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ABSTRACT

This paper addresses the problem of modeling stationary

color dynamic textures with Gaussian processes. We detail

two particular classes of such processes that are parameter-

ized by a small number of compactly supported linear filters,

so-called dynamical textons (dynTextons). The first class ex-

tends previous works on the spot noise texture model to the

dynamical setting. It directly estimates the dynTexton to fit

a translation-invariant covariance from the exemplar. The

second class is a specialization of the auto-regressive (AR)

dynamic texture method to the setting of space and time sta-

tionary textures. This allows one to parameterize the process

covariance using only a few linear filters. Numerical exper-

iments on a database of stationary textures shows that the

methods, despite their extreme simplicity, provide state of the

art results to synthesize space stationary dynamical texture.

Index Terms— Dynamic texture, texture synthesis, au-

toregressive process, spot noise.

1. INTRODUCTION

The modeling of dynamic textures, referring to image se-

quences that exhibit spatial and temporal regularities [1, 2],

attracts much attention in image analysis [1, 2, 3, 4, 5]. This

paper focuses on simple texture models, namely stationary

Gaussian processes, to compute compact texture representa-

tion for synthesis.

Modeling stationary dynamic textures By “stationary dy-

namic textures” (SDTs), we refer to dynamic textures with

stationarity in space and in time, as those studied in [6]. Early

attempts to model SDTs include the spatio-temporal autore-

gressive (STAR) model [1], which creates locally space-time

models for individual pixels relying on 3D causal neighbors.

But there is no clear reason that the spatial neighbors should

be causal. Bar-Joseph et al. [3] proposed a 3D wavelet trans-

form to construct multi-resolution trees for synthesizing dy-

namic textures. However, the manipulation of such wavelet

coefficients is not trivial. Following the idea of Efros and Le-

ung [7], patch-based methods are adapted to synthesize sta-

tionary dynamic textures, see [8, 9]. But real modeling of
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the texture content of videos is required to lead better under-

standing of dynamic textures. The most recent approach that

is capable of modeling the spatio-temporal texture content of

SDTs is the one proposed by Doretto et al. [6], by using dy-

namic multiscale autoregressive (AR) models and a linear dy-

namic system (LDS) [2]. The stationary nature of SDTs is not

well investigated by this method and this results in unneces-

sarily large models.

Dynamic textures with Gaussian processes. Exploiting

the spatial correlations of pixels indeed enables to build more

compact representations of textures, see [1, 10, 11]. Recently,

a compact Gaussian texton has been proposed for stationary

2D textures [12]. The investigation of such Gaussian tex-

tons for stationary dynamic textures is thus interesting but

has never been addressed. The LDS models [6] often need

a dimensional reduction step, e.g. PCA, to establish the AR

processes. However, understanding the covariance operator

of stationarity AR processes as a convolution, we are able to

avoid the dimensional reduction step, reduce the model size

and effectively speed up the computation.

Contributions This paper studies two kinds of Gaussian

models for SDTs: the spot noise model and the stationary

AR model. We investigate the parameter estimation problems

and finally propose compact dynamic texture representations,

which lead to fast analysis and synthesis of SDTs.

2. STATIONARY DYNAMIC TEXTURES

This paper concentrates on the modeling of dynamic tex-

tures, presented by deterministic videos f ∈ R
N×T×d where

N is the number of spatial pixels in each frame, T is the num-

ber of frames, and d is the number of channels (d = 1 for

gray-scale videos and d = 3 for color ones). We use the nota-

tion f = (f t
i (x))i,t,x, with i = 1, . . . , d indexing the channel,

t = 1, . . . , T indexing time and x = (x1, x2) ∈ {0, . . . , n1 −
1} × {0, . . . , n2 − 1} indexing the 2-D pixel location where

N = n1 × n2. We also use f t = (f t
i (x))i,x ∈ R

N×d to

denote a single frame.

We model a dynamic texture as a Gaussian random vector

X in space and time, which is a mapping X : Ω → R
N×Z×d

with Ω as some probability space (observe we index time do-

main by Z and do not introduce an artificial initial time.)



For simplicity, we assume periodic boundary conditions

in space in the following exposition, and we will tackle non-

periodic input videos by computing their periodic compo-

nents in Section 5. Stationarity of a dynamic texture implies

that X = (Xt)t∈Z has the same distribution as (Xt+τ (·+d))
for any shift (τ, d) ∈ Z × Z

2.

The 2D Fourier transform of a gray-scale image g ∈ R
N

is defined as

∀ω = (ω1, ω2), ĝ(ω) =
∑

x=(x1,x2)

g(x)e
2iπ

“

ω1x1

n1
+

ω2x2

n2

”

.

