Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways

Jérôme Alexandre Denis¹, Christelle Rochon-Beaucourt¹£, Benoîte Champon², Geneviève Pietu³§

1. INSERM/UEVE U-861, I-STEM, AFM, Institute for Stem cell Therapy and Exploration of Monogenic diseases, 5 rue Henri Desbruères, 91030 Evry cedex, France
2. CECS/AFM, I-STEM, Centre d’Etude des Cellules Souches, 5 rue Henri Desbruères, 91030 Evry cedex, France
£ Present address: Cellectis BioResearch Parc Biocitech 102, Av. Gaston Roussel 93235 ROMAINVILLE Cedex
§To whom correspondence should be addressed:
Dr Genevieve PIETU,
I-STEM Genopole Campus, 1 5 rue Henri Desbruères 91030 Evry Cedex France
Tel : 33(0)1 69 90 85 24; Fax : 33(01) 69 90 85 21
e-mail : gpietu@istem.fr

Keys words : Human embryonic stem cells ; Neural precursors ; mesenchymal progenitors; cell fate decision ; microarrays

ABSTRACT
Human embryonic stem cells can be differentiated along different lineages, providing the possibility of a precise analysis of genes profiles associated with specific commitments. Subtractive gene expression profiling between differentiated and undifferentiated cells provides lists of potential actors in this commitment. This combines, however, genes that are specifically associated with development and others that are over expressed because of non-lineage-specific differentiation systems. As a way to establish gene profiles associated with the neural and/or to the mesodermal commitments of human embryonic stem cells more precisely, we have carried out a two-step analysis. We first performed a subtractive analysis of gene profiles of each of these lineages as compared to the undifferentiated stage. Then, we extended the analysis by comparing the two sets of results with each other. This strategy has allowed us to eliminate large numbers of genes that were over expressed in both sets of results and to uniquely associate different gene networks with either the neural or the mesodermal commitments.

INTRODUCTION
For one decade, human embryonic stem cells (hES) have been recognized as a valuable model for studies of early steps of human development since the acquisition of a defined phenotype in vitro follows sequential activation of gene networks and epigenetic changes that closely mimic events occurring in vivo during embryogenesis [1-5]. These neuroectodermic clusters of cells are readily induced in neural progenitor cells (NPC) to directly visualize the process of neural conversion by forming of columnar epithelial cells of NPCs with defined neural cell lineages exhibiting neural inducing activity, it is possible to differentiate NPCs into neural progenitor cells for neural development [6,7]. Nevertheless, analysis of how genes are controlled during transition toward a dedicated developmental path is restricted mainly by the ability to obtain homogeneous populations of cells because their phenotypes are continuously changing over time. Several studies clearly demonstrate that such approaches applied to hES and their progenies can provide useful information about development processes and control of developmentally important processes for neural cell lineages [8-11]. An example of such approaches is the report on the generation of neural rosettes as columnar epithelial cells radially organized resembling a cross section of neural tube [10,11].

Over the last few years, important efforts focused on the possibility of controlling the differentiation of hES particularly for neural fate. Indeed, using protocols based on the co-culture of hES with defined stromal cell lines exhibiting neural inducing activity, it is possible to directly visualize the process of neural conversion by forming of columnar epithelial cells of hES, exhibiting neural inducing activity, based on the co-culture of hES with defined stromal cell lines exhibiting neural inducing activity. This system of culture is considered to be relevant for in vitro modeling of neural development. Nevertheless, methods used and the protocols can provide useful information about development processes and control of developmentally important processes for neural cell lineages [8-11]. An example of such approaches is the report on the generation of neural rosettes as columnar epithelial cells radially organized resembling a cross section of neural tube [10,11].

Given the importance of understanding how genes are controlled during transition toward a dedicated developmental path, alternative approaches have been developed to control the differentiation of hES, particularly for neural fate. These approaches include the use of defined stromal cell lines exhibiting neural inducing activity, allowing for the direct visualization of the process of neural conversion by forming of columnar epithelial cells of hES, exhibiting neural inducing activity, based on the co-culture of hES with defined stromal cell lines exhibiting neural inducing activity. This system of culture is considered to be relevant for in vitro modeling of neural development. Nevertheless, methods used and the protocols can provide useful information about development processes and control of developmentally important processes for neural cell lineages [8-11]. An example of such approaches is the report on the generation of neural rosettes as columnar epithelial cells radially organized resembling a cross section of neural tube [10,11].

Human embryonic stem cells have been used to study alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331) that reveal alternative developmental pathways (doi: 10.1089/scd.2010.0331). This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.
probably due to no synchronized processes [15]. Consequently, neural rosettes represent structures that contain a mixture of cells, including neuroepithelial progenitor cells (NEPC), neural stem cells (NSC), committed neurons at different stages of their development and probably neural crest derivatives at their periphery. For this reason, several groups have attempted to develop cell selection strategies including the use of fluorescence-activated cell sorting (FACS). To date, only few membrane markers have been used to enrich cultures in neural precursors and neurons [16]. Among these markers, we used Neural Cell Adhesion Molecule (NCAM/CD56) in this work [17].

The production of mesenchymal precursors (MPC) has not been as widely reported as that of neural precursors. By taking advantages of the recent development of protocols triggering the differentiation of hES toward a near-homogenous amplifiable population of mesenchymal progenitors exhibiting a phenotype of Mesenchymal Stem Cells-like (MSC) can be obtained [18-23]. In this study, we produced highly homogenous cell populations for both neural and mesenchymal precursors by engagement of the hES cells into either the neural or the mesodermal lineages. The analysis of gene expression patterns of these two populations, sharing the same genetic background, compared to the same starting population that were hES cells, using strictly identical procedures for hybridization and statistical analysis, allowed us to select genes that were modulated in opposite directions during commitment to either neural or mesenchymal fates. After this subtractive analysis, selected genes exhibiting modulations specific for either neural or mesenchymal precursors were used to build in silico global gene networks and, using a comparative strategy, to determine their implications as actors in the main signalling pathways involved in early steps of human development.

