Generalized de Bruijn digraphs and the distribution of patterns in alpha-expansions
Wolfgang Steiner

To cite this version:
GENERALIZED DE BRUIJN DIGRAPHS AND THE
DISTRIBUTION OF PATTERNS IN \(\alpha \)-EXPANSIONS

WOLFGANG STEINER**

Abstract. A generalization of de Bruijn digraphs is defined for Parry’s
\(\alpha \)-expansions and it is shown that the characteristic polynomial of these
graphs is in principle that of \(\alpha \). With the help of this result we prove that
certain functionals of \(\alpha \)-expansions, e.g. the number of specific digital
patterns, satisfy a central limit theorem, which is an extension of a result
due to Drmota [3].

1. Introduction

Our starting points are the \(\alpha \)-expansion of real numbers due to Parry [14]
and the induced linear recurrence (cf. Loraud [12]). Let \(\alpha > 1 \) be a real
number. Then the \(\alpha \)-expansion of an arbitrary real number \(x \) is given by

\[
x = \zeta_1 + \frac{\zeta_2}{\alpha} + \frac{\zeta_3}{\alpha^2} + \cdots,
\]

where \(\zeta_1 = [x] \), the integer part of \(x \), and the other digits are computed
with the transformation \(T(x) = \{\alpha x\} \) (where \(\{x\} \) denotes the fractional
part of \(x \)): \(\zeta_n = [\alpha T^{n-1}(x)] \). Then the digits \(\zeta_j \) satisfy

\[
(\zeta_n, \zeta_{n+1}, \ldots) < (a_1, a_2, \ldots) \text{ for } n \geq 2,
\]

where the \(a_j \) are the digits of the \(\alpha \)-expansion of \(\alpha \), i.e.

\[
\alpha = a_1 + \frac{a_2}{\alpha} + \frac{a_3}{\alpha^2} + \cdots,
\]

and “<” denotes the lexicographic order. In particular we have

\[
(a_n, a_{n+1}, \ldots) < (a_1, a_2, \ldots) \text{ for } n \geq 2.
\]

Conversely, if a sequence \((a_1, a_2, \ldots)\) satisfies (1.2), we have a real number
\(\alpha \) with \(\alpha \)-expansion \((a_1, a_2, \ldots)\).

Those \(\alpha \) which have recurrent “tails” in their \(\alpha \)-expansions, i.e. \(a_{j+m} = a_j \)
for all \(j > n \) for some integers \(n \) and \(m \), are called \(\alpha \)-numbers. The \(\alpha \)-numbers
which have a finite \(\alpha \)-expansion are called simple \(\alpha \)-numbers.

Date: January 3, 2002.

Key words and phrases. de Bruijn graphs, characteristic polynomial, digital
expansions, central limit theorem.

*This work was supported by the Austrian Science Foundation FWF, grant
S8302-MAT.

**Institut für Geometrie, TU Wien, Wiedner Hauptstrasse 8-10/113, A-1040 Wien,
Austria, email: steiner@geometrie.tuwien.ac.at.
A simple α-number ($a_r \neq 0$, $a_j = 0$ for all $j > r$) is a root of the polynomial
\[x^r - a_1 x^{r-1} - \cdots - a_{r-1} x - a_r \]
which is called characteristic polynomial of α. If α is a non-simple α-number, it is a root of the polynomial
\[(x^{n+m} - a_1 x^{n+m-1} - \cdots - a_{n+m-1} x - a_{n+m}) - (x^n - a_1 x^{n-1} - \cdots - a_{n-1} x - a_n). \]
This polynomial is called characteristic polynomial, if n and m are minimal with this property.

For the induced linear recurrence we distinguish between simple α-numbers and other real numbers. For simple α-numbers we define
\begin{equation}
G_0 = 1, \quad G_j = \begin{cases}
\sum_{i=1}^{j} a_i G_{j-i} + 1 & \text{for } j < r \\
\sum_{i=1}^{r} a_i G_{j-i} & \text{for } j \geq r
\end{cases}
\end{equation}
and for the others
\begin{equation}
G_0 = 1, \quad G_j = \sum_{i=1}^{j} a_i G_{j-i} + 1 \text{ for } j > 0.
\end{equation}

With $G = (G_n)$, every non-negative integer n has a (unique) proper G-ary digital expansion
\[n = \sum_{j \geq 0} \varepsilon_j(n) G_j \]
with integer digits $\varepsilon_j(n) \geq 0$ such that
\[\sum_{j=0}^{k} \varepsilon_j(n) G_j < G_{k+1} \text{ for } k \geq 0. \]
The digits $\varepsilon_j = \varepsilon_j(n)$ satisfy
\begin{equation}
(\varepsilon_k, \varepsilon_{k-1}, \ldots) < (a_1, a_2, \ldots) \text{ for } k \geq 0
\end{equation}
(cf. [12]), where we have set $\varepsilon_j = 0$ for all $j < 0$. Conversely, a sequence $(\varepsilon_0, \varepsilon_1, \ldots)$ is the digital expansion of an integer n if [14] holds and $\varepsilon_j > 0$ only for a finite number of $j \geq 0$.

We will study functions depending on subblocks of these digital expansions. Let
\[\mathcal{B}_L = \{ (\varepsilon_{L-1}(n), \varepsilon_{L-2}(n), \ldots, \varepsilon_0(n)) : n < G_L \} \]
be the set of blocks $B \in \{0,1,\ldots,a_1\}^L$ of length L which actually occur in G-ary digital expansions. Let $F : \mathcal{B}_{L+1} \to \mathbb{R}$ be any given function (for some $L \geq 0$) with $F(0,0,\ldots,0) = 0$. Furthermore, set
\[s_F(n) = \sum_{j \geq 0} F(\varepsilon_{j+L}(n), \varepsilon_{j+L-1}(n), \ldots, \varepsilon_j(n)). \]
This means that we consider a weighted sum over all subsequent digital patterns of length $L + 1$ of the digital expansion of n. For example, for $L = 0$ and $F(\epsilon) = \epsilon$ we just obtain the sum-of-digits function, or if $L = 1$ and $F(\epsilon, \eta) = 1 - \delta_{\epsilon, \eta}$ (denoting the Kronecker delta) then $s_F(n)$ is just counting the number of times that a digit is different from the preceding one etc.

In order to get an insight into the distribution of $s_F(n)$, it is convenient to consider a related sequence of random variables $X_N, N \geq 1$, defined by

$$\Pr[X_N \leq x] = \frac{1}{N}|\{n < N : s_F(n) \leq x\}|$$

In Section 3 we will show that Drmota’s methods in [3] can be applied to prove asymptotic normality of the distribution of X_N. Drmota showed this for the special case of finite recurrences of the type (1.2) with $a_1 \geq a_2 \geq \cdots \geq a_r \geq 0$. It should be noted that the case $L = 0$ for general α is treated by Drmota and Gajdosik [4].

In the case of simple α-numbers we will use a generalization of de Bruijn digraphs (Definition 2.1) and, in particular, the property that the characteristic polynomial of these graphs is the characteristic polynomial of α multiplied with a factor x^n. This property has been conjectured by Drmota [3] and is shown in Section 2.

