SVM and MRF-Based Method for Accurate Classification of Hyperspectral Images
Yuliya Tarabalka, Mathieu Fauvel, Jocelyn Chanussot, Jon Atli Benediktsson

To cite this version:
SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images

Yuliya Tarabalka, Student Member, IEEE, Mathieu Fauvel, Jocelyn Chanussot, Senior Member, IEEE, and Jón Atli Benediktsson, Fellow, IEEE

Abstract—The high number of spectral bands acquired by hyperspectral sensors increases the capability to distinguish physical materials and objects, presenting new challenges to image analysis and classification. This letter presents a novel method for accurate spectral-spatial classification of hyperspectral images. The proposed technique consists of two steps. In the first step, a probabilistic support vector machine pixelwise classification of the hyperspectral image is applied. In the second step, spatial contextual information is used for refining the classification results obtained in the first step. This is achieved by means of a Markov random field regularization. Experimental results are presented for three hyperspectral airborne images and compared with those obtained by recently proposed advanced spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.

Index Terms—Classification, hyperspectral images, Markov random field (MRF), support vector machine (SVM).

I. INTRODUCTION

Hyperspectral imaging sensors measure the energy of the received light in tens or hundreds of narrow spectral bands in each spatial position in the image [1]. Thus, every pixel can be represented as a high-dimensional vector across the wavelength dimension, called the spectrum of the material in this pixel. Since different substances exhibit different spectral signatures, hyperspectral imagery is a well-suited technology for accurate image classification, which is an important task in many application domains (monitoring and management of the environment, precision agriculture, etc.).

Most classification methods process each pixel independently without considering the correlations between spatially adjacent pixels (so-called *pixelwise* classifiers) [2], [3]. In particular, support vector machines (SVMs) have shown good performances for classifying high-dimensional data when a limited number of training samples are available [3], [4]. Furthermore, spatial contextual information should help for an accurate scene interpretation. Therefore, it is very important to develop *spectral-spatial* classification techniques that are capable to consider spatial dependences between pixels [5]–[8].

In general, two categories of spectral-spatial classification methods can be distinguished. First, spatial contextual information is exploited in the classification stage. For instance, spectral and spatial information can be combined within a feature vector of each pixel, and then, a pixelwise classification technique can be applied to the obtained set of vectors [6], [9]. Another group of methods from this category first defines the objects within the image scene and then classifies each object [2], [5]. Second, spatial dependences are considered in the decision rule [10]. An example is a pixelwise classification followed by spatial regularization of the classification map.

Markov random fields (MRFs) are probabilistic models that are commonly used to integrate spatial context into image classification problems [7], [10], [11]. In the MRF framework, the *maximum a posteriori* (MAP) decision rule is typically formulated as the minimization of a suitable energy function [12]. An extensive literature is available on MRF-based image classification techniques. In particular, the research groups of Farag [7], Bruzzone [10], and Gong [11] have investigated the integration of the SVM technique within an MRF framework for accurate spectral-spatial classification of remote sensing images. All of them use SVMs to estimate class conditional probability density functions and MRFs to estimate context-based class priors. Farag et al. [7] have applied the mean field-based SVM regression algorithm for density estimation, with the purpose of hyperspectral image classification. Good classification results are reported, although no comparison with other advanced spectral-spatial classification techniques is published.

This letter presents a novel SVM- and MRF-based (SVM-MRF) method for spectral-spatial classification of hyperspectral images. In the first step of the proposed method, a probabilistic SVM pixelwise classification of the hyperspectral image is applied. In the second step, spatial contextual information is used for refining the classification results obtained in the first step. This is achieved by means of the MRF regularization. An important difference from previously proposed methods [7], [10], [11] consists in defining and integrating the “fuzzy no-edge/edge” function into the spatial energy function involved in MRFs, aiming at preserving edges while performing spatial regularization.
The second contribution of this letter consists in the experimental comparison of the presented approach with other recently proposed advanced spectral-spatial classification techniques. Experimental results are demonstrated on three hyperspectral airborne images recorded by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Reflective Optics System Imaging Spectrometer (ROSIS).

