
HAL Id: inria-00606853
https://inria.hal.science/inria-00606853

Submitted on 7 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

State of the Art in Example-based Texture Synthesis
Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, Greg Turk

To cite this version:
Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, Greg Turk. State of the Art in Example-based Texture
Synthesis. Eurographics 2009, State of the Art Report, EG-STAR, Mar 2009, Munich, Germany.
pp.93-117. �inria-00606853�

https://inria.hal.science/inria-00606853
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2009/ M. Pauly and G. Greiner STAR – State of The Art Report

State of the Art in Example-based Texture Synthesis

Li-Yi Wei1 Sylvain Lefebvre2 Vivek Kwatra3 Greg Turk4

1Microsoft Incubation 2REVES / INRIA Sophia-Antipolis 3Google Research 4Georgia Institute of Technology

Abstract
Recent years have witnessed significant progress in example-based texture synthesis algorithms. Given an example
texture, these methods produce a larger texture that is tailored to the user’s needs. In this state-of-the-art report,
we aim to achieve three goals: (1) provide a tutorial that is easy to follow for readers who are not already familiar
with the subject, (2) make a comprehensive survey and comparisons of different methods, and (3) sketch a vision
for future work that can help motivate and guide readers that are interested in texture synthesis research. We cover
fundamental algorithms as well as extensions and applications of texture synthesis.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture:
Graphics Processors; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism: Texture;

Keywords: texture synthesis, texture mapping, pixel, patch, optimization, surface, video, flow, fluids, parallel
computing, real-time rendering, solid, globally varying, inverse synthesis, super-resolution, geometry

1. Introduction

Texturing is a core process for computer graphics applica-
tions. The texturing process can be divided into three com-
ponents: (1) texture acquisition, (2) texture mapping, and (3)
texture rendering, which includes a variety of issues such
as access, sampling, and filtering. Although a source tex-
ture can be acquired by a variety of methods such as man-
ual drawing or photography, example-based texture synthe-
sis [KWLT07] remains one of the most powerful methods
as it works on a large variety of textures, is easy to use –
the user only needs to supply an exemplar – and provides
high output quality. The result is an arbitrarily large output
texture that is visually similar to the exemplar and does not
contain any unnatural artifacts or repetition. In addition to
making texture creation easier, example-based texture syn-
thesis also provides benefits to other parts of the rendering
pipeline. Distortion free textures are automatically generated
over complex geometries, and on-the-fly generation of tex-
ture content strongly reduces storage requirements.

In this paper, we provide a state-of-the-art report for
example-based texture synthesis. In addition to giving a
comprehensive coverage of current methods, this report can
also act as a tutorial that is easy for a novice to follow.
This report also provides a vision for experienced readers
who are interested in pursuing further research. To achieve

input te
x
tu

re
 s

y
n
th

es
is

foo

output

Figure 1: Texture synthesis. Given a sample texture, the goal
is to synthesize a new texture that looks like the input. The
synthesized texture is tileable and can be of arbitrary size
specified by the user.

these goals, we organize the paper as follows. We start with
the fundamental concepts (Section 2) and algorithms (Sec-
tion 3), followed by various extensions and applications
(Sections 4 through 13). Although our main focus is on
texture synthesis techniques that provide high enough qual-
ity for graphics applications, we will also briefly mention

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

alternative methods that may provide additional theoretical
and practical insights (Section 14). We conclude by sum-
marizing the main differences between the two major cate-
gories of texture synthesis methods: procedural [EMP∗02]
and example-based, and from this we present a roadmap for
potential future work in example-based texture synthesis.

2. Preliminary

Before describing methods for texture synthesis, let us begin
by answering some preliminary questions, such as: what are
textures, and what is texture synthesis.

2.1. What are textures?

Texture mapping is a standard technique to represent surface
details without explicit modeling for geometry or material
properties. The mapped image, usually rectangular, is called
a texture map or texture. A texture can be used to modulate
various surface properties, including color, reflection, trans-
parency, or displacements. Due to this generality, the term
texture in computer graphics can refer to an image contain-
ing arbitrary patterns.

Unfortunately, the meaning of texture in graphics is some-
what abused from its usual meaning. In other contexts, such
as ordinary English as well as specific research fields includ-
ing computer vision and image processing, textures are usu-
ally referred to as visual or tactile surfaces composed of re-
peating patterns, such as a fabric. This definition of texture is
more restricted than the notion of texture in graphics. How-
ever, since a majority of natural surfaces consist of repeating
elements, this narrower definition of texture is still powerful
enough to describe many surface properties.

In this paper, we concentrate on the narrower definition of
textures, i.e. images containing repeating patterns. Since nat-
ural textures may contain interesting variations or imperfec-
tions, we also allow a certain amount of randomness over the
repeating patterns. The amount of randomness can vary for
different textures, from stochastic (sand beach) to determin-
istic (tiled floor). See [LLH04] for a classification.

2.2. What is texture synthesis?

Textures can be obtained from a variety of sources such as
hand-drawn pictures or scanned photographs. Hand-drawn
pictures can be aesthetically pleasing, but it is hard to make
them photo-realistic. Moreover not everybody is an artist and
it could be difficult for ordinary people to come up with good
texture images – there is a specific profession in game and
film studios named texture artist, whose job is to produce
high quality textures. Scanned images, however, may be of
inadequate size or quality, e.g. containing non-uniform light-
ing, shadows, or geometry and could lead to visible seams or
repetition if directly used for texture mapping.

Texture synthesis is an alternative way to create textures. It
is general and easy to use, as the user only needs to supply an
input exemplar and a small set of synthesis parameters. The
output can be made to be of any size without unnatural repe-
tition. Texture synthesis can also produce tileable images by
properly handling the boundary conditions.

The goal of texture synthesis can be stated as follows: Given
a texture sample, synthesize a new texture that, when per-
ceived by a human observer, appears to be generated by the
same underlying process (Figure 1). The process of texture
synthesis could be decomposed into two main components,
analysis and synthesis:

Analysis How to estimate the underlying generation pro-
cess from a given finite texture sample. The estimated
process should be able to model both the structural and
stochastic parts of the input texture. The success of the
model is determined by the visual fidelity of the synthe-
sized textures with respect to the given samples.

Synthesis How to develop an efficient generation procedure
to produce new textures from a given analysis model. The
efficiency of the sampling procedure will directly deter-
mine the computational cost of texture generation.

Essentially, texture synthesis algorithms differ in their
specifics regarding the models used in the analysis part as
well as the computations used in the synthesis part.

2.3. Markov Random Field

Although a variety of texture models have been proposed
throughout the history, so far the most successful model
for graphics applications is based on Markov Random Field
(MRF). Thus, in the rest of this paper we will focus mainly
on MRF-based algorithms, and briefly discuss alternative
methods in Section 14.

Markov Random Field methods model a texture as a realiza-
tion of a local and stationary random process. That is, each
pixel of a texture image is characterized by a small set of
spatially neighboring pixels, and this characterization is the
same for all pixels. The intuition behind this model can be
demonstrated by the following thought experiment. Imag-
ine that a viewer is given an image, but only allowed to ob-
serve it through a small movable window. As the window
is moved the viewer can observe different parts of the im-
age. The image is stationary if, under a proper window size,
the observable portion always appears similar. The image is
local if each pixel is predictable from a small set of neigh-
boring pixels and is independent of the rest of the image.

Based on this Markov-Random-Field model, the goal of tex-
ture synthesis can be formulated as follows: given an input
texture, synthesize an output texture so that for each out-
put pixel, its spatial neighborhood is similar to at least one
neighborhood at the input. The size of the neighborhood is
a user-specifiable parameter and should be proportional to

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

(a)

(a1) (a2)

(b)

(b1) (b2)

Figure 2: How textures differ from images. (a) is a general
image while (b) is a texture. A movable window with two
different positions are drawn as black squares in (a) and
(b), with the corresponding contents shown below. Differ-
ent regions of a texture are always perceived to be similar
(b1,b2), which is not the case for a general image (a1,a2).
In addition, each pixel in (b) is only related to a small set
of neighboring pixels. These two characteristics are called
stationarity and locality, respectively.

the feature size of the texture patterns. Due to the MRF as-
sumption, similarity of local neighborhoods between input
and output will guarantee their perceptual similarity as well.
In addition to this quality concern, the texture synthesis al-
gorithm should also be efficient and controllable. In the rest
of this paper we will present several recent texture synthesis
algorithms that are based on this MRF model.

3. Basic Algorithms

As mentioned in Section 2.3, a significant portion of recent
texture synthesis algorithms for graphics applications are
based on Markov Random Fields (MRF). MRF is a rigor-
ous mathematical tool, and has indeed be utilized as such in
some earlier texture analysis and synthesis algorithms (e.g.
see [Pop97, Pag04]). However, even though a rigorous ap-
proach has many merits, it could exhibit certain disadvan-
tages such as heavy computation or complex algorithms,
making such methods difficult to use and understand.

3.1. Pixel-based synthesis

One of the first methods that break through this barrier and
thus blossomed the study of texture synthesis algorithms is
the work by [EL99]. The basic idea of [EL99] is very simple.
As illustrated in Figure 3, given an input exemplar, the out-
put is first initialized by copying a small seed region from the
input. The synthesized region is then gradually grown from
the initial seed by assigning the output pixels one by one in

input

initial output progressed output

search

Figure 3: The algorithm by [EL99]. Given an input exemplar
(left), the output is initialized by copying a small initial seed
from the input (middle). The synthesis then progresses by
assigning output pixels one by one via neighborhood search
(right).

an inside-out, onion layer fashion. Each output pixel is de-
termined by a neighborhood search process. For example,
to determine the value of the red pixel in Figure 3, [EL99]
places a neighborhood with user-determined size (3× 3 for
this toy example) around it and collects the set of already
synthesized pixels (shown as green in Figure 3). The method
then finds the candidate set of good matches from the input
with respect to this partial neighborhood composed of these
already synthesized pixels, and assigns the output pixel (red)
as the center of a randomly selected neighborhood from the
candidate set (blue). This process is repeated for every out-
put pixel by growing from the initial region until all the out-
put pixels are assigned.

The algorithm by [EL99] is very easy to understand and im-
plement and works well for a variety of textures. It is also
user friendly, as the only user specifiable parameter is the
neighborhood size. Intuitively, the neighborhood size should
be roughly equal to the texture element sizes. If the neigh-
borhood is too small, the output may be too random. On the
other hand if the neighborhood is too big, the output may
reduce to a regular pattern or contain garbage regions as the
synthesis process would be over-constrained. Note that even
though the basic idea in [EL99] is inspired by MRF, the syn-
thesis process does not really perform a rigorous MRF sam-
pling. Thus, it is much easier to understand and implement,
and potentially runs faster.

Despite its elegance and simplicity, [EL99] could be slow
and subject to non-uniform pattern distribution due to the
use of variable-occupancy neighborhoods and the inside-out
synthesis. To address these issues, [WL00] proposed a sim-
ple algorithm based on fixed neighborhood search.

The basic idea is illustrated in Figure 4. Similar to [Pop97,
EL99], the output is constructed by synthesizing the pixels
one by one via a neighborhood match process. However, un-
like [EL99] where the neighborhood may contain a varying
number of valid pixels, [WL00] always uses a fixed neigh-

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

p

(a) (b) (c) (d) (e)Neighborhood N

Figure 4: The algorithm by [WL00]. (a) is the input texture and (b)-(e) show different synthesis stages of the output image.
Pixels in the output image are assigned in a raster scan ordering. The value of each output pixel p is determined by comparing
its spatial neighborhood N(p) with all neighborhoods in the input texture. The input pixel with the most similar neighborhood
will be assigned to the corresponding output pixel. Neighborhoods crossing the output image boundaries (shown in (b), (c) and
(e)) are handled toroidally. Although the output image starts as a random noise, only the last few rows and columns of the noise
are actually used. For clarity, we present the unused noise pixels as black. (b) synthesizing the first pixel, (c) synthesizing the
first pixel of the second row, (d) synthesizing the middle pixel, (e) synthesizing the last pixel.

borhood. Also, the output is synthesized in a pre-determined
sequence such as a scanline order instead of the inside-out
fashion as in [EL99]. The algorithm begins by initializing
the output as a noise (i.e. randomly copying pixels from the
input to the output). To determine the value for the first pixel
at the upper-left corner of the output, [WL00] simply finds
the best match for its neighborhood. However, since this is
the first pixel, its neighborhood will contain only noise pix-
els and thus it is essentially randomly copied from the in-
put. (For neighborhood pixels outside the output image, a
toroidal boundary condition is used to wrap them around.)
However, as the synthesis progresses, eventually the output
neighborhood will contain only valid pixels and the noise
values only show up in neighborhoods for pixels in the first
few rows or columns.