Remark 1.1. Sometimes different generalizations of de Bruijn digraphs can be found in the literature. Imase and Itoh [9] and Reddy, Pradhan and Kuhl [16] introduced independently the graph $G_B(n, d)$, where $n > d$, the set of vertices is $\{0, 1, \ldots, n-1\}$ and the set of edges consists of

$$i \rightarrow di + r \pmod{n} \text{ for } 0 \leq i < n, \ 0 \leq r < d.$$

Later, Imase and Itoh [10] introduced also the graph $G_l(n, d)$ whose set of vertices is the same as that of $G_B(n, d)$ and the set of edges consists of

$$i \rightarrow d(n-1-i) + r \pmod{n} \text{ for } 0 \leq i < n, \ 0 \leq r < d.$$

Du and Hwang [5] showed that these graphs have some of the properties of de Bruijn digraphs. Their characteristic polynomial has been given by Xueliang and Fuji [18].

2. Generalized de Bruijn digraphs

For a q-ary expansion which is a special case of Parry’s expansion with $\alpha = q$ an integer, we have $B_L = \{0, 1, \ldots, q-1\}^L$. Then B_L is the set of vertices of a directed de Bruijn digraph with edges $B = (\eta_1, \ldots, \eta_L) \rightarrow C = (\theta_1, \ldots, \theta_L)$ where

$$\eta_2, \ldots, \eta_L = (\theta_1, \ldots, \theta_{L-1}).$$

With this characterization of de Bruijn digraphs we can generalize them on Parry’s α-expansions with simple α-numbers:
Definition 2.1. Let \((a_1, a_2, \ldots, a_r)\) be a \(r\)-tuple which satisfies (1.1) (if we set \(a_n := 0\) for \(n > r\)) and \(\mathcal{B}_L\) be the set of blocks \((\eta_1, \ldots, \eta_L)\) which satisfy
\[(\eta_k, \eta_{k+1}, \ldots) < (a_1, a_2, \ldots) \text{ for } k \geq 1\]
(if we set \(\eta_n := 0\) for \(n > L\)). Then the generalized de Bruijn digraph of \(\mathcal{B}_L\) is defined by the set of vertices \(\mathcal{B}_L\) and the edges \(B \rightarrow C\) where \(B = (\eta_1, \ldots, \eta_L)\) and \(C = (\theta_1, \ldots, \theta_L)\) satisfy (2.1) and
\[(\eta_1, \ldots, \eta_L, \theta_L) \in \mathcal{B}_{L+1}.

Remark 2.1. Because of (1.4), this definition of \(\mathcal{B}_L\) is equivalent to the one given in the Introduction.

Remark 2.2. If (2.1) holds and \(L \geq r\), then (2.2) is automatically satisfied. For \(L = r - 1\), the only exceptions are
\[(\eta_1, \ldots, \eta_{r-1}) = (a_1, \ldots, a_{r-1}), \quad (\theta_1, \ldots, \theta_{r-1}) = (a_2, \ldots, a_{r-1}, x)\]
with \(a_r \leq x \leq a_1\).

Remark 2.3. An important property of de Bruijn digraphs is that the line graph of the graph of blocks of length \(L\) is the graph of blocks of length \(L + 1\). For our generalization, this property holds if we have \(L \geq r - 1\).

Denote by \(A_L\) the adjacency matrix of the generalized de Bruijn digraph of \(\mathcal{B}_L\).

Example 2.1. For the \(q\)-ary expansion with \(q = 2\) (or equivalently the \(G\)-ary expansion with \(r = 1\), \(a_1 = 2\)), we have \(\mathcal{B}_2 = \{(0, 0), (0, 1), (1, 0), (1, 1)\}\) and
\[
A_2 = \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}.
\]

Example 2.2. In the case of the Zeckendorf expansion (\(r = 2\), \(a_1 = a_2 = 1\), the \(G_j\) are the Fibonacci numbers) we have \(\mathcal{B}_2 = \{(0, 0), (0, 1), (1, 0)\}\) and
\[
A_2 = \begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}.
\]

The characteristic polynomial of these graphs is strongly connected to the characteristic polynomial of the corresponding simple \(\alpha\)-number:

Theorem 2.1. For \(L \geq r - 1\), the characteristic polynomial of the adjacency matrix \(A_L\) of the generalized de Bruijn digraph of \(\mathcal{B}_L\) is
\[
\chi(A_L)(x) = x^{G_{L-r}}p(x),
\]
where \(G = (G_j)_{j \geq 0}\) is defined by the finite linear recurrence (1.2) and
\[
p(x) = x^r - a_1x^{r-1} - a_2x^{r-2} - \cdots - a_{r-1}x - a_r
\]
is the characteristic polynomial of the linear recurrence and of the corresponding simple \(\alpha\)-number.
Proof. First we remark that \(\#(\mathcal{B}_L) = G_L \) and for each \(B \in \mathcal{B}_L \)
\[
B = (\epsilon_{L-1}(i-1), \epsilon_{L-2}(i-1), \ldots, \epsilon_0(i-1))
\]
for some \(i \in \{1, 2, \ldots, G_L\} \) where the \(\epsilon_j \) are the digits in the \(G \)-ary expansion.

The conditions (2.1) and (2.2) can thus be written for \(i, j \in \{1, 2, \ldots, G_L\} \)
as
\[
(\epsilon_{L-2}(i-1), \ldots, \epsilon_0(i-1)) = (\epsilon_{L-1}(j-1), \ldots, \epsilon_1(j-1))
\]
and
\[
(\epsilon_{L-1}(i-1), \epsilon_{L-1}(j-1), \ldots, \epsilon_0(j-1)) \in \mathcal{B}_{L+1}
\]
respectively.

Therefore the coefficients of \(A_L = (a_{ij}^{(L)})_{1 \leq i,j \leq G_L} \) are
\[
a_{ij}^{(L)} = \begin{cases} 1 & \text{if } (2.3) \text{ and } (2.4) \text{ hold} \\ 0 & \text{otherwise}. \end{cases}
\]

First assume \(L \geq r \). Then we can omit (2.4) (cf. Remark 2.2) and have
\[
a_{i+kG_{L-1}}^{(L)} = a_{i,j}^{(L)}.
\]

We define the matrix \(P_L := (p_{ij}^{(L)})_{1 \leq i,j \leq G_L} \) for \(L \geq r \) by
\[
p_{ij}^{(L)} := \begin{cases} 1 & \text{if } i = j \\ -1 & \text{if } j \leq G_{L-1}, \ i = j + kG_{L-1}, \ k > 0 \\ 0 & \text{otherwise}. \end{cases}
\]

Hence \(P_L^{-1} = (p_{ij}^{(-L)})_{1 \leq i,j \leq G_L} \) has the coefficients
\[
p_{ij}^{(-L)} := \begin{cases} 1 & \text{if } i = j \\ 1 & \text{if } j \leq G_{L-1}, \ i = j + kG_{L-1}, \ k > 0 \\ 0 & \text{otherwise}. \end{cases}
\]

With \(P_L \) we define a matrix similar to \(A_L \) by
\[
A_L' = (a_{ij}^{(L)})_{1 \leq i,j \leq G_L} := P_L A_L P_L^{-1}.
\]