MATERIALS AND METHODS
Human ES Cells Culture

Two hES cell lines, SA01, (XY, passage 40, Cellartis, Sweden) and VUB01 (XY, passage 80, AZ-VUB, Belgium) were maintained and propagated on a feeder layer of STO (SIM mice Thioguanine and Quabaine resistant) murine embryonic fibroblast cells inactivated by Mitomycin C (Sigma Aldrich, 2.5 µg per mL overnight at 37°C). Cells were cultured in a humidified 5% CO2 incubator at 37°C in a serum replacement medium (Knock-out DMEM, 20% Knock-out Serum Remplacement (KSR), 1% Glutamax 1mM, 1% Non Essential Amino Acid (NEAA), 0.1% Beta-Mercaptoethanol (BM) 0.1% and 1% Penicillin/streptomycin (P/S), all from GIBCO) supplemented with 8ng/mL of bFGF (Invitrogen). The culture media was changed daily and routine passages routinely performed by mechanical cutting of hES cells on a fresh feeder layer every 4-5 days.

Differentiation of hES cells toward NPC, neurons and astrocytes

Differentiation of hES cells toward NPC

The differentiation of hES toward neurectodermal rosettes was adapted from the Stromal Differentiation Inducing Activity protocol as described elsewhere [10]. Briefly, hES cells were manually dissociated from the STO feeder layer and plated at a density of approximately 10^3 cells per cm² on a confluent layer of mitotically inactivated murine stromal feeder cells (MS5). Cells were cultured in KSR medium (Knock-out DMEM, 15% KSR; 1% Glutamax; 1% NEAA and 0.1% BM, all from GIBCO) for 14-16 DIV (Days In Vitro), when the medium was replaced by Neurobasal medium, N2 (DMEM-F12+ Glutamax, 1% N2 supplement and 1% P/S) until DIV21.

Cell sorting

Cells were harvested at DIV21 using TrypLE Express (GIBCO) and about 5.10^6 cells were suspended in PBS-2% Fetal Calf Serum containing 1% 7-amino-actinomycin D (7AAD)
(Sigma) and then incubated with IgG1κ Direct conjugated Phyco-erythrin (PE) monoclonal anti human Neural Cell Adhesion Molecule (hNCAM) antibody diluted 1/10 provided by BD Biosciences Pharmingen™. This antibody recognizes an extracellular immunoglobulin-like domain common to three molecular weight forms –Mw 120, 140 and 180 kilodaltons –of the NCAM protein. The cell sorting was performed by a MoFlow Cell Sorter Cytometer from Cytomation and positive and negative fractions were collected in 1mL of N2 medium with 1% P/S.

Differentiation of NPC toward neurons and astrocytes

After sorting, the NCAM+ cells were seeded on Poly-Orynthine (15µg/mL,Gibco)/laminin (1mg/mL,Sigma) coated dishes (50x10³ /cm²) in N2 medium supplemented with growth factors bFGF (20ng/ml, Invitrogen), and EGF (10ng/ml, Abcys) to allow their proliferation for 10-15 days. The medium was changed every two days. When confluent, they were passaged (P1) after exposure to collagenase 1mg/ml for 15 minutes at 37°C and plated in N2 medium supplemented for differentiation toward either neurons or astrocytes. For neuronal differentiation, BDNF (10 ng/mL) and AA ascorbic acid (10 ng/mL) was added in the N2 medium which was changed every 2-3 days for 2 weeks after which the cells were fixed. For differentiation toward astrocytes, medium was supplemented with EGF and CNTF (20ng/ml, R&D) for 15 days. After that, they were passaged and maintained in N2 medium containing only CNTF until around 100 DIV and then fixed for immunochemistry.

Differentiation of hES cells toward MPC cells, osteoblasts and adipocytes

Differentiation of hES cells toward MPC cells
Mesodermal differentiation was obtained as previously described by our laboratory [22] using a modified protocol from Barberi et al [23]. Briefly, differentiation was induced by plating 2×10^4 ES cells/cm2 on 0.1% gelatin coated dishes in the presence of KO-DMEM medium supplemented with 20% Fetal Bovine Serum (FBS, Invitrogen), 1mM L-glutamine, 1% NEAA, 1% P/S and 0.1mM BM. Medium was changed every 3 days. Confluent cells were passed with trypsin/EDTA 1X (Invitrogen) in new gelatine coated dishes. Immunophenotyping was carried out using a FACScalibur and the Cell Quest software (Becton&Dickinson Biosciences). More than 10,000 events were acquired for each sample and analysed. Cells were harvested as previously described and incubated for 30 minutes at room temperature with one of the following anti-human antibodies: CD73-PE (SH3/NT5E), CD44-PE, CD54-PE (I-CAM-1), CD29-PE (integrin β1), CD106-PE (VCAM), CD166-PE (ALCAM), CD14-PE, CD31-PE (PECAM-1), CD56-PE (NCAM), HLA-ABC-PE, HLA-DR-PE, CD34-APC, CD45-FITC (all from Becton&Dickinson Biosciences/Pharmingen); CD105-PE (SH2/Endoglin; Caltag); Nestin-PE (R&D systems) and primary monoclonal antibody vimentin and Stro1 were used with mouse IgG- or IgM-Alexa as secondary antibody. Mouse isotype antibodies served as respective controls (Becton&Dickinson). The acquisition was performed by the FACScalibur cytometer and data were analyzed with Cell Quest Pro Software (Beckton-Dikinson).

Differentiation of MPC cells toward osteoblasts and adipocytes

To induce osteoblastic differentiation, cells were plated at a density of 30 000 cells/cm2 in a specific medium (Cambrex), containing dexamethasone, ascorbate and B-glycerophosphate (Sigma-Aldrich). After 21 days, cell phenotype was analysed by alkaline phosphatase activity (Sigma-Aldrich). Adipogenic differentiation was induced by culturing the cells in the specific medium (Cambrex) supplemented with 100µM linoleic acid. Adipogenesis was detected by the presence of neutral lipids in the cytoplasm stained with Oil Red O.
Immunocytochemistry

Cells were fixed in paraformaldehyde for 20 minutes at room temperature, rinsed with PBS and blocked with 1% BSA, 5% goat serum 0.1% triton in PBS solution for 1 hour and thereafter were incubated with the appropriate primary antibodies overnight at 4°C. Rabbit polyclonal antibodies included Nestin (dilution 1/500; Chemicon) and GFAP (dilution 1/1000; DAKO). Mouse Monoclonal antibodies (IgG) included Tuj1 (dilution 1/500, Covance), Stro-1 (dilution 1:100) and SMA (alpha smooth muscle: 1:100, DAKO). Appropriate Alexa 488 and Alexa 555 labeled secondary antibodies were used at 1/500 and 4’,6-diamino-2-phenylindole at 2µg/ml (Sigma) for counterstaining.

The preparations were analyzed by epifluorescence microscopy (Zeiss Imager Z1 and Zeiss Axiovert 40CFL) and images were captured with Axiocam mRM (Zeiss).

RNA Sample preparation

mRNA samples were extracted using the RNeasy Mini kit (Qiagen) according to the manufacturing protocols for undifferentiated hES cells, NPC and MPC. RNA samples were quantified using the Nanodrop photometer and quality controls were performed on BioAnalyzer 2100 (Agilent). For RT-PCR analysis, cDNAs were prepared by reverse transcription of 500 ng of mRNA using the SuperScript II Reverse Transcriptase kit according to the manufacturer’s instructions (Invitrogen). Primers used in this study are shown in Supplementary Table S1. Quantitative RT-PCR analyses were performed with Chromo4 Analyser (Biorad) and calculations were performed using the delta-delta C(t) method.

Hybridization and data analysis

RNA samples were labeled and hybridized on the GeneChip Human Genome HG_U133_Plus 2.0 Array (Affymetrix) by the RNG platform (Réseau National des Génopoles, Paris, France)
according to the Affymetrix procedures. Hybridization data were exploited using Array Assist 4.2 software (Stratagene). First, the software validated the quality controls. Next, the GC-RMA statistical algorithm procedure was used to normalize hybridization intensity values. A one way-ANOVA test was applied on transformed logarithm base 2 data to retain values that did not change significantly ($\alpha<0.05$) among triplicate samples. Identification of modulated genes was performed using the Student parametric statistical test adjusted with the FDR Benjamini-Hodgberg correction. A gene was considered as modulated for a Fold Change (FC) >2 with a corrected p-value, $\alpha_c<0.05$. The final list of modulated genes was established by removing duplicate data (multiple probesets measuring the same gene) to retain the most modulated one. GO biological processes and canonical pathways analysis enriched in differentially expressed genes were identified using the Fischer exact test as implemented in the Ingenuity Pathways Analysis (Ingenuity Systems, www.ingenuity.com) software.

RESULTS

Obtention of two homogenous neural and mesodermal progenitor cells from hES

Two hES cell lines (SA_01 and VUB_01) were induced in triplicate toward the neural lineage using the SDIA protocol (see Material and Methods). Under these conditions, neural rosettes appeared around 16-18 days *in vitro* (DIV) (Supplementary Figure S1A). To get a homogenous population, cell sorting was performed at DIV21 using the membrane marker Neural Cell Adhesion molecule (NCAM/CD56) known to be expressed in neural precursors but not expressed in MS5 mouse feeder cells and to a small extent in the undifferentiated hES cells (Supplementary Figure S1B). The NCAM positive cells, termed NPC, expressed a combination of markers known to be specific for the neuroectodermal precursors such as NESTIN and the transcription factors \textit{SOX1}, \textit{PAX6} and \textit{OTX2}. Moreover, the NCAM positive cells exhibited a complete loss of \textit{NANOG} expression and did not express \textit{GFAP} (Glial
Fibrillary Acidic Protein) by RT-PCR (Supplementary Figure S1C) or by immunochemistry (Supplementary Figure S1 D-F). The NCAM positive cell population was able to give rise to cells positive for TUJ1 (βIII-tubulin) and for GFAP corresponding to neurons and astrocytes respectively (Supplementary Figure S1 G-H). Differentiation of ES cells into mesenchymal precursors (MPC) displaying a phenotype similar to that described by previous authors [18-21] was readily obtained after about 30 days of culture (two to three passages). Cells displayed a homogeneous fibroblast-like morphology (Supplementary Figure S2A). At near homogeneity, they expressed CD29 (β1-integrin), CD44 (H-CAM), CD73 (SH-3, ecto-5’-nucleotidase), CD105 (SH-2, endoglin), CD166 (ALCAM), and were negative for hematopoietic markers (CD34, CD45 and CD14), neuronal markers (NCAM/CD56 and FORSE1), and the endothelial marker CD31 (Supplementary S2B). Cells were immunoreactive for Stro1 and some of them are positive for α-SMA (alpha smooth muscle actin) (Supplementary Figure S2C). In addition, these MPC cells were also able to differentiate into osteogenic or adipogenic cells in appropriate conditions (Supplementary Figure S2D).

Global analysis of gene expression

To compare the expression patterns during the commitment of hES toward the neural and the mesenchymal fates, transcriptome analysis was performed in triplicate on the two undifferentiated hES cell lines SA01 and VUB01 and the two progenitor cell populations, NPC and MPC (Figure 1A). The global expression profiles of these three populations were compared by correlation plot and by the Principal Component Analysis (PCA). A high correlation coefficient was observed between the expression patterns of the three replicates for each cell line and between the two cell lines indicating a small variability between the biological samples for the same stage of differentiation (Figure 1B). Moreover, when the three
distinct populations were plotted by PCA, samples for the same stage were very close (Figure 1C). This allowed us to group the results obtained for the two cell lines for further statistical analysis. A total of 3167 genes were found to be differentially expressed between NPC and hES cells, 1727 up-regulated and 1440 down-regulated (Supplementary Tables S2 and S3), including genes with no annotation, putative genes and expressed sequence tags (EST) that amounted to about a quarter of all modulated genes. Parallel comparison between hES and MPC, revealed 5931 genes modulated including 2212 genes up-regulated and 3719 genes down-regulated in MPC (Supplementary Tables S4 and S5). As expected, major markers of pluripotent hES cells including NANOG; OCT4 [POU5F1]; REX1 [ZFP42]; FGF4; FOXD3; CLDN6; GDF3; DNMT3A and CD2 were down regulated in both NPC and MPC. However, the expression of the pluripotency transcription factor SOX2, was maintained in neural progenitors whereas it was switched off in mesenchymal progenitors.

As quality control of genes modulated in the transcriptomic experiment, we found specific neural genes expected to be up-regulated in NPC cells compared to hES, such as NCAM, PAX6, SOX1 and OTX2. On the contrary, neither markers of mesoderm such as T/Brachyury, HAND1, IGF2, CD45, FLK1, CD31, MYOD, CALP [Calponin] nor endodermal markers SOX17, FOXA2, GATA4, AFP were found modulated. In the same way, concerning genes known to be implicated in the MSC phenotype, CD73/NT5E, CD105/ENDOGLIN, CD44, INTEGRIN β1/ITGB1, ALCAM/CD166 and VIMENTIN, were all found to be up-regulated in MPC compared to hES.

Subtractive gene expression profiling
The lists of the modulated genes in the NPC and the MPC cell populations were compared (Figure 1D). The 785 genes which are up regulated in NPC but not in MPC (Supplementary Table S6) and the subset of 306 genes which were up regulated in NPC and down-regulated in MPC were selected as potential candidate genes involved in the neuralizing process (Supplementary Table S7). Conversely, the 1479 genes which are up-regulated in MPC but not in NPC (Supplementary Table S8) and the subset of 94 genes which were up-regulated in MPC and down-regulated in NPC were selected as potential candidate genes involved in the mesenchymal differentiation (Supplementary Table S9). Between the two selections of genes specifically implicated in the neuralization process or in the mesenchymal differentiation, we focused on transcription regulators which were specifically up-regulated in each of both processes (Table S10). For the neuralization process, among the 127 up-regulated transcription regulators (Table S10, left panel), for the eleven most modulated genes with a FC> 10, eight were annotated in nervous system development (GO and IPA classifications) including genes such as LHX2, PAX6, ZIC1, FOXG1B, TFAP2B, ZBTB16 and EMX2 all implicated in the neural progenitor signature. Besides these genes, others were annotated to be involved in neural and other developmental processes, such DACH1 and LEF1 or several members of family transcription factor such as the Inhibitor of DNA binding (ID2 and ID4), the POU domain family members (POU3F2 and POU4F1) but also the homeobox family members HOX (HOXA1 and HOXA9). In addition, genes found to be up-regulated in NPC and strongly down-regulated in MPC included SRY-related box protein members such as SOX3 and SOX11 or the member of the bicoïd sub-family of homeodomain-containing transcription factors such as OTX2 which encodes gene already reported to be involved in neurogenesis.

For the mesenchymal differentiation of the 118 up-regulated transcription regulators (Table S10, right panel), 25 were implicated in connective tissue development (IPA classification).
The most modulated genes were \textit{SIX1} which encodes of the homeobox gene superfamily and two genes related to TGF-beta signaling were highly up-regulated, \textit{CDKN2B} and \textit{TGF1B1I1}. Other modulated genes involved in development included several members of the Forkhead-box family (\textit{FOXD1}, \textit{FOXF1}, \textit{FOXF2}, \textit{FOXJ2}, \textit{FOXL1} and \textit{FOXP1}), the basic helix-loop-helix family (\textit{BHLHE40} and \textit{BHLHE4}), the Krüppel-like factors (\textit{KLF2}, \textit{KLF7} and \textit{KLF9}), signal transducers and activators of transcription (\textit{STAT1}, \textit{STAT2}, \textit{STAT3} and \textit{STAT6}), T-box members (\textit{TBX2} and \textit{TBX3}) and homeobox family members (\textit{HOXB2} and \textit{HOXB7}).

\textbf{Transcriptional networks using an \textit{in silico} approach}

Global gene networks were built based on selected genes exhibiting specific overexpression in each precursor, as described above, for either the neural (Figure 2A) or the mesenchymal differentiation (Figure 2B). Starting from the core pluripotency gene network composed of the three transcription factors, \textit{NANOG}, \textit{OCT4} and \textit{SOX2}, their potential targets were explored by selecting genes that were specifically up-regulated in each precursor cell population.

For the neural gene network, the starting point was the binding relationship linking \textit{PAX6} and \textit{LHX2} promoters with \textit{NANOG}, \textit{OCT4} and \textit{SOX2} proteins encoded by the core pluripotency genes. Using this strategy, the construction of the gene network step by step revealed some nodes that included key transcription factors including downstream \textit{NOTCH1} targets such as \textit{HES1}, \textit{HES5}, \textit{LEF1} but also \textit{PAX3} that may support a pivotal role with its complex partner \textit{SOX10}. Otherwise, \textit{NOTCH1} downstream signal was also connected with the SWI/SNF DNA remodelling complex (\textit{SMARCC4} and \textit{SMARCE1}).

For the mesenchymal gene network, \textit{WWTR1} (also termed TAZ) implicated downstream of \textit{TGFB1}, acted on the level of expression of \textit{NANOG} and \textit{POU5F1} and thus may control several developmental genes including \textit{GATA6}. Moreover, \textit{SOX2} (whose expression was maintained in neural but greatly decreased in mesenchymal differentiation) was connected with two critical genes involved in osteogenic differentiation, \textit{JUN} and \textit{TWIST1}. Organisation
of the network also included PPARG which is involved in differentiation of mesenchymal stem cells toward adipocytes and STAT3 which acts downstream of the FGF signalling pathway and is involved in differentiation process.

Alternative signaling pathways controlling cell fate decisions

Levels of gene expression were explored in three signaling pathways, Notch, Wnt, and TGFβ/Activin/BMP that are known to be involved in hES cell fates determination but required different partners depending on lineage-specific differentiation.

Notch signaling pathway

Some genes encoding for ligands of Notch, such as JAG1 and DLL1 were found to be up-regulated in the NPC but not in the MPC cells (Figure 3A and 3B). Regarding the receptors in this pathway, NOTCH1 was specifically up-regulated in the NPC cells, NOTCH2 was found up-regulated in both progenitor cell types whereas other family members of NOTCH receptors were not modulated. Genes implicated in the modulation of the activity of NOTCH signaling that were specifically up-regulated in NPC cells included: LFNG (encoded a fucose-specific glycosyltransferase), ADAM17 (encoded a metallopeptidase involved in the proteolytic release of Notch intracellular domain from the Notch1 receptor) and PSEN1 (presenilins-1) involved in the cleavage of the Notch receptor and the regulation of gamma secretase activity. On the contrary, NUMB encoding for an inhibitor of the Notch pathway and playing a role in the determination of cell fates during development was specifically over expressed in MPC. At least, specific transcriptional factors HES1 and HES5, downstream targets of Notch signaling were found specifically up-regulated in NPC cells but not in MPC whereas others family members were not modulated in either progenitor cell types. On the contrary, NUMB, encoding for an inhibitor of the Notch pathway and playing a role in the determination of cell fates during development. Additionally, others downstream
transcriptional factors of the Hairy/enhancer-of split related with YRPW motif family exhibited similar expression profiles in the two progenitor cell types (ie up-regulation of HEY1 and down regulation of HEY2). Specific over expression of DLL1, NOTCH1, HES1 and HES5 were confirmed in NPC by quantitative RT-PCR (Figure 3C).

Wnt Signaling pathway

Concerning genes involved in the Wnt signaling pathway, over expression of genes encoding negative regulators of this canonical pathway was observed in the NPC whereas genes modulated in MPC cells rather reflected its activation (Figure 4A and 4B). Indeed, Wnt inhibitors including secreted antagonists such as DKK1, SFRP2 and FRZB were all over expressed specifically in NPC. In addition, genes encoding for Wnt ligands such as WNT2B, reported to be a repressor of the canonical pathway, appeared to be specifically up-regulated in NPC cells whereas WNT5A and WNT5B, two non canonical ligands, were found to be modulated in the two types of progenitors. For the Wnt Receptors, notably Frizzled proteins, FZD3 and FZD5 were found respectively up or not regulated in neural progenitors whereas they were both switched off in mesenchymal progenitors. Concerning transcriptional regulators involved downstream of Wnt signalling pathways, genes involved in the repression of the β-catenin complex were found to be up-regulated only in NPC such as the SOX transcription factor SOX3 but also CTNNBIP1, a gene encoding a small soluble inhibitory protein also termed ICAT (Inhibitory of beta-catenin and TCF) which prevents the interaction of β-catenin with different binding partners including LEF1. In addition, the gene encoding for the transcription repressor TLE4, a member of the Groucho family, was also found up-regulated only in the NPC cells. Finally, when looking for the expression of genes known to be controlled directly downstream of the canonical β-catenin pathways, some genes, such as DCT, POU3F2 and NRCAM, controlled downstream of the complex containing LEF1.
appeared to be induced in NPC cells whereas no modulation of these genes was observed in the MPC cells. On the contrary, genes encoding important Wnt-induced mesenchymal markers such as FOSL1, JUN, PPARδ, CD44 were all up-regulated in the MPC whereas the expression of these genes was not modulated in the NPC. To confirm these results, expression modulations for several genes, WNT2B, FRZB, SFRP2, LEF1, involved in Wnt signaling pathway were confirmed by Quantitative PCR using new biological samples in triplicate from three independent differentiation experiment. Results showed that they were found to be up regulated in NPC and not modulated or down-regulated in MPC compared to hES (Figure 4C).

TGFβ/Activin/BMP signalling pathway

Among the genes involved in BMP/TGFβ signaling pathways (Figure 5A and 5B), BMP7 expression was up regulated during the differentiation of hESC toward NPC, whereas it was switched off during their differentiation toward MPC. Interestingly, we also found up-regulation of FST gene in MPC encoding follistatin, an inhibitor of BMP pathway (Figure 5C). In contrast, the up regulation of INHBA (inhibin beta A, also termed activin A), which encoded a strong inducer of mesendoderm was overexpressed only in MPC (Figure 5D).

Differences between others modulated genes encoding for TGFβ ligands were also found such as up-regulation of TGBF1 specifically in MPC. Concerning downstream transcriptional factors target, we found an up-regulation of SMAD3 in both NPC and MPC cells respectively whereas SMAD5 was found slightly modulated only in NPC.

At last, in order to confirm expression modulation of genes specifically involved in one of these signaling pathways either in neural or mesenchymal progenitors, quantitative PCR data were carried out from new independent biological samples (Figure S3).

DISCUSSION
The principal result of this study is the comparison of gene expression profiles in two homogenous populations of neural and mesenchymal of progenitors by subtractive gene expression profiling during early differentiation in hES toward either neural or mesodermal commitment. Genes whose expressions were regulated in opposite directions might be of particular interest in molecular processes involved in the alternative cell fate decisions. Using a comparative strategy, we identified actors specific for each lineage which play an alternative role at the level of epigenetic modifications, implication of morphogens and through major developmental signalling pathways.

The integration of all these data allowed the construction of a global comprehensive developmental path between neurectoderm and mesoderm (Figure 6).

Specific gene expression pattern associated with each precursor cell

Transcriptional factors found to be specifically highly up-regulated in NPC included *LHX2, PAX6, SIX3, SIX6, SOX1* and *FOXG1B*. This gene signature indicated that our neural progenitors exhibited a pattern closed to early neural progenitors appearing first in neural plate and/or neural tube in mouse and human during normal development *in vivo*. Unlike late neural progenitors, these cells expressed markers representative of the anterior region of the mouse developing brain including *FOXG1, EMX2 or OTX2* and markers of dorsal region such as *PAX3 or PAX6*. This “anterior” pattern was associated to a broad capacity of differentiation into various types of neurons and to glial cells in response to appropriate developmental clues. Thus, the present study presented for the first time a picture of gene expression network specifically associated to the neural developmental pathway of these progenitors.

Mesenchymal progenitors derived from hES cells appeared to be the first type of progenitors exhibiting a mesodermal phenotype that can be obtained almost homogeneously [18].
Identification in this study of genes specifically up-regulated in MPC highlighted potential factors that may play a role in the mesoderm formation including *TWIST1*. This gene is expressed in presumptive mesoderm and in invaginating cells in the ventral region of fruit fly embryos and functions in a signaling cascade to initiate mesodermal development during gastrulation in multicellular organisms ranging from Drosophila to vertebrates [24-26].

TWIST plays a central role in dorsoventral patterning, which is essential for multiple steps of mesoderm development in Drosophila [27,28]. Another interesting gene includes *WWTR1/TAZ* which was known to control the mechanism of self-renewal through controlling Smads nucleo-cytoplasmic shuttling [29-31] and thus may contributing to the cell fate choice by controlling mesodermal genes. Among other genes that may represent important developmental nodes, *RUNX2, SQSTM1* that are both involved in skeletal development were highlighted suggesting that early mesodermal progenitors acquire a developmental context that enhances osteogenesis.

Epigenetic modification signatures

The transcriptional signature also decipher the role of another type of developmental regulation that concerns genes involved in epigenetic modifications.

Among genes that are differentially expressed during neural or mesoderm differentiation, genes encoding helicases that function to open chromatin to enhance transcription in the SWI/SNF DNA chromatin remodeling complex family including *SMARCC1* and *SMARCE1*, were found specifically up-regulated in the neural progenitors and may interact with proteins encoded by other specific genes such as *ARID2* and *ARID1B* [32,33]. These proteins may play a role in enhancing differentiation by coupling gene repression with global and local changes in chromatin structure [34]. In mesenchymal precursors, specific up-regulation of *SMARCA2*
was observed, that has been described to be specific of mesoderm in early post-implantation mouse embryos [35].

Morphogen implications

Another aspect of the transcriptional signatures concerns morphogens that act through signalling pathways. *BMP7* was found to be up-regulated in neural progenitors and therefore these cells may themselves produce morphogens that contribute to control downstream genes involved in neural development including *ZIC1* [36] and *GLI3* [37]. In MPC, the up-regulation of *INHBA* encoding the beta A subunit that forms a homodimer named Activin-A was reported to be one of the most important mesodermal morphogens in classical developmental models including *Xenopus laevis* [38]. More recently, Willems and Leyns described that Activin A supported self-renewal of hES and directed the nascent mesoderm toward axial mesoderm and mesendoderm [39]. This increase also coincides with up-regulation of the activin receptor type 1, *ACVR1*. Inversely, inhibition of Activin/Nodal signalling promotes specification of hES into neurectoderm [40]. In this context, it is interesting to notify that the *follistatin*, encoding a protein that antagonizes activin [41,42] and BMP signalling pathway in Xenopus embryo [43] is specifically up-regulated in NPC. This might suggest that follistatin may contribute to induce neural differentiation of hES *in vitro* by antagonising the different pathways (BMPs, Activin and TGFβ). Indeed, currently, the most efficient protocol allowing hES differentiation toward neurectoderm uses Noggin (an inhibitor of BMPs) and SB43542 (an artificial molecule inhibiting Activin and TGFβ pathways) [44,45]

Altogether, these data suggest that once the mesenchymal phenotype has been acquired, these precursors may maintain a mesodermal identity by producing themselves important
morphogens such as Activin A and inversely the neurectodermal phenotype may be maintained by producing follistatin that prevents activation of activin pathways.

Alternative pathway responses

Wnt and Notch pathway responses occurred during both neural and mesenchymal differentiation. Although discussed, different studies described a “negative” effect of WNT/β-catenin signalling pathways onto the neural induction process *in vivo* [46] and *in vitro* in mouse ES [47,48]. Indeed, an up-regulation of expression of some modulators/inhibitors of the Wnt signalling was observed in NPC (but not in MPC) including *SFRP2*, identified elsewhere to enhance neural differentiation [47] but also *FRZB*, another Wnt inhibitor found expressed in neural plate and neural tube in overlapping areas like SFRP2 during chick development [49]. During and just after gastrulation, the Wnt pathway was also involved as an inducer of primary mesenchymal cells but specific genes involved in this process are still unknown or elusive due to differences between species. In this study, we found that gene expression modulations of Wnt pathway members in mesenchymal cells but not in neural cells including *DKK3* which is both temporally and spatially regulated [50] may play a role in mesoderm formation in humans has been demonstrated in *Xenopus laevis* [51]. Additionally, a distinct profile of genes downstream of the Wnt signalling pathway was also observed. Neural progenitors did not express numerous genes known to be controlled by *CTNNB1* whereas they were expressed in MPC. In contrast, a possible mechanism would be due to the expression of the inhibitor of the interaction of β-catenin with *LEF1*. Thus, *LEF1* may interact with other proteins and control a neural gene network downstream. Concerning the Notch signaling pathway, the central role of NOTCH1 specific pathway already described was confirmed as an important path for the maintenance of the neural progenitor state [52,53] whereas the down-regulation of NOTCH1 was already reported to enhance the differentiation of mesodermal cardiogenic progeny [32]. Here, *DLL1*, one of the NOTCH1 ligands was
found highly up-regulated in NPC and may contribute to induce *HES1* and *HES5* transcription factors acting by their dominant effect on neurogenic transcription factors and therefore to delay the differentiation of neural precursors in mature neurons maintaining a “neural precursor state”. Conversely, *DLL1* was down-regulated in MPC suggesting a process that closely controls this gene during the transition toward either neural or mesoderm identity.

Some genes connected to Notch signalling were also described that may support central interactions in the global neural gene network. For example, *SOX10* that interacts with *PAX3* may reflect some features of neural crest development as demonstrated in cells surrounding neural rosettes in culture [54] and in the neural crest origin of the Waardenburg syndrome in humans [55]. WNT inhibition pathways associated with NOTCH1 activation may be involved in expression of *LEF1* specific expression contributing to an explanation of the specific regulation of downstream neural genes such as *NRCAM*, *DCT* and *POU3F2*. Concerning the acquisition of the mesenchymal phenotype, our data suggested that the differentiation involved a developmental process mimicking the TGFβ1-induced epithelial-mesenchymal transition (EMT) process. Numerous genes involved downstream of TGFbeta1 signalling pathways which have already been described as major contributors of the EMT type 1 process were found to be up-regulated [56,57]. During embryonic development, the EMT is a crucial cellular process whereby adherent cells dissolve their intercellular contacts, organize their motility apparatus, and move to new locations. As observed *in vivo* during the EMT, during mesenchymal differentiation of hES, we found the loss of epithelial cell adhesion markers including E-box genes including E-cadherin [CDH1] but also claudin [CLDN3/6/10/23], occludin [OCLN] and loss of some polarity genes such as Discs Large (DLG3/7) [58]. Crumbs homolog3 (Crb3) [59] and conversely the acquisition of mesenchymal markers including Fibronectin [FN1], Vimentin [VIM] and thrombospondin-1 [THBS1]. It can be postulated that TGFβ1 signalling may reflect in part the biology of the mesenchymal
progenitors. Moreover, SIX1, a developmental gene encoding for a homeodomain transcription factor was the most up-regulated transcription regulator in MPC. It is known to cooperate with TGFβ and to increase the downstream EMT-induced TGFβ signal leading to the acquisition and/or maintenance of the stem cell-like phenotype accompanying EMT [60,61].

In conclusion, based on the production of precursor cell populations at near homogeneity, our data describing modulation of gene expression should contribute to a better comprehension of gene regulations involved in fate choices during differentiation of embryonic stem cells.

ACKNOWLEDGEMENTS:

The authors wish to thank Dr Marc Peschanski for continuous support and input during this study. This work was supported by the Association Française contre les Myopathies (AFM), MediCen (IngeCell program) and Genopole. We thank the platform of RNG, Institut Curie, Paris, France, for performing Transcriptome experiments, Philippe Rameau for cell sorting, Lina Kassar-Duchossoy for astrocytes differentiation and Drs Alexandra Benchoua, Anselme Perrier, Laetitia Aubry and Cécile Martinat for their expertise in the field and helpful discussions.

AUTHORS INFORMATIONS

The gene expression data have been deposited in GEO Data Bank with the accession number GSE8590.
LEGENDS

Figure 1: Global gene expression patterns analysis for the hES cells (ES) and the two precursor cells, NPC and MPC derived from the same hES cells. (A) Schematic representation of the experimental procedure. (B) Correlation plots between all arrays of the experiment hybridized with ES, NPC and MPC mRNAs (n=6 per condition). Correlation was normalised in a scale from $r^2=0.79$ (green) to $r^2=1$ (red). (C) Principal component analysis (PCA) of the three cell populations representative of intra-samples variability across whole chip for each developmental stage. Each array is represented as a colored square in a two-dimensional reference. ES are represented as red squares; MPC as green squares and NPC as blue squares. (D) Genes were selected as differentially expressed either between NPC vs hES or MPC compared to hES for a threshold of FC (Fold change) >2 and a corrected p-value $\alpha<0.05$. The lists of modulated genes in all the conditions were crossed by Venn diagrams.

Figure 2: Global gene networks. Networks were constructed using the Ingenuity software based on expression relationships described in the literature. Modulated genes are represented as a box with its gene symbol inside. (A) Global neural gene network and (B) global mesenchymal gene network. Genes in red were up-regulated and genes in green were down-regulated in NPC or MPC compared to hES. Colour intensities of genes were correlated to fold change intensities.

Figure 3: Comparison of gene expression modulations within Notch signalling pathway either in NPC or in MPC. Modulated genes are represented as a box with its gene symbol inside. Genes up-regulated by comparison with hES are in red and those down-regulated in green. Colour intensities of genes were correlated to fold change intensities. The following
symbol (▲) indicated a relation of “inhibition” and (▼) a relation of “activation” between genes in the path. (A) Genes modulated between NPC and hES (B) Genes modulated between MPC and hES. (C) Differential gene expression measured by quantitative RT-PCR in hES (ES), MPC, NPC. Results are presented as relative expression level compared to hES cells considered arbitrarily as 1 from 3 independent samples. (t-student, * p<0.05).

Figure 4: Comparison of gene expression modulations within canonical Wnt/β catenin pathway either in NPC or in MPC. Same legend as described in Figure 3. (A) Genes specifically modulated between NPC and hES (B) Genes modulated between MPC and hES. (C) Differential gene expression measured by quantitative RT-PCR in hES (ES), MPC, NPC. Results are presented as relative expression level compared to hES cells considered arbitrarily as 1 from 3 independent samples. (t-student, *p<0.05; **p<0.01; ***p<0.001; ns statistically not significant).

Figure 5: Comparison of gene expression modulations within TGF Beta/Activin/BMP signalling pathway either in NPC or in MPC. Same legend as described in Figure 3. (A) Genes specifically modulated between NPC and hES (B) Genes modulated between MPC and hES. Differential expression measured by quantitative RT-PCR for (C) Inhibin BetaA, INHBA (Activin A) and (D) FST, Follistatin. (t-student, * p<0.05; ns statistically not significant).

Figure 6: Comprehensive developmental path model based on our gene expression data which may be controlled the hES cell fate decision toward either neural or mesodermal fates.
REFERENCES

Figure 1: Global gene expression patterns analysis for the hES cells (ES) and the two precursor
cells, NPC and MPC derived from the same hES cells. Schematic representation of the experimental
procedure (A). Correlation plots between all arrays of the experiment hybridized with ES, NPC and
MPC mRNAs (n=6 per condition). (B) Correlation was normalised in a scale from $r^2=0.79$ (green)
to $r^2=1$ (red). Principal component analysis of the three cell populations (C). Comparison of the
expression profiles (D). Genes were selected as differentially expressed either between NPC vs hES
or MPC vs hES for a threshold of FC (Fold change) >2 and a corrected p-value $\alpha<0.05$. The lists of
modulated genes in all the conditions were crossed by Venn diagrams.
Figure 2: Global gene networks. Networks were constructed using the Ingenuity software based on expression relationships described in the literature. Modulated genes are represented as a box with its gene symbol inside. Global neural gene network (A) and global mesenchymal gene network (B). Genes in red were up-regulated and genes in green were down-regulated in NPC or MPC compared to hES. Colour intensities of genes were correlated to fold change intensities.
Figure 3: Comparison of gene expression modulations within Notch signalling pathway either in NPC or in MPC. Modulated genes are represented as a box with its gene symbol inside. Genes up-regulated by comparison with hES are in red and those down-regulated in green. Colour intensities of genes were correlated to fold change intensities. The following symbol () indicated a relation of "inhibition" and () a relation of "activation" between genes in the path. (A) Genes modulated between NPC and hES (B) Genes modulated between MPC and hES. (C) Differential expression measured by quantitative RT-PCR for some genes in hES (ES), MPC, NPC. Results are presented as relative expression level compared to hES cells considered arbitrarily as 1 from 3 independent samples. (t-student, * p<0.05).

216x249mm (150 x 150 DPI)
Figure 4: Comparison of gene expression modulations within canonical Wnt/β catenin pathway either in NPC or in MPC. Same legend as described in Figure 3. (A) Genes specifically modulated between NPC and hES. (B) Genes modulated between MPC and hES. (C) Differential expression measured by quantitative RT-PCR for some genes in hES (ES), MPC, NPC. Results are presented as relative expression level compared to hES cells considered arbitrarily as 1 from 3 independent samples. (t-student, *p<0.05; **p<0.01; ***p<0.001; ns statistically not significant).

191x334mm (150 x 150 DPI)
Figure 5: Comparison of gene expression modulations within TGF Beta/Activin/BMP signalling pathway either in NPC or in MPC. Same legend as described in Figure 3. (A) Genes specifically modulated between NPC and hES (B) Genes modulated between MPC and hES. Differential expression measured by quantitative RT-PCR for (C) Inhibin BetaA, INHBA (Activin A) and (D) FST, Follistatin. (t-student, * p<0.05; ns statistically not significant).
Figure 6: Comprehensive developmental path model based on our gene expression data which may be controlled the hES cell fate decision toward either neural or mesodermal fates.

182x128mm (150 x 150 DPI)
Supplementary Figure legends

Figure S1 : Differentiation and characterization of NPC. (A) hES cells were cultured under appropriate conditions until DIV21 to obtain neural rosettes. (B) NCAM-positive cells were isolated by cell sorting. (C) Gene expression patterns of the NCAM positive cells were explored by RT-PCR. Cells do not express undifferentiated markers such as *NANOG* or glial makers such as *GFAP* whereas the induction of some expected neur ectodermic markers was observed including *NCAM-1; PAX6; SOX1; OTX2*. No change in the expression of *NES* [Nestin] was observed. Immunostaining revealed that NCAM-positive cells widely expressed NESTIN (D), NCAM, SOX1 (E) and PAX6 (F). Functional characterization of these cells demonstrated their ability to generate both neurons and astrocytes under classical differentiating conditions as highlighted by positive βIII-tubulin (G) and GFAP positive staining (H) respectively.

Figure S2 : Differentiation and characterization of MPC cells. (A) hES cells were cultured on gelatin in appropriate conditions until DIV28 to obtain cells with a fibroblast-like morphology. (B) Phenotyping was performed by FACS as described on material and methods. (C) Immunocytochemistry of two mesodermal markers Stro-1 (left, red) and αSMA (right, green) counterstained with DAPI (nuclei in blue). (D) Capacity of MPC to differentiate toward either osteoblasts or adipocytes as described on material and methods.

Figure S3 : Validation by Q-PCR of key genes identified to be modulated in the transcriptome experiment. (A) Genes specifically modulated between NPC and hES (B) Genes specifically modulated between MPC and hES. Results are presented as relative expression level compared to hES cells considered arbitrarily as 1 from 3 independent samples. (t-student, *p<0,05; **p<0,01; ***p<0,001; ns statistically not significant).
Figure S1: Differentiation and characterization of NPC. (A) hES cells were cultured under appropriate conditions until DIV21 to obtain neural rosettes. (B) NCAM-positive cells were isolated by cell sorting. (C) Gene expression patterns of the NCAM positive cells were explored by RT-PCR. Cells do not express undifferentiated markers such as NANOG or glial makers such as GFAP whereas the induction of some expected neurectodermic markers was observed including NCAM-1; PAX6; SOX1; OTX2. No change in the expression of NES [Nestin] was observed. Immunostaining revealed that NCAM-positive cells widely expressed NESTIN (D), NCAM, SOX1 (E) and PAX6 (F). Functional characterization of these cells demonstrated their ability to generate both neurons and astrocytes under classical differentiating conditions as highlighted by positive βIII-tubulin (G) and GFAP positive staining (H) respectively.

181x246mm (150 x 150 DPI)
Figure S2: Differentiation and characterization of MPC cells. (A) hES cells were cultured on gelatin in appropriate conditions until DIV28 to obtain cells with a fibroblast-like morphology. (B) Phenotyping was performed by FACS as described on material and methods. (C) Immunocytochemistry for two mesodermal markers Stro-1 (left, red) and αSMA (right, green) counterstained with DAPI (nuclei in blue). (D) Capacity of MPC to differentiate toward either osteoblasts or adipocytes as described on material and methods.
Figure S3: Validation by Q-PCR of key genes identified to be modulated in the transcriptome experiment. (A) Genes specifically modulated between NPC and hES; (B) Genes specifically modulated between MPC and hES. Results are presented as relative expression level compared to hES cells considered arbitrarily as 1 from 3 independent samples. (t-student, *p<0.05; **p<0.01; ***p<0.001; ns statistically not significant).

216x327mm (150 x 150 DPI)
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCT</td>
<td>F: TTAGGACCAGGACCCGCCC</td>
<td>R: CCGTGCCAGGTAACAAATGC</td>
<td>qPCR</td>
</tr>
<tr>
<td>DLL1</td>
<td>F: CCA ACT GCC AGC GTG AGA</td>
<td>R: GAA GTC CGC CTT CTT GTT GTT</td>
<td>qPCR</td>
</tr>
<tr>
<td>FLI1</td>
<td>F: AGATCTGTAACACGGTACAC</td>
<td>R: CCCCGTGAGGTCAGTAT</td>
<td>qPCR</td>
</tr>
<tr>
<td>FRZB</td>
<td>F: AGGTGTCAGGTGCTTGCAC</td>
<td>R: CACACTCTAGATAGAAGATAGAAGCT</td>
<td>qPCR</td>
</tr>
<tr>
<td>FST</td>
<td>F: AGGGAGAGATGAGACCAGGAC</td>
<td>R: CCACCTGAATAGAAGATAGAAGCT</td>
<td>qPCR</td>
</tr>
<tr>
<td>HES1</td>
<td>F: GGTGCTGATAAACACGGGAAT</td>
<td>R: TGAGCAAGTGCTGAGGTTT</td>
<td>qPCR</td>
</tr>
<tr>
<td>HES5</td>
<td>F: ACA TCG TGG AGA TGG CTT TC</td>
<td>R: TAG TGC TGG TGG AGC CTC TT</td>
<td>qPCR</td>
</tr>
<tr>
<td>HIF1A</td>
<td>F: ACTAGGCCAGGAGAATGATAAG</td>
<td>R: TACCCACACTGAGGTGGTTA</td>
<td>qPCR</td>
</tr>
<tr>
<td>INHBA</td>
<td>F: GAA AAG GAG CAG TGG CAC AGA</td>
<td>R: GGC GAT GAG GTG GTT CT C</td>
<td>qPCR</td>
</tr>
<tr>
<td>LIF1</td>
<td>F: GGCTCAGCATGAAAGAGAAGA</td>
<td>R: CTTTCTGCGAAAGATCTCGGT</td>
<td>qPCR</td>
</tr>
<tr>
<td>LHX2</td>
<td>F: CCGTTGTCAGCATTTTGTA</td>
<td>R: CCGTGTAGCATCTTTGTA</td>
<td>qPCR</td>
</tr>
<tr>
<td>NCAM-1</td>
<td>F: TTGTTTTTCTGGGAACCTGC</td>
<td>R: ATCTCGGCCTGTAAAACAC</td>
<td>qPCR</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>F: CCGTGTTCCAGGCTTTGGAAT</td>
<td>R: GTT GTA TGG GTT CGG CAC CAT</td>
<td>qPCR</td>
</tr>
<tr>
<td>PAX3</td>
<td>F: CTGGAACATTTGCGCAGACT</td>
<td>R: GCTGCTGCTTGGATCAGCG</td>
<td>qPCR</td>
</tr>
<tr>
<td>PAX6</td>
<td>F: GCC AGC AAC ACA CCT AGT CA</td>
<td>R: TGT GAG GGG CTG TGT CTG TTO</td>
<td>qPCR</td>
</tr>
<tr>
<td>SFRP2</td>
<td>F: GGCTCAGCATGACCTGCