (RokyTue), showing that 4 bit architectures and forward-error correction are rarely incompatible. We expect to see many information theorists move to studying our heuristic in the very near future.

REFERENCES

C Ike Antkare’s publications