In the construction of \(A_L' \) the rows \(i \) of \(A_L \) are subtracted from the rows \(i + kG_{L-1} \) and the columns \(i + kG_{L-1} \) are added to the columns \(i \). Therefore
\[
a_{ij}^{(L)} = 0 \quad \text{for all } i \in \{G_{L-1} + 1, G_{L-1} + 2, \ldots, G_L\}, \ j \in \{1, 2, \ldots, G_L\}
\]
and it suffices to continue with the matrix
\[
A_{L-1} = (a_{ij}^{(L-1)})_{1 \leq i,j \leq G_{L-1}} := A_L' \begin{pmatrix} 1 & 2 & \ldots & G_{L-1} \\ 1 & 2 & \ldots & G_{L-1} \end{pmatrix}
\]
(this notation means that we take only the rows and columns 1, 2, \ldots, \(G_{L-1} \) of \(A_L' \)) because of
\[
\chi(A_L)(x) = \chi(A_L')(x) = x^{G_L - G_{L-1}} \chi(A_{L-1})(x).
\]
The so defined \(A_{r-1} \) is the adjacency matrix of the generalized de Bruijn digraph of \(B_{r-1} \), because we have \(a_{ij}^{(r-1)} = 1 \) not only if (2.3) holds, but also for

\[
(\epsilon_{L-2}(i-1), \ldots, \epsilon_0(i-1)) = (\epsilon_{L-2}(j + kG_{r-1} - 1), \ldots, \epsilon_1(j + kG_{r-1} - 1)) = (k, \epsilon_{L-2}(j - 1), \ldots, \epsilon_1(j - 1))
\]

with a \(k \in \{0, 1, \ldots, a_1\} \) (and \(j + kG_{r-1} \leq G_r \)), and therefore

\[
a_{ij}^{(r-1)} = [(\epsilon_{L-3}(i - 1), \ldots, \epsilon_0(i - 1)) = (\epsilon_{L-2}(j - 1), \ldots, \epsilon_1(j - 1))],
\]

where we use the Iversonian notation \([expression] = 1\) if \(expression\) is true and 0 otherwise. For \(L = r\) we have to check additionally \(a_{ij}^{(r-1)} = 0\) for

\[
(\epsilon_r(i - 1), \ldots, \epsilon_0(i - 1)) = (a_1, a_2, \ldots, a_r - 1),
\]

\[
(\epsilon_r(j - 1), \ldots, \epsilon_0(j - 1)) = (a_2, \ldots, a_r - 1, x)
\]

with \(a_r \leq x \leq a_1\) (cf. Remark 2.2). This is true, because for these \(i \) and \(j \), \(a_{ij}^{(r-1)} = 1\) would imply that we have a \(j' = j + kG_r - 1\) with \(a_{ij'}^{(r)} = 1\), i.e.

\[
(\epsilon_r - 1(j' - 1), \ldots, \epsilon_0(j' - 1)) = (a_1, a_2, \ldots, a_r - 1, x),
\]

but this violates (1.4) and is therefore impossible.

Hence we iterate the construction until we get \(A_{r-1} \) and obtain

(2.5)

\[
\chi(A_L)(x) = x^{G_L - G_{r-1}}\chi(A_{r-1})(x).
\]

We continue with \(L = r - 1\).

For \(i < G_r - 1\), \(j \leq G_r - 1\) (but not for \(i = G_r - 1\)) we have

\[
a_{ij}^{(r-1)} = [(\epsilon_{r-2}(i - 1), \ldots, \epsilon_0(i - 1)) = (\epsilon_{r-2}(j - 1), \ldots, \epsilon_1(j - 1))]
\]

and

\[
a_{i + kG_r - 2, j}^{(r-1)} = a_{i,j}^{(r-1)}.
\]

For \(1 \leq s \leq r - 1\), we define the matrix \(P_s := (p_{ij}^{(s)})_{1 \leq i,j \leq G_{r-1}}\) by

\[
p_{ij}^{(s)} := \begin{cases}
1 & \text{if } i = j \\
-1 & \text{if } j \leq G_{s-1}, \ i = j + kG_{s-1}, \ k > 0 \text{ and } i < G_s \\
0 & \text{otherwise}.
\end{cases}
\]

With \(A'_{r-1} := P_{r-1}A_{r-1}P_{r-1}^{-1}\), we get

\[
a_{ij}^{(r-1)} = 0 \text{ for all } i \in \{G_{r-2} + 1, G_{r-2} + 2, \ldots, G_{r-1} - 1\}, \ j \in \{1, 2, \ldots, G_{r-1}\}.
\]

and build the matrix \(A_{r-2} := A'_{r-1}(\begin{smallmatrix} 1 & 2 & \ldots & G_{r-2} \\ 1 & 2 & \ldots & G_{r-2} \end{smallmatrix})^{-1}\), where the numeration of the rows and columns is kept, i.e. \(A_{r-2} = (a_{ij}^{(r-2)})_{i,j \in \{1,2,\ldots,G_{r-2},G_{r-1}\}}\). This matrix satisfies

\[
\chi(A_{r-1})(x) = \chi(A'_{r-1})(x) = x^{G_{r-1} - G_{r-2}}\chi(A_{r-2})(x)
\]

and for \(i < G_{r-2}\), \(j \leq G_{r-1}\)

\[
a_{ij}^{(r-2)} = [(\epsilon_{r-3}(i - 1), \ldots, \epsilon_0(i - 1)) = (\epsilon_{r-3}(j - 1), \ldots, \epsilon_1(j - 1))]
\]
(but A_{r-2} is not the adjacency matrix of a generalized de Bruijn digraph).

Hence we iterate this procedure by defining

$$A_{s-1} := (P_s A_s P_s^{-1}) \begin{pmatrix} 1 & 2 & \ldots & G_{s-1} & G_s & \ldots & G_{r-1} \\ 1 & 2 & \ldots & G_{s-1} & G_s & \ldots & G_{r-1} \end{pmatrix}$$

for $1 \leq s \leq r - 2$ and get, for $i < G_s$, $j \leq G_s$,

$$a_{ij}^{(s)} = [(\epsilon_{s-2}(i-1), \ldots, \epsilon_0(i-1)) = (\epsilon_{s-1}(j-1), \ldots, \epsilon_1(j-1))] .$$

Therefore we have

$$(2.6) \quad \chi(A_{r-1})(x) = x^{G_{r-1}} \chi(A_0)(x) .$$

The definitions of P_s and A_{s-1} imply for $1 \leq s \leq r - 1$, $j \leq G_{s-1}$ and $i \in \{1, 2, \ldots, G_{s-1}, G_s, \ldots, G_{r-1}\}$,

$$a_{ij}^{(s-1)} = \sum_{j'=1}^{G_{s-1}} [\epsilon_s(j') \geq \epsilon_s(i)] [\epsilon_{s-2}(j'), \ldots, \epsilon_0(j')] = (\epsilon_{s-2}(j), \ldots, \epsilon_0(j))] a_{ij}^{(s)}$$

$$= \cdots = \sum_{j'=1}^{G_{r-1}} [\epsilon_s(j') \geq \epsilon_s(i)] [\epsilon_{s-2}(j'), \ldots, \epsilon_0(j')] = (\epsilon_{s-2}(j), \ldots, \epsilon_0(j))] a_{ij}^{(r-1)}$$

and thus

$$(2.7) \quad a^{(0)}_{iG_s} = a^{(s)}_{iG_s} = \sum_{1 \leq j < G_{r-1}, \epsilon_s(j) \geq 1, (\epsilon_{s-1}(j), \ldots, \epsilon_0(j)) = (0, 0, \ldots, 0)} a^{(r-1)}_{ij} .$$