The Fourier transform of a color image is obtained by con-

catenating the Fourier transforms of all the d channels of the

image. This formula is also extended to videos f ∈ R
N×T×d

to define f̂(ω, ξ) ∈ R
d where ξ ∈ {0, . . . , T − 1} is the time

frequency.

3. SPOT NOISE GAUSSIAN DYNTEXTONS

3.1. Spot noise (SN) models

Given some deterministic input exemplar f ∈ R
N×T×d,

it makes sense to learn from f the parameters of a Gaussian

model using the maximum likelihood estimator (MLE). It can

be shown to be equal to the SN model introduced by [13]. A

random field X = (X1, . . . , Xd) distributed according to the

Gaussian SN S ∈ R
N×Z×d associated to f = (f1, . . . , fd) ∈

R
N×T×d reads

∀ j = 1, . . . , d, Xj = mj + Sj ⋆ W (1)

where mj is the space-time average, ⋆ is the space-time con-

volution (infinite in time and periodic in space) defined for

h, g ∈ R
N×Z×d as, for all j = 1, . . . , d,

(h ⋆ g)t
j(x) =

∞∑

t=−∞

∑

y

ht−τ
j (x − y)gτ

j (y) (2)

and W are i.i.d. Gaussian noises, i.e. W t(x) ∼ N (0, 1√
NT

).

To compute the space-time convolution with f ∈ R
N×T×d,

one should extend f to zero when t 6 0 and t > T . The

covariance of X can be estimated by using the empirical au-

tocorrelation of f ,

∀ i, j = 1, . . . , d, Si ⋆ S̃j = fi ⋆ f̃j (3)

where S̃t
j(x) = S̃−t

j (−x).

3.2. Learning SN-dynTextons

In numerical applications, the input video is not periodic

in space and only has a finite number of time frames. As de-

tailed in Section 5, a simple preprocessing replaces this input

with a space and time periodic video f ∈ R
N×T×d. For the

learning stage, we thus replace the SN model Equation (3)

by Si⋆S̃j = fi⋆f̃j where ⋆ is the space-time finite periodic

convolution, replacing the integration of t over (−∞,+∞)
by {0, . . . , T − 1} in Equation (2). This is equivalent to

imposing, for all j ∈ {1, . . . , d}, ξ ∈ {0, . . . , T − 1} and

ω ∈ {0, . . . , n1 − 1} × {0, . . . , n2 − 1},

Ŝj(ω, ξ) = f̂j(ω, ξ)û(ω, ξ), s.t. |û(ω, ξ)| = 1. (4)

Following [12], we restrict our attention to a small family

S = S[δ] of textons parameterized by δ ∈ R
d. This texton is

defined by using û = ûδ in (4), where

ûδ(ω, ξ) =
ĉδ(ω, ξ)

|ĉδ(ω, ξ)|
where ĉδ(ω, ξ) =

d∑

j=1

f̂j(ω, ξ)∗δj .

We define the SN-dynTextons S = S[δ] where δ minimizes

a quadratic spatial compactness criterion E(Ŝ[δ]). This cri-

terion equivalently measures the smoothness of Ŝ. A classi-

cal choice, already used in [12], is a Sobolev norm E(S) =∑
ξ,ω ‖∇Ŝ(ω, ξ)‖2 where ∇ is a finite difference approxima-

tion of the color gradient operator. In practice, we minimize

E by gradient descent using several random initialization. An

example of such SN-dynTextons is displayed in Figure 1.

The obtained SN-dynTexton S ∈ R
N×T×d is a periodic

3-D filter. Numerical experiments show in Section 6 that in

practice it has a fast temporal decay. It can thus be extended

by zero padding when t 6 0 and t > T . This produces an

infinite time filter S ∈ R
N×Z×d that can be used to define the

model in (1).

4. AR GAUSSIAN DYNTEXTONS

4.1. Stationary AR processes

To reduce the number of parameters required to setup a

stationary texture model, we follow [2] and assume X is an

autoregressive Gaussian random field of order p (AR(p)).
Since we assume space and time stationarity, such a field

must have a finite variance and obey the following iterative

relation, for each i = 1, . . . , d,

Xt
i = mi +

p∑

τ=1

d∑

j=1

aτ
i,j⋆Xt−τ

j +

d∑

j=1

bi,j⋆W t−τ
j (5)

where mi is the average, ⋆ is the 2-D spatial convolution

in R
N , and W t

j are i.i.d Gaussian noises as W t
j (x) ∼

N (0, 1√
N

), and (a, b) = (aτ
i,j , bi,j)i,j,τ is a family of 2-D

spatial filters.

4.2. Learning dynamic texture parameters

The parameters (a, b) of the model are learned from a

single input video f by solving the Yule-Walker equations,

adapted to the space-time stationary setting.



Learning the a parameters. This approach can be derived

by first computing a least square fit of a, assuming that b = 0.

Using the space stationarity, this can be re-written over the

Fourier domain as solving, independently for each ω

min
â(ω)

T∑

t=p

d∑

i=1

|Rt
i(ω)|2, where

R̂t
i(ω) = X̂t

i (ω) −

p∑

τ=1

d∑

j=1

âτ
i,j(ω)X̂t−τ

j (ω) (6)

Dropping the dependency on ω to ease readability, introduc-

ing the block of frames X̂ [τ ] = (X̂(ω)t−τ )T
t=p ∈ C

(T−p)×d

and âτ = (âτ
i,j(ω))i,j ∈ C

d×d, this minimization reads

min
â(ω)

||X̂ [0] −

p∑

τ=1

X̂ [τ ]âτ ||2

where || · || is the Frobenius norm of matrices in C
(T−p)×d.

The solution of this minimization requires to solve the fol-

lowing linear system of the variables â[τ ]

∀ δ = 1, . . . , p,

p∑

τ=1

Cδ,τ âτ = Cδ,0

where Cδ,τ = (X̂ [δ])∗(X̂ [τ ]) ∈ C
d×d. This can be achieved

using a fast conjugate gradient solver (with hermitian system).

Learning the b parameters. Once a is learned, one com-

putes the empirical residual R̂ as defined in (6), which is sup-

posed to be, for each t, a realization of N (0, b̂(ω)b̂(ω)∗). One

computes b̂(ω) = (b̂i,j(ω))i,j ∈ C
d×d as any factorization

Σ̂(ω) = b̂(ω)b̂(ω)∗ of the empirical covariance

∀ i, j = 1, . . . , d, Σ̂(ω)i,j =
1

T

T∑

t=1

Rt
i(ω)Rt

j(ω)∗.

One can for instance use the Cholesky factorization, which

ensures that bi,j = 0 for i > j, thus reducing to d(d + 1)/2
the number of filters to be stored.

Observe that (a, b) have compact support, meaning decay

very fast, in space for stationary dynamic textures. Figure 1

shows the learned (a, b) for a dynamic texture video.

5. STATIONARY DYNAMIC TEXTURE SYNTHESIS

Notice that the learned SN-dynTextons has compact sup-

port in space and time and the filters associated with AR-

dynTextons decay very fast in space. Thus, we can threshold

both dynTextons for dynamic texture synthesis. The compact

dynTextons will almost enable causal and online synthesis.

Synthesis with SN-dyntextons. Once the compact SN

model S has been learned, the synthesis of a texture g ∈
R

N×Z×d is obtained by using a realization of the Gaussian

process, for instance, relying on the convolution formula (1).

Synthesis with AR-dyntextons. Given an exemplar video

f , the synthesis of a texture g ∈ R
N×Z×d is obtained by driv-

ing the AR process in Equation (5) with white Gaussian noise

and learned filters (a, b). The initial frames can be set to im-

ages filled by zeros, and the process evolves to a stationary

state quickly. Observe that this model enables online synthe-

sis thanks to the causal filters.

Non-periodic boundary conditions. For a non-periodic in-

put video f , in order to meet the periodic boundary condi-

tions, we compute its periodic component by relying on the

FFT-based Poisson solver in [14]. More precisely, for SN-

dyntextons, we compute the 3D space-time periodic compo-

nents and for AR-dyntextons, we need to compute the 2D pe-

riodic component for each frame.

Texture synthesis with arbitrary size. Our framework

enables to synthesize dynamic texture with arbitrary size in

space and in time. The only change is to derive the dynamic

processes with a Gaussian noise of the expected size.

6. NUMERICAL RESULTS

In order to test the proposed algorithms, we compiled a

dataset of stationary dynamic textures1 containing 27 differ-

ent color dynamic textures. It includes dynamic sequences

of boiling water, clouds, fire, fog, fountain, waterfall, snow,

ocean waves, ponds, and steam. Figure 1 presents the re-

sults of analysis and synthesis on the exemplar texture mov-

ing goldenlines and waterfall. Figure 1(b) shows that the

learned dynTextons decay very fast in space and time. Fig-

ure 1(c)-(d) and (e)-(f) compare the synthesized results of

those using full-size dynTextons and truncated dynTextons. It

demonstrates that thresholding the dynTextons does not affect

the synthesized results, due to their compactness. Moreover,

we observe that the synthesized results of these two Gaus-

sian models are visually comparable. In particular, compared

with the LDS model [6], in which case the a matrix is of size

N × N , the proposed AR-dyntextions are much more com-

pact. More results and videos can be found in the link http:

//www.enst.fr/∼xia/dynTextures.html.

7. CONCLUSION

This paper introduced two compact representations of

stationary dynamic textures using Gaussian processes. Both

models enable fast analysis and synthesis of dynamic tex-

tures. Besides synthesis, these compact representations could

also be used for dynamic texture recognition and video com-

pression.
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