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Targets of only a few pixels are notoriously di�cult to acquire. Despite many attempts at facilitat-
ing pointing, the reasons for this di�culty are poorly understood. We con�rm a strong departure
from Fitts’ Law for small target acquisition using a mouse and investigate three potential sources of
problems: motor accuracy, legibility, and quantization. We �nd that quantization is not a problem,
but both motor and visual sizes are limiting factors. This suggests that small targets should be
magni�ed in both motor and visual space to facilitate pointing. Since performance degrades expo-
nentially as targets get very small, we further advocate the exploration of uniform, target-agnostic
magni�cation strategies. We also con�rm Welford’s 1969 proposal that motor inaccuracy can be
modeled by subtracting a \tremor constant" from target size. We argue for the adoption of this
model, rather than Fitts’ law, when reecting on small target acquisition.
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1. INTRODUCTION

Common computer tasks such as window resizing and text selection require pointing at items of only
a few pixels. In mobile devices, small items are also common and notoriously dif�cult to acquire.
Such problems have repeatedly been mentioned in the past, and a variety of approaches have been
proposed to ease the acquisition of small targets [Kabbash and Buxton 1995; Worden et al. 1997;
Ren and Moriya 2000; Albinsson and Zhai 2003; Cockburn and Firth 2003; Cockburn and Brewster
2005; Ramos et al. 2007; Chapuis and Roussel 2010]. Each of them has advantages and drawbacks
and new solutions are still actively being explored. However, surprisingly little is known about the
reasons why very small targets are so dif�cult to acquire. Answering that question can not only
better guide future research and inform future designs, but can also help choosing among existing
approaches and re�ning them.

Since Fitts’ law [Fitts 1954] is routinely used to motivate and inform research on pointing facil-
itation techniques, we �rst discuss its suitability as a conceptual framework in the context of small
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target acquisition. We also show why taken together, previous studies on pointing do not provide a
clear picture of why small targets are dif�cult to acquire.

We then present a study in which three potential sources of problems are investigated in mouse
pointing: motor accuracy, legibility and quantization (i.e., the fact that the mouse cursor moves by
single-pixel increments). Most small target acquisition tasks considered in the Human-Computer
Interaction literature combine at least these three problems, and we show how new insights can be
gained from a separate assessment of these three factors.

1.1. Fitts’ Law and Small Target Acquisition Techniques

In addition to being a powerful predictive theory, Fitts’ law has often been employed in HCI as
a prescriptive and generative theory in order to guide, motivate and justify designs [Kabbash and
Buxton 1995; Worden et al. 1997; Zhai et al. 2000; Balakrishnan 2004; Blanch et al. 2004; Grossman
and Balakrishnan 2005; Kobayashi and Igarashi 2008]. However, it is also understood that Fitts’
Law only holds within certain limits [MacKenzie 1992; Plamondon and Alimi 1997; Accot and
Zhai 2001; Guiard 2009].

Fitts’ Law has often proved to be an extremely good predictor of pointing performance under a
wide range of conditions and one could question the need for more complex models [Van Galen and
De Jong 1995]. In this section we discuss why Fitts’ law is actually not an adequate paradigm for
justifying and guiding the design of small target acquisition techniques, even when used as a �rst
approximation. We then list the bene�ts one can expect from more systematic investigations into
that topic.

Fitts’ Law is not an Adequate Model for Small Target Acquisition Techniques. It seems natural to
appeal to Fitts’ law to motivate a new small target acquisition technique. Fitts’ law does predict that
small targets are harder to acquire than larger ones. But Fitts’ law is �rst of all a law about scale
invariance, stating that acquisition time depends solely on D=W , the ratio between target distance
(D) and target width (W ). D is hence as important as W and nothing in Fitts’ law justi�es a particular
focus on target size.

Fitts’ law additionally predicts that acquisition time increases approximately logarithmically with
D=W , which implies that increasing target size should not have a particularly strong impact on
movement time. For example, if W = 1 and D = 64, the target theoretically needs to be expanded
by 9 to yield a movement twice as fast1. Conversely, shrinking a target should not strongly penalize
movement time.

However, a number of observations suggest that this is not the case when targets are already small.
Performance seems to degrade very rapidly when the target size falls below a certain threshold,
typically below 4 or 5 pixels [Ren and Moriya 2000; Albinsson and Zhai 2003; Ramos et al. 2007].
Sometimes, acquisition time and error rate explode: in one study [Ramos et al. 2007], users missed
a 1-pixel target more than ten times in a row in 25% of the trials.

Such observations suggest a strong scale effect by which small-scale pointing tasks are more
dif�cult than large-scale ones. It is this observed violation of Fitts’ law � and not Fitts’ law itself �
which best justi�es the design of small target acquisition techniques.

Fitts’ Law does not Provide Adequate Guidelines for Small Target Acquisition Techniques. When
used as a prescriptive and generative model for designing pointing facilitation techniques, Fitts’
Law exclusively advocates the use of target-aware pointing facilitation approaches and is not able
to discriminate between them. We explain why, and why this is problematic.

1This assumes the Shannon formulation [Mackenzie 1991]. In the case of a non-negligible positive intercept a, the target
expansion required can be much larger.
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Among the many possible approaches for facilitating pointing, there has been a large amount of
research on target-aware pointing techniques, i.e., techniques that use a-priori knowledge about po-
tential targets. Most of these techniques reduce D=W by manipulating target widths and/or distances
in the motor and/or the screen space [Balakrishnan 2004]. Some of them, like sticky targets [Cock-
burn and Firth 2003; Cockburn and Brewster 2005] and area cursors [Kabbash and Buxton 1995;
Worden et al. 1997; Chapuis et al. 2009], have been speci�cally proposed as a solution to the small
target problem.

Although Fitts’ law provides theoretical support for the idea of reducing D=W (by decreasing
D, increasing W , or both), it does not adequately capture the problem with small targets. First of
all, Fitts’ Law might actually underestimate the improvement obtained when expanding very small
targets. Recall that it only predicts a weak effect of target expansion on movement time, no matter
the original target size. It does not say anything about the effects of expanding a target above a
�critical threshold�. Similarly, Fitts’ law is indifferent to the method used to reduce D=W . It does
not predict that reducing D might not be as ef�cient as increasing W , in case W is very small.

Finally, according to Fitts’ Law, the only way to reduce movement time is to reduce D=W , i.e., to
adopt a target-aware strategy. But these strategies are limited [Balakrishnan 2004]: they essentially
consist in redistributing targets to have their D=W ratios better match their probability of acquisition
� a special case being removing intervening spaces with zero click probability [Guiard et al. 2004].
But often there is little or no space to remove, e.g., when using a color picker in an image authoring
application.

Simple target-agnostic approaches are nonetheless possible that might facilitate acquisition de-
spite leaving D=W unchanged. They consist in increasing all W ’s and D’s in the same proportions,
i.e., a uniform magni�cation solution. As in target-aware techniques, magni�cation can be per-
formed in the screen space, in the motor space, or in both. Examples of screen-space magni�cation
techniques are software screen magni�ers [Kline and Glinert 1995] and �sheye views [Furnas 1986].
Lowering the control/display (C-D) gain yields a uniform motor-space magni�cation [Casiez et al.
2008]. Zooming magni�es both screen and motor space [Bederson et al. 1996; Ramos et al. 2007;
Roudaut et al. 2008]. But since they all leave D=W unchanged, none of these techniques can be
adequately motivated or designed using Fitts’ Law as a conceptual framework.

1.2. Key Questions

We argue that the following three questions regarding small targets are worth investigating due to
their potential implications for design:

(1) Is there any small-scale effect? That is, when D=W is �xed, are tasks where W is very small
more dif�cult? If the answer is no, it would imply that any target-aware approach could be
the way to go. If it is true, it would imply that a) among the possible target-aware strategies,
expanding W should work better than reducing D and b) target-agnostic magni�cation strategies
deserve more attention.

(2) What are the causes of the small-scale effect? Assuming there is a small-scale effect, it is still
unclear whether target expansion should be performed in the screen space, in the motor space, or
both. Answering these questions requires identifying, isolating and testing the potential sources
of dif�culty in small target acquisition tasks.

(3) What would be a good model of small target acquisition? Assuming effective pointing facil-
itation strategies can been identi�ed, it is still unclear how to tune them. For example, will a
magni�cation of 4x be enough? With such a magni�cation, what gain in performance can be
expected? Being able to predict user performance with small target acquisition tasks will help
answering these questions.
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With respect to our second question above, we investigate three potential sources of problem with
small targets:

(a) Motor scale: Targets that are small in motor space could be dif�cult to acquire because they
demand too much motor precision.

(b) Visual scale: Targets that are small in screen space are dif�cult to see, which could make their
acquisition more challenging.

(c) Quantization: By quantization we refer to the motion of the mouse pointer by discrete (usually
single-pixel) increments. Quantization is much more noticeable when moving 4 pixels to click
on a 1-pixel target than when moving 400 pixels to click on a 100-pixels target, and this could
also be a source of dif�culty.

Note that other sources of problems in small-scale target acquisition tasks have been mentioned
in the literature:

(d) �Fat �nger� problem: On touch devices, the relatively large contact area of the �nger makes it
dif�cult to acquire small targets because it is not clear for the user where the cursor’s hot spot
exactly lies within this area [Holz and Baudisch 2010].

(e) Parallax: On some touch screens and screen tablets, parallax � i.e., systematic deviation between
the location of the device or �nger and the cursor’s hot spot � is also known to impede pointing
on small targets [Ramos et al. 2007].