One primary advantage of using a fixed neighborhood is that
the search process can be easily accelerated by various meth-
ods, such as tree-structured vector quantization (TSVQ), kd-
tree, or k-coherence; we will talk more about acceleration in
Section 3.2. Another advantage is that a fixed neighborhood
could be extended for a variety of synthesis orders; in ad-
dition to the scanline order as illustrated in Figure 4, other
synthesis orders are also possible such as multi-resolution
synthesis, which facilitates the use of smaller neighbor-
hoods to capture larger texture elements/patterns, or order-
independent synthesis, which allows parallel computation
and random access as discussed in Section 7.

3.2. Acceleration

The basic neighborhood search algorithms [EL99, WL00]
have issues both in quality and speed. Quality-wise, lo-
cal neighborhood search would often result in noisy results
[WL00] or garbage regions [EL99]. Speed-wise, exhaustive
search can be computationally slow.

Throughout the years many solutions have been proposed
to solve these quality and speed issues (e.g. tree search
[WL00,KEBK05]), but so far the most effective methods are

7

8

A

B

output
input

O
1 3
4 5
6 7 8

1

2
2

3 4

5

6

Figure 5: Illustration of K-coherence algorithm. The final
value of output pixel O is chosen from its candidate set,
shown as blue pixels on the input. See main text for details.

based on the notion of coherence. One of the first papers that
explored coherence was [Ash01] and the basic idea is pretty
simple. When pixels are copied from input to output during
the synthesis process, it is very unlikely that they will land
on random output locations. Instead, pixels that are together
in the input ought to have a tendency to be also together in
the output. Similar ideas have also appeared in other meth-
ods such as jump maps [ZG04] and k-coherence [TZL∗02].
In our experience, k-coherence is one of the best algorithms
in terms of quality and speed, so we focus on it here.

The k-coherence algorithm is divided into two phases: anal-
ysis and synthesis. During analysis, the algorithm builds a
similarity-set for each input texel, where the similarity-set
contains a list of other texels with similar neighborhoods
to the specific input texel. During synthesis, the algorithm
copies pixel from the input to the output, but in addition to
colors, we also copy the source pixel location. To synthesize
a particular output pixel, the algorithm builds a candidate-
set by taking the union of all similarity-sets of the neighbor-
hood texels for each output texel, and then searches through
this candidate-set to find out the best match. The size of the
similarity-set, K, is a user-controllable parameter (usually in
the range [2 11]) that determines the overall speed/quality.

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Perhaps the best way to explain this K-coherence algorithm
is by an example, as illustrated in Figure 5. During analysis,
we compute a similarity set for each input pixel. For exam-
ple, since pixels A and B are the two most similar neigh-
borhoods to pixel 1, they constitute pixel 1’s similarity set
in addition to pixel 1 itself. During synthesis, the pixels are
copied from input to output, including both color and loca-
tion information. To synthesize output pixel O, we look at
its 8 spatial neighbors that are already synthesized, shown in
green pixels with numerical marks 1 to 8. We build pixel O’s
candidate set from the similarity sets of the 8 spatial neigh-
bors. For example, since pixel 1 is one pixel up and one pixel
left with respect to pixel O, it contributes the 3 blue pixels
with complementary shifting from pixel 1’s similarity set,
including pixel 1 itself and pixels A and B. Similar process
can be conducted for pixels 2 to 8. In the end, the candi-
date set of pixel O will include all blue pixels shown in the
input. (For clarity, we only show pixel 1’s similarity set; pix-
els 2 to 8 will have similar pixels in their similarity sets just
like pixels A and B with respect to pixel 1.) From this can-
didate set, we then search the input pixel P that has most
similar neighborhood to the output pixel O, and copy over
P’s color and location information to pixel O. This process
is repeated for every output pixel in every pyramid level (if a
multi-resolution algorithm is used) until the entire output is
synthesized.

3.3. Patch-based synthesis

outputinput

search

pixel-based
outputinput

search

patch-based

Figure 6: Comparisons of pixel-based and patch-based tex-
ture synthesis algorithms. The gray region in the output in-
dicates already synthesized portion.

The quality and speed of pixel-based approaches can be
improved by synthesizing patches rather than pixels. Intu-
itively, when the output is synthesized by assembling patches
rather than pixels from the input, the quality ought to im-
prove as pixels within the same copied patch ought to look
good with respect to each other. Figure 6 illustrates the basic
idea of patch-based texture synthesis. In some sense, patch-
based synthesis is an extension from pixel-based synthesis,
in that the units for copying are patches instead of pixels.
Specifically, in pixel-based synthesis, the output is synthe-
sized by copying pixels one by one from the input. The value
of each output pixel is determined by neighborhood search
to ensure that it is consistent with already synthesized pixels.
Patch-based synthesis is very similar to pixel-based synthe-
sis, except that instead of copying pixels, we copy patches.

As illustrated in Figure 6, to ensure output quality, patches
are selected according to its neighborhood, which, just like
in pixel-based synthesis, is a thin band of pixels around the
unit being copied (being pixel in pixel-based synthesis or
patch in patch-based synthesis).

(a) (b) (c)

Figure 7: Methods for handling adjancent patches during
synthesis. (a) two patches shown in different colors. (b) the
overlapped region is simply blended from the two patches.
(c) an optimal path is computed from the overlapped region.

The major difference between pixel-based and patch-based
algorithm lies in how the synthesis unit is copied onto the
output. In pixel-based algorithm, the copy is just a copy.
However, in patch-based algorithms, the issue is more com-
plicated as a patch, being larger than a pixel, usually over-
laps with the already synthesized portions, so some deci-
sion has to be made about how to handle the conflicting re-
gions. In [PFH00], new patches simply overwrite over exist-
ing regions. By using patches with irregular shapes, this ap-
proach took advantage of the texture masking effects of hu-
man visual system and works surprisingly well for stochastic
textures. [LLX∗01] took a different approach by blending
the overlapped regions (Figure 7 b). As expected, this can
cause blurry artifacts in some situations. Instead of blend-
ing, [EF01] uses dynamic programming to find an optimal
path to cut through the overlapped regions, and this idea is
further improved by [KSE∗03] via graph cut (Figure 7 c).
Finally, another possibility is to warp the patches to ensure
pattern continuity across patch boundaries [SCA02,WY04].

Another approach inspired by patch-based synthesis is to
prepare sets of square patches with compatible edge con-
straints. By tiling them in the plane, different textures can be
obtained. This approach is further detailed in Section 7.2.

3.4. Texture optimization

[KEBK05] proposed texture optimization as an alternative
method beyond pixel-based and patch-based algorithms. The
algorithm is interesting in that it combines the properties
of both pixel and patch based algorithms. Similar to pixel-
based algorithms, texture optimization synthesizes an out-
put texture in the units of pixels (instead of patches). But
unlike previous pixel-based methods which synthesize pix-
els one by one in a greedy fashion, this technique consid-
ers them all together, and determine their values by optimiz-
ing a quadratic energy function. The energy function is de-
termined by mismatches of input/output neighborhoods, so
minimizing this function leads to better output quality.

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Specifically, the energy function can be expressed as fol-
lows:

E(x;{zp}) = ∑
p∈X†

|xp− zp|2 (1)

where E measures local neighborhood similarity across the
current active subset X† of the output, and zp indicates the
most similar input neighborhood to each output neighbor-
hood xp.

[KEBK05] solves the energy function via an EM-like algo-
rithm; in the E (expectation) step, the set of matching input
neighborhoods {zp} remains fixed and the set of output pix-
els x is solved via a least-squares method; in the M (max-
ization) step, the set of output pixels x remains fixed and
the set of matching input neighborhoods {zp} is found by
tree search. These two steps are iterated multiple times until
convergence, or a maximum number of iterations is reached.
Please refer to Table 1 for math details of these two steps.

This energy minimization framework blends the flavor of
both pixel and patch based algorithms; while the neighbor-
hood metric is pixel-centric, the global optimization consid-
ers multiple pixels together, bearing resemblance to patch-
based algorithms.

Least Squares Solver [KEBK05]
z0

p← random neighborhood in Z ∀ p ∈ X†

for iteration n = 0:N do
xn+1 ← argminx E(x;{zn

p}) // E-step via least squares
zn+1

p ← argminz |xp− z|2 // M-step via tree search
if zn+1

p == zn
p ∀ p ∈ X†

x = xn+1

break
end if

end for

Discrete Solver [HZW∗06]
z0

p← random neighborhood in Z ∀ p ∈ X†

for iteration n = 0:N do
// E-step via k-coherence
xn+1 ← argminx,x(p)∈k(p)∀p E(x;{zn

p})
// M-step via k-coherence search
zn+1

p ← argminz |xp− z|2
if zn+1

p == zn
p ∀ p ∈ X†

x = xn+1

break
end if

end for

Table 1: Pseudocode for optimization-based texture syn-
thesis. The top portion is the least squares solver from
[KEBK05], while the bottom portion is the discrete solver
from [HZW∗06]. The major differences include (1) the re-
striction of each output pixel color x(p) to its k-coherence
candidate set k(p) in the E-step, and (2) the use of k-
coherence as the search algorithm in the M-step.

Discrete solver The solver presented in [KEBK05] has two

issues. First, it utilized hierarchical tree search for the M-
step. Since tree search has an average time complexity of
O(log(N)) where N is the total number of input neighbor-
hoods, this step can become the bottleneck of the solver
(as reported in [KEBK05]). Second, the least squares solver
in the E-step may cause blur. Intuitively, the least squares
solver is equivalent to performing an average of overlapping
input neighborhoods on the output. This blur issue can be
ameliorated by a properly spaced subset X† (a heuristic pro-
vided by [KEBK05] is to allow adjacent neighborhoods in
X† to have 1

4 overlap of the neighborhood size), but cannot
be completely eliminated.

[HZW∗06] addressed these issues by incorporating k-
coherence into both the E- and M-steps of the original EM
solver in [KEBK05]. In the E-step, instead of least squares,
the candidate values of each output pixel is limited to its
k-coherence candidate set and the final value is chosen as
the one that best minimizes the energy function. Similar to
k-coherence, both pixel color and location information are
copied from the input to the output. In the M-step, instead of
hierarchical tree search, we again use the k-coherence can-
didate set for each output pixel to find its best matched input
neighborhood. Please refer to Table 1 for details. Injecting
k-coherence into both the E- and M-steps addresses both
the blur (E-step) and speed (M-step) issues in the original
EM solver. In particular, the blur is eliminated because now
pixels are copied directly instead of averaged. The speed is
improved because k-coherence provides a constant instead
of logarithmic time complexity. Due to the discrete nature
of k-coherence search (i.e. only a small discrete number of
options are available in both the E- and M-steps instead of
many more possibilities in the original least squares solver),
this algorithm is dubbed discrete solver. A comparison of
image quality is provided in [HZW∗06].

4. Surface Texture Synthesis

Producing a new texture from an example is not sufficient
for many applications. Often the goal is to place a texture
onto a particular curved surface. There are two logical ways
to place example-based texture synthesis onto a given sur-
face. One way is to create a flat texture and then attempt to
wrap that texture onto the surface. Unfortunately, this ap-
proach has the usual texture mapping problems of distortion
and texture seams. The other approach is to synthesize the
texture in a manner that is tailored for the particular surface
in question, and this is the approach that we will explore in
this section.

The task of performing texture synthesis on a surface can
be divided into two sub-task: 1) create an orientation field
over the surface, and 2) perform texture synthesis according
to the orientation field. We will examine these two sub-tasks
one at a time.

The purpose of the orientation field is to specify the direction

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Figure 8: Vector constraints from user (left) and resulting
orientation field (right).

of the texture as it flows across the surface. In this way, the
orientation field plays the same role as the rows and columns
in a set of pixels. We will discuss using a vector field to rep-
resent the orientation, but other representations are possible.
A vector field associates with each point on the surface a
vector that is tangent to the surface.

The first step in creating a vector field is to allow the user to
specify a few sparse constraints that will guide the creation
of the rest of the vector field. A typical system presents the
user with the surface and allow the user to specify vector
constraints at particular points by dragging the mouse over
the surface. Figure 8 (left) shows a small number of red vec-
tors that have been set by the user as vector field constraints.
With these constraints as guides, the system then creates a
vector field everywhere on the surface that interpolates these
constraints. The right portion of Figure 8 shows the final vec-
tor field based on the given constraints.

Various methods can be used to extend these constraints
to a complete vector field. One method is to use parallel
transport, which is a way of moving a vector along a path
from one position on the surface to another position in a
way that maintains the angle between the original vector
and the path. Using parallel transport, Praun et al. specify
an orientation field for their lapped textures [PFH00]. An-
other method of satisfying the user’s vector constraints is
to treat them as boundary conditions for vector-valued dif-
fusion, as was done by Turk [Tur01]. Zhang et al. sums a

Figure 9: Result of using different orientation field for syn-
thesis, from [WL01].

set of basis functions, one per vector constraint, in order
to create vector fields [ZMT06]. Fisher et al. solve a lin-
ear system that they formulate using discrete exterior cal-
culus in order to smoothly interpolate the user’s direction
constraints [FSDH07]. Other methods of creating orienta-
tion fields are possible, including the N-symmetry field de-
sign method of Ray et al. [RVLL08].

The end result of all of these vector field creation methods is
a dense collections of points on the polygon mesh, each of
which has an associated vector that is tangent to the surface.
By rotating this vector field by 90 degrees, a second vector
field is created that is orthogonal to the first field. The two
vectors thus specified at each point form a local coordinate
frame for helping perform texture synthesis. In effect, this
coordinate frame allows us to step over the surface in either
of two perpendicular directions just as if we are stepping
from one pixel to another. Figure 9 shows the effect of using
different orientation fields to guide the synthesis process. If
the vector field magnitude is allowed to vary, then this can
be used to specify variation in the texture scale across the
surface.

With an orientation field in hand, we can turn our attention
to performing the actual process of texture synthesis on the
given mesh. Just as there are different ways of synthesizing
texture in a regular grid of pixels, there are also various ways
in which synthesis can be performed on the surface. There
are at least three distinct approaches to texture synthesis on
surfaces, and we will review each of these approaches.

One approach is the point-at-a-time style of synthesis, and
such methods are quite similar to pixel-based methods. This
method assumes that a dense, evenly-spaced set of points
have been placed on the mesh. There are a number of ways
in which to achieve this. Perhaps the most common method
is to randomly place points on the surface and then have
the points repel one another as though they are oppositely
charged particles [Tur91]. It is also possible to create a hi-
erarchy of such evenly-spaced points, so that the synthesis
process can be performed at multiple scales.

With a dense set of points on the mesh, the point-at-a-
time synthesis process can proceed much like the pixel-
based fixed neighborhood synthesis method of Wei and

Figure 10: Surface texture synthesis, from [Tur01].

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Levoy [WL00]. Each point on the surface is visited in turn,
and a color neighborhood is built up for this point, much like
the L-shaped neighborhoods shown in Figure 4. In build-
ing up the color samples in this neighborhood, the algorithm
steps over the surface according to the two orthogonal vec-
tor fields on the surface. Moving over the surface based on
these vector fields is just like moving left/right or up/down
in a row or column of pixels. Once the color samples in the
neighborhood of a point have been collected together, the
best matching neighborhood in the texture exemplar is found
and the color of the corresponding pixel from the exemplar
is copied to the point in question on the surface. Once this
process has been carried out for all of the points on the sur-
face, the synthesis process is complete. This basic approach
was used in [WL01] and [Tur01], and results from this ap-
proach are in Figure 10. This method can be extended to
produce textures that vary in form over the surface, as was
demonstrated by [ZZV∗03].

A second method of performing texture synthesis on a sur-
face is to create a mapping between regions of the plane
and the surface. Synthesis is then carried out in the plane
on a regular pixel grid. The work of Ying et al. exemplifies
this approach [YHBZ01]. They decompose the surface into a
collection of overlapping pieces, and they create one chart in
the plane that corresponds to each such surface piece. Each
chart has a mapping onto the surface, and the collection of
such charts is an atlas. Each chart in the plane has a corre-
sponding pixel grid, and the pixels in this grid are visited in
scan-line order to perform texture synthesis.

A similar style of texture atlas creation was used by Lefeb-
vre and Hoppe [LH06]. They build on their work of syn-
thesis with small pixel neighborhoods and GPU-accelerated
neighborhood matching. They use a set of overlapping charts
to texture a surface, and they make use of the Jacobian map
for each chart to construct their fixed-size neighborhoods.
They use an indirection map in order to share samples be-
tween overlapping charts. Results of their method and the
corresponding texture atlas can be seen in Figure 11.

Figure 11: Texture atlas (left) and resulting textured surface
(right), from the method of [LH06].

A third style of texture synthesis on surface is to treat tri-
angles of a mesh as texture patches, similar to planar patch-
based methods (see Section 3.3). One example of this ap-
proach is the work of Soler et al. [SCA02], in which they
create a collection of triangle clusters. The goal of the al-
gorithm assigns texture coordinates (that is, locations in the
exemplar) to each triangle of each cluster. After the triangles
of one patch have been assigned their coordinates, then an
adjacent cluster is examined and the exemplar is searched to
find a region that matches at the point where the two clus-
ters meet. This is similar to finding high quality overlaps be-
tween regions in patch-based 2D synthesis approaches such
as [EF01].

Zelnika and Garland have extended their jump-maps to per-
forming texture synthesis on surfaces [ZG03]. Just like their
2D texture synthesis approach [ZG04], they first pre-process
the texture to locate pairs of pixels in the exemplar that have
similar neighborhoods. Using this information, they assign
(u,v) texture coordiinates to the triangles of a mesh. They
visit each triangle of the mesh according to a user-created
vector field. When a new triangle is visited, its already-
visited neighbors are examined and the jump map is used
to find a location in the exemplar that is a good match.

5. Dynamic Texture Synthesis

So far we have described how to synthesize 2D textures, ei-
ther on an image plane or over a mesh surface. The same
principles can also be applied to synthesizing dynamic tex-
tures, i.e. textures whose appearance evolves over time. A
typical example is video of a dynamic phenomena; however,
other modalities are also possible, e.g. time-variant appear-
ance of materials [GTR∗06] (see Section 9). Besides using
a video exemplar as input, another approach to synthesiz-
ing dynamic textures is to start with static image exemplars,
but achieve dynamism by changing synthesis parameters as a
function of time. An example is the texturing of an animated
fluid surface, guided by the flow of the fluid, using a bubbles
or waves texture as the exemplar. We focus on video tex-
ture synthesis in this section and describe flow-guided tex-
ture synthesis in the next section.

5.1. Temporal Video Texture Synthesis

A commonly studied case for texture synthesis from video is
the treatment of video as a temporal texture. This treatment
of video relies on the applicability of the Markov Random
Field (MRF) property to videos, i.e. the video needs to ex-
hibit locality and stationarity as described in Section 2. In
the case of image textures, these properties manifest them-
selves as repeating patterns in the spatial domain. On the
other hand, a video may consist of purely temporal patterns
that repeat over the course of the video, e.g. a person running
on a treadmill, or a swinging pendulum. Such videos may be
treated as pseudo one-dimensional textures along time.

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

A

CB

Figure 12: Pendulum (arrows indicate velocity): transition-
ing from frame A to B preserves dynamics; transitioning
from A to C does not.

Schödl et al. [SSSE00] present a general technique for find-
ing smooth transitions and loops in a given input video clip.
They synthesize infinitely playing video clips, which may be
used as dynamic backdrops in personal web pages, or as re-
placement for manually generated video loops in computer
games and movies. The idea behind their technique is to find
sets of matching frames in the input video and then transition
between these frames during playback. In the first phase of
the algorithm, the video structure is analyzed for existence of
matching frames within the sequence. This analysis yields a
transition matrix D that encodes the cost of jumping between
two distant frames during playback. The similarity between
two frames i and j is expressed as

Di j = ‖ Ii−I j ‖2,

which denotes the L2 distance between each pair of images
Ii and I j. During synthesis, transitions from frame i to frame
j are created if the successor of i is similar to j, i.e. whenever
Di+1, j is small. A simple way of doing this is to map these
distances to probabilities through an exponential function,

Pi j ∝ e−Di+1, j/σ.

where σ controls the sensitivity of this distribution to the L2
distance. Then, at run time, the next frame j, to be displayed
after frame i, may be selected according to Pi j .

Preserving Dynamics: Video textures need to preserve the
dynamics of motion observed in the video in addition to sim-
ilarity across frames. Consider, for example, a swinging pen-
dulum (illustrated in Figure 12). While the appearance of
the pendulum in frame A matches both frames B and C, its
dynamics are only preserved when transitioning from A to
B. On the other hand, jumping from A to C would lead to
an abrupt and unacceptable change in pendulum’s motion.
One way to overcome this problem is to consider temporal
windows of adjacent frames when computing similarity, i.e.
matching sub-sequences instead of individual frames.

j
1

i
1

j
2

i
2

Video playback:
To play a video
texture, one op-
tion is to ran-
domly transition between frames based on the pre-computed

probability distribution matrix. However, video loops are
preferable when playing the video texture in a conventional
digital video player. Given the transition matrix, one can
pre-compute an optimal set of transitions that generate a
video loop. A loop is created by making backward transi-
tions, i.e. by going from frame i to j, such that j < i. The
cost of this loop is the cost Di j of this transition. Several
such loops may be combined to form a compound loop if
there is overlap between loops. If two loops have transitions
i1→ j1 and i2→ j2 respectively, where j1 < i1 and j2 < i2,
then they overlap if j1 < i2 and j2 < i1 (see inset figure
for an example). One can then combine the two loops as
i1 → j1 . . . i2 → j2. An optimal compound loop minimizes
the total cost of its primitive loops’ transitions, while con-
straining the union of lengths of these primitive loops to be
equal to the desired length of the synthesized sequence.

Controllable synthesis: It is possible to add finer control
to the synthesis process with user-guided motion paths and
velocities. For example, if synthesizing a video of a run-
ner on a treadmill, one may control the speed of the run-
ner by selectively choosing frames from the input video with
the appropriate motion; assuming different segments of the
input video capture the runner running at various speeds.

Figure 13: Mouse-controlled
fish [SSSE00].

Another example is
to use video sprites,
such as the fish shown
in Figure 13, as input
– a video sprite may
be constructed by
subtracting the back-
ground to reveal just
the foreground object
and then compensating
for motion by aligning
its centroid to the ori-
gin. In this example, the motion of the fish is controlled by
the user with a mouse: not only is the fish moved smoothly
towards the mouse, but also its sprite frames are chosen to
match the original velocity in those frames with the motion
requested by the user. A more sophisticated technique for
controllable synthesis using video sprites was presented
in [SE02].

5.2. Spatio-Temporal Synthesis

Videos are not always limited to being temporal textures.
Several phenomena, such as river flow, waterfalls, smoke,
clouds, fire, windy grass fields, etc. exhibit repeating pat-
terns in both space and time. In such cases, it is beneficial
to treat them as 3D spatio-temporal textures as opposed to
purely temporal textures, which has two advantages. Firstly,
it allows for more flexible synthesis algorithms that can ex-
ploit the spatial structure of the video in addition to its tem-
poral structure. Secondly, several 2D algorithms can be di-
rectly lifted to the 3D spatio-temporal domain. The trade-off

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

is the higher dimensionality of the problem, which can lead
to increased computational cost and even impact synthesis
quality if the algorithms are not designed carefully.

Pixel-based techniques: Bar-Joseph et al. [BJEYLW01]
extend the 2D approach of De Bonet [De 97] to work for
time-varying textures. De Bonet’s technique works by build-
ing a multi-resolution tree of wavelet filter coefficients of
the input image texture. The synthesis phase creates a new
output tree by statistical sampling of these filter coefficients.
The output tree is constructed in a coarse-to-fine fashion:
at each resolution level, the filter coefficients are sampled
conditioned upon the coefficients synthesized in the previous
coarser levels. This sampling is performed such that the lo-
cal statistics of coefficients are preserved from the input tree.
In [BJEYLW01], this approach is extended to video by per-
forming a 3D wavelet transform in space-time. However, a
specially designed 3D transform is used, which is separable
in the time dimension. This leads to a considerable speed up
in the otherwise expensive 3D filtering operation, and also
allows asymmetric treatment of space and time.

Wei and Levoy [WL00] (see Section 3.1) apply their tex-
ture synthesis technique to spatio-temporal textures such as
fire, smoke and ocean waves. One of their contributions is
the use of multi-resolution input neighborhoods and a tree
structure to store them, which significantly accelerates the
search phase, and makes their algorithm feasible for video
synthesis, where the neighborhoods are larger in both size
and number. For video, the algorithm proceeds as in 2D, but
uses 3D spatio-temporal neighborhoods instead of 2D spa-
tial ones, and synthesizes the entire video volume at once.

Patch-based techniques: While the above described pixel-
based techniques are able to capture the local statistics of
a spatio-temporal texture quite well, they sometimes fail to
reproduce its global structure. This usually happens if the
input consists of a larger global appearance in addition to
its local textural properties. For example in Figure 15, the
fire has a global structure to its flame. The same is true for
the smoke, the sparkling ball, and the waterfall. Patch-based
techniques generally perform better in these difficult cases
because they operate upon a larger window of pixels at a
time, and therefore are able to preserve the global structure
of the texture in addition to its local properties.

In the case of video, a patch is a 3D block in space-time
(see Figure 14b). One can interpret the temporal synthesis
technique [SSSE00] described in Section 5.1 as a peculiar
case of patch-based synthesis, where the patch size is the en-
tire frame in space and the temporal window length in time;
although during synthesis, the patch only has freedom to dis-
place in time. It is therefore able to preserve the spatial struc-
ture perfectly and only introduces artifacts in time. While
this is sufficient for purely temporal synthesis, for spatio-
temporal textures, it makes sense to allow these patches to
displace in both space and time.

offset (relative placement of input texture)

output texture

seam (area of input
that is transferred to
output texture)

input texture

additional
patches

(a) Patch placement and seam computation in 2D

Input Video

Input VideoInput Video

Similar Frames

Computed

Seam

Window in

which seam

computed

Output Video

Shown in 3D

Input Video

Input VideoInput Video

Similar Frames

Computed

Seam

Window in

which seam

computed

Output Video

Shown in 3D

(b) Seams in video: y− t slices (left column and top-right) and 3D
seam surface (bottom-right).

Figure 14: Patches and seams in the graph cuts algorithm
[KSE∗03].

Kwatra et al. [KSE∗03] present a technique for both image
and video synthesis that treats the entire input texture as
one big patch. It works by stitching together appropriately
placed copies of this 2D or 3D (space-time) patch in the out-
put, using a graph cuts algorithm (see Figure 14a). In 2D,
the graph cut algorithm bears a lot of similarity to the dy-
namic programming based image quilting technique [EF01]
(see Section 3.3). However, its ability to work in 3D or even
higher dimensions is a distinct advantage that the graph cut
approach enjoys over image quilting. The graph cut algo-
rithm computes a seam between overlapping patches, which
in 3D, becomes a surface and separates two or more spatio-
temporal blocks (as shown in Figure 14b, bottom-right).

An important aspect of this technique is the determination of
where to place the new patch in the output domain before ap-
plying graph cut. There are several different options: (1) For
highly stochastic textures, it is sufficient to just randomly
pick the output location. (2) For videos that are primarily
temporal textures with too much structure in the spatial do-
main, it is appropriate to only limit the patch displacements
to time. In this case, one may first find matching frames or
sub-sequences within the video (using methods described in
Section 5.1), and then displace the video so that these frames
are aligned with each other, before invoking graph cuts to
find a temporal transition surface within a window around
these frames (Figure 14b illustrates this case). (3) For gen-
eral spatio-temporal textures, the best results are obtained
by searching for an output location where the input patch is
visually most consistent with its surrounding patches. This
requires a sliding window search for the best match, which
can be computationally expensive: O(n2) in the number of
pixels in the output video. However, Fast Fourier Trans-
forms (FFT) can be used to bring down the complexity to
O(n logn), which is several orders of magnitude faster, espe-

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Figure 15: Video synthesis using graph cuts [KSE∗03].

cially for video. Figure 15 shows frames from sample video
synthesized using the graph cuts based approach.

Agarwala et al. [AZP∗05] extend the graph cut approach to
synthesize panoramic video textures. They take the output
of a panning video camera and stitch it in space and time to
create a single, wide field of view video that appears to play
continuously and indefinitely.

5.3. Parametric Dynamic Texture Modeling

An alternate formulation for video texture synthesis is to in-
terpret the video sequence as the outcome of a dynamical
system. This interpretation still treats the video as a Markov
process, where either a single frame is conditioned upon a
small window of previous frames [DCWS03], or a single
pixel is conditioned upon a small spatio-temporal neighbor-
hood of pixels [SP96]. However, these conditional relation-
ships are expressed in parametric form through linear auto-
regressive models, which is in contrast to the non-parametric
nature of techniques described in previous sections.

In particular, Doretto et al. [DCWS03] first express the
individual frames in a reduced dimensional space, called
the state-space, which is typically obtained through Prin-
cipal Component Analysis (PCA) of the original vector
space spanned by the frames. Then, a linear dynamical sys-
tem (LDS), expressed as a transformation matrix, that con-
verts the current state to the next state in the sequence is
learned from the input states – the state may represent a
dimensionality-reduced frame or sub-sequence of frames. A
closed form solution for learning this LDS transformation
matrix may be obtained by minimizing the total least-square
error incurred when applying the transformation to all pairs
of current and subsequent states of the input sequence. If the
input video sequence consists of frames I1,I2 . . .In, and has
the corresponding dimensionality-reduced states x1,x2 . . .xn,
then their relationship may be expressed as:

Ii = Cxi +wi,

xi+1 = Axi + vi,

where the matrix C projects states to frames and is obtained

through PCA. wi and vi are white zero-mean Gaussian noise
terms. A is the transformation matrix between subsequent
states, and may be estimated by solving the following least
squares minimization problem:

A = argmin
A′

n−1

∑
i=1
‖ xi+1−A′xi ‖

2
.

During synthesis, this transformation matrix is repeatedly
applied upon the current state to reveal the subsequent state.
The synthesized states are then projected back to the original
space of frames to obtain the synthesized video texture.

While this formulation works for short input sequences, it
gets increasingly difficult to learn a single satisfactory trans-
formation matrix A for long sequences with several con-
flicting state changes. A solution that alleviates this prob-
lem is to take a mixed parametric and non-parametric ap-
proach, where several different LDS matrices are learned
within clusters of similar states. Additionally, a transition
probability table is learned for jumping between these differ-
ent clusters. During synthesis, one may jump to a cluster and
then synthesize from its LDS before again moving to a dif-
ferent cluster. This approach was taken by Li et al. [LWS02],
albeit for character motion synthesis.

6. Flow-guided Texture Synthesis

In the previous section, we talked about dynamic texture
synthesis using videos as exemplars. A different way of syn-
thesizing dynamic textures is to animate static image exem-
plars, guided by a flow field. The topic of animating textures
using flow fields has been studied for the purpose of flow vi-
sualization as well as rendering fluids (in 2D and 3D). There
are two aspects to be considered when animating textures us-
ing flow fields. Firstly, the animated texture sequence should
be consistent with the flow field, i.e. it should convey the
motion represented by the flow. Secondly, the synthesized
texture should be visually similar to the texture exemplar in
every frame of the animation.

A simple way to enforce flow consistency is to use the flow
to advect the texture. In other words, the texture is warped
using the flow field to obtain the next frame in the sequence.
Of course, if this process is continued indefinitely, the tex-
ture would likely get unrecognizably distorted or could even
disappear from the viewport, which violates the latter criteria
of maintaining visual consistency. Several techniques have
explored different ways of measuring and preserving visual
consistency, but they can be broadly classified into two cat-
egories: (1) techniques that preserve statistical properties
of the texture, and (2) techniques that enforce appearance-
based similarity.

The two sets of approaches have different trade-offs. Sta-
tistical approaches work by blending together multiple tex-
tures over time, which works quite well for procedural and
white noise textures, and can be easily adapted to run in

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

real-time [vW02, Ney03]. The drawback is the introduc-
tion of ghosting artifacts in more structured textures, due
to blending of mismatched features. Appearance-based ap-
proaches, on the other hand, use example-based texture syn-
thesis to synthesize each frame, but force the synthesis to
stay close to the texture predicted by flow-guided advec-
tion [KEBK05, LH06, HZW∗06]. The advantage is more
generality in terms of the variety of textures they allow.
However, if the texture consists of large features, flow con-
sistency may not always be preserved because these features
may induce an artificial flow of their own. Another drawback
is the running time, which can be several seconds per frame;
however, real-time implementations are possible [LH06].

Statistical approaches: Image based flow visualiza-
tion [vW02] is a real-time technique for texture animation,
that uses simple texture mapping operations for advection
and blending of successive frames with specially designed
background images for preserving visual consistency. These
background images are typically white noise textures,
filtered spatially and temporally based on careful frequency-
space analysis of their behavior. This technique is only
loosely example-based, since the images used for blending
are pre-designed. Although arbitrary foreground images
may be used, they are only used for advection.

Neyret [Ney03] also uses a combination of advection and
blending to synthesize animated textures. However, the tex-
tures used for blending are obtained from the same initial
texture by advecting it for different time durations (or la-
tencies). The latencies used for blending are adapted based
on the local velocity and deformation of the domain. This
technique accepts both image and procedural textures as in-
put. However, it works best with procedural noise textures,
as a special frequency-space method can be used for blend-
ing those textures, which reduces the ghosting artifacts. Fig-
ure 16a shows an example where a flow field (left) is textured
using this technique (right) in order to amplify its resolution.

Appearance-based approaches: Kwatra et al. [KEBK05]
augment their optimization-based texture synthesis tech-
nique to preserve flow consistency in addition to appearance
similarity. They use the advected texture from the previous
frame as a soft constraint by modifying (1) to obtain

Ef(x;{zp}) = ∑
p∈X†

‖xp− zp‖2 +λ‖xp−ap‖2.

where ap refers to the neighborhoods in the advected tex-
ture a. This favors the solution for the current frame, x, to
stay close to a. Additionally a is also used to initialize x,
which encourages the search step to prefer neighborhoods
{zp} that match the advected texture. One problem with this
approach is that the solution for the current frame is obtained
by blending the advected texture with the searched neighbor-
hoods, which can sometimes lead to excessive blurring. This
problem is effectively handled by using a discrete solver for

optimization [HZW∗06] which replaces the blending opera-
tion with a copy operation that picks the discrete pixel that
best minimizes Ef (see Section 3.4).

Lefebvre and Hoppe [LH06] present an example-based tex-
ture advection algorithm that works in real-time. They per-
form advection in coordinate-space as opposed to color-
space, i.e. they remember the distortions introduced by the
advection over the initial texture grid. This allows them to
determine and selectively correct just the areas of exces-
sive distortion (see Section 7 for more details on how they
achieve real-time performance).

6.1. Video Exemplars

Bhat et al. [BSHK04] present a flow-based synthesis tech-
nique that uses video as input. They use sparse flow lines
instead of a dense field to guide the synthesis. A user marks
flow lines in the input video and maps them to new flow lines
in the output. The algorithm then transfers the video texture
from the input to the output while maintaining its temporal
evolution along the specified flow lines. One can think of this
approach as restricting the video texture synthesis problem
discussed in Section 5.1 to these user-specified flow lines, as
opposed to the entire frame. However, the difficulty arises
from the fact that the flow lines are free to change shape.
This problem is addressed by representing the flow line as
a string of particles with texture patches attached to them.
During synthesis, these particle patches are treated as small
moving video textures that periodically transition between
input frames to create seamless, infinite sequences. The dif-
ferent particles are transitioned at different times in the out-
put sequence, in a staggered fashion, to remove any visual
discontinuities that may be apparent otherwise.

Narain et al. [NKL∗07] present a technique that allows us-
ing dense flow fields in conjunction with video exemplars.
They first decouple the video into motion and texture evo-
lution components. During synthesis, the original motion in
the video is replaced by a new flow field, which may be man-
ually specified or obtained from a different video’s motion
field, but the texture evolution is retained.

6.2. Texturing Fluids

A compelling application of flow-guided texture animation
is the texturing of 3D fluids. While fluid simulation is the de
facto standard in animating fluid phenomena, texture synthe-
sis can be used to augment simulations for generating com-
plex, small scale detail that may be computationally too ex-
pensive to simulate. It can also be used as a rendering engine,
or to generate effects that are artistically or aesthetically in-
teresting but not necessarily physically correct, and therefore
not amenable to simulation.

Kwatra et al. [KAK∗07] and Bargteil et al. [BSM∗06] ex-
tend the 2D texture optimization technique of [KEBK05] to

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

(a) courtesy [Ney03] (b) courtesy [KAK∗07] (c) courtesy [NKL∗07]

Figure 16: Flow-guided texture synthesis examples.

the 3D domain for texturing liquid surfaces. Besides textur-
ing the surface with arbitrary textures to synthesize interest-
ing animations, these methods can also be used to add detail
such as waves, bubbles, etc to the fluid. Figure 16b shows an
example where a river is textured with floating leaves.

An important difference between texturing 2D flows and 3D
fluids is the need to perform texture synthesis on a non-
planar liquid surface that is also dynamically changing over
time. While [HZW∗06] and [LH06] present methods for an-
imating textures on arbitrary non-planar surfaces, they as-
sume the surface to be static. With a dynamic surface, the
texture needs to be advected volumetrically in 3D and re-
projected back on to the liquid surface in every time step. For
anisotropic textures, this includes advecting a vector field
that guides the orientation of the texture over the surface
(Section 4 explains the need for this vector field). Advecting
the orientation vector field is more complicated than advect-
ing scalar quantities such as texture coordinates or colors,
because while scalars only get translated under the advection
field, orientation vectors additionally also undergo rotation.
This combined distortion is formulated in [KAK∗07] as the
solution of a vector advection equation.

In [NKL∗07], further connections are explored between ori-
entation fields and fluid flow features such as curvature, curl,
divergence, etc. They also perform globally variant synthesis
(see Section 9) in which the appropriate texture exemplar is
chosen based on these features. Figure 16c shows an exam-
ple where curvature-based features (visualized on left) are
selectively rendered using a turbulent texture (right).

Yu et al. [YNBH09] present a real-time technique for an-
imating and texturing river flows. Besides generating the
river flows procedurally, they also present a methodology for
rendering these flows using procedural textures. They attach
texture patches to particles, which are advected by the flow
field and periodically deleted and regenerated to maintain
a Poisson disk distribution. Rendering is done by blending
these patches together. This technique is similar in spirit to
the statistical flow texturing techniques described in the pre-
vious section. However, it uses a Lagrangian particle-based
approach for advection in contrast to the Eulerian grid-based
approaches taken by prior methods.

7. Runtime Texture Synthesis

The texture synthesis algorithms we have described so far
generate an entire image at once: The algorithm runs once
and the output is stored for later display. While this saves
authoring time, it still requires as much storage as a hand–
painted image. This is unfortunate since the synthesized im-
ages essentially contain no more information than the exem-
plar. Besides storage, this also wastes synthesis time: The
final rendering generally only needs a subset of the entire
texture, either in spatial extent or resolution.

The ability to compute the appearance of a texture on-the-fly
at any given point during rendering was introduced by pro-
cedural texturing [EMP∗02]. A procedural texture is defined
by a small function computing the color at a point using only
coordinates and a few global parameters. This requires very
little storage, and computation only occurs on visible sur-
faces. While many approaches have been proposed to create
visually interesting procedural textures, it is in general very
difficult to reproduce a given appearance. A drawback that
texture synthesis from example does not have. Hence, we
would like the best of both approaches: The fast point eval-
uation and low memory cost of procedural textures, and the
by–example capabilities of approaches described earlier.

The two key properties missing from previously described
algorithms are (see Figure 17): 1) Spatial determinism - the
computed color at any given point should always remain the
same, even if only a subset is computed - and 2) local eval-
uation - determining the color at a point should only involve
knowing the color at a small number of other points. In addi-
tion, a run–time on–the–fly texture synthesis scheme should
be fast enough to answer synthesis queries during rendering.

As often in texture synthesis, two categories of approaches
have been proposed. A first is inspired by per–pixel synthesis
schemes (Section 7.1), while the second is most similar to
patch–based approaches (Section 7.2).

7.1. Per–pixel runtime synthesis

The work of Wei and Levoy [WL02] is the first algorithm to
target on-the-fly synthesis. The key idea is to break the se-
quential processing of previous algorithms, where pixels are

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Figure 17: Left: Overlapping regions synthesized indepen-
dently must correspond. Right: Spatial determinism requires
proper boundary conditions. Here, the subregion in the blue
rectangle is requested. With sequential synthesis all the con-
tent located before (shown ghosted) must be synthesized in
order to guarantee spatial determinism.

S

Desired pixels

Level L Level L-1 Level L-2

L
2

SL
1

SL
0

SL-1
1

SL-1
2

SL-1
0 SL-2

2
SL-2

1
SL-2

0

Figure 18: The pixels to be synthesized throughout the pyra-
mid is determined from the set of desired pixels at the last
iteration S2

L, using the neighborhood shape to dilate the set.

generated in sequence (typically scan–line ordering): The
color of new pixels depends on the color of all previously
synthesized pixels. Instead, Wei and Levoy cast texture syn-
thesis as an iterative process. A first image, made by ran-
domly choosing pixels from the exemplar is iteratively im-
proved using neighborhood matching. The important point
is that neighborhoods are always read from the previous step
image, while new colors are written in the next step image.
Hence, the computations performed at each pixel are inde-
pendent: Pixels can be processed in any order without chang-
ing the result. In addition, the dependency chain to compute
the color of a single pixel remains local and is easily de-
termined: to compute the color of a pixel p, its neighbor-
hoodN (p) must exist at the previous iteration. By using this
rule throughout the entire multi–resolution synthesis pyra-
mid, the set of pixels that must be computed at each iter-
ation is easily determined from the set of desired pixels at
the last iteration (see Figure 18). Using a caching scheme
for efficiency, this approach can answer random queries in a
synthesized texture, generating the content on-the-fly as the
renderer requires it (see Figure 19).

Unfortunately order-independent neighborhood matching is
less efficient and many iterations are required to achieve
good results. Lefebvre and Hoppe [LH05] proposed a new
parallel texture synthesis algorithm to overcome this issue.
A guiding principle of the algorithm is that it manipulates
pixel coordinates rather than colors directly: Whenever a
best matching neighborhood is found, the coordinates of its
center are recorded, rather than its color. Colors are trivially
recovered with a simple lookup in the example image (see
Figure 20). Manipulating coordinates has several advantages

Figure 19: A frame from the game Quake enhanced with
on–the–fly texture synthesis. (a) Texture synthesis is used on
the lava texture preventing unnatural repetitions. (b) Content
of the texture cache after rendering the frame. Gray regions
have not been used by the renderer. (c) 482 exemplar.

exploited in the three main steps of the algorithm: Upsam-
pling, Jitter and Correction (see Figure 21). These steps are
performed at each level of the synthesis pyramid.

• The Upsampling step increases the resolution of the previ-
ous level result. Since the algorithm manipulates coordi-
nates, this is done through simple coordinate inheritance
rather than neighborhood matching. A key advantage is
that coherent patches are formed through this process.

• The Jitter step introduces variety explicitly in the re-
sult, adding an offset to pixel coordinates during the
multi-resolution synthesis process. This visually displaces
blocks of texture in the result. Neighborhood matching
(next step) will recover from any perturbation incompati-
ble with the exemplar appearance. An important property
is that in absence of Jitter a simple tiling of the exemplar
is produced. Explicit Jitter enables powerful controls over
the result, such as drag–and–drop.

• The last step is the Correction step. It performs a few iter-

Figure 20: Given an exemplar, coordinates are synthesized
into a coarse-to-fine pyramid; the bottom row shows the cor-
responding exemplar colors. Padding of the synthesis pyra-
mid ensures that all necessary pixels are synthesized for a
spatially deterministic result.

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Figure 21: The three steps of the parallel synthesis algorithm
of Lefebvre and Hoppe [LH05]. These are performed at each
level of the synthesis pyramid.

Figure 22: Synthesis results and corresponding patches
(color coded). Left: The parallel algorithm tends to form
patches (i.e. small pieces of the exemplar). Right: Favoring
coherent candidates produces larger patches (whether this is
desirable depends on the texture).

ations of order–independent neighborhood matching. An
interleaved processing pattern is used to further improve
synthesis efficiency. The search space is kept small by us-
ing k-coherent candidates [TZL∗02] (see Section 3.2).

For efficiency, the algorithm synthesizes rectangular win-
dows of texture rather than answering point queries (see Fig-
ure 20). The GPU implementation achieves real–time on–
the–fly synthesis, enabling interactive exploration of infinite
texture domains while manipulating parameters.

This approach has been later extended [LH06] to synthe-
size textures under distortions, as well as textures containing
higher-dimensional data.

7.2. Tile–based runtime synthesis

Tile–based texture synthesis is based on the notion of tilings:
Coverage of the plane obtained by putting together a finite
set of corresponding tiles. In general, tiles are polygons of
arbitrary shape with the only requirement that there must re-
main no hole once the plane is paved.

The simplicity of tilings is only apparent: Tilings are an
extensively researched and fascinating mathematical object.
Challenges arise when considering properties such as the pe-
riodicity of a tiling – whether it repeats itself after some
translation – or the set of positions and rotations that tiles
can take. Of particular interest is the problem of finding the
smallest set of tiles that will never produce a periodic tiling.
Examples of such aperiodic tile sets are the Penrose tiles,
the 16 Ammann [GS86] tiles and the 13 Wang tiles [II96].

For a complete overview of tilings, we invite the interested
reader to refer to the book "Tilings and patterns" [GS86].

Figure 23: Left: Square tiles with color coded edge con-
straints. The small images have corresponding content along
vertical and horizontal edges of same color. Right: Ran-
dom tilings produce different images. Notice how edge con-
straints are preserved in order to obtain a continuous image.

The use of tilings in Computer Graphics goes back to the
early side–scrolling platform games. To save time and mem-
ory, many game levels were created by putting together small
square tiles, each one supporting a small image. By arrang-
ing the tiles in different ways through a tile–map, various
level layouts were obtained. Because the images have corre-
sponding boundaries, the tile outlines are invisible (see Fig-
ure 23). This is similar to a jigsaw puzzle where pieces could
be put in different orders to create different images.

Several tiling schemes have been proposed for texture syn-
thesis. Stam [Sta97] creates animated textures using an ape-
riodic tiling of animated square tiles. The tiles have col-
ored edges representing edge compatibility (see Figure 23).
Neyret and Cani [NC99] use triangular tiles to texture com-
plex surfaces with little distortion. Cohen et al. [CSHD03]
use a set of tiles similar to Stam [Sta97] but with improved
construction rules. One important motivation is that an ape-
riodic tiling in the strict mathematical sense may not be vi-
sually pleasant: Typically many repetitive structures appear.
The authors rely on patch–based texture synthesis to gener-
ate the interior of the tiles while enforcing edge constraints
(see Figure 24). Fu and Leung [FL05] show how to apply
this planar scheme to surfaces through a polycubemap pa-
rameterization [THCM04]. Lagae and Dutré [LD06] inves-
tigate the use of corner constraints for the tiles, which has
the advantage of introducing diagonal neighbor constraints.

Similarly to per-pixel synthesis, many of these schemes are
sequential and do not support run–time synthesis. Lefebvre
and Neyret [LN03] proposed to generate aperiodic tilings
directly at rendering time, from the pixel coordinates. First,
the algorithm computes in which cell of the tiling the pixel
lies. Then, it uses a pseudo–random generator to randomly
choose a tile. The spatial distribution of tiles is controlled
by the user. The approach also enables random distribution
of small texture elements. Wei [Wei04] combined this ap-
proach with the work of Cohen et al. [CSHD03], choosing

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

?

?

Figure 24: Left: Two tiles with four different border con-
straints must be created. Middle: A position for each col-
ored edge is chosen in the source image. This defines the
content that will appear along each edge. Right: Each edge
provides a positioning of the source image in the tile. Graph
cut optimization is used to find optimal transitions between
the edges. (Several variants are possible, such as adding a
patch in the center of the tile to increase visual variety).

edge color constraints with a pseudo-random generator and
ensuring a tile exists for all possible combinations of edge
colors. Kopf et al. [KCODL06] proposed a recursive version
of the same scheme: Tiles are subdivided into smaller tiles,
while preserving edge compatibility. The authors demon-
strate run–time texture synthesis by randomly positioning
many small texture elements (e.g. leaves) in the plane. This
scheme is also used to quickly generate stippling patterns,
another popular application of tilings in graphics [LKF∗08].

An additional challenge of procedural tilings is to provide
texture filtering (bi–linear interpolation, MIP–mapping).
Without special treatment discontinuities appear at tile
boundaries: The graphics hardware filters each tile sepa-
rately, unaware of the procedural layout of tiles. While it
is possible to bypass and re–program filtering in the pixel
shader, this is extremely inefficient. Wei [Wei04] packs the
tiles of his scheme in a manner which lessens filtering is-
sues. While it works very well on tiles of homogeneous con-
tent, visual artifacts appear if the tiles are too different. A
more generic solution exploiting latest hardware capabilities
is proposed in [Lef08].

8. Solid Texture Synthesis

Solid textures define color content in 3D. They are the Com-
puter Graphics equivalent of a block of matter. Applying a
solid texture onto an object is easy, since colors are directly
retrieved from the 3D coordinates of the surface points. Solid
textures give the impression that the object has been carved
out a block of material such as wood or marble.

Solid texturing first appeared in the context of procedural
texturing [EMP∗02]. Procedural textures are very efficient at
this task since they require little storage. Nonetheless, defin-
ing visually interesting materials in a volume is challeng-
ing, even more so than in 2D. Hence, several texture syn-
thesis from example approaches have been investigated to
synthesize volumes of color content from example images.

The goal is to generate a volume where each 2D slice looks
visually similar to the 2D example. Some algorithms sup-
port different 2D examples along different planes, in which
case they must be consistent in order to produce convincing
results. Figure 25 shows results of solid texture synthesis.

Figure 25: Results of solid texture synthesis using the
scheme of Dong et al. [DLTD08]. Transparency is used in
the first and last example to reveal internal structures.

The pyramid histogram matching of [HB95] and the spec-
tral analysis methods of [GD95, GD96] pioneered the work
on solid texture synthesis from example. The former re-
produces global statistics of the 2D example images in the
volume, while the latter two create a procedural solid tex-
ture from the spectral analysis of multiple images. Dis-
chler et al. [DGF98] proposed to use both approaches (spec-
tral and histogram–based) in a same hybrid scheme. While
very efficient on stochastic textures, these approaches do not
perform well on structured patterns. For more details, please
refer to the survey of Dischler and Ghazanfarpour [DG01].
Jagnow et al. [JDR04] proposed a solid synthesis method
targeted at aggregates of particles, whose distribution and
shape is analyzed from an image. It is specialized for a class
of materials and does not support arbitrary examples.

Several approaches based on neighborhood matching tech-
niques have been proposed to support more generic input.
Wei [Wei02] adapted 2D neighborhood matching synthesis
schemes to 3D volumes. The key idea is to consider three 2D
exemplars, one in each direction. In each pixel of the output
volume (voxel), three interleaved 2D neighborhoods are ex-
tracted. The best matches are found independently in each of
the three exemplars. The color of the voxel is updated as the
average of the three neighborhood center colors. This pro-
cess is repeated in each voxel, and several iterations are per-
formed on the entire volume. Figure 26 illustrates this idea.
Kopf et al. [KFCO∗07] rely on a similar formulation, but
use a global optimization approach [KEBK05]. A histogram
matching step is introduced, further improving the result by
making sure all areas of the exemplar receive equal attention
during synthesis. Qin and Yang [QY07] synthesize a volume
by capturing the co-occurrences of grayscale levels in the
neighborhoods of 2D images.

These approaches truly generate a 3D grid of color content,
requiring a significant amount of memory (e.g. 48MB for
a 2563 RGB volume, 3GB for a 10243 volume). Instead,
other methods avoid the explicit construction of the full solid
texture. Pietroni et al. [POB∗07] define the object interior

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Ex

Ez

Ey

voxelmatch.pdf 09/02/2009 11:54:25

Figure 26: The scheme of Wei [Wei02]. At each voxel,
three axis aligned 2D neighborhoods are extracted. The three
exemplars are search independently for a best match. The
new color at the voxel is computed as the average of the
three neighborhood centers.

by morphing a set of 2D images positioned within the ob-
ject by the user. Owada et al. [ONOI04] adapted guided 2D
synthesis [HJO∗01] to illustrate object interiors. The inter-
esting aspect of this approach is that it only hallucinates a
volume: When the user cuts an object, a new surface ap-
pears giving the illusion that the object interior is revealed.
In fact, the color content is not defined in a volume and dis-
continuities can appear at transitions between different cuts.
Takayama et al. [TOII08] define a texture inside an object by
applying a small solid texture to a tetrahedrization of the in-
terior. Each tetrahedron can be seen as the 3D equivalent of
a ’patch’, the approach defining the 3D analog of a Lapped
Texture [PFH00]. When cutting the object the new surface
intersects the textured tetrahedrons, giving the illusion of a
continuous solid texture. This approach has two key advan-
tages: First, the tetrahedrons require much less storage than a
high–resolution 3D grid covering the entire object. Second,
by using a solid texture of varying aspect (e.g. from core to
crust) it is possible to arrange the tetrahedrons so as to simu-
late a solid texture which appearance varies inside the object.
The key disadvantage of the technique is to require a fine-
enough tetrahedrization of the interior, which can become
problematic with many different objects or objects of large
volume. The approach of Dong et al. [DLTD08] is specifi-
cally designed to address this issue. It draws on the run–time
2D texture synthesis approaches (see Section 7.1) to syn-
thesize the volume content lazily. The key idea is to only
synthesize parts of the volume which are used to texture a
surface. When the user cuts an object, more voxels are syn-
thesized on–the–fly for the newly appearing surfaces. The
result is indistinguishable from using a high-resolution solid
texture. Still, the cost of synthesis for a surface is compara-
ble to the cost of 2D synthesis, both in time and space. A key
challenge is to reduce the number of neighborhood matching
iterations to keep computations local. This is achieved by
pre–computing 3D neighborhoods during the analysis step.
They are obtained by interleaving well–chosen 2D neighbor-
hoods from the exemplars. During synthesis these 3D neigh-
borhoods are used: Instead of dealing with three intersecting
2D problems, the synthesizer truly works in 3D making it
both simpler and more efficient.

Figure 27: Three frames of an object exploding in real–
time [DLTD08]. The texture of newly appearing surfaces is
synthesized on–the–fly. Notice the continuity of features be-
tween the hull and the internal surfaces: Even though colors
are only computed around the surface, the result is indistin-
guishable from using a complete solid texture.

9. Globally-varying Textures

In Section 2.3, we define textures as satisfying both the local
and stationary properties of Markov Random Fields. Even
though this definition works for stationary or homogeneous
textures, it excludes many interesting natural and man-made
textures that exhibit globally-varying pattern changes, such
as weathering or biological growth over object surfaces. In
this section, we extend the definition of textures to handle
such globally varying textures.

stationary globally varying

Figure 28: Stationary versus globally-varying texture. A sta-
tionary texture satisfies both of the MRF properties: local
and stationary. A globally varying texture, on the other hand,
is only local but not necessarily stationary.

We define globally varying textures as those that satisfy the
local but not necessarily the stationary property of Markov
Random Fields (Figure 28). The globally varying distribu-
tion of texture patterns is often conditioned by certain en-
vironment factors, such as rusting over an iron statue con-
ditioned by moisture levels or paint cracks conditioned by
paint thickness. When this environment factor is explicitly
present, either by measurement or by deduction, we term it
the control map for the corresponding globally varying tex-
ture; see Figure 29 for an example.

Notice that globally varying textures are still local; this is
very important as it allows us to characterize globally vary-
ing textures by spatial neighborhoods. On the other hand, the

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

color texture control map

Figure 29: Control map for globally varying textures. In this
example, the color texture is a paint crack pattern, and the
control map is the original paint thickness.

potential non-stationary patterns of globally varying textures
make them more complex to analyze and synthesize. In this
section, we describe how to extend the basic algorithms in
Section 3 to synthesize globally varying textures.

The single most basic idea that distinguishes globally vary-
ing texture synthesis from the basic stationary version is
very simple: instead of allowing each input texel to go to
any place in the output, use a certain mechanism to control
and/or influence who can go to where. The control idea re-
lates to the control maps defined above but the exact mech-
anism depends on specific algorithms. One of the simplest
and earliest control mechanisms is by colors. For exam-
ple, given an input image containing purple flowers over
green grass, [Ash01] synthesizes an output conditioned on
a user-painted color map with purple and green colors. This
can be achieved by adapting the neighborhood search pro-
cess in [WL00] so that the best matched input neighbor-
hood is chosen to match not only the output texture col-
ors but also the user supplied map. Similar ideas could also
be used for patch-based synthesis [EF01]. [HJO∗01] fur-
ther extended the ideas in [Ash01] by proposing the no-
tion of image analogies. Basically, the input to the system
consists of three images: the input image, the filtered in-
put, and the filtered output. The output is then synthesized
by analogies where filtered-input-to-original-input is analo-
gous to filtered-output-to-output. The major difference be-
tween [HJO∗01] and [Ash01] is that image analogies has an
additional filtered input, which acts like the control map of
the input. The filtered output in [HJO∗01] is similar to the
target map in [Ash01] even though they are used differently.

[ZZV∗03] introduced the idea of texton mask to synthe-
size globally varying output textures from stationary inputs.
[MZD05] used a related idea termed warp field to seamlessly
morph one texture into another. In addition to synthesize
globally varying outputs, texton mask has also been found
to be an effective mechanism to maintain integrity of syn-
thesized texture elements.

The methods mentioned above [Ash01, EF01, HJO∗01] pio-
neered practice of user controllable texture synthesis from
examples, but the control maps embedded in these algo-
rithms are mostly heuristic. Several recent methods continue

this line of work but either measure the control maps from
real data [GTR∗06,LGG∗07] or compute the control map via
a more principled process [WTL∗06]. In addition, all these
methods present time-varying texture synthesis.

10. Inverse Texture Synthesis

So far, we have been presenting texture synthesis as a
method to produce an arbitrarily large output from a small
input exemplar. This is certainly a useful application sce-
nario, as many natural or man-made textures have inherent
size limitation, e.g. to obtain an orange skin texture, one is
usually constrained to crop a small piece of photograph due
to the curvature and associated lighting/geometry variations.

However, with the recent advances in scanning and data
acquisition technologies, large textures are becoming more
common [GTR∗06, LGG∗07]. This is particularly true for
globally varying textures (Section 9), since to capture their
global pattern variance one usually needs sufficiently large
coverage. This large data size could cause problems for stor-
age, transmission, and computation.

Inverse texture synthesis [WHZ∗08] is a potential solution to
this problem. The technique is termed inverse texture synthe-
sis because it operates in the inverse direction respect to tra-
ditional forward texture synthesis (Figure 31). Specifically,
the goal of traditional forward texture synthesis is data am-
plification, where an arbitrarily large output is synthesized
from a small input with similar perceptual quality. On the
other hand, the goal of inverse texture synthesis is data re-
duction, where a small output is derived from a large input so
that as much information from the input is preserved as pos-
sible. Note that even though this information-preservation
goal is similar to image compression, for texture synthesis,
we evaluate the success of this “compression” process via
perceptual quality achieved by forward texture synthesis, not
pixel-wise identity.

The goal of inverse texture synthesis can be stated as follows.
Given a large input texture, computes a small output com-
paction so that as much information from the input is pre-
served as possible. This latter property is evaluated by (for-
ward) synthesizing a new output texture from the computed
compaction and see if the output looks similar to the original
input. When the input is a globally varying texture, inverse
texture synthesis will compute a compaction that contains
both the original color texture and control map (Figure 31).
The compaction, together with a novel control map, could
then be used to synthesize a new texture with user desired
intention, such as controlling bronze patination via surface
accessibility in Figure 31. Note that, as exemplified in Fig-
ure 31, a properly computed compaction would not only pre-
serve quality but also saves computation and storage due to
the reduced data size.

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Figure 30: Context aware texture synthesis [LGG∗07]. From top to bottom: bronze patination, iron rusting, and paint cracking.
Time progresses from left to right.

10.1. Related methods

In addition to be considered as operating in the inverse
way with respect to traditional forward texture synthesis, in-
verse texture synthesis also belongs to a larger category of
image summarization algorithms such as [JFK03, KWR07,
WWOH08]. In general, one major difference between these
methods and inverse texture synthesis is that similar to image
compression, they are mainly designed for general images,
not just textures. It remains an interesting future work to see
if it is possible to apply or extend the neighborhood based
method in [WHZ∗08] to general images as well.

11. Image Completion by Texture Synthesis

Texture synthesis from example provides a powerful tool to
repair holes or replace objects in images. For this reason, it
is one of the core components of many image completion
techniques (e.g. [BVSO03, DCOY03, HE07]).

The challenges for successful image completion often lie in
making the best use of existing texture synthesis algorithms.
For instance, preserving structural elements such as win-
dows or fences requires to guide synthesis by reconstruct-
ing the outlines of these shapes prior to synthesis [BSCB00,
SYJS05]. Some approaches undistort the surfaces seen at
an angle before feeding them into a standard patch–based

synthesizer [PSK06]. Note that a few texture synthesis al-
gorithms have been specifically tailored to operate along the
distorted textures found in images [FH04, ELS08].

Since we focus here on algorithms operating on textures
rather than arbitrary images, we do not describe these ap-
proaches in detail. We refer the interested reader to the sur-
vey on image completion and inpainting by Fidaner [Fid08].

12. Resolution Enhancement by Texture Synthesis

Texture synthesis by example is also used to produce im-
ages of arbitrary resolution. A first scenario is to add de-
tail in a low resolution image. This is often referred to as
super–resolution. Hertzmann et al. [HJO∗01] use as exam-
ple a small part of the image given at high–resolution. The
low–resolution image is guiding (see Section 9) a texture
synthesis process operating at the higher resolution. Free-
man et al. [FJP02] follow a similar approach, copying small
patches of high-resolution details from a database of exam-
ples.

A second scenario is to generate textures with arbitrary
amount of detail, adding sharper and sharper features as the
viewpoint is getting closer to the surface. Such an algorithm
was recently proposed by Han et al. [HRRG08]. The idea
is to use several exemplars describing the texture at various

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

original texture
8902×11

original control map
8902×1

in
v

er
se

 s
y

n
th

es
is 1282×11

1282×1

texture
com-

paction

fo
rw

ar
d

 s
y

n
th

es
is

target control from original
14776 sec

from compaction
1719 sec

Figure 31: Inverse texture synthesis [WHZ∗08]. Given a large globally-varying texture with an auxiliary control map (patina
sequence from [LGG∗07] in this case), the algorithm automatically computes a small texture compaction that best summarizes
the original, including both texture and control. This small texture compaction can be used to reconstruct the original texture
from its original control map, or to re-synthesize a new texture under a user-supplied control map. Due to the reduced data size,
re-synthesis from our compaction is much faster than from the original without compromising image quality (right two images).
In this example we use [KEBK05] for forward synthesis, but other algorithms can also be used since our compactions are just
ordinary images.

scales. These exemplars are automatically linked to create
an exemplar graph. For instance, a green area in a terrain im-
age will link to an image containing detailed grass. Typically
exemplars will have similar resolution (e.g. 642 pixels), but
will represent very different spatial extents (e.g. from square
inches to square miles). During synthesis the synthesizer will
automatically ’jump’ from one exemplar to the next, effec-
tively behaving as if a unique exemplar of much larger reso-
lution was available. In addition, since the graph may contain
loops the multi–scale synthesis process can continue end-
lessly, producing auto–similar multi–scale content.

Finally, Lefebvre and Hoppe [LH05] achieve high resolution
synthesis by first synthesizing using a low resolution version
of an exemplar, and then re-interpreting the result for the
high–resolution version of the same exemplar. The underly-
ing idea is to only perform synthesis at the scale where some
structure is present, while small discontinuities will not be
visible on unstructured fine scale detail.

13. Geometry Texture Synthesis

Some researchers have extended the idea of texture synthesis
to the creation of geometric details from example geometry.
There are a number of different approaches that have been
invented for performing geometry synthesis from example,
and often the style of algorithm is guided by the choice of
geometric representation that is being used, such as polygon
mesh, volumetric model, or height field.

Using volumetric models of geometry, Bhat et al. performed
geometry synthesis [BIT04] using an approach that was in-
spired by Image Analogies [HJO∗01]. They begin the geom-
etry synthesis process by creating a coordinate frame field

throughout the volume of space that is to be modified. Using
these coordinate frames, they build 3D voxel neighborhoods,
similar to those used for pixel-at-a-time texture synthesis.
Using an Image Analogy style of neighborhood matching,
they determine the voxel value that is to be copied from the
volumetric geometry exemplar. Figure 32 shows an example
of this approach.

Several approaches to geometry synthesis have used poly-
gon meshes to represent geometry. The Mesh Quilting
work of Zhou et al. places geometric detail (taken from a
polygonal swatch) over the surface of a given input base
mesh [ZHW∗06]. This approach is similar to the hole fill-
ing texture synthesis approach of Efros and Leung [EL99]
in that new geometry is placed on the base mesh in accor-

Figure 32: The resulting volumetric geometry (far right) is
synthesized over the seahorse mesh (middle right) by anal-
ogy with the flat cylinder and the grooved cylinder (at left).
From [BIT04].

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

Figure 33: Mesh quilting, from [ZHW∗06]. The geometric
exemplar (the polygonal swatch) is shown in the upper left.

dance to how well it matches already-placed geometry. Fig-
ure 33 demonstrates its results. Merrell used quite a differ-
ent approach to geometry synthesis from polygonal mod-
els [Mer07]. The input to his approach is a polygonal model
that has been designed for geometry synthesis, and that is
partitioned by the model builder into meaningfull cells, each
with a particular label. For example, a stone column might
be partitioned into a base, a middle section, and a top cell.
Then, the synthesis algorithm creates a 3D collection of la-
belled cells in such a way that label placement is guided by
the adjacency information of labelled cells in the input ge-
ometry. This method of geometry synthesis is particularly
useful for synthesis of architectural detail.

Zhou et al. create terrain geometry that is assembled from
real terrain data (given by a heigh field), but with land forms
that are guided by a user’s sketch [ZSTR07]. Their approach
segments the user’s sketch into small curvalinear features

Figure 34: Terrain synthesis (right) based on a user’s input
sketch (upper left), based on the method of [ZSTR07].

(straight segments, curves, branch points) and then finds
matching features in a collection of patches from the input
heigh field data. These height field patches are blended to-
gether using a combination of 2D warping, Poisson blend-
ing and graph cut merging. The patches are large, typically
80× 80 height samples, and the speed of this method de-
pends on reducing the terrain features (rivers, mountains,
valleys) into simplified curvalinear features. Figure 34 shows
a result from this approach.

14. Alternative Methods

So far, we have been focused mainly on neighborhood-based
texture synthesis algorithms due to their success in produc-
ing high quality results for graphics applications. However,
neighborhood-match is not the only possible method for tex-
ture synthesis, and there are many notable alternatives out
there.

One of the earlier methods for texture synthesis is sampling
via Markov Random Fields [Pop97, Pag04]. These methods
could be considered as precursors for later neighborhood-
search-based methods such as [EL99,WL00], but since they
are based on rigorous MRF math framework, they are often
much more computationally demanding that neighborhood-
based methods. In essence, both [Pop97, Pag04] and [EL99,
WL00] attempt to synthesize textures by insuring local
neighborhood quality, but [EL99,WL00] provide simpler al-
gorithms and thus run faster. They are also more intuitive
and easier to understand, and thus have helped inspire recent
advances in texture synthesis research.

Another notable methodology is based on parametric models
for human perceptions [HB95,PS00]. Specifically, [HB95] is
based on color histograms and [PS00] a more refined model
based on matching coefficients for multi-scale oriented fil-
ter responses. Being parametric, these methods have several
main advantages compared to neighborhood-based methods
which are often considered to be non-parametric. (But an al-
ternative interpretation is that the parameters are the neigh-
borhoods themselves, especially if the input is reduced into
a compaction via inverse texture synthesis [WHZ∗08].) Be-
ing parametric, these methods describe any texture via a few
parameters, and is thus very compact, a similar advantage to
procedural texturing. The parameter sets also allow poten-
tial texture editing operations, e.g. hybrid from multiple tex-
tures, by manipulating the proper parameters from the mul-
tiple inputs. This is possible because each parameter should
(in theory) correspond to certain human perception mech-
anisms for textures. Most importantly, these methods shed
light on the underlying human perception mechanisms for
textures, which, if properly understood, might lead to the ul-
timate texture synthesis algorithms.

Finally, even though most texture synthesis algorithms are
designed to handle general situations, there are certain
domain-specific algorithms that could produce better results

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

for the target domain. One recent example is near-regular
texture synthesis [LLH04], where the authors treat near-
regular textures as statistical deviations from an underly-
ing regular structure. Armed by a more robust model, this
method is able to handle tasks considered difficult for gen-
eral texture models such as changing lighting and geometry
structures. The authors also provided a classification of tex-
tures based on geometric and appearance regularity.

15. Future Work

Example-based texture synthesis is a fast moving field, and
there are a variety of possible directions for future work.

We are particularly motivated to close the gap between
procedural and example-based texture synthesis. As shown
in Table 2, example-based methods usually consume more
memory, are not randomly accessible, are more difficult to
edit, and offer only limited resolution. Recently, however,
there have been several exciting new techniques that are ad-
dressing these issues. We believe that further research in
these directions can make example-based texture synthesis
even more useful, and our hunch is that doing so will be
easier than trying to improve the generality of procedural
texturing techniques.

Another promising direction of research is to explore fur-
ther the link between geometry and texture synthesis.
Most current methods apply synthesis to geometry by di-
rectly adapting concepts developed for images (patch stitch-
ing [ZHW∗06] or height-field synthesis [ZSTR07]). How-
ever, synthesizing varied 3D shapes from a small set of ex-
amples remains a challenging open problem, even though
some preliminary work has been done [Mer07, MM08]. We
believe this is a great opportunity for further research.

16. Conclusion

Synthesis by example is one of the most promising ideas
for providing end-users with powerful content creation tools.
Almost anyone can learn to create new results by combin-
ing examples. This is an intuitive approach, requiring min-
imal experience and technical skills. We believe that tex-
ture synthesis by example provides key tools and insights
towards this goal. Generalizing and combining texture syn-
thesis tools with tools from other fields (geometric model-
ing, animation) is an exciting and promising challenge. We
hope this survey will help to spread these ideas and that it
will encourage research efforts directed towards these goals.

References

[Ash01] ASHIKHMIN M.: Synthesizing natural textures.
In I3D ’01 (2001), pp. 217–226.

[AZP∗05] AGARWALA A., ZHENG K. C., PAL C.,
AGRAWALA M., COHEN M., CURLESS B., SALESIN D.,

procedural example-based
generality ×

√

data size
√

compact [WHZ∗08]
random access

√
yes [WL02, LH05]

editability
√

easy [BD02, MZD05]
resolution

√
infinite [HRRG08]

Table 2: Comparison of procedural and example-based tex-
ture synthesis. Even though example-based texture synthe-
sis has several shortcomings compared to procedural texture
synthesis, such as data size, random accessibility, editabil-
ity/controllability, and resolution, the gap has been closing
by recent advances as cited in the table. The main draw-
back of procedural texturing, of limited generality, remains
a largely unsolved open problem.

SZELISKI R.: Panoramic video textures. In SIGGRAPH
’05 (2005), pp. 821–827.

[BD02] BROOKS S., DODGSON N.: Self-similarity based
texture editing. In SIGGRAPH ’02 (2002), pp. 653–656.

[BIT04] BHAT P., INGRAM S., TURK G.: Geometric tex-
ture synthesis by example. In SGP ’04 (2004).

[BJEYLW01] BAR-JOSEPH Z., EL-YANIV R., LISCHIN-
SKI D., WERMAN M.: Texture mixing and texture movie
synthesis using statistical learning. IEEE Transactions on
Visualization and Computer Graphics 7 (2001), 120–135.

[BSCB00] BERTALMIO M., SAPIRO G., CASELLES V.,
BALLESTER C.: Image inpainting. In SIGGRAPH ’00
(2000), pp. 417–424.

[BSHK04] BHAT K. S., SEITZ S. M., HODGINS J. K.,
KHOSLA P. K.: Flow-based video synthesis and editing.
In SIGGRAPH ’04 (2004), pp. 360–363.

[BSM∗06] BARGTEIL A. W., SIN F., MICHAELS J. E.,
GOKTEKIN T. G., O’BRIEN J. F.: A texture synthe-
sis method for liquid animations. In SCA ’06 (2006),
pp. 345–351.

[BVSO03] BERTALMIO M., VESE L., SAPIRO G., OS-
HER S.: Simultaneous structure and texture image in-
painting. IEEE Transactions on Image Processing 12
(2003), 882–889.

[CSHD03] COHEN M. F., SHADE J., HILLER S.,
DEUSSEN O.: Wang tiles for image and texture gener-
ation. In SIGGRAPH ’03 (2003), pp. 287–294.

[DCOY03] DRORI I., COHEN-OR D., YESHURUN H.:
Fragment-based image completion. In SIGGRAPH ’03
(2003), pp. 303–312.

[DCWS03] DORETTO G., CHIUSO A., WU Y., SOATTO

S.: Dynamic textures. International Journal of Computer
Vision 51, 2 (2003), 91–109.

[De 97] DE BONET J. S.: Multiresolution sampling pro-

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

cedure for analysis and synthesis of texture images. In
SIGGRAPH ’97 (1997), pp. 361–368.

[DG01] DISCHLER J.-M., GHAZANFARPOUR D.: A sur-
vey of 3d texturing. Computers & Graphics 25, 10
(2001).

[DGF98] DISCHLER J. M., GHAZANFARPOUR D.,
FREYDIER R.: Anisotropic solid texture synthesis using
orthogonal 2d views. Computer Graphics Forum 17, 3
(1998), 87–96.

[DLTD08] DONG Y., LEFEBVRE S., TONG X., DRET-
TAKIS G.: Lazy solid texture synthesis. In EGSR ’08
(2008).

[EF01] EFROS A. A., FREEMAN W. T.: Image quilt-
ing for texture synthesis and transfer. In SIGGRAPH ’01
(2001), pp. 341–346.

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by
non-parametric sampling. In IEEE International Confer-
ence on Computer Vision (1999), pp. 1033–1038.

[ELS08] EISENACHER C., LEFEBVRE S., STAMMINGER

M.: Texture synthesis from photographs. In Proceedings
of the Eurographics conference (2008).

[EMP∗02] EBERT D. S., MUSGRAVE F. K., PEACHEY

D., PERLIN K., WORLEY S.: Texturing and Modeling:
A Procedural Approach. Morgan Kaufmann Publishers
Inc., 2002.

[FH04] FANG H., HART J. C.: Textureshop: texture syn-
thesis as a photograph editing tool. In SIGGRAPH ’04
(2004), pp. 354–359.

[Fid08] FIDANER I. B.: A survey on variational image
inpainting, texture synthesis and image completion, 2008.
http://www.scribd.com/doc/3012627/.

[FJP02] FREEMAN W. T., JONES T. R., PASZTOR E. C.:
Example-based super-resolution. IEEE Comput. Graph.
Appl. 22, 2 (2002), 56–65.

[FL05] FU C.-W., LEUNG M.-K.: Texture tiling on arbi-
trary topological surfaces. In EGSR ’05 (2005), pp. 99–
104.

[FSDH07] FISHER M., SCHRODER P., DESBRUN M.,
HOPPE H.: Design of Tangent Vector Fields. ACM
TRANSACTIONS ON GRAPHICS 26, 3 (2007), 56.

[GD95] GHAZANFARPOUR D., DISCHLER J.-M.: Spec-
tral analysis for automatic 3d texture generation. Comput-
ers & Graphics 19, 3 (1995).

[GD96] GHAZANFARPOUR D., DISCHLER J.-M.: Gen-
eration of 3d texture using multiple 2d models analysis.
Computers & Graphics 15, 3 (1996).

[GS86] GRÜNBAUM B., SHEPARD G.: Tilings and Pat-
terns. 1986.

[GTR∗06] GU J., TU C.-I., RAMAMOORTHI R., BEL-
HUMEUR P., MATUSIK W., NAYAR S.: Time-varying

surface appearance: acquisition, modeling and rendering.
In SIGGRAPH ’06 (2006), pp. 762–771.

[HB95] HEEGER D. J., BERGEN J. R.: Pyramid-based
texture analysis/synthesis. In SIGGRAPH ’95 (1995),
pp. 229–238.

[HE07] HAYS J., EFROS A. A.: Scene completion using
millions of photographs. In SIGGRAPH ’07 (2007), p. 4.

[HJO∗01] HERTZMANN A., JACOBS C. E., OLIVER N.,
CURLESS B., SALESIN D. H.: Image analogies. In SIG-
GRAPH ’01 (2001), pp. 327–340.

[HRRG08] HAN C., RISSER E., RAMAMOORTHI R.,
GRINSPUN E.: Multiscale texture synthesis. In SIG-
GRAPH ’08 (2008), pp. 1–8.

[HZW∗06] HAN J., ZHOU K., WEI L.-Y., GONG M.,
BAO H., ZHANG X., GUO B.: Fast example-based sur-
face texture synthesis via discrete optimization. Vis. Com-
put. 22, 9 (2006), 918–925.

[II96] II K. C.: An aperiodic set of 13 wang tiles, 1996.
Discrete Mathematics 160, pp 245-251.

[JDR04] JAGNOW R., DORSEY J., RUSHMEIER H.:
Stereological techniques for solid textures. In SIGGRAPH
’04 (2004), pp. 329–335.

[JFK03] JOJIC N., FREY B. J., KANNAN A.: Epitomic
analysis of appearance and shape. In ICCV ’03 (2003),
p. 34.

[KAK∗07] KWATRA V., ADALSTEINSSON D., KIM T.,
KWATRA N., CARLSON M., LIN M.: Texturing fluids.
IEEE Trans. Visualization and Computer Graphics 13, 5
(2007), 939–952.

[KCODL06] KOPF J., COHEN-OR D., DEUSSEN O.,
LISCHINSKI D.: Recursive wang tiles for real-time blue
noise. In SIGGRAPH ’06 (2006), pp. 509–518.

[KEBK05] KWATRA V., ESSA I., BOBICK A., KWATRA

N.: Texture optimization for example-based synthesis. In
SIGGRAPH ’05 (2005), pp. 795–802.

[KFCO∗07] KOPF J., FU C.-W., COHEN-OR D.,
DEUSSEN O., LISCHINSKI D., WONG T.-T.: Solid tex-
ture synthesis from 2d exemplars. In SIGGRAPH ’07
(2007), p. 2.

[KSE∗03] KWATRA V., SCHÖDL A., ESSA I., TURK G.,
BOBICK A.: Graphcut textures: image and video synthe-
sis using graph cuts. In SIGGRAPH ’03 (2003), pp. 277–
286.

[KWLT07] KWATRA V., WEI L.-Y., LEFEBVRE S.,
TURK G.: Course 15: Example-based texture synthesis.
In SIGGRAPH ’07 courses (2007).

[KWR07] KANNAN A., WINN J., ROTHER C.: Clus-
tering appearance and shape by learning jigsaws. In
Advances in Neural Information Processing Systems 19.
2007.

c© The Eurographics Association 2009.

http://www.scribd.com/doc/3012627/

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

[LD06] LAGAE A., DUTRÉ P.: An alternative for Wang
tiles: Colored edges versus colored corners. ACM Trans-
actions on Graphics 25, 4 (2006), 1442–1459.

[Lef08] LEFEBVRE S.: Filtered Tilemaps (in Shader X6).
Shader X6. 2008, ch. 2, pp. 63–72.

[LGG∗07] LU J., GEORGHIADES A., GLASER A., WU

H., WEI L.-Y., GUO B.: Context aware texture. ACM
Trans. Graph. 26, 1 (2007).

[LH05] LEFEBVRE S., HOPPE H.: Parallel controllable
texture synthesis. In SIGGRAPH ’05 (2005), pp. 777–
786.

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space tex-
ture synthesis. In SIGGRAPH ’06 (2006), pp. 541–548.

[LKF∗08] LAGAE A., KAPLAN C. S., FU C.-W., OS-
TROMOUKHOV V., KOPF J., DEUSSEN O.: Tile-based
methods for interactive applications. SIGGRAPH ’08
Class, August 2008.

[LLH04] LIU Y., LIN W.-C., HAYS J.: Near-regular
texture analysis and manipulation. In SIGGRAPH ’04
(2004), pp. 368–376.

[LLX∗01] LIANG L., LIU C., XU Y., GUO B., SHUM H.-
Y.: Real-time texture synthesis using patch-based sam-
pling. In ACM Transactions on Graphics (2001).

[LN03] LEFEBVRE S., NEYRET F.: Pattern based proce-
dural textures. In I3D ’03 (2003), pp. 203–212.

[LWS02] LI Y., WANG T., SHUM H.-Y.: Motion texture:
a two-level statistical model for character motion synthe-
sis. In SIGGRAPH ’02 (2002), pp. 465–472.

[Mer07] MERRELL P.: Example-based model synthesis.
In I3D ’07 (2007), pp. 105–112.

[MM08] MERRELL P., MANOCHA D.: Continuous model
synthesis. In SIGGRAPH Asia ’08 (2008), pp. 1–7.

[MZD05] MATUSIK W., ZWICKER M., DURAND F.:
Texture design using a simplicial complex of morphable
textures. In SIGGRAPH ’05 (2005), pp. 787–794.

[NC99] NEYRET F., CANI M.-P.: Pattern-based texturing
revisited. In SIGGRAPH ’99 (1999), pp. 235–242.

[Ney03] NEYRET F.: Advected textures. In SCA ’03 (july
2003).

[NKL∗07] NARAIN R., KWATRA V., LEE H.-P., KIM T.,
CARLSON M., LIN M.: Feature-guided dynamic texture
synthesis on continuous flows. In EGSR ’07 (2007).

[ONOI04] OWADA S., NIELSEN F., OKABE M.,
IGARASHI T.: Volumetric illustration: Designing 3d
models with internal textures. In SIGGRAPH ’04 (2004),
pp. 322–328.

[Pag04] PAGET R.: Strong markov random field model.
IEEE Trans. Pattern Anal. Mach. Intell. 26, 3 (2004),
408–413.

[PFH00] PRAUN E., FINKELSTEIN A., HOPPE H.:
Lapped textures. In SIGGRAPH ’00 (2000), pp. 465–470.

[POB∗07] PIETRONI N., OTADUY M. A., BICKEL B.,
GANOVELLI F., GROSS M.: Texturing internal surfaces
from a few cross sections. Computer Graphics Forum 26,
3 (2007).

[Pop97] POPAT A. C.: Conjoint Probabilistic Subband
Modeling. PhD thesis, Massachusetts Institute of Tech-
nology, 1997.

[PS00] PORTILLA J., SIMONCELLI E. P.: A parametric
texture model based on joint statistics of complex wavelet
coefficients. Int. J. Comput. Vision 40, 1 (2000), 49–70.

[PSK06] PAVIĆ D., SCHÖNEFELD V., KOBBELT L.: In-
teractive image completion with perspective correction.
Vis. Comput. 22, 9 (2006), 671–681.

[QY07] QIN X., YANG Y.-H.: Aura 3d textures. IEEE
Transactions on Visualization and Computer Graphics 13,
2 (2007), 379–389.

[RVLL08] RAY N., VALLET B., LI W., LEVY B.: Article
N-Symmetry Direction Field Design. ACM Transactions
on Graphics-TOG 27, 2 (2008).

[SCA02] SOLER C., CANI M.-P., ANGELIDIS A.: Hi-
erarchical pattern mapping. In SIGGRAPH ’02 (2002),
pp. 673–680.

[SE02] SCHÖDL A., ESSA I. A.: Controlled animation of
video sprites. In SCA ’02 (2002), pp. 121–127.

[SP96] SZUMMER M., PICARD R. W.: Temporal texture
modeling. In In IEEE International Conference on Image
Processing (1996), pp. 823–826.

[SSSE00] SCHÖDL A., SZELISKI R., SALESIN D. H.,
ESSA I.: Video textures. In SIGGRAPH ’00 (2000),
pp. 489–498.

[Sta97] STAM J.: Aperiodic Texture Mapping. Tech.
Rep. R046, European Research Consortium for Informat-
ics and Mathematics (ERCIM), Jan. 1997.

[SYJS05] SUN J., YUAN L., JIA J., SHUM H.-Y.: Image
completion with structure propagation. In SIGGRAPH
’05 (2005), pp. 861–868.

[THCM04] TARINI M., HORMANN K., CIGNONI P.,
MONTANI C.: Polycube-maps. In SIGGRAPH ’04
(2004), pp. 853–860.

[TOII08] TAKAYAMA K., OKABE M., IJIRI T.,
IGARASHI T.: Lapped solid textures: filling a model with
anisotropic textures. In SIGGRAPH ’08 (2008), pp. 1–9.

[Tur91] TURK G.: Generating textures on arbitrary sur-
faces using reaction-diffusion. In SIGGRAPH ’91 (1991),
pp. 289–298.

[Tur01] TURK G.: Texture synthesis on surfaces. In SIG-
GRAPH ’01 (2001), pp. 347–354.

c© The Eurographics Association 2009.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk / State of the Art in Example-based Texture Synthesis

[TZL∗02] TONG X., ZHANG J., LIU L., WANG X., GUO

B., SHUM H.-Y.: Synthesis of bidirectional texture func-
tions on arbitrary surfaces. In SIGGRAPH ’02 (2002),
pp. 665–672.

[vW02] VAN WIJK J. J.: Image based flow visualization.
In SIGGRAPH ’02 (2002), pp. 745–754.

[Wei02] WEI L.-Y.: Texture synthesis by fixed neighbor-
hood searching. PhD thesis, Stanford University, 2002.
Adviser-Marc Levoy.

[Wei04] WEI L.-Y.: Tile-based texture mapping on graph-
ics hardware. In HWWS ’04 (2004), pp. 55–63.

[WHZ∗08] WEI L.-Y., HAN J., ZHOU K., BAO H., GUO

B., SHUM H.-Y.: Inverse texture synthesis. In SIG-
GRAPH ’08 (2008), pp. 1–9.

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis
using tree-structured vector quantization. In SIGGRAPH
’00 (2000), pp. 479–488.

[WL01] WEI L.-Y., LEVOY M.: Texture synthesis over
arbitrary manifold surfaces. In SIGGRAPH ’01 (2001),
pp. 355–360.

[WL02] WEI L.-Y., LEVOY M.: Order-Independent Tex-
ture Synthesis. Tech. Rep. TR-2002-01, Computer Sci-
ence Department, Stanford University, 2002.

[WTL∗06] WANG J., TONG X., LIN S., PAN M., WANG

C., BAO H., GUO B., SHUM H.-Y.: Appearance mani-
folds for modeling time-variant appearance of materials.
In SIGGRAPH ’06 (2006), pp. 754–761.

[WWOH08] WANG H., WEXLER Y., OFEK E., HOPPE

H.: Factoring repeated content within and among images.
In SIGGRAPH ’08 (2008), pp. 1–10.

[WY04] WU Q., YU Y.: Feature matching and defor-
mation for texture synthesis. In SIGGRAPH ’04 (2004),
pp. 364–367.

[YHBZ01] YING L., HERTZMANN A., BIERMANN H.,
ZORIN D.: Texture and Shape Synthesis on Surfaces. In
EGSR ’02 (2001).

[YNBH09] YU Q., NEYRET F., BRUNETON E.,
HOLZSCHUCH N.: Scalable real-time animation of
rivers. Computer Graphics Forum (Proceedings of
Eurographics 2009) 28, 2 (mar 2009).

[ZG03] ZELINKA S., GARLAND M.: Interactive texture
synthesis on surfaces using jump maps. In EGSR ’03
(2003), pp. 90–96.

[ZG04] ZELINKA S., GARLAND M.: Jump map-based
interactive texture synthesis. ACM Trans. Graph. 23, 4
(2004), 930–962.

[ZHW∗06] ZHOU K., HUANG X., WANG X., TONG Y.,
DESBRUN M., GUO B., SHUM H.-Y.: Mesh quilting for
geometric texture synthesis. In SIGGRAPH ’06 (2006),
pp. 690–697.

[ZMT06] ZHANG E., MISCHAIKOW K., TURK G.: Vec-
tor field design on surfaces. ACM Transactions on Graph-
ics 25, 4 (2006), 1294–1326.

[ZSTR07] ZHOU H., SUN J., TURK G., REHG J. M.: Ter-
rain synthesis from digital elevation models. IEEE Trans-
actions on Visualization and Computer Graphics 13, 4
(2007), 834–848.

[ZZV∗03] ZHANG J., ZHOU K., VELHO L., GUO B.,
SHUM H.-Y.: Synthesis of progressively-variant textures
on arbitrary surfaces. In SIGGRAPH ’03 (2003), pp. 295–
302.

c© The Eurographics Association 2009.