Now we can easily calculate $A_0 = (a^{(0)}_{ij})_{i, j \in \{G_0, G_1, \ldots, G_{r-1}\}}$. For $i = G_t$ with $0 \leq t \leq r - 1$ we have

$$(\epsilon_{r-2}(G_t - 1), \ldots, \epsilon_0(G_t - 1)) = (0, \ldots, 0, a_1, a_2, \ldots, a_t) .$$

Therefore we have $a^{(r-1)}_{G_t, j} = 1$ if and only if

$$(2.8) \quad (\epsilon_{r-2}(j - 1), \ldots, \epsilon_0(j - 1)) = (0, \ldots, 0, a_1, a_2, \ldots, a_t, x)$$

with $0 \leq x \leq a_{t+1}$ for $t < r - 1$ and if and only if

$$(2.9) \quad (\epsilon_{r-2}(j - 1), \ldots, \epsilon_0(j - 1)) = (a_2, a_3, \ldots, a_{r-1}, x)$$

with $0 \leq x < a_r$ for $t = r - 1$ respectively.

For the first column, i.e. $s = 0$, the sum in (2.7) runs over all j with $\epsilon_0(j) \geq 1$. $x = a_{t+1}$ in (2.8) implies $j = G_{t+1}$ and $\epsilon_0(j) = 0$, otherwise $\epsilon_0(j) = x + 1 \geq 1$. For $i = G_t$ we have therefore a_{t+1} terms $a^{(r-1)}_{ij} = 1$ and $a^{(0)}_{G_t, G_0} = a_{t+1}$.

For $1 \leq s \leq r - 1$ and $i = G_t$, the conditions on j in (2.7) imply

$$(\epsilon_{s-1}(j - 1), \ldots, \epsilon_0(j - 1)) = (a_1, \ldots, a_s)$$
and, with (2.8) and (2.9), we have $a^{(r-1)}_{Gtj} = 1$ for at most one j. Together with (1.1) we get $x = a_{t+1}$. We have $a^{(r-1)}_{Gt+1j} = 0$ for this j and hence $a^{(0)}_{Gr-1Gs} = 0$. For $0 \leq t < r - 1$, the G-ary expansion of this j is $(\epsilon_{t+1}(j), \ldots, \epsilon_0(j)) = (1, 0, 0, \ldots, 0)$.

Thus we obtain $a^{(0)}_{GrGs} = [t + 1 = s]$ for $s > 0$.

Recapitulating, A_0 has the form

$$A_0 = \begin{pmatrix}
 a_1 & 1 & 0 & \cdots & 0 \\
 a_2 & 0 & 1 & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \ddots & 0 \\
 \vdots & \vdots & \ddots & 0 & 1 \\
 a_r & 0 & \cdots & \cdots & 0
\end{pmatrix},$$

and its characteristic polynomial is clearly $p(x)$. With (2.3) and (2.6), the theorem is proved.

Remark 2.4. For de Bruijn digraphs we have $\chi(A_L)(x) = x^{qL-1}(x - q)$.

Remark 2.5. For general digraphs D, the characteristic polynomial of the line graph $L(D)$ is a multiple of that of D:

$$\chi(L(D))(x) = \chi(D)(x)x^{e(D)-v(D)},$$

where $e(D)$ denotes the number of edges and $v(D)$ the number of vertices. This property could be used in the first part of the proof of Theorem 2.1 but anyway our construction is needed for the second part of the proof.

3. Asymptotic Properties of Functions Depending on Subblocks of α-Expansions

Now we study the random variables X_N defined in the introduction. Expected value and variance of X_N are given by

$$E_X = \frac{1}{N} \sum_{n < N} s_F(n) \quad \text{and by} \quad V_X = \frac{1}{N} \sum_{n < N} (s_F(n) - E_X)^2.$$

We introduce the function

$$c_N(z) = \sum_{n < N} z^{s_F(n)}$$

and consider for any block $B = (\eta_1, \ldots, \eta_L) \in B_L$ the functions

$$a^B_j(z) := \sum_{n < G_{s}(\epsilon_j \cdots \epsilon_{j-L}(n)) = B} z^{s_F(n)}.$$

Then

$$\sum_{B \in B_L} a^B_j(z) = c_N(z).$$
In order to obtain recurrent relations for the functions a_j^B we need the following notation:

For $B = (\eta_1, \ldots, \eta_L) \in B_L$ let $B' = (\eta_2, \ldots, \eta_L)$ denote the block consisting of the last $L - 1$ elements of B and η_B the first element η_1, i.e. $B = (\eta_B, B')$. (Similarly 'B = $(\eta_1, \ldots, \eta_{L-1}$).) Furthermore, for $(\epsilon, B) = (\epsilon, \eta_1, \ldots, \eta_L) \in B_{L+1}$ set

$$\kappa(\epsilon, B) = \sum_{i=0}^{L-1} (F(0, \ldots, 0, \epsilon, \eta_1, \ldots, \eta_{L-i}) - F(0, \ldots, 0, 0, \eta_1, \ldots, \eta_{L-i})) + F(0, \ldots, 0, 0, \epsilon).$$

Note that $\kappa(0, B) = 0$.

3.1. Simple α-numbers. In the case of simple α-numbers, we may assume, without loss of generality, that $L \geq r - 1$. (If we are only interested in $L + 1$ subsequent digits with $L < r - 1$, then we consider a new function $\tilde{F} : B_r \to \mathbf{R}$ that does not depend on the first $(r - L - 1)$ digits.)

Lemma 3.1. The functions $a_j^B(z)$, $j > 0$, are recursively given by

$$a_j^B(z) = \sum_{C \in B_L: 'C= B', (\eta_B, C) \in B_{L+1}} a_{j-1}^C(z)z^{\kappa(\eta_B, C)}.$$

Proof. The set

$$\{n < G_j : (\epsilon_{j-1}(n), \ldots, \epsilon_{j-L}(n)) = B\}$$

is divided into subsets of the form

$$\{n < G_j : \epsilon_{j-1}(n) = \eta_B, (\epsilon_{j-2}(n), \epsilon_{j-3}(n), \ldots, \epsilon_{j-L-1}(n)) = (B', \epsilon) = C\} =$$

$$\{n < G_{j-1} : (\epsilon_{j-2}(n), \epsilon_{j-3}(n), \ldots, \epsilon_{j-L-1}(n)) = C, (\eta_B, C) \in B_{L+1}\} + \eta_B G_{j-1}.$$

Because of $\{(\eta_B, C) : B, C \in B_L, 'C = B' \geq B_{L+1}\}$ we cover all possible cases.