The outline of this letter is as follows. In the next section, an SVMMRF classification scheme for hyperspectral images is presented. Experimental results are discussed in Section III. Finally, conclusions are drawn in Section IV.

II. SVMMRF CLASSIFICATION SCHEME

The flowchart of the proposed SVMMRF classification method is shown in Fig. 1. At the input, a B-band hyperspectral image is given, which can be considered as a set of \(n \) pixel vectors \(X = \{ x_j \in \mathbb{R}^B, j = 1, 2, \ldots, n \} \). Let \(\Omega = \{ \omega_1, \omega_2, \ldots, \omega_K \} \) be a set of information classes in the scene. Classification consists in assigning each pixel to one of the \(K \) classes of interest.

A. Probabilistic SVM Classification

The first step of the proposed procedure consists in performing a probabilistic SVM pixelwise classification of the hyperspectral image [4], [13]. Other probabilistic classifiers could be used. However, SVMs are extremely well suited to classify hyperspectral data [3]. The standard SVMs do not provide probability estimates for the individual classes. In order to get these estimates, pairwise coupling of binary probabilistic estimates is applied [13], [14].

B. Computation of the Gradient

Independent of the previous step, a one-band gradient of the hyperspectral image is computed, which is further used for defining the fuzzy no-edge/edge function. Approaches for defining a one-band gradient from the B-band image are analyzed in [15]. Here, we first compute horizontal, vertical, and two diagonal gradients (corresponding to the directions \(0^\circ, 90^\circ, 45^\circ, \) and \(135^\circ \), respectively), using Sobel masks [16], where each of the gradients is computed as the sum of the gradients of every spectral channel. The resulting one-band gradient

\[\nabla(X) = \{ \rho_j \in \mathbb{R}, j = 1, 2, \ldots, n \} \]

is found as the average of the four obtained directional gradients.

C. MRF-Based Regularization

In the final step, the regularization of the SVM classification map is performed, using the MAP-MRF framework. This framework is based on the interpixel class dependence assumption, which means that a pixel belonging to a class \(\omega_i \) is likely to have neighboring pixels belonging to the same class. In our work, an eight-neighborhood is assumed (let \(N_i \) be the set of neighbors for a given pixel \(x_i \)).

We adopt the Metropolis algorithm, based on stochastic relaxation and annealing, for computing the MAP estimate of the true classification map given the initial (pixelwise) classification map [17], [18]. The considered method is based on the Bayesian approach and aims at minimizing the global energy in the image, by iterative minimization of local energies (defined hereafter) associated with randomly chosen image sites, i.e., pixels.

Let \(L = \{ L_j, j = 1, 2, \ldots, n \} \) be a generic set of information class labels for the image \(X \). We propose to compute the local energy of a given site associated with a pixel \(x_i \) as

\[U(x_i) = U_{\text{spectral}}(x_i) + U_{\text{spatial}}(x_i) \quad (1) \]

where \(U_{\text{spectral}}(x_i) \) is the spectral energy function from the observed data and \(U_{\text{spatial}}(x_i) \) is the spatial energy term computed over the local neighborhood \(N_i \). We define the spectral energy term as

\[U_{\text{spectral}}(x_i) = - \ln \{ P(x_i|L_i) \} \quad (2) \]

where \(P(x_i|L_i) \) is estimated by pairwise coupling of probability estimates from “one-versus-one” SVM outputs [11], [14].

For the spatial energy term, two different expressions are investigated. We first consider the standard spatial energy expression, used, for instance, in [10], which is computed as

\[U_{\text{spatial}}^{\text{NE}}(x_i) = \sum_{x_j \in N_i} \beta (1 - \delta(L_i, L_j)) \quad (3) \]

where \(\delta(\cdot, \cdot) \) is the Kronecker delta function (\(\delta(a, b) = 1 \) if \(a = b \), and \(\delta(a, b) = 0 \) otherwise) and \(\beta \) is a parameter that controls the importance of the spatial versus spectral energy terms. The superscript “NE” means that no edge information is taken into account. The term \(U_{\text{spatial}}(x_i) \) is proportional to the number of neighboring pixels of \(x_i \) assigned to one of the classes different from \(L_i \). This spatial energy term is particularly suitable for the images with large spatial structures. However, if a small one-pixel object is present in the image, this model will favor assigning this pixel to the class of the surrounding objects.