(f) Physical occlusion: On touch screens, the �nger can occlude small targets and make their ac-
quisition challenging [Sears and Shneiderman 1991].

(g) Landing and take-off imprecision: On pen-based devices, landing the stylus on the surface of the
tablet or taking off the stylus in order to acquire a small target is error-prone [Ren and Moriya
2000].

These last four issues are device-dependent and none of them affects standard desktop computer
pointing, i.e., pointing with a computer mouse and a computer display2. In this article, we choose
to solely focus on the �rst three potential sources of problem listed above as they are intrinsic to all
small target pointing tasks. We believe that taken together, they form a general and rather complete
de�nition of the concept of �small target�.

Note that C-D gain is absent from our list, despite the fact that targets that are small only in the
motor space or only in the visual space will yield high or low C-D gains, which could in turn impact
performance. We omitted C-D gain because C-D gain only captures the ratio between visual and
motor scales and says nothing about task scale. For example, if high C-D gain per se is believed to
impact performance, then it should impact performance both for small-scale and large-scale pointing
tasks in motor space. Conversely, if a high C-D gain is found to impact performance only for small
motor scales, then the problem should be attributed to a small-scale effect with motor scale, not to
C-D gain.

Motor scale, visual scale and quantization have not received the same amount of attention in
HCI. Motor scale is often seen as the only limiting factor and visual scale has been largely ig-
nored [Kabbash and Buxton 1995; Worden et al. 1997; Accot and Zhai 2001; Albinsson and Zhai
2003; Cockburn and Firth 2003; Cockburn and Brewster 2005; Chapuis et al. 2009]. The third prob-
lem (quantization) is rarely raised, as it is often assumed that a computer screen provides a smooth
and continuous feedback on pointing. We however chose to test its effects, because the continuity
assumption does not hold anymore when acquiring targets of only a few pixels in size: jumps of

2It is possible that the mouse cursor can occasionally occlude small targets. We do not address this potential issue here and
control for it in our experiments.
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Fig. 1. Quantization in computer pointing tasks. (a) observed motion of the cursor on the screen as a function of physical
mouse motion (stepped curve). The target is 12 steps away from the cursor’s origin and has 4 slots to accomodate it ; (b)
illustration with a right-to-left pointing of 1-pixel steps. (c) same function for a pointing task with double quantization (or
half resolution) ; (d) illustration.

the mouse cursor start to get very noticeable near the target and are not easy to predict. It is thus
reasonable to assume that they might introduce uncertainty and affect pointing performance.

In the next section we clarify the notion of task scale and the terms visual scale, motor scale and
quantization.

1.3. Task Scale and Quantization

Since task dif�culty depends on both W and D, it is helpful to think in terms of task scale rather than
target size per se. Task scale is dif�cult to de�ne in absolute terms [Guiard 2009] but relative task
scale is a straightforward concept. The scales of different pointing tasks can be expressed relatively
to each other if they share the same D=W ratio. For example, the scale of a task can be said to be
twice the scale of another task if both the target size and distance are twice as large.

In con�gurations involving a mouse and a digital display, we must specify which scale we are
talking about. There are three different measures of scale: visual scale, motor scale and resolution
(the inverse of quantization). Visual and motor scale are well-understood concepts but the notion of
quantization calls for a more careful examination.

In this article quantization refers to the subdivision of cursor movements into discrete incre-
ments. Since single pixels also count as increments, there is always quantization in mouse pointing
tasks, unless both the mouse sensors and the display have in�nite resolution. Note that although
quantization is observed on the screen, it does not matter if it originates from the screen, from the
input sensors, or from both. The result is always a cursor moving in discrete steps as a response to
continuous motions of the mouse.

Like visual scale and motor scale, de�ning quantization as an absolute measure is dif�cult, but
it can easily be expressed in relative terms. We de�ne relative quantization and its inverse, relative
resolution as follows:

� The quantization of a pointing task is k times the quantization of another task when both the
number of increments required to reach the center of the target and the number of possible cursor
locations inside the target are divided by k (see Figure 1).

� The resolution of a pointing task is k times the resolution of another task when both the number of
increments required to reach the center of the target and the number of possible cursor locations
inside the target are multiplied by k.

Our de�nition of quantization departs from two previous publications on C-D gain [Jellinek and
Card 1990; Casiez et al. 2008], where quantization was de�ned as a problem that appears when �the
maximum resolution of the control device together with a high C-D gain prevents every pixel from
being addressable on the display� [Casiez et al. 2008]. But this de�nition captures a different issue
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Fig. 2. Target misalignment between visual and motor spaces. On the top, thin lines show boundaries between pixels
(only the horizontal dimension is considered). Thick lines show all pixels addressable by the mouse cursor (C-D gain of 8
pixel=dot), and those with a round dot fall within a target. Rectangles below reveal actual targets in motor space. a) and b):
the targets in screen and motor spaces are offset but their sizes match. c) to f): there is a mismatch between target sizes. We
avoid these situations in our experiments.

� i.e., a possible misalignment of targets between the screen and motor spaces � that is more of a
design problem than a fundamental property of pointing tasks.

This is illustrated in Figure 2. Here pointing can be dif�cult not only because of quantization
as we de�ne it, but also because the user is not being shown the actual targets in the motor space.
Furthermore, if a Fitts experiment is conducted with IDs computed in the screen space, serious
drops in performance might be observed not because of quantization or erroneous target display, but
simply because the IDs are wrong. Taking Figure 2e as an extreme example, the target cannot be
addressed at all, so a pointing experiment would yield in�nite movement time for a 3-pixel target.
Although such a bad performance could be explained in terms of mouse quantization problems, it
is simpler to attribute it to the fact that the target has zero size in motor space and task ID is hence
in�nite.

These issues vanish if targets on the screen are always perfectly aligned with targets in the motor
space. In other terms, target boundaries should fall between two cursor increments. In Figure 2, this
would mean aligning the targets above to the targets below. In the rest of this article, we will assume
this is always the case.

Note that our simple de�nition of quantization is consistent with the general meaning of the term3.
It also has the advantage of avoiding con�ations with other factors. Quantization is a separate con-
cept from C-D gain because we can keep C-D gain � de�ned as a ratio of metric quantities � constant
while varying pointing resolution and vice-versa. Pointing resolution can also be manipulated while
keeping W and D � as expressed in metric units � constant in the visual and in the motor space. With
respect to visual and motor scale, resolution is just another way of measuring task scale.

2. RELATED WORK

In this section, we brie�y recall previous work on small target acquisition techniques. Also relevant
to our three key questions are previous investigations into scale effects in Fitts’ law and some of the
proposed alternatives to Fitts’ law.

2.1. Small Target Acquisition Techniques
There has been considerable interest for pointing facilitation techniques, especially for helping with
the acquisition of small targets. These techniques have been designed and tested on different types
of hardware.

3From Merriam-Webster’s online dictionary, to quantize: to subdivide (as energy) into small but measurable increments.
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Desktop and laptop interfaces. Motor-space target-aware magni�cation of small targets is prob-
ably the most popular approach, and a number of studies have con�rmed its usefulness [Cockburn
and Firth 2003; Cockburn and Brewster 2005; Kabbash and Buxton 1995; Worden et al. 1997;
Blanch et al. 2004; Mandryk and Gutwin 2008]. Another strategy is providing cursor-in-target vi-
sual or auditory feedback, but it has been shown to yield marginal improvements at best [Cockburn
and Brewster 2005; Cockburn and Brock 2006].

Pen-based devices. Ren et al. compared different landing and take-off strategies for selecting
targets on a digitizing tablet and found 5 pixels (1.8 mm) to be a critical target size [Ren and Moriya
2000]. Ramos et al. showed that pressure-activated zooming lenses dramatically facilitate pointing
for targets less than 4 pixels (1.1 mm) [Ramos et al. 2007].

Touch screens. By suppressing �nger occlusion, the take-off technique was shown to reduce errors
on touch-screens, but tiny targets were still extremely slow to acquire [Sears and Shneiderman
1991]. Albinsson et al. proposed the use of discrete taps or a levering scheme that magni�es motor
space [Albinsson and Zhai 2003]. They found both methods to be useful for targets of 1 pixel
(0.4 mm), but zooming was found to be the fastest of all. The authors still advocated motor-space
approaches in accordance with the belief that, in pointing, �the limitation is in control, not visual
resolution� [Albinsson and Zhai 2003], head of the second column of page 106.

Taken together, these studies provide enough anecdotal evidence for a small-scale effect and
suggest ways to overcome it, with a strong focus on motor-space target-aware strategies. Other
than pointing out a critical target size threshold, however, they have little explanatory power and
generalizability. Fitts’ law analyses are either absent or deemed inconclusive � with the exception
of two studies that exhibited a good �t but with a single target size condition4 [Cockburn and Firth
2003; Cockburn and Brewster 2005]. Also, it is not clear what exact problems each of the techniques
solves, especially on pen and touch devices, where the �fat �nger� problem, occlusion, parallax
and landing/take-off imprecision can also affect pointing. Finally, most techniques have several
parameters � e.g., magni�cation factor � whose values seem to be chosen arbitrarily and vary
across studies.

2.2. Small-Scale Effects in Fitts’ Law Studies
Although scale effects have been studied for very small or very large movement amplitudes [Langolf
et al. 1976; Zhai et al. 1996; Balakrishnan and MacKenzie 1997; Kostakos and O’Neill 2008; Casiez
et al. 2008], here we primarily focus on scale effects caused by small target widths.