Furthermore, for $n < G_{j-1}$ with $(\epsilon_{j-2}(n), \epsilon_{j-3}(n), \ldots, \epsilon_{j-L-1}(n)) = C$ and $(\eta_B, C) \in B_{L+1}$, we have

$$s_F(n + \eta_BG_{j-1}) = s_F(n) + \kappa(\eta_B, C).$$

\square

Corollary 3.1. The vector $a_j(z) = (a_j^B(z))_{B \in B_L}$ satisfies the matrix recursion

$$a_j(z) = A_L(z)a_{j-1}(z) \quad (j > 0),$$

where the $G_L \times G_L$-matrix $A_L(z) = (a_{B,C}(z))_{B,C \in B_L}$ is given by

$$a_{B,C}(z) = \begin{cases} z^{\kappa(\eta_B, C)} & \text{if } 'C = B' \text{ and } (\eta_B, C) \in B_{L+1} \\ 0 & \text{otherwise.} \end{cases}$$
$A_L(1)$ is the adjacency matrix of the generalized de Bruijn digraph of B_L, its characteristic polynomial is therefore (Theorem 2.1)

$$
\chi(A_L(1))(x) = x^{GL-r}(x^r - a_1x^{r-1} - a_2x^{r-2} - \cdots - a_{r-1}x - a_r)
$$

and α is an eigenvalue of $A_L(1)$. Lemma 3.2 shows that the other eigenvalues of $A_L(1)$ have absolute value less than α.

Lemma 3.2. The conjugates of a simple α-number α with respect to the characteristic polynomial have absolute value less than α.

Proof. Set

$$
g(x) := 1 - x^{p}(x^{-1}) = \sum_{j=1}^{r} a_j x^j.
$$

If $|x| > \alpha$, then $|g(x^{-1})| \leq |g(|x|^{-1})| < g(\alpha^{-1}) = 1$ and $p(x) \neq 0$.

If $|x| = \alpha$, $x \neq \alpha$, then we either have $|g(x^{-1})| < g(|x^{-1}|) = 1$ or all powers x^j with $a_j > 0$ have the same argument, which must be different from 0 because of $a_1 > 0$. In both cases we have $g(x^{-1}) \neq 1$ and $p(x) \neq 0$.

Because of $g'(|\alpha^{-1}|) > 0$, α is a simple root of $p(x)$ and the lemma is proved. \square

Now we have all prerequisites for Drmota’s proofs of the following lemma and theorems:

Lemma 3.3 (cf. [3], Lemma 3.3). Let $G(t, z) = \det(tI - A_L(z))$ be the characteristic polynomial of the matrix $A_L(z)$. Then there exists a (complex) neighbourhood of $z = 1$ such that $G(t, z) = 0$ has a unique solution $t = \alpha(z)$ of maximal modulus. Furthermore, the function $\alpha(z)$ is analytic in this neighbourhood.

Theorem 3.1 (cf. [3], Theorem 2.1).

$$
E X_N = \frac{1}{N} \sum_{n < N} s_F(n) = \mu \log N \frac{\log \alpha}{\log \alpha} + O(1)
$$

and

$$
V X_N = \frac{1}{N} \sum_{n < N} (s_F(n) - E X_N)^2 = \sigma^2 \log N \frac{\log \alpha}{\log \alpha} + O(1),
$$

where

$$
\mu = \frac{\alpha'(1)}{\alpha} \quad \text{and} \quad \sigma^2 = \frac{\alpha''(1)}{\alpha} + \mu - \mu^2.
$$

Theorem 3.2 (cf. [3], Theorem 2.2). If $\sigma^2 \neq 0$, then for every $\varepsilon > 0$

$$
\frac{1}{N} |\{n < N : s_F(n) < E X_N + x V X_N\}| = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt + O((\log N)^{-1/2+\varepsilon})
$$

uniformly for all real x as $N \to \infty$.

Theorem 3.3 (cf. [3], Theorem 2.2). If $\sigma^2 \neq 0$, F just attains integer values and

$$d = \gcd\{\kappa(\epsilon, B) : (\epsilon, B) \in B_{L+1}\} = 1,$$

then for every $\varepsilon > 0$

$$\{n < N : s_F(n) = k\} = \frac{N}{\sqrt{2\pi \sqrt{N}}} \left(\exp \left(-\frac{(k - E_N)^2}{2 \sqrt{N}} \right) + O((\log N)^{-1/2+\varepsilon}) \right)$$

uniformly for all non-negative integers k as $N \to \infty$.

3.2. Non-simple α-numbers. Now we treat the case of non-simple α-numbers, i.e.

$$(a_{n+m+1}, a_{n+m+2}, \ldots) = (a_{n+1}, a_{n+2}, \ldots)$$

for some integers m, n and m, n minimal with this property.

Let F be a function $F : B_{L+1} \to \mathbb{R}$ as above. We may assume that $l = km \geq n + m - 1$ for some $k \in \mathbb{N}$. (If we are interested in $l+1$ subsequent digits with $l < km$ then we consider a new function $F : B_{km+1} \to \mathbb{R}$ that does not depend on the first $(km - l)$ digits.)

Lemma 3.4. For all $l \in \mathbb{N}$ we can find an integer $L \geq l$ such that

$$(3.2) \quad (a_j, a_{j+1}, \ldots, a_{L+1}) < (a_1, a_2, \ldots, a_{L-j+2}) \text{ for all } j \in \{2, \ldots, L + 1\}$$

Proof. If (3.2) holds for $L := l$, we are finished. Otherwise we have a $j \leq l+1$ such that

$$(a_j, a_{j+1}, \ldots, a_{l+1}) = (a_1, a_2, \ldots, a_{l-j+2})$$

and an integer $g > l + 1$ such that

$$(a_j, a_{j+1}, \ldots, a_{g-1}) = (a_1, a_2, \ldots, a_{g-j}) \text{ and } a_g < a_{g-j+1}.$$

If (3.2) holds for $L := g - 1$, we are finished. Otherwise we have a $j' \leq g$ such that

$$(a_{j'}, a_{j'+1}, \ldots, a_g) = (a_1, a_2, \ldots, a_{g-j'+1}).$$

For $j' \geq j$, we had

$$(a_{j'}, a_{j'+1}, \ldots, a_g) < (a_{j'-j+1}, a_{j'-j+2}, \ldots, a_{g-j+1}) \leq (a_1, a_2, \ldots, a_{g-j'+1}).$$

Therefore $j' < j$. We can find $g' > g$ such that

$$(a_{j'}, a_{j'+1}, \ldots, a_{g'-j}) = (a_1, a_2, \ldots, a_{g'-j'}) \text{, } a_{g'} < a_{g'-j'}$$

and repeat this procedure.

Since $j > j' > j'' > \cdots > 1$, we find a L that satisfies (3.2) after a finite number of steps. \qed

Remark 3.1. If (3.2) holds for L, it holds for $L + m$ since

$$(a_j, \ldots, a_{L+m+1}) = (a_{j-m}, \ldots, a_{L+1}) \text{ for all } j \in \{L+2, \ldots, L+m+1\}$$

and, by induction, for $L + km$.

Now we consider the functions

\[a_j^B(z) := \sum_{n < G_j, (\epsilon_j-1(n), \ldots, \epsilon_j-L(n)) = B} z^{s_F(n)} \quad (B \in B_L). \]

Lemma 3.5. Let \(L \) satisfy (3.2) and \(L \geq km \geq n + m - 1 \). Then the functions \(a_j^B \), \(j > L \), \(B \in B_L \) are recursively given by

\[a_j^B(z) = \sum_{C \in B_L: \ (C = B'), \ \ (q_B, C) \in B_{L+1}} a_j^{C'}(z) z^{s(q_B, C)} \]

if \(B \neq (a_1, a_2, \ldots, a_L) \) and

\[
(3.3) \quad a_j^{(a_1, \ldots, a_L)}(z) = \sum_{C = \{a_1, \ldots, a_L, \eta_{L+1}\}, \ \ \eta_L \leq a_{L+1}} a_j^{C'}(z) z^{s(a_1, C)} - \sum_{D \in C_{km}} b_j^{D_{L-1}}(z) z^{\lambda(a_1, \ldots, a_{L+1}, D)},
\]

where

\[C_{km} := \{ D \in B_{km} : D \geq (a_{L+2}, a_{L+3}, \ldots, a_{L+km+1}) \}, \]

\[b_j^D(z) := \sum_{i < G_j: (\epsilon_{j-1}(i), \ldots, \epsilon_{j-1}(km(i))) = D, \ (\epsilon_{j-1}(i), \ldots, \epsilon_0(i)) > (a_{L+2}, \ldots, a_{L+km+1})} z^{s_F(i)} \]

and

\[\lambda(\theta_1, \theta_2, \ldots, \theta_{L+1}, D) := s_F(n_1) - s_F(n_2) \]

with

\[D = (\zeta_1, \zeta_2, \ldots, \zeta_{km}), \quad \epsilon_i(n_1) = \epsilon_i(n_2) = 0 \text{ for all } i \geq km + L + 1 \]

\[(\epsilon_{km+L}(n_1), \epsilon_{km+L-1}(n_1), \ldots, \epsilon_0(n_1)) = (\theta_1, \theta_2, \ldots, \theta_{L+1}, \zeta_1, \zeta_2, \ldots, \zeta_{km}), \]

\[(\epsilon_{km+L}(n_2), (n_2), \epsilon_{km+L-1}(n_2), \ldots, \epsilon_0(n_2)) = (0, \ldots, 0, \zeta_1, \zeta_2, \ldots, \zeta_{km}). \]

The functions \(b_j^D(z) \), \(j \geq km \), \(D \in C_{km} \) are recursively given by

\[b_j^D(z) = \begin{cases} \sum_{B \in B_L: (\eta_1, \ldots, \eta_{km}) = D} a_j^B(z) & \text{if } D > (a_{L+2}, \ldots, a_{L+km+1}) \\ \sum_{E \in C_{km}} b_j^{E_{km}}(z) z^{\lambda(0, \ldots, 0, a_{L+2}, \ldots, a_{L+km+1}, E)} & \text{if } D = (a_{L+2}, \ldots, a_{L+km+1}) \end{cases} \]

Proof. The proof of the first equation is the same as that of Lemma 3.1. We just have to check

\[
(3.4) \quad (\eta_B, \epsilon_{j-2}(n), \ldots, \epsilon_0(n), 0, \ldots) < (a_1, a_2, \ldots)
\]

for \(C = (\epsilon_{j-2}(n), \ldots, \epsilon_{j-1}(n)) \), \(C = B', \ (\eta_B, C) \in B_{L+1} \).
\[\{3.4\} \text{ can only be violated, if } (\eta_B, C) = (a_1, \ldots, a_{L+1}) \text{ which implies } B = (a_1, \ldots, a_L). \text{ We have} \]
\[
 a_j^{(a_1, \ldots, a_L)}(z) = \sum_{(\varphi_{j-1}, \ldots, \varphi_0) : (\varphi_{j-1, \ldots, \varphi_{L-1}} = (a_1, \ldots, a_L), \varphi_j - L \leq a_{L+1}, (\varphi_{j-2}, \ldots, \varphi_0) \in \mathcal{B}_{j-1}} z^{s_F(\varphi_{j-1}, \ldots, \varphi_0)}
\]
\[
(3.5) \sum_{(\varphi_{j-1}, \ldots, \varphi_0) : (\varphi_{j-1, \ldots, \varphi_{L-1}} = (a_1, \ldots, a_{L+1}), (\varphi_{j-2}, \ldots, \varphi_0) \in \mathcal{B}_{j-1}, (\varphi_j, \ldots, \varphi_0) \in \mathcal{B}_{j-1}} z^{s_F(\varphi_{j-1}, \ldots, \varphi_0)}
\]

where \(s_F(\varphi_{j-1}, \ldots, \varphi_0) \) := \(s_F(n) \) for the (unique) integer \(n \) with \(G \)-ary expansion \((\varphi_{j-1}, \ldots, \varphi_0) \) (and \(\varphi_i = 0 \) for all \(i \geq j \)).

The first sum of \([3.3] \) is equal to the first sum of \([3.3] \) (cf. Lemma 3.1 and consider \([3.2] \)). The patterns of the second sum of \([3.3] \) are exactly those of the first sum which do not satisfy \((\varphi_{j-1}, \ldots, \varphi_0) \in \mathcal{B}_j\). Because of \([3.2] \) the choice of patterns \((\varphi_{j-L-2}, \ldots, \varphi_0) \) in the second sum of \([3.3] \) is not influenced by the patterns \((\varphi_{j-1}, \ldots, \varphi_{j-L-1})\). Therefore this sum is equal to the second sum of \([3.3] \).

The equation for \(b_j^D(z), \ D > (a_{L+2}, \ldots, a_{L+km+1}) \) is clear. For \(D = (a_{L+2}, \ldots, a_{L+km+1}) \) we have to consider Remark 3.1 and that \((a_{L+km+2}, \ldots, a_{L+2km+1}) = (a_{L+2}, \ldots, a_{L+km+1})\).

Corollary 3.2. The vector
\[
 a_j(z) = (a_j^{B_1}(z), a_j^{B_2}(z), b_{j-1}^{D_1}(z), b_{j-1}^{D_2}(z), \ldots, b_{j-L}^{D_1}(z), \ldots, b_{j-L}^{D_1}(z))
\]
with
\[
 B_i := (\epsilon_{i-1}, \ldots, \epsilon_0(1 - i)), \quad M := \#(C_{km}),
\]
\[
 D_1 := (a_{L+2}, \ldots, a_{L+km+1}), \quad D_M := (a_1, \ldots, a_{km})
\]
satisfies the matrix recursion
\[
 a_j(z) = A_L(z) a_{j-1}(z) \quad (j > L)
\]
where \(A_L(z) = (a_{i,j}(z))_{1 \leq i, j \leq G_{L+LM}} \) is given by
\[
a_{i,j}(z) = \begin{cases}
 1 & \text{if } i, j \leq G_L, (i, j) \in \mathcal{B}_{i}', \\
 z^{D_1(i + a_{L+1}, (j - G_L + (L-1)M))} & \text{if } i = G_L, j > G_L + (L-1)M \\
 z^{a_1, \ldots, a_{L+1}, D_1 - G_L - (L-1)M} & \text{if } i = G_L + 1, j \leq G_L + km, j > G_L + (km-1)M \\
 0 & \text{otherwise.}
\end{cases}
\]
Hence, if $L > km$, $A_L(1)$ has the form

$$
\begin{pmatrix}
\tilde{A}_L & 0 & \ldots & 0 \\
0 & \ldots & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & 0
\end{pmatrix}
$$

where \tilde{A}_L is the matrix A_L of the generalized de Bruijn digraph of the $(L + 1)$-tuple $(a_1, a_2, \ldots, a_L, a_{L+1} + 1)$ and E_M is the identity matrix of size M.

$A_{km}(1)$ has the form

$$
\begin{pmatrix}
\tilde{A}_{km} & 0 & \ldots & 0 \\
0 & \ldots & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & 0
\end{pmatrix}
$$

Theorem 3.4. The characteristic polynomial of $A_L(1)$ is

$$
\chi(A_L(1))(x) = p(x) \left(x^{(k-1)m} + x^{(k-2)m} + \cdots + 1 \right) x^{G_L + LM - km - n}
$$

where

$$
p(x) = (x^{n+m} - a_1x^{n+m-1} - \cdots - a_{n+m}) - (x^n - a_1x^{n-1} - \cdots - a_n)
$$

is the characteristic polynomial of α.
Proof. First we construct a matrix \(\mathbf{A}' = (a'_{ij})_{1 \leq i, j \leq G_L + L} \) with
\[
\chi(\mathbf{A}_L(1))(x) = \chi(\mathbf{A}')(x) x^{LM-L}.
\]
To get \(\mathbf{A}' \), we define \(\mathbf{P}_h = (p_{ij}^{(h)})_{1 \leq i, j \leq G_L + LM}, 0 \leq h < L, \) with
\[
p_{i,j}^{(h)} := 1 \text{ for all } i \leq G_L + LM,
\]
\[
p_{G_L + hM + 1,j}^{(h)} := 1 \text{ for all } j \text{ with } G_L + hM < j \leq G_L + (h+1)M.
\]
Then
\[
\mathbf{A}' := \mathbf{A} \begin{pmatrix} 1 & 2 & \ldots & G_L + 1 & G_L + M + 1 & \ldots & G_L + (L-1)M + 1 \\
1 & 2 & \ldots & G_L + 1 & G_L + M + 1 & \ldots & G_L + (L-1)M + 1 \\
\end{pmatrix}
\]
where
\[
\mathbf{A} := \mathbf{P}_0 \mathbf{P}_1 \ldots \mathbf{P}_{L-1} \mathbf{A}_L \mathbf{P}_{L-1}^{-1} \mathbf{P}_{L}^{-1} \ldots \mathbf{P}_0^{-1}.
\]
\(\mathbf{A}' \) has the form
\[
\begin{pmatrix}
\mathbf{\hat{A}}_L & 0 & 0 \\
0 & \mathbf{E}_{L-1} & 0 \\
0 & 0 & \vdots
\end{pmatrix}
\]
if \(L > km \) and
\[
\begin{pmatrix}
\mathbf{\hat{A}}_{km} & 0 & 0 \\
0 & \mathbf{E}_{L-1} & 0 \\
0 & 0 & \vdots
\end{pmatrix}
\]
if \(L = km \) respectively.

Since \(\mathbf{\hat{A}}_L \) is the matrix \(\mathbf{A}_L \) of the generalized de Bruijn digraph of the \((L+1) \)-tuple \((a_1, a_2, \ldots, a_L, a_{L+1} + 1) \), it can be transformed to
\[
\begin{pmatrix}
a_1 & 1 & 0 & \ldots & 0 \\
a_2 & 0 & 1 & \cdot & \cdot & \vdots \\
\vdots & \cdot & \cdot & \cdot & \cdot & \vdots \\
a_L & \cdot & \cdot & \cdot & 1 \\
a_{L+1} + 1 & 0 & \ldots & 0
\end{pmatrix}
\]
(see proof of Theorem 2.1). In the transformation, the last row is never added to or subtracted from another row. Because of this and the fact that $a_{ij}' = 0$ for all $i < G, j > G$, we can apply this transformation to the whole matrix A' and get the $(2L + 1) \times (2L + 1)$-matrix A'' which has the form

$$
\begin{pmatrix}
\begin{array}{cccccccccc}
a_1 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
a_2 & 0 & 1 & \ddots & & & & & & \\
\vdots & \vdots & \ddots & \ddots & & & & & & \\
a_L & & & & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
\end{array}
\end{pmatrix}
\begin{pmatrix}
y_0 & y_1 & \cdots & y_{l-1} & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & & \ddots & & \ddots & & \ddots & \\
\vdots & \vdots & \ddots & \ddots & & \ddots & & \ddots & & \ddots & \\
\vdots & \vdots & \ddots & \ddots & & \ddots & & \ddots & & \ddots & \\
\vdots & \vdots & \ddots & \ddots & & \ddots & & \ddots & & \ddots & \\
0 & \cdots & 0 & 1 & 0
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
a_1 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
a_2 & 0 & 1 & \ddots & & & & & & \\
\vdots & \vdots & \ddots & \ddots & & & & & & \\
a_L & & & & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
\end{pmatrix}
\begin{pmatrix}
y_0 & y_1 & \cdots & y_{l-1} & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & & \ddots & & \ddots & & \ddots & \\
\vdots & \vdots & \ddots & \ddots & & \ddots & & \ddots & & \ddots & \\
\vdots & \vdots & \ddots & \ddots & & \ddots & & \ddots & & \ddots & \\
\vdots & \vdots & \ddots & \ddots & & \ddots & & \ddots & & \ddots & \\
0 & \cdots & 0 & 1 & 0
\end{pmatrix}
$$

respectively.

$$
\chi(A')(x) = \chi(A'')(x) x^{G_L - L - 1}
$$

and the y_j, $0 \leq j \leq L$, are given by $y_j := \#(D_j)$ with

$$
D_j = \{ B = (\eta_1, \ldots, \eta_L) \in B_L : (\eta_1, \ldots, \eta_{km}) > (a_{L+2}, \ldots, a_{L+km+1}) \},
$$

$$(\eta_{L-j+1}, \ldots, \eta_L) = (a_1, \ldots, a_j), (\eta_{L+1-h}, \ldots, \eta_L) \neq (a_1, \ldots, a_h) \text{ for all } h > j \}$$

Lemma 3.6. The y_{L-j}, $0 \leq j \leq L$, are recursively given by

$$
y_L = 1, \quad y_{L-j} = \sum_{h=1}^j y_{L-j+h} a_h - \begin{cases} a_{L+j+1} & \text{if } 1 \leq j < km \\ a_{L+j+km+1} + 1 & \text{if } j = km \\ 0 & \text{if } j > km \end{cases}
$$
Proof. \(y_L = 1 \) is obvious.

If \(B = (\eta_1, \ldots, \eta_L) \in D_{L-j} \), let \(h \geq 1 \) be maximal with the property

\[B = (\eta_1, \eta_j, a_1, \ldots, a_{h-1}, \eta_j, a_1, \ldots, a_{L-j}) \]

Then

\[(\eta_1, \ldots, \eta_{j-h}, a_1, \ldots, a_{L-j+h}) \in D_{L-j+h}. \]

If we take a \(L \)-tuple \((\theta_1, \ldots, \theta_{j-h}, a_1, \ldots, a_{L-j+h}) \in D_{L-j+h}, 1 \leq h < j \), then

\[(\eta_1, \ldots, \eta_L) := (\theta_1, \ldots, \theta_{j-h}, a_1, \ldots, a_{h-1}, \eta_j, a_1, \ldots, a_{L-j}) \in D_{l-j} \]

if and only if \(\eta_j < a_h \) and \((\eta_1, \ldots, \eta_L) > (a_{L+j+1}, a_{L+km+1}) \).

If \(j > km \), the definition of \((\eta_1, \ldots, \eta_L) \) guarantees that the last condition holds. If \(j \leq km \), it provides

\[(\eta_1, \ldots, \eta_{j-1}) \geq (a_{L+2}, a_{L+j}). \]

Therefore \((\eta_1, \ldots, \eta_{km}) > (a_{L+2}, \ldots, a_{L+km+1}) \) is violated if and only if

\[j \leq km, (\eta_1, \ldots, \eta_{j-1}) = (a_{L+2}, \ldots, a_{L+j}), \eta_j < a_{L+j+1} \]

or

\[j = km, (\eta_1, \ldots, \eta_{j-1}) = (a_{L+2}, \ldots, a_{L+j}), \eta_{km} \leq a_{L+km+1}. \]

□

We calculate \(\chi(A') \) by expanding \(\det(xI - A') \) at the columns \((2L + 1)\) and \((L + km + 1)\):

\[
\chi(A')(x) = x^{L-km}(x_{km}(x^L - a_1x^L - \cdots - a_Lx - a_{L+1} - 1) + \ldots \ldots) + (-1)^{km}(-1)^{L+km+1+L+2}(x^L - a_1x^L - \cdots - a_Lx - a_{L+1} - 1) \ldots \ldots \\
- (-1)^{L-1}(-1)^{2L+1+L+1} \det(\tilde{A}_L) \ldots \ldots \\
= x^{L-km}(x_{km} - 1)(x^L - a_1x^L - \cdots - a_Lx - a_{L+1} - 1) - \det(\tilde{A}_L) \ldots \ldots \\
= x^{L-km}(x^{(k-1)m} + x^{(k-2)m} + \cdots + 1)(x^{m-1}) \ldots \ldots \\
\times(x^L - a_1x^L - \cdots - a_Lx - a_{L+1} - 1) - \det(\tilde{A}_L) \ldots \ldots \\
\]

where \(\tilde{A}_j, 1 \leq j \leq L, \) is the matrix

\[
\tilde{A}_j = \begin{pmatrix}
 x & -a_1 & 0 & \cdots & 0 \\
- a_2 & x & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
-a_j & 0 & \cdots & 0 & x & -1 \\
-y_0 & -y_1 & \cdots & \cdots & \cdots & -y_j \\
\end{pmatrix}
\]
The conjugates of a non-simple

Lemma 3.7.

the eigenvalue with the largest absolute value, which is shown in Lemma 3.7.

the characteristic polynomial have absolute value less than α_i roots of the characteristic polynomial of A. If we set α_i, then α_i have absolute value less than α_i.

Proof. Set, for $x \neq \alpha_i$, then α_i.

\[
\det(A_L) = -y_L(x^L - a_1x^{L-1} - \cdots - a_L) + \det(A_{L-1}) = \cdots
= -y_Lx^L + (a_1y_L - y_{L-1})x^{L-1} + (a_2y_L + a_1y_{L-1} - y_{L-2})x^{L-2}
+ \cdots + (a_Ly_L + \cdots + a_1y_1 - y_0)
= -x^L + a_{L+2}x^{L-1} + \cdots + a_{L+km+1}x^{L-km+1} + (a_{L+km+1} + 1)x^{L-km}
= -x^{L-km}(x^\alpha - a_{L+2}x^{km-1} - \cdots - a_{L+km}x - a_{L+km+1} - 1)
= -x^{L-km}(x^{(k-1)m} + \cdots + 1)(x^m - a_{L+2}x^{m-1} - \cdots - a_{L+m+1} - 1)
\]

Hence

\[
\chi(A''(x)) = x^{L-km}(x^{(k-1)m} + \cdots + 1)(x^{L+m} - a_1x^{L+m} - \cdots - a_{L+m+1} - 1)
= x^{L+1-km-n}(x^{(k-1)m} + x^{(k-2)m} + \cdots + 1)p(x)
\]

Therefore

\[
\chi(A_L(1))(x) = x^{G_L+L-1+LM-M} \chi(A''(x)) = x^{G_L+LM-km-n}(x^{(k-1)m} + x^{(k-2)m} + \cdots + 1)p(x)
\]

and the theorem is proved.

Hence α_i is an eigenvalue of $A_L(1)$ and the other eigenvalues are 0, the roots of $(x^{(k-1)m} + x^{(k-2)m} + \cdots + 1)$ which are km-th roots of unity and the roots of the characteristic polynomial of α_i. As for simple α_i-numbers, α_i is the eigenvalue with the largest absolute value, which is shown in Lemma 3.7.

Lemma 3.7. The conjugates of a non-simple α_i-number α_i with respect to the characteristic polynomial have absolute value less than α_i.

Proof. Set, for $|x| > 1$,

\[
f(x) := 1 - \frac{a_1}{x} - \frac{a_2}{x^2} - \frac{a_3}{x^3} - \cdots
\]

and, for $|x| < 1$,

\[
g(x) := 1 - f(x^{-1}) = \sum_{j=1}^{\infty} a_jx^j.
\]

Then, for the same reasons as in the proof of Lemma 3.2, the roots of $f(x)$ have absolute value less than α_i for $x \neq \alpha_i$.

If we set

\[
p_k(x) := p(x)(1 + x^m + x^{2m} + \cdots + x^{(k-1)m}),
\]

then

\[
p_k(x) = (x^{n+km} - a_1x^{n+km-1} - \cdots - a_{n+km}) - (x^n - a_1x^{n-1} - \cdots - a_n).
\]
With \(q_k(x) := x^{-n-km}p_k(x) \) we have
\[
q_k(x) = (1 - \frac{a_1}{x} - \cdots - \frac{a_{n+km}}{x^{n+km}}) - \left(\frac{1}{x^{km}} - \frac{a_1}{x^{km+1}} - \cdots - \frac{a_n}{x^{n+km}} \right)
\]
and, for \(|x| > 1 \), \(q_k(x) \to f(x) \) as \(k \to \infty \).

Therefore \(f(x) = 0 \) is a necessary condition for \(p(x) = 0 \), \(|x| > 1 \), and the roots of \(p(x) \) have absolute value less than \(\alpha \) for \(x \neq \alpha \).

Since \(q_k'(\alpha) > 0 \) for some sufficiently big \(k \), \(\alpha \) is a simple root of \(p(x) \) and the lemma is proved. \(\square \)

Hence Lemma 3.3, Theorem 3.1 and Theorem 3.2 are also valid for non-simple \(\alpha \)-numbers, whereas the proof of Theorem 3.3 cannot be directly applied since it uses properties of non-negative matrices and \(A_L(1) \) contains negative elements in this case.

References