In order to mitigate this drawback of the previous spatial term and to preserve small structures and edges in the classification map, we propose to integrate the edge information into the spatial energy function. The computation of an accurate edge map for hyperspectral images is a challenging task. For instance, it can be obtained by thresholding the gradient image \(\{ \rho_j \in \mathbb{R}, j = 1, 2, \ldots, n \} \). For this purpose, an appropriate threshold
must be chosen. Instead of computing the edge map, we propose to define the following “fuzzy no-edge/edge function”:

$$\varepsilon(x_j) = 1 - \frac{\rho_j}{\alpha + \rho_j} \quad (4)$$

where α is a parameter controlling the approximate edge threshold. From here, the following spatial energy function is proposed:

$$U_{\text{spatial}}^E(x_i) = \sum_{x_j \in \mathcal{N}_i} \beta \varepsilon(x_j)(1 - \delta(L_i, L_j)). \quad (5)$$

The superscript “E” means that the edge information is taken into account. In the following, we thus refer to two different methods, namely, SVMMRF-NE and SVMMRF-E, when (3) and (5) are used for computing the spatial energy, respectively.

We briefly summarize the considered Metropolis algorithm for optimizing the energy function. In each iteration, an image site (i.e., a pixel x_i) is randomly chosen. The local energy of the given site $U(x_i)$ is computed by (1). Then, a new class label L_i^{new} is randomly selected for the site x_i, and a new local energy $U^{\text{new}}(x_i)$ is computed. If the variation of the energy $\Delta U = U^{\text{new}}(x_i) - U(x_i) < 0$, the new class label is assigned to x_i: $L_i = L_i^{\text{new}}$. Otherwise, the new class assignment is accepted with the probability $p = \exp(-\Delta U/T)$. Here, T is a global control parameter called “temperature” [18]. The optimization begins at a high temperature, which is gradually lowered as the relaxation procedure proceeds. This procedure avoids converging to local minima.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We applied the proposed SVMMRF-NE and SVMMRF-E classification approaches to three hyperspectral airborne images described in the following:

1) The *Indian Pines* image is of a vegetation area that was recorded by the AVIRIS sensor. The image is of 145 by 145 pixels, with a spatial resolution of 20 m/pixel and 200 spectral channels. A three-band false color image and the reference data are shown in Fig. 2. Sixteen classes of interest are considered, which are detailed in Table II, with a number of training and test samples for each class. Training samples have been randomly chosen from the reference data.

2) The *Center of Pavia* image was recorded by the ROSIS sensor over the urban area of Pavia, Italy. It is of 900 by 300 pixels, with a spatial resolution of 1.3 m/pixel and 102 spectral channels. The reference data contain nine thematic classes and 56 070 labeled pixels. Thirty samples for each class were randomly chosen from the reference data as training samples.

3) The *University of Pavia* image is of an urban area, acquired by the ROSIS sensor. It is of 610 by 340 pixels, with 103 spectral channels. The reference data contain nine classes of interest. The training and test sets are composed of 3921 and 40 002 pixels, respectively.

More information about the images can be found in [8].

In all experiments, the probabilistic one-versus-one SVM classification with the Gaussian radial basis function (RBF) kernel was applied. The optimal parameters C (parameter that controls the amount of penalty during the SVM optimization [4]) and γ (spread of the RBF kernel) were chosen by fivefold cross validation. The temperature T was varied during the Metropolis relaxation procedure [18]: The initial temperature was set to $T^1 = 2$ (a relatively low value of the initial temperature results in a faster execution of the algorithm). After every 10^6 (order of the number of pixels in an image) iterations, the temperature for the next iteration $(k + 1)$ was recomputed as $T^{k+1} = 0.98T^k$. The optimal value of the parameter $\alpha = 30$ was experimentally derived (the same optimal value of α was obtained for the three considered data sets).

Furthermore, we have investigated the performances of the SVMMRF-NE and SVMMRF-E algorithms for different values of the context weight parameter β. Table I reports the SVMMRF-NE and SVMMRF-E overall (percentage of correctly classified pixels) and average (mean of the percentage of correctly classified pixels for each class) classification accuracies for the three considered data sets. It can be concluded that the optimal parameter is $\beta \in [1, 2]$ for the SVMMRF-NE approach and $\beta \in [2, 4]$ for the SVMMRF-E approach (for both methods, the corresponding overall accuracies are nonsignificantly different over the given range of values). Moreover, the
methods are robust to the choice of β, and quite a wide range of values of β leads to high classification accuracies.\footnote{A similar study has shown robustness of the SVMMRF-E method to the choice of the parameter α.}

Table II summarizes the global (overall average accuracies and kappa coefficient [8]) and class-specific classification accuracies for the \textit{Indian Pines} image. In order to compare the performances of the proposed method with other recently proposed advanced classification techniques, we have included results of the pixelwise SVM classifiers, the well-known ECHO (Extraction and Classification of Homogeneous Object) spatial classifier [5], classification using majority vote within the adaptive neighborhoods defined by watershed segmentation (WH+MV) [19], as well as the results obtained using the construction of a minimum spanning forest from the probabilistic SVM-derived markers followed by majority voting within connected regions (SVMMSF+MV) [8]. Fig. 2 shows some of the corresponding classification maps. As can be seen from the table, all the spectral-spatial approaches yield higher classification accuracies when compared to the pixelwise method. The proposed SVMMRF-NE and SVMMRF-E techniques give the highest global and most of the best class-specific accuracies. Following the results of the McNemar’s test, the SVMMRF-NE, SVMMRF-E, and SVMMSF+MV accuracies are not significantly different, using 5% level of significance. From Fig. 2, it can be seen that the corresponding three classification maps are comparable and contain more homogeneous regions, when compared to the SVM classification map. Since the considered image contains large spatial structures and reference data do not comprise region edges, the advantage of the SVMMRF-E method versus the SVMMRF-NE method is not obvious here.

Table III gives the global classification accuracies for the \textit{Center of Pavia} data, where the same techniques are used for comparison. The proposed SVMRF-E method yields the best classification accuracies. This image of an urban area contains small spatial structures, such as shadows and trees. Therefore, the inclusion of the edge information in the context-based regularization improves the classification performances.

Table IV reports the global classification accuracies for the \textit{University of Pavia} image. For this data set, the SVMMSF+MV classifier gives the best accuracies, and the SVMMRF-E method outperforms the SVMMRF-NE technique in terms of accuracies. According to the results of the McNemar’s test, all the corresponding classification maps are significantly different, using 5% level of significance. From these results, the following conclusions can be derived: 1) the advantage of the

\begin{table*}[h]
\centering
\caption{SVMMRF-NE and SVMMRF-E Classification Accuracies for Different Values of the Parameter β} \label{tab:beta_values}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
Image & & β for SVMMRF-NE & & β for SVMMRF-E & & \\
& Accuracy, \% & 0.5 & 1 & 2 & 3 & 5 & 0.5 & 1 & 2 & 3 & 5 \\
\hline
\hline
Indian Pines & Overall & 90.42 & 92.05 & 92.31 & 92.53 & 92.78 & 84.99 & 88.19 & 91.83 & 91.59 & 90.64 & 90.03 & 90.23 \\
& Average & 94.70 & 95.83 & 89.81 & 83.24 & 91.76 & 90.50 & 92.85 & 95.69 & 95.37 & 92.62 & 95.01 & 88.67 \\
Center of Pavia & Overall & 97.26 & 97.38 & 97.26 & 97.31 & 97.27 & 97.11 & 97.46 & 97.56 & 97.60 & 97.50 & 97.44 & 97.33 \\
& Average & 93.98 & 94.14 & 93.94 & 94.05 & 93.73 & 93.41 & 94.19 & 94.24 & 94.59 & 94.23 & 94.12 & 93.98 \\
University of Pavia & Overall & 85.30 & 86.40 & 86.89 & 87.57 & 86.93 & 84.20 & 85.79 & 87.18 & 87.63 & 87.57 & 87.63 & 87.50 \\
& Average & 91.64 & 91.72 & 92.12 & 91.90 & 91.75 & 91.03 & 92.22 & 92.97 & 93.41 & 93.27 & 93.28 & 93.39 \\
\hline
\end{tabular}
\end{table*}

\begin{table}[h]
\centering
\caption{Number of Labeled Samples (Number of Samples) and Classification Accuracies in Percentage for the \textit{Indian Pines} Image} \label{tab:indian_pines}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
& No. of Samp. & & & & & & & & & & & \\
& & SVM & ECHO & WH+MV & SVMMSF+MV & SVMMRF-NE & SVMMRF-E & \\
& Train & Test & & & & & & & & & & \\
\hline
Overall Accuracy & - & - & 78.17 & 82.64 & 86.63 & 91.80 & 92.05 & 91.83 \\
Average Accuracy & - & - & 85.97 & 83.75 & 91.61 & 94.28 & 95.83 & 95.69 \\
Kappa Coefficient (κ) & - & - & 75.33 & 80.38 & 84.83 & 90.64 & 90.93 & 90.71 \\
\hline
Corn-no-till & 50 & 1384 & 78.18 & 83.45 & 94.22 & 93.21 & 93.28 & 98.48 \\
Corn-min till & 50 & 784 & 69.64 & 75.13 & 78.06 & 96.56 & 83.93 & 90.82 \\
Corn & 50 & 184 & 91.85 & 92.39 & 88.59 & 95.65 & 99.46 & 98.37 \\
Soybeans-no till & 50 & 918 & 82.03 & 90.10 & 96.30 & 93.91 & 98.58 & 98.91 \\
Soybeans-min till & 50 & 2418 & 58.95 & 64.14 & 68.82 & 81.97 & 82.09 & 76.92 \\
Soybeans-clean till & 50 & 564 & 87.94 & 89.89 & 90.78 & 97.16 & 97.70 & 97.34 \\
Alfalfa & 15 & 39 & 74.36 & 48.72 & 94.87 & 94.87 & 94.77 & 97.44 \\
Grass/pasture & 50 & 447 & 92.17 & 94.18 & 95.08 & 94.63 & 97.54 & 97.54 \\
Grass/trees & 50 & 697 & 91.68 & 96.27 & 97.99 & 97.27 & 97.70 & 97.56 \\
Grass/pasture-mowed & 15 & 11 & 100 & 100 & 100 & 100 & 100 & 100 \\
Hay-windrowed & 50 & 439 & 97.72 & 97.72 & 99.54 & 99.77 & 99.54 & 99.54 \\
Oats & 15 & 5 & 100 & 100 & 100 & 100 & 100 & 100 \\
Woods & 50 & 1244 & 93.01 & 94.21 & 97.11 & 99.68 & 98.39 & 99.04 \\
Bldg-Grass-Tree-Drives & 50 & 330 & 61.52 & 81.52 & 69.39 & 68.79 & 88.18 & 79.70 \\
Stone-teal tower & 50 & 45 & 97.78 & 97.78 & 95.36 & 95.56 & 100 & 100 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Global Classification Accuracies in Percentage for the \textit{Center of Pavia} Image} \label{tab:center_of_pavia}
\begin{tabular}{|c|c|c|c|}
\hline
 & Overall Accuracy & Average Accuracy & Kappa Coefficient (κ) \\
\hline
SVM & 95.64 & 90.60 & 92.71 \\
ECHO & 96.22 & 92.47 & 93.70 \\
WH+MV & 96.26 & 92.08 & 93.75 \\
SVMMSF+MV & 96.62 & 92.78 & 94.35 \\
SVMMRF-NE & 97.38 & 94.13 & 95.61 \\
SVMMRF-E & 97.60 & 94.59 & 95.97 \\
\hline
\end{tabular}
\end{table}
The method consists in performing a probabilistic SVM pixelwise classification, followed by MRF-based regularization for incorporating spatial and edge information into classification. Experimental results have demonstrated that the proposed method yields accurate classification maps within a short time interval and is sufficiently robust for classifying different kinds of images.

ACKNOWLEDGMENT

The authors would like to thank D. Landgrebe from Purdue University, and P. Gamba from the University of Pavia, for providing the hyperspectral data.

REFERENCES