Fitts’ Law studies have been initially conducted on physical apparatuses with equal visual and
motor scale and no quantization [Fitts 1954]. Under these conditions, several early analyses ob-
served disparities in the relative contributions of D and 1=W to movement time, suggesting a prob-
lem with targets that are small in both the motor and the visual spaces (for reviews, see [MacKenzie
1992; Plamondon and Alimi 1997]). In particular, it was observed that �reductions of target width
cause a disproportionate increase in movement time compared to similar increases in movement
amplitude� [MacKenzie 1992]. Similar observations have been made with error rates [MacKenzie
1992; Wobbrock et al. 2008]. However, these studies do not consider the separate effects of visual
size, motor size and quantization.

Langolf et al. studied target acquisition under a wide range of motor scales using microscope
magni�cation [Langolf et al. 1976]. The pointing throughput was found to depend on movement
amplitude, but when D was �xed, acquisition time followed Fitts’ law, suggesting no motor accuracy
issue even with very small targets (0.076-1.07 mm). Similarly, Guiard et al. used a double-scale
visual magni�cation scheme to test high IDs and found the performance to degrade on very small

4Note that this is consistent with Welford’s tremor model (Section 2.3, Equation 4).
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targets (0.06 mm) using a puck but not using a stylus [Guiard et al. 1999]. They postulated that with
a precision grip �the likely limiting factor for tolerance [W ] is vision, not motor control�, which
contradicts other intuitions [Accot and Zhai 2001; Albinsson and Zhai 2003].

Studies on C-D gain typically manipulate the scale of pointing tasks in the motor space while leav-
ing the visual space unchanged. Despite inconsistent �ndings (for a review, see [Casiez et al. 2008]),
human performance has often been found to be an inverted U-shaped function of C-D gain [Accot
and Zhai 2001; Casiez et al. 2008]. Since most studies increase C-D gain by reducing motor pointing
scale, the drop in performance observed for very large C-D gains might be due to a motor accuracy
problem. Some postulated it could be due to the fact that not all pixels are addressable [Jellinek and
Card 1990; Casiez et al. 2008]. But as discussed in Section 1.3, it is not clear whether the cause
would be the misalignment of targets between visual and motor spaces, the arti�cial reduction of
targets in the motor space, or the quantization of cursor movement as we de�ne it. With an ultra
high-resolution mouse, Casiez et al. still observed a slight decrease in performance for high C-D
gains that they attributed to a motor accuracy issue [Casiez et al. 2008]. Similarly, a slight drop in
performance was observed for steering tasks that are small in the motor domain and was attributed
to motor noise [Accot and Zhai 2001].

Taken together, these studies suggest that motor scale, visual scale and quantization might all
contribute to the small-scale effect. However, the relative importance given to these factors varies
considerably across studies. As observed before [Accot and Zhai 2001], scale effects are not well-
documented in the literature and results are �scattered and controversial�. This is partly due to the
use of different input devices (e.g., pen vs. mouse) and/or different muscular groups [Langolf et al.
1976; Zhai et al. 1996; Balakrishnan and MacKenzie 1997; Guiard et al. 1999] across studies. It is
arguably dif�cult to study all possible hardware con�gurations. That being said, a study that would
measure the separate effects of motor scale, visual scale and quantization on a single hardware
con�guration would be very helpful in understanding the small-scale effect. To the best of our
knowledge, there has been no such study before.

2.3. Alternatives to Fitts’ Law

A number of modi�cations to Fitts’ law have been proposed to improve its �t with observed data
(for reviews, see [Plamondon and Alimi 1997; Schedlbauer 1997]). While most of them still express
movement time (MT ) as a function of D=W , D and 1=W must be given asymmetric roles in order
to account for small-scale effects. We are aware of only four such formulae 5.

One well-known formula is by Welford and assumes different throughputs for the ballistic and
the homing phases of movement [Welford et al. 1969]. This formula has been occasionally used to
correct for asymmetric contributions of D and 1=W to MT [MacKenzie et al. 1987; Graham and
MacKenzie 1996; Parker et al. 2005]:

MT = a+b � log2(D)+ c � log2(W ) (1)

Kv	alseth also proposed a power model that exhibited a better �t to the original Fitts’
data [Kv	alseth 1980]:

MT = a � Db �W c (2)

5We added the missing intercept a to the original Equations 1 and 4, and replaced 0.5 by 1 in Equation 4 to allow easier
comparison with the widely-used Shannon formulation of Fitts’ law [MacKenzie 1992].
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Note that this is simply an exponential version of Equation 1. In order to account for the interaction
between W and D, Oel et al. argued for the following re�nement [Oel et al. 2001]:

MT = a � Db+d�log2(W ) �W c (3)

Finally, the �rst part of Welford’s 1969 article contains an alternative model, which to the best of
our knowledge has never been mentioned in HCI [Welford et al. 1969]:

MT = a+b � log2(
D

W � c
+1) (4)

Where c is an experimentally-determined constant attributed to hand tremor. In contrast to the pre-
vious formulae this model is easier to interpret and as we later show, it best accounts for targets that
are small in the motor space. Note however that the term �tremor� should not be taken literally, and
this will be later discussed in section 6.4.

3. EXPERIMENT

We conducted a user study in order to con�rm the existence of a small-scale effect on a standard
mouse-display con�guration and to investigate its causes. We asked participants to perform 1-D
target acquisition tasks and independently manipulated visual scale, motor scale and quantization.
We �rst introduce our experiment design and our use of scaling methods as a way to manipulate
these three factors. We then discuss our main �ndings and their implications.

3.1. Scaling Methods

As explained in the introduction, desktop pointing tasks are characterized by three different mea-
sures of scale: visual scale, motor scale and quantization (or its inverse, resolution). Recall these
quantities are all relative, e.g., a visual scale of 2 means magnifying D and W by 2� on the screen
according to a nominal pointing task. Also recall these quantities are independent of each other.
Thus, they form a three-dimensional space that can be used to characterize the scale of pointing
tasks with respect to an arbitrary nominal task with the same D=W .

An ideal experiment would evenly sample this three-dimensional space for different values of
D=W . However, there are two dif�culties. First, some points cannot be measured due to hardware
constraints: if a pointing task involves a 1-pixel target, it is not possible to scale it visually by a
factor of 0:5 or 1:5, nor is it possible to reduce quantization. Second, a full factorial design would
either yield too many conditions for a single experiment or prevent us from testing enough scale
values. We therefore devised an approach based on scaling methods (see Figures 3 and 4).

A scaling method is a speci�c way of scaling up a pointing task. Suppose the task is to acquire
a target of distance and size Dv;Wv on the screen and Dm;Wm in the motor space. Let Ds be the
number of discrete steps required for the cursor to progressively reach the middle of the target and
Ws the number of possible cursor locations inside the target. These are typically equal to Dv and Wv
as expressed in pixels. Finally, let Cv be the cursor’s visual size and G the C-D gain, i.e., the ratio
between the cursor’s and the mouse’s travel distances, both expressed in metric units.

Such a target acquisition task can be scaled up by a positive integer S using �ve possible methods
(see Figure 3):

� MotorMag multiplies Dm and Wm by S and leaves the rest unchanged, except for G which is
multiplied by 1=S. In other words, this is a motor-space magni�cation.

� VisualMag multiplies Dv, Wv and Cv by S and leaves the rest unchanged, except for G which is
multiplied by S. In other words, this is a visual-space magni�cation.

� FullMag multiplies Dm, Wm, Dv, Wv and Cv by S, and leaves the rest unchanged. This amounts to
increasing the size of the pixel and of the mouse dot.
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MotorMag ZoomFullMagVisualMag

Fig. 3. Scaling up a task by � 2 in the motor space (MotorMag); in the visual space (VisualMag); in the motor and visual
spaces (FullMag); in the motor, visual and resolution spaces (Zoom). The left rectangle on the screen is the mouse cursor.
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Fig. 4. Each of the scaling methods covers a speci�c line in the three-dimensional scale space. The black dots show the
measures included in our experiment. Each dot corresponds to a scaled-up version of a nominal pointing task (the black dot
at the origin) that is small-scale in all respects.

� Zoom is the same as FullMag except that Cv is left unchanged and Ws and Ds are multiplied by S.
This amounts to enlarging the task in both spaces while keeping the original pointing resolution6.

� ZoomBis is the same as Zoom, but in addition, the cursor’s size is multiplied by S.

We introduced the ZoomBis variant because one effect of FullMag is to increase the cursor’s size,
while the cursor remains visually small for Zoom � hence a possibility of confound (see Figure 3).
In ZoomBis and FullMag, the cursor is the same. However, since participants still have to bring the

6This method can cause pixels to be misaligned. For example, on Figure 3, the nominal task W = 2;D = 5:5 scales up to
W = 4;D = 10. For the Zoom condition, this requires the cursor to initially lie between two pixels and for the mouse sensor
to lie between two dots. For the mouse, we use the extra resolution available to achieve this. For the screen, we arbitrarily
choose between the left and the right pixel and counterbalance across trials.
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��� ��� ���

Fig. 5. A sample trial: (a) the target and the future location of cursor are shown; (b) the cursor appears after a random
foreperiod; (c) the user selects the target.

whole cursor into the target, Wv is enlarged by the same amount as Cv in order to preserve Ws and
Wm.

Figure 4 illustrates the way these scaling methods sample the three-dimensional scale space. The
sampling does not fully cross the three axes but stills allows us to assess the relative effect of each of
the axes on pointing performance. For example, FullMag and Zoom only differ by their amount of
quantization. The effects of quantization can hence be examined by comparing these two conditions
at different scales. Similarly, if we assume the C-D gain to have little or no in�uence [Casiez et al.
2008], the only important difference between VisualMag (resp. MotorMag) and FullMag is the
task’s motor (resp. visual) scale.

3.2. Apparatus

We conducted the experiment on a high-end workstation running X Window. The display was a 22�
ultra-high-resolution LCD monitor with a native resolution of 3840� 2400 and 0.125 mm pixel size
(about 200 dpi). The pointing device was a ultra-high-resolution gaming mouse of 83.5 dots per
mm (about 2000 dpi), polled at 500Hz and whose cursor was refreshed at 60Hz. The mouse was
te�on-coated and was used on a varnished plywood surface.

We set the display to half its native resolution and programmatically divided the resolution of the
mouse by 5, thus approaching the resolutions and C-D gain of a standard desktop computer with
mouse acceleration disabled, while virtually eliminating potential confounds due to display quality
and input sensor accuracy. Interactions between color and geometry present on LCD displays were
also eliminated by the exclusive use of shades of gray [Messing and Daly 2002].

The experiment software was written in Java using the SwingStates [Appert and Beaudouin-Lafon
2008] and TouchStone [Mackay et al. 2007] libraries, and uses the JInput library for polling mouse
data at a low-level, i.e., in pure dot units and without acceleration.

3.3. Participants

Twelve unpaid volunteers, ten male and two female, all right-handed, participated in the experiment.
Two additional participants failed the vision test (see below) and thus did not proceed with the
experiment. Participants were experienced mouse users with ages ranging from 21 to 32 (mean
25.33� 3.80, median 25).

3.4. Task and Procedure

Each trial was a 1-D discrete target acquisition task decomposed as follows. First, a gray target and
two gray markers symbolizing the location of the cursor appeared at the center of the screen (Fig-
ure 5a). Participant were instructed not to move the mouse until the actual (black) cursor appeared.
After a short random foreperiod, the black cursor was shown (Figure 5b) and the participant had to
bring it inside the target (Figure 5c) and press the left mouse button.

To better resemble a typical computer pointing task, a trial had to end successfully even if it in-
cluded mouse presses outside the target. The next trial then started after the participant had released
the mouse button. We recorded movement times from the �rst mouse movement to the �rst mouse
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press, as well as to the �rst successful mouse press. The participant was allowed to rest every 22
trials. Note that we used a discrete movement protocol that ensured that the measured movement
time is the duration of a pure execution process, avoiding interpretation problems [Guiard 1993;
Fernandez et al. 2006].

Before starting the experiment, participants were given written instructions telling them to be
as fast and as accurate as possible and to avoid mouse clutching. To allow them to do so, mouse
drifting was eliminated by grouping trials by pairs with the same target distance and width, but with
opposite movement direction.

Upon reading the instructions, participants were asked to sit in a comfortable position and the
screen was moved to a distance of 70 cm from their eyes. A string was then placed in front of their
chest to remind them not to lean forward, as mentioned in the written instructions.

Participants were then given a vision test involving 12 labeled representations of a target and a
cursor, where the cursor was 1 pixel and the targets 1 or 2 pixels. The cursor was either inside the
target or just next to it. Participants were asked to tell when the cursor was inside the target. The test
was considered successful if all targets were properly identi�ed and there was no false positive.

3.5. Design

The experiment used a within-participants design with the following factors:

� �ve scaling methods METHOD: Zoom, ZoomBis, FullMag, MotorMag and VisualMag;
� four scales SCALE: 1, 4, 16 and 64;
� four nominal widths W: 1, 2, 4 and 8 pixels/dots;
� four nominal distances D: 2, 4, 8 and 16 pixels/dots.

We included all the possible combinations of D = f 8;16g and W = f 1;2;4;8g plus the combina-
tions (2;1), (4;1) and (4;2), for a total of 11 (D,W) couples. (D,W) was fully crossed with METHOD

and SCALE, giving a total of 220 conditions. Fitts’ IDs remained constant across METHOD and SCALE

and ranged from 1 to 4.097.
As mentioned before, movement directions were alternated to prevent mouse drift. For each

METHOD � SCALE condition, participants were presented with 5 blocks of Direction � W � D
= 5 � 2 � 11 = 110 trials. The presentation order of W � D was randomized within each block. The
�rst block was for training and the remaining four were recorded.

A pilot study suggested that large variations in C-D gain were the most dif�cult to accommodate
(the nominal gain was 4.15 and ranged from 0.065 to 4.15 for MotorMag and from 4.15 to 266
for VisualMag). We hence blocked by METHOD and sub-blocked by SCALE. For MotorMag and
VisualMag, we presented the SCALE conditions monotonically and informed participants of changes
in mouse sensitivity through textual messages. For the other methods, where the C-D gain was
constant, the presentation order of SCALE was randomized.

Additionally, in order to avoid important changes in C-D gain when transitioning between Mo-
torMag and VisualMag, we always presented these two methods at the second and at the fourth
position. We computed a Latin square for (Zoom, ZoomBis, FullMag) and crossed it with the two
possible orderings of (MotorMag, VisualMag), yielding six different orderings for METHOD, each
of which was presented to two participants.

7These rather low IDs stem from the fact that we are testing a wide range of scales, and the limited screen size and mouse
footprint prevent us from including larger values of D. Small-scale effects are nonetheless most likely to occur near targets
and should be therefore more measurable if small distances are used. We also chose to fully cross D and W as proposed
by [Guiard 2009] in the case of a non Fitts’ law experiment.
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Table I. Results of the ANOVA for MT � METHOD � SCALE � W � D � Random(PARTICIPANT).
All SCALE SCALE � 4

Factors DF ,Den F p DF ,Den F p
METHOD 4,44 71.2 < 0.0001 4,44 71.2 < 0.0001
SCALE 3,33 35.7 < 0.0001 2,22 16.9 < 0.0001

W 3,33 166.9 < 0.0001 3,33 560.0 < 0.0001
D 1,11 234.5 < 0.0001 1,11 1441.4 < 0.0001

METHOD� SCALE 12,132 36.3 < 0.0001 8,88 15.9 < 0.0001
METHOD� W 12,132 27.3 < 0.0001 12,132 27.3 < 0.0001
METHOD� D 4,44 23.0 < 0.0001 4,44 23.0 < 0.0001
SCALE� W 9,99 17.7 < 0.0001 6,66 16.0 < 0.0001
SCALE� D 9,33 2.4 0.0829 2,22 11.8 0.0003

W� D 3,33 0.7 0.5509 3,33 2.0 0.1365
METHOD� SCALE� W 36,396 8.0 < 0.0001 24,264 2.4 0.0004
METHOD� SCALE� D 12,132 2.9 0.0013 8,88 0.6 0.7727

METHOD� W� D 12,132 1.6 0.0857 12,132 1.6 0.0857
SCALE� W� D 9,99 1.6 0.1226 6,66 1.9 0.0908

METHOD� SCALE� W� D 36,396 1.3 0.1262 24,264 1.2 0.1951

Note that in the case of SCALE 1, all the METHOD conditions are equivalent (see Figure 4). We
hence decided to present the condition only once and arbitrarily assigned it to the Zoom METHOD.
This removed 4 (METHOD) � 5 (Blocks) � 11 (W� D) � 2 (Direction) = 440 redundant trials.

A participant hence performed 5 (METHOD) � 4 (SCALE) � 5 (Blocks) � 11 (W� D) � 2 (Direc-
tion) � 440 = 1760 pointing tasks, 1408 of which were recorded (the others being training trials).
We obtained 96 measures for a full condition and a total of 16 896 measures. The experiment lasted
approximately 65 minutes.

4. RESULTS

We �rst perform a full factorial analysis by removing the data for D = 2 and D = 4 and by duplicating
the data from Zoom METHOD at SCALE = 1 to the other methods. Recall only D = f 8;16g and W
= f 1;2;4;8g are fully crossed. The remaining data, e.g., the (D, W) couples (2, 1), (4, 1) and (4, 2),
will be dealt with later on.

4.1. Movement Time

In this analysis, we consider MT to the successful mouse press, as this measure has the advantage of
including penalties caused by errors. We performed a nominal factorial repeated measures analysis
of variance for the model MT � METHOD � SCALE � W � D � Random(PARTICIPANT). Table I
shows the results of this ANOVA for the data with and without SCALE = 18.

Note that in this analysis we consider all our factors � in particular SCALE, W and D � as nominal
(categorical) factors. This is common practice and has the advantage that the analysis does not
assume linear correlations between SCALE, W and D vs MT and can thus detect �any kind� of effect.

4.1.1. Scaling Methods. We �rst observe a signi�cant effect of METHOD and SCALE on MT and a
signi�cant interaction METHOD � SCALE. Figure 69 shows the effect of SCALE on each METHOD. We
observe that Zoom and ZoomBis follow a similar pattern: MT rapidly decreases as scale increases,
up to a scale of 16. A post-hoc Tukey test for difference in means con�rms these observations.

8Recall SCALE = 1 is a special case that corresponds to the nominal pointing tasks. At SCALE = 1 all methods leave the
nominal tasks unchanged and are therefore equivalent. Also recall these tasks have been presented only once and duplicated
across methods to allow full-factorial analysis.
9Error bars in all the �gures represent the 95% con�dence limits of the sample mean (mean � StdErr � 1:96).
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Fig. 6. MT as a function of SCALE, grouped by METHOD. The �ve darkest bars represent the same data.

1 4 16 64
Scale

M
ov

em
en

t T
im

e 
(m

s)
0

40
0

80
0

12
00

Zoom ZoomBis FullMag VisualMag MotorMag

Fig. 7. MT as a function of METHOD, grouped by SCALE. The �ve leftmost bars represent the same data.

FullMag is similar but we observe a drop in performance for SCALE = 64. With MotorMag, we
see a small performance improvement from scale 1 to 4 and then a degradation. For VisualMag,
we also �nd an improvement from scale 1 to 4, but higher scales seem to have no effect. All these
observations were con�rmed by post-hoc tests.

Figure 7 shows the effect of METHOD on each SCALE. An important observation is that Zoom,
ZoomBis and FullMag seem very close. Indeed, the only difference shown by a post-hoc Tukey test
is between ZoomBis and FullMag for SCALE = 64.

These results con�rm the existence of a strong small-scale effect: when the task scale is small,
increasing pointing scale using either Zoom or ZoomBis largely improves performance, despite the
D=W ratios being the same. That FullMag would yield the same improvements was quite unex-
pected, and implies that quantization has no or very little negative effect on performance. Another
surprising result was the large initial improvement obtained by increasing visual scale (VisualMag
from SCALE 1 to 4), suggesting that the cause of the small-scale effect is partly visual. An initial
improvement is also observed with MotorMag, con�rming a motor cause to the small-scale effect.
But surprisingly, increasing the scale further degrades performance. Since Zoom did not exhibit
this problem despite involving the exact same targets in the motor space, it is very likely that this
degradation is due to the low C-D gains involved (1.04, 0.26 and 0.065).

4.1.2. Width and Distance. We now analyze the factors W and D. Unsurprisingly, we found sim-
ple effects on MT. Figure 8 illustrates the effect of D as well as the interaction D � METHOD. In
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Fig. 8. MT as a function of D by METHOD for each SCALE � 4.
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Fig. 9. MT as a function of W by SCALE for each METHOD.

particular, one can observe (and post-hoc Tukey test can show) that the impact of D is weaker with
VisualMag than with the others methods.

Figure 9 illustrates the interactions between W and SCALE for each METHOD. We can see that for
Zoom, the difference between SCALE = 1 and the others scales decreases as W increases. ZoomBis,
FullMag and VisualMag exhibit a similar trend, but for VisualMag and SCALE � 4 the lines are
almost confounded. However, as can be observed in Figure 9, the situation is completely different
with MotorMag: for all W, � 2 the difference between scales is almost constant, but with SCALE = 1,
a clear degradation can be observed at W = 1. These observations show the cause of the signi�cant
interaction METHOD � SCALE � W. This together suggests that scale has little or no effect as long
as it is large enough, except for motor-space magni�cation where increasing scale � and reducing
C-D gain � keeps degrading performance.

4.2. Error Rate

We found an overall error rate of 7.02% (5.80% for SCALE � 4). Repeated measures analysis of
variance for the model ERROR RATE � METHOD � SCALE � W � D � Random(PARTICIPANT)
reveals a signi�cant effect of METHOD (F4;44 = 10:1; p < 0:0001 both) and W (F3;33 = 32:9; p <
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Fig. 11. Error rate as a function of SCALE grouped by METHOD

0:0001 and F3;33 = 49:1; p < 0:0001) for both datasets under consideration (all SCALE and SCALE�
4) and a signi�cant effect of SCALE for the data with all SCALE (F3;33 = 7:0; p = 0:0009) but not
for SCALE� 4 (F2;22 = 2:7; p = 0:0885). No effects were found for D (F1;11 = 2:9; p = 0:1116 and
F1;11 = 3:9; p = 0:0718).

However, we observed signi�cant interactions of METHOD � W (F12;132 = 6:1; p < 0:0001 both)
and SCALE � W (F9;99 = 8:3; p < 0:0001 and F6;66 = 10:6; p < 0:0001) for both datasets, as shown
in Figure 10. For SCALE = 1 in particular, we have a higher error rate than other scales when W = 1
but this difference vanishes as W increases. The same can be said when comparing MotorMag with
other methods. For the remaining METHOD, we only see very small differences in the error rates.

Note that we did not �nd a signi�cant interaction METHOD � SCALE � W as we did for MT .
However, we found a signi�cant interaction of METHOD � SCALE (F12;132 = 3:9; p < 0:0001 all
SCALE), which was no longer signi�cant when restricting the data to SCALE � 4 (F8;88 = 1:9; p =
0:0750). Figure 11 shows the error rate as a function of SCALE grouped by METHOD. Increasing
SCALE using MotorMag fails to reduce error rate, but with the other METHOD, increasing SCALE

from 1 to 4 drastically reduces error rate.
These results con�rm our hypotheses that target size is the main cause of errors and that �small

sizes� can lead to very high error rates. Interestingly, we found no effect of target distance (and
no interaction between distance and other factors), and thus we measured a small target size effect
relatively to Fitts’ Law � as in [Wobbrock et al. 2008]. Another interesting observation is that visual
magni�cation alone is enough to drastically reduce error rate (even if it leads to huge C-D gains)
while motor magni�cation has no effect.
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Fig. 12. MT as a function of block by METHOD for each SCALE > 1.
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Fig. 13. Movement Time as a function of D by METHOD for each SCALE > 1 for D in f 2,4,8,16g and W = 1.

4.3. Learning

Regarding learning effects, we performed an analysis of variance for the model MT � BLOCK �
METHOD � SCALE � Random(PARTICIPANT). We found a signi�cant simple effect of BLOCK for the
SCALE � 4 data (F3;33 = 6:4; p = 0:0015) but not for the full data set (F3;33 = 2:3; p = 0:0923).
However, we found signi�cant interactions for BLOCK � METHOD (F12;132 = 2:5; p = 0:0055) and
BLOCK � METHOD � SCALE (and no BLOCK � SCALE interaction) for both datasets. In Figure 12
we can observe that the learning effect is essentially caused by MotorMag and that this effect is
especially strong for SCALE = 64. Indeed, post-hoc Tukey tests show a signi�cant difference in
means (around 100 ms) between block 5 and blocks 2 and 3 for MotorMag but no difference for the
other methods. This suggests that participants initially have dif�culties with very small C-D gains
but are able to improve with practice.

4.4. Small Distances and Small Widths

So far we have excluded the trials where D = 2 and D = 4. To study these cases, we have per-
formed full factorial analyses of variance for (i) the model MT � METHOD � SCALE � D � Ran-
dom(PARTICIPANT) on the data subset where D2 f 2;4;8;16g and W = 1 and (ii) the model MT �
METHOD � SCALE � W � D � Random(PARTICIPANT) on the data subset where D2 f 4;8;16g and
W2 f 1;2g. We obtained results very similar to those discussed previously. The only notable fact
is that, for D = 2 and D = 4, MotorMag performed as well as VisualMag at SCALE = 64 and thus
performed better than expected from our previous results. This can be observed in the rightmost
graph of Figure 13 and shows that large distances are a problem with MotorMag.
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Fig. 15. Dwell time as a function of METHOD grouped by SCALE.

4.5. Maximum Speed and Dwell Time

Figure 14 shows the mean peak velocities of the movements in the motor space as a function of
METHOD grouped by SCALE. We observe that MotorMag exhibits lower peak velocities, despite
requiring the same motor movement as Zoom, ZoomBis and FullMag (for VisualMag the required
motor movement is independent from SCALE). This shows � and statistics con�rm � that participants
had dif�culties performing fast movements with small-amplitude visual feedback. This is consistent
with our previous supposition that low C-D gains cause the low performances observed with strong
motor-space magni�cation.

Now we examine the end of the movement by considering dwell time. We de�ne dwell time as
the time between the last motor movement and the click. Figure 15 shows dwell time as a function
of METHOD grouped by SCALE. We observe that dwell time decreases as target width increases for
Zoom and ZoomBis and also, to a lesser extent, for MotorMag. However, this is not the case for
FullMag between SCALE 16 and 64 � we checked that this phenomenon was true for all W and
D. Moreover, it can be veri�ed that the difference in MT observed between FullMag and Zoom at
SCALE 64 is due to dwell time.

Thus, it seems that the quantization effect that can be measured by comparing the FullMag condi-
tion with the zoom conditions at high scales is concentrated at the end of the movement. Zoom and
FullMag need the same movement but the feedback provided by FullMag at scale 64 is highly not
continuous. This does not disturb the participant during the �rst part of the movement (the �ballistic�
part, see Figure 14), but at its very end.

Also note that when the nominal task is magni�ed by 4, the reduction in dwell time is much
higher for MotorMag than for VisualMag. Moreover, dwell time decreases up to SCALE 16 for
MotorMag, while it stops decreasing at SCALE 4 for VisualMag. This suggests that motor accuracy
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is the principal source of hesitation at the end of the movement, i.e., when the user has to determine
whether the cursor is on the target or not.

4.6. Variants on MT Measures

One may want to stick to a more traditional methodology for measuring movement times and er-
rors [MacKenzie 1992] and either: (i) take movement times up to the �rst click (MT0) instead of
the successful click (MT1); or (ii) remove errors (MT1 = MT0) and outliers10 (using MT0). In both
cases the analysis yields results that are very similar to those we obtained so far. The results of the
ANOVA’s yield different p and F values but no change in signi�cance. Of course, conditions with
high error rates become faster, but the differences are small and do not affect the results.

5. MOVEMENT TIME MODELS

As in standard Fitts’ law analyses, we consider here the movement time to the �rst click [MacKenzie
1992]. Moreover, we aggregate the data over METHOD, SCALE, W and D, taking the mean over
all participants. Fitts’ IDs are computed from the Shannon formulation [Mackenzie 1991]. Target
widths and distances denoted by Wm and Dm are expressed in the motor space, in mouse dots (1dot =
0:060mm): although the choice of units does not impact Fitts’ IDs, it will matter when testing
alternatives to Fitts’ law.

In order to reduce the risk of over�tting our data and following the principle of parsimony, we
report adjusted r2 statistics, a measure of �t that takes into account the number of free parameters
in the model. As suggested by one of our reviewers, we additionally report Akaike Information
Criterion (AIC) values, a measure of �t that penalizes free parameters more strongly and is used
for model selection [Burnham and Anderson 1998]. According to this method, the model with the
lowest AIC (AICmin) is the best one in terms of trade-off between explanatory power and complexity.
As a rule of thumb, models for which AIC � AICmin + 2 deserve consideration and those for which
AIC � AICmin +10 can be safely rejected [Burnham and Anderson 1998].

5.1. Visual Magni�cation

We begin with a Fitts’ Law analysis of all VisualMag tasks. Recall that these tasks involve targets
that are small in the motor space but have various visual sizes (depending on SCALE). The left plot
in Figure 16 shows movement time as a function of Fitts ID and the corresponding regression line.
As we already observed in Figure 9, the data departs from Fitts’ Law, especially at SCALE 1. The �t
is not extremely good (r2 = 0:767), with the smallest targets lying way above the regression line.

Interestingly, correcting IDs using Welford’s �tremor� model solves the problem (see also Equa-
tion 4):

IDc = log2(
Dm

Wm � c
+1) (5)

As Figure 16 shows, choosing11 c = 0:79 dots yields a much better �t (r2 = 0:946). The Akaike
information criterion measure con�rms that this additional free parameter c explains the data suf�-
ciently well for justifying its inclusion in the model (AIC = 560 for the ID model and AIC = 495
for the IDc model, recall that smaller values are better).

10We follow [Soukoreff and MacKenzie 2004] and de�ne an outliers as a movement time 3 standard deviations away from
the mean movement time (for each condition).
11Coef�cients are computed by doing an exhaustive search with a precision of 0.01 and maximizing the linear �t.
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Fig. 16. MT as a function of ID and IDc=0:79 for VisualMag.

Table II. Adjusted r2 and AIC for the various models considered for VisualMag.

All SCALE SCALE � 4
r2 AIC r2 AIC

ID 0.767 560 0.799 416
IDc 0.946 495 0.982 339

Welford Eq. 1 0.904 522 0.931 383
Oel et al. 0.942 497 0.978 349

For SCALE � 4, i.e., excluding tasks where the targets are small in both motor and visual spaces,
the improvement is even more dramatic, going from r2 = 0:799 to r2 = 0:982 with the same best c.
The percentage of unexplained variance 100(1 � r2) gives a clearer idea of the actual improvements
in r2: this percentage drops from 20.1% for the ID model to 1.8% for the IDc model. With 33
data points to �t, it is very unlikely that this improvement is due to chance, and this is con�rmed
by independently testing IDc on the 4 different visual scales (yielding c = 0:79 � 0:04 and r2 =
0:97 � 0:02) and by the Akaike information criterion measure (AIC = 416 for ID and AIC = 339
for IDc).

Note that the IDc model does better than the other (more popular) model from Welford (Equation
1) that also has 3 free parameters but yields r2 = 0:931 (leaving 6.9% of variance unexplained) and
AIC = 383 for SCALE � 4, and r2 = 0:904 and AIC = 522 for all SCALE. Moreover, the IDc model
yields a slightly better r2 than Oel et al’s model (Equation 3) that gives r2 = 0:978, AIC = 349
and r2 = 0:942, AIC = 497, despite having 4 free parameters. These results together suggest that
Welford’s �tremor� model accurately models pointing for targets that are small in the motor space
no matter their visual size, although it does even better when the target is small in the motor space
only. See Table II for a summary of the results of this subsection.

5.2. Motor Magni�cation

Now we perform a Fitts’ Law analysis of all MotorMag tasks, which involve targets that are small
in the visual space but have various motor sizes. We drop SCALE 1 in order to obtain large enough
targets in the motor space (we already showed that small motor scale is well-modeled by Equation
4). The left plot in Figure 17 shows the standard Fitts regression. Like VisualMag, the �t is not
extremely good (r2 = 0:824), but the alternative models mentioned above do not yield satisfactory
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Fig. 17. MT as a function of ID and IDd=0:24 for MotorMag.

results: the improvements obtained are weak and are most certainly due to over-�tting. This suggests
a different phenomenon.

For MotorMag, recall that we observed a large drop in performance as scale grows, which we
attributed to a C-D gain problem. One way to correct for the ID is to increase target distance as the
scale grows and this led us to consider the following computational model:

IDd = log2(
Dm +d �

q
4:15

CDGain � 1 � Dm

Wm
+1) (6)

where d is a constant and 4:15=CDGain is relative gain (4.15 is the gain for SCALE = 1).
IDd improves the �t of the MotorMag data for SCALE � 4, as shown in Figure 17 (r2 = 0:955 for a

best d = 0:24). This model also yields an AIC = 370 as opposed to AIC = 410 for the standard Fitts
regression. Again our model does slightly better than Welford (Equation 1, r2 = 0:920, AIC = 383)
and is comparable to Oel et al (r2 = 0:931, AIC = 370). We can also use a fourth degree of freedom
to combine IDc with IDd :

IDc;d = log2(
Dm + d �

q
4:15

CDGain � 1 � Dm

Wm � c
+ 1) (7)

and �t all MotorMag data including SCALE = 1. We obtain r2 = 0:941, AIC = 496 with c = 0:67 dots
and d = 0:28 vs. r2 = 0:914, AIC = 501 for Oel et al.

Note that previous Fitts’ Law modi�cations involving C-D gain were to correct for high C-D
gains, not for very low ones [Casiez et al. 2008]. For example, the formula from [Johnsgard 1994]
is ID = log2(D � CDGain=W + 1). It gives very low indices of dif�culty for very low gains, and
therefore obviously does not �t our data.

5.3. Zooming

Now we analyze all Zoom tasks. Zoom tasks, as well as ZoomBis and FullMag tasks, involve a wide
range of target sizes, including targets which are small in both the motor and visual spaces, and all
have a constant C-D gain of 4.15. The left plot in Figure 18 shows the standard Fitts regression with
the Zoom method (see also Table III). The mediocre �t (r2 = 0:534) is essentially caused by the
condition SCALE = 1. Removing this condition improves the �t (r2 = 0:825), which is not surprising
since this leaves targets that are magni�ed in both the visual and motor space and we get closer to
regular Fitts’ Law tasks.
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Fig. 18. MT as a function of ID and IDk=0:92 for Zoom.

Table III. Adjusted r2 and AIC for the various models considered for Zoom.

All SCALE SCALE � 4
r2 AIC r2 AIC

ID 0.534 577 0.825 377
IDc 0.898 513 0.933 352
IDk 0.951 483 0.921 356

Welford Eq. 1 0.787 544 0.858 372
Oel et al. 0.943 486 0.959 332

IDe 0.227 600 0.768 387
IDec 0.663 565 0.940 344

If we keep SCALE = 1 but use Welford’s �tremor� model instead we also improve the �t, with r2 =
0:898 and c = 0:89. The model yields an AIC = 513, as opposed to AIC = 577 for the standard Fitts
regression (all SCALE). This con�rms that Welford’s �tremor� model, which was previously shown
to capture small-scale motor tasks, also scales well to large-scale motor tasks (where it reduces to
Fitts’ Law).

However, a surprising �nding is that for SCALE � 4, Welford’s �tremor� model yields a higher
�tremor� constant c = 2:44 dots (r2 = 0:933 instead of r2 = 0:877 for c = 0:89 dots). This suggests
that c might actually increase with Dm or with Wm. We considered several computational models
(e.g., c linear in Wm or �

p
Wm with various powers) and obtained the best results with the following

one:
IDk = log2(

Dm

Wm � k � log2(Wm + 1)
+1) (8)

With k = 0:92, we obtain r2 = 0:951, AIC = 483 for all scales (see Figure 18) which is better than
IDc and again similar to Oel et al. This model also improves the �ts for individual scales, which
suggests that Welford’s �tremor� model can be re�ned by allowing the �constant� c to vary with W .

We obtained very similar results for ZoomBis. For FullMag we also obtain relatively good �ts,
yet not as good. A reason for this is that the IDc and IDk models do not account for the degradation
we measured for scale 64.

5.4. Effective Widths

The idea of effective width, introduced by Crossman in his unpublished doctoral dissertation, is to
perform an adjustment for accuracy when error rates (or target utilization) vary across conditions:
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Table IV. Average value of effective width (We) as a function of motor width (Wm) for Zoom.

W 1 2 4 8 16 32 64 128 256 512
We 2.09 2.83 4.73 8.27 17.38 31.81 62.72 99.09 172.9 290.19
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Fig. 19. MT as a function of IDe and as a function of IDec (c = 1:31) for Zoom.

target widths are corrected so that the data yields an uniform error rate of 4%. We refer the reader
to [Fitts and Peterson 1964; Soukoreff and MacKenzie 2004] for the methodological details.

Computing Fitts’ regressions from uncorrected widths and from effective widths are both valid,
and the appropriate method depends on the goal [Zhai et al. 2004]. Using uncorrected widths � as we
did so far � is useful when one needs to reliably assess actual user pointing times in user interfaces,
accounting for natural biases in target utilization, and to assess errors separately. Using effective
widths instead usually deteriorates the �t but is strongly recommended when one needs to interpret
the a and b constants, e.g., in order to compare the performance of different input devices [Soukoreff
and MacKenzie 2004].

Note that we cannot rely on adjustment for accuracy alone to improve the bad �t we obtained
with Fitts’ law. Effective widths remove biases in target utilization by enlarging error-prone targets
and shrinking underutilized targets while leaving MT s intact. Our tiny targets yield unusually high
error rates (see Figure 11) and will hence be signi�cantly enlarged (see Table IV). However, since
MT s are also unusually high � instead of being unusually low in accordance to the speed-accuracy
trade-off principle � the data points will be moved even farther away from the regression line.

Indeed, redoing our standard Fitts analysis (ID) with effective widths and effective distances
(IDe) does not improve the �t. For instance, the left plot in Figure 19 shows the IDe regression
with the Zoom method (see also Table III). We obtain r2 = 0:227 and AIC = 600, as opposed to
r2 = 0:534 without effective width correction 12 (Figure 18 left). Removing the smallest targets
(using SCALE � 4) yields r2 = 0:768, AIC = 387, instead of r2 = 0:825 with uncorrected widths.
Thus, the �t deterioration with IDe is mainly caused by the smallest targets: since they are both
abnormally longer to acquire and more error-prone compared to larger-scale pointing tasks of the
same ID, an adjustment for accuracy reinforces their departure from Fitts’ Law.

We have also tested the IDc �tremor� model on effective widths. For Zoom and all SCALE we
obtained r2 = 0:663 and AIC = 565 for a best c = 1:31 (see right of Figure 19). Thus, using IDc
rather than ID yields a non-negligible improvement when �tting corrected widths, a result consistent

12Since AIC values cannot be compared on different datasets, we provide them for effective widths only.
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Table V. Adjusted r2 and AIC for the ID and IDe models for all methods, but Zoom (see Table III).

All SCALE SCALE � 4
r2 AIC r2 AIC

VisualMag
ID 0.767 560 0.799 416
IDe 0.446 600 0.532 455

MotorMag
ID 0.807 548 0.824 370
IDe 0.603 579 0.747 420

All SCALE SCALE � 4
r2 AIC r2 AIC

ZoomBis
ID 0.421 587 0.816 369
IDe 0.152 604 0.739 381

FullMag
ID 0.572 572 0.870 366
IDe 0.291 593 0.664 398

with what we had previously obtained without width correction. This improvement is not as strong
as without width correction, but when �tting the data SCALE � 4, the IDc model yields similar �ts
on corrected (r2 = 0:940, AIC = 344, c = 3:10) and uncorrected widths (r2 = 0:933, c = 2:44).

Note that the use of the effective widths yields larger values of c, in accordance with the fact that
the departure from Fitts’ Law is larger and IDs therefore need a stronger correction. An increase in c
might also be consistent with what would have been observed had all subjects achieved an error rate
of 4%: a �tremor� interpretation (see section 6.4) suggests that subjects avoided target edges in order
to minimize errors due to uncontrollable �tremor�, effectively reducing usable target size. The need
to achieve a lower error rate (4%) would have probably required them to leave an even larger �safety
margin� inside targets. It is possible, however, that tasks involving the smallest targets would have
been impossible to perform with an error rate of 4%, no matter how careful the subjects were. This
is suggested by the fact that the �tremor� constant computed from effective widths (c = 1:31 dots)
is larger than the smallest target (Wm = 1 dot).

Table V provides the �t statistics for all scale methods other than Zoom. Results for ZoomBis and
FullMag are similar to Zoom. For VisualMag, using effective widths also leads to a �t deterioration
that is not as severe as with Zoom, but restricting the data to SCALE � 4 does not really improve the
�t as it was the case for Zoom. For MotorMag, there is still a deterioration but it is the least severe.

6. DISCUSSION

Here we build upon our �ndings to address the three questions mentioned in the introduction. We
then discuss the limits of our study and possible future work.

6.1. There is a Small-Scale Effect

Our experiment con�rms previous results and intuitions about a small-scale effect on mouse point-
ing tasks. This is shown by Zoom and ZoomBis: at high scales, we have normal pointing tasks.
At scale 1, however, we have targets that are small in all respects, i.e., typical �small targets� on
desktop computers. Task IDs do not change. Still, we observe a clear drop in performance as scale
approaches 1. This naturally yields a bad �t with Fitts’ law.

The drop in performance is progressive yet very fast: it starts to be observable from scale 16
(targets of 16-256 pixels13) to scale 4 (targets of 4-32 pixels). At scale 1 (targets of 1-8 pixels), there
are more than twice as many errors, with a time almost twice as long. Since we used high-end I/O
hardware and controlled for pointer occlusion, these are likely underestimates of what we would
obtain on typical computer.

13All �gures are given according to our experimental conditions, i.e., 0.06 mm mouse dot size, 0.25 mm pixel size and a
distance of 70 cm to the screen.
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6.2. What Causes the Small-Scale Effect?

Our experiment suggests that � at least for mouse pointing � the causes are both visual and motor.
Quantization does not seem to signi�cantly impact performance.

Visual Causes. For very small targets, the primary causes for the small-scale effect are visual.
Data from VisualMag provides strong evidence for this. Visual size has no effect when it is large
enough. But we observe an important deterioration from scale 4 (targets of 4-32 pixels) to scale 1
(targets of 1-8 pixels): there are twice as many errors and a reduction in speed of about 25%. Our
data suggests important differences for targets up to 4 pixels.

The exact origin of these visual problems is unclear, since we actually controlled for visual leg-
ibility (we use a sharp monitor and gave a vision test). However, visual legibility is probably not a
binary property: participants might have spent more time processing visual information because of
its unusually small size.

Motor Causes. We also con�rmed the common intuition that motor accuracy is a cause of the
small-scale effect. This is supported by our data on MotorMag. There is an observable deterioration
from scale 4 (targets of 4-32 mouse dots) to scale 1 (1-8 dots). Data suggest problems start to arise at
4 dots. Since we controlled for the accuracy of electronic sensors, the problem is likely physiological
or mechanical (this will be further discussed in Section 6.4).

The role of motor accuracy is further supported by the data from VisualMag and FullMag: we
observed that motor+visual magni�cation performs slightly better than visual magni�cation alone,
and the improvement goes up to scale 8 while it stops at scale 4 for visual magni�cation alone.

Quantization. The quantization present in small-scale pointing tasks seems to be a very secondary
cause to the small-scale effect. This is suggested by our data on FullMag and Zoom. Recall the
�rst method simply magni�es pixels and mouse dots, whereas the second one improves pointing
resolution as scale increases. We found no signi�cant difference between the two methods overall,
except for scale 64 (targets from 64 to 512 pixels).

One possible explanation is that although quantization deteriorates the information normally pro-
vided by the cursor feedback, it also provides �visual snapping�. With snapping, the cursor is clearly
either inside or outside the target. However, it is not clear whether snapping actually helps as we
found dwell time to be higher for FullMag than for Zoom at scale 64. Another possibility is that
the human visuo-motor system is able to infer the missing information by interpolating the mouse
cursor’s location in space and time.

6.3. Findings on C-D gain

The goal of our study was not to examine the effects of C-D gain as this issue has been extensively
investigated in the past and because, by de�nition, C-D gain per se cannot be a cause of scale effects
(see Section 1.2). However, our study incidentally provided us with interesting �ndings on C-D gain
which partly con�rms and partly contradicts previous work.

Recent work suggests that the only limiting factor with very high C-D gains is limb preci-
sion [Casiez et al. 2008]. Our data is consistent with these �ndings, since strong visual magni�cation
was not found to harm performance (VisualMag, C-D gains up to 266). It was also suggested that
low C-D gains can be detrimental to performance, and this was con�rmed by the degradation we
observed with motor-space magni�cation (MotorMag, C-D gains below 1). However, it was postu-
lated that the origins of the problems were a) clutching and b) an upper limit in motor speed [Casiez
et al. 2008]. This was not con�rmed by our study, since a) we controlled for clutching and b) the
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Zoom condition did not exhibit any problem despite involving the exact same targets in the motor
space.

The problem observed with very low gains might originate from asymmetric effects of stimulus-
response incompatibility on pointing performance. Participants did not have problems performing
accurate movements with high C-D gains, but they did have trouble performing large and fast move-
ments when the visual feedback provided was very small, as we observed lower peak velocities with
MotorMag than with Zoom. This could be a matter of training, as suggested by the learning effect we
found on MotorMag. One might want to run a study with suf�cient training to measure asymptotic
performance with low C-D gains. However, asymptotic performance is only of limited relevance for
pointing magni�cation techniques, which are primarily meant to be triggered temporarily [Ramos
et al. 2007; Roudaut et al. 2008; Appert et al. 2010].

6.4. Is there a Law of Movement for Small Targets?

One important lesson from our study is that small target acquisition is complex. It involves different
phenomena, and there is probably no simple law for small target acquisition that accounts for both
motor and visual problems.

Welford’s model of human tremor, despite being largely ignored in HCI, was nevertheless quite
successful at modeling motor problems when acquiring small targets. Not only it has a good predic-
tive power but we also believe it is useful as a conceptual model because in contrast with Fitts’ Law,
it captures the non-linear nature of small target acquisition tasks as well as the intuitive notion of a
�problematic size threshold� [Ren and Moriya 2000; Albinsson and Zhai 2003; Ramos et al. 2007].

Taking the term �tremor� literally, this model has a simple interpretation: one can think of an area
cursor whose hot spot’s location changes in unpredictable ways. In order to limit errors, users would
have to bring the whole cursor inside the target � or part of it depending on the accuracy demands �
thus effectively reducing the target’s size. Note that in contrast with effective width [Soukoreff and
MacKenzie 2004], such a reduction in target size cannot be directly measured from the spread of
hits, but has to be measured by �tting Welford’s model to experimental data obtained with different
target widths.

Although the term �tremor� makes direct sense for devices such as laser pointers [Pavlovych and
Stuerzlinger 2009], it is arguably a simpli�cation of the reality in the case of computer mice, since
the hand of healthy subjects holding a mouse and the mouse itself are rarely seen trembling. This is
con�rmed by the fact that we did not observe rapid reversals of the velocity pro�le despite having
recorded kinematic data at 5 times the resolution of the standard mouse dot. A possibility is that
noise is present but is not directly observable as tremor because it is �ltered by the human limbs, by
the mouse’s inertia or by the mouse sensors.

There are several possible origins for this putative noise. One is constant neuromotor
noise [Van Beers et al. 2004], not to be confounded with motor noise from the impulse variability
model, which linearly increases with task scale [Van Galen and De Jong 1995]. Another candidate
is dry friction between the mouse and its support: not only it can vary on an imperfect surface, but
it can also make small corrective movements dif�cult to perform due to static friction being higher
than kinetic friction, a problem known as stick-slip [Feeny et al. 1998; Richard and Cutkosky 2000].
Another possible cause of noise is involuntary mouse movement during clicks. But these are all con-
jectures and more work is clearly needed to understand the origin of the �tremor� constant in mouse
pointing.

One dif�culty with Welford’s model is that c can vary across conditions. Indeed, we found c
to be larger for Zoom than for VisualMag, which means that tremor increases with average task
motor scale. We proposed a modi�ed model where c depends on Wm, but this model is essentially
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computational and does not explain why c varies across conditions. It could be that depending on
the overall task demands, participants used different mouse grips [Langolf et al. 1976; Balakrishnan
and MacKenzie 1997; Guiard et al. 1999] or adapted their level of motor noise by varying their
muscle stiffness and/or the normal force they applied to the mouse [Van Galen and De Jong 1995].
A stronger pressure or �rmer grip on the mouse might also have inhibiting effects on the stick-slip
phenomenon.

Our motor magni�cation model is also mostly computational, and captures both visual legibility
problems and low C-D gain issues. For low C-D gains we observed lower peak velocities, and it
hence seemed natural to assume that Dm will penalize MT more than Wm. The good �t we obtained
after correcting for Dm suggests that this was the case.

6.5. Limits of the Study

Distance Range and IDs. We chose to test a wide range of scales rather than large distances. The
next step could be to restrict the scale range and explore larger distances in order to further validate
and possibly re�ne our models.

Intermediate Scales. We did a sparse sampling of the scale range. For all scaling methods, we
observed the largest changes between scales 1 and 4. One direction for further experimentation
could be to study intermediate scales.

Hybrid Scaling. We only investigated a limited number of axes in the scale space (see Figure 4).
Since we now know more about visual limits, we can choose a large enough visual scale (4) and
then closely examine the effect of motor scale. Or we can choose a large enough motor scale and
try to better understand the effect of visual scale.

Acceleration. Since we controlled for task scale in both the visual and the motor space, we had
to use constant C-D gains: mouse acceleration would have made target sizes and distances in the
motor space dependent on mouse speed. However, well-chosen C-D gain transfer functions might
facilitate the acquisition of very small targets.

Error Rate Models. Since forcing our subjects to perform all tasks at a 4% error rate would have
been arti�cial and likely impossible for the smallest targets, both movement times and errors must
be modeled. So far we provided candidate models for movement times alone, but they still need to
be complemented with models for error rates.

Generalizability. Our study involves 1-D tasks. With 2-D pointing tasks, some factors � espe-
cially quantization � might have behaved differently. Similarly, all our �ndings concern moused-
based desktop computers and the results would have probably been different with, e.g., pen devices
or touch-screens.

7. IMPLICATIONS FOR DESIGN

Our study shows that when targets are small in either the motor or in the screen space, pointing be-
comes problematic. That is, performance is much lower than with larger-scale tasks having the same
ratio D=W (up two twice the movement time and error rates). Our data suggests that degradation in
performance varies continuously with scale, so formally, there is no such thing as a �problematic
size threshold�. But since this variation has an exponential form, one can provide rough indicative
�gures: the �problematic size threshold� is 1 to 4 mm on a screen at a distance of 70 cm, and 0.1
to 0.2 mm in the motor space, for a computer mouse. These values have been measured on high-
accuracy input and output devices and might be higher on lower-end hardware.

Naturally, the obvious guideline �make targets as big as you can� still applies. But the UI designer
rarely has full control over widget size: for example, there might be no room left on the screen,
or relative object size might encode meaningful information (such as in information visualization
applications) or might be user-speci�ed (such as in graphic authoring applications). For similar
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reasons, dynamically expanding W (a target-aware pointing strategy) is a limited approach, despite
having been heavily researched. Such a strategy is very ef�cient when targets are isolated but does
not scale well to dense populations of targets. Target-aware techniques can also be distracting. It
has been shown that performance with such techniques is often lower than what Fitts’ Law predicts,
i.e., users are not able to fully exploit the expansion of W [Mandryk and Gutwin 2008; Blanch et al.
2004].

We argue that when the size of clickable objects drops below the above thresholds, the GUI de-
signer should �rst consider adding support for zooming rather than resorting to target-aware strate-
gies. Zooming has several advantages: it is often relatively easy to implement, it solves both visual
and motor issues, it preserves C-D gain, and also it preserves the relative size of objects on the
screen. Zooming is especially relevant on dense populations of targets, such as in text editors, im-
age processing applications and vector graphics applications. Since part of visual context is lost
when zooming, the best zoom factor is the one that enlarges the smallest targets just above the sizes
mentioned above (typically 4� for one-pixel targets).

There is more to zooming than meets the eye, and there are many ways of supporting it. The
traditional approach is to use mouse- or keyboard-controlled zoom & pan. However, this type of
technique has been designed for navigating into large documents, not for facilitating pointing. It
has several drawbacks: it is dif�cult to control, and the user rapidly gets lost. For the sole purpose
of target selection, a better approach might be to employ an automatic or spring-loaded zooming
strategy, such as the ones recently proposed by [Ramos et al. 2007; Roudaut et al. 2008; Appert et al.
2010]. The design space of this type of technique has just started to be explored, and we believe that
more research should be pursued in this direction.

Zooming combines visual magni�cation with motor magni�cation. Alternatively, visual magni�-
cation alone can also facilitate pointing when targets are only small on the screen. Some windowing
systems have native support for visual magni�cation through screen magni�ers. Although screen
magni�ers have been initially designed for low-vision users, our work suggests that users with
normal vision might also bene�t from them for selecting small targets. Local screen magni�ers
such as magnifying lenses and �sheyes can be also useful, but the motion artifacts they produce
have been found to be distracting [Gutwin 2002]. Motor magni�cation alone can also be used with
low-accuracy input devices, and this simply amounts to reducing the device C-D gain (mouse ac-
celeration allows the reduction of the C-D gain only when the mouse moves slowly [Casiez et al.
2008]). However, our data suggests it is advisable to always keep the C-D gain above 1.

Another good thing to know is that visual quantization does not harm. For example, one could
hide the mouse cursor inside menus to improve text legibility, and rely on roll-over effects instead.
Or instead of hiding the mouse cursor, one could make it smaller or less visible when selecting a
menu item. Although the visual feedback of the roll-over effect is visually less smooth and more
erratic than the mouse cursor, our study suggests this should not harm performance.

Another implication of our work is that Fitts’ law does not always model pointing performance
perfectly and for some special types of tasks alternatives are sometimes worth considering. When
working with small targets, Welford’s �tremor� model seems more adapted and might better help
answer questions such as which scale factor � or pointing technique, or input device � is the best
for a speci�c target layout. We also think it is a better conceptual framework for thinking about small
target acquisition in general, since it accounts for the non-linear relationship between pointing scale
and pointing dif�culty.
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8. CONCLUSION AND FUTURE WORK

Our goal was to better understand why small targets are abnormally dif�cult to acquire, a question
that has been only partially addressed by previous work. We had subjects perform small target
acquisition tasks on a desktop computer, and manipulated the scale of the tasks by various means.
Our results con�rm the existence of a small-scale effect that violates Fitts’ law and whose causes
are both visual and motor. One implication is that more research effort should be directed towards
the design of target-agnostic pointing techniques based on zooming [Ramos et al. 2007; Roudaut
et al. 2008].

We have also found our data to be consistent with Welford’s tremor model of pointing, where
IDs can be normalized by removing a constant from target widths in the motor space. We argue
for the adoption of this model instead of Fitts’ law when designing for small targets. This work
is exploratory but proposes testable hypotheses and suggests directions for further investigations.
These include testing larger distances and IDs and using a �ner sampling of small scales. Two key
questions that remain to be addressed concern the interpretation of Welforld’s tremor constant and
the exact causes of visual problems.

Although our work focuses on mouse pointing, we believe that our approach and some of our
�ndings can be relevant to small target acquisition with other pointing devices. There is some ev-
idence for small scale effects on pen-based devices [Ren and Moriya 2000; Ramos et al. 2007].
Touch screens also seem to exhibit small-scale effects, even when �fat �nger� and occlusion prob-
lems are eliminated [Sears and Shneiderman 1991]. The causes of constant error in touch input have
recently started to be understood [Holz and Baudisch 2010] but still little is known about variable
error. We hope that our work will encourage researchers to put Welford’s tremor model to the test
on these devices.
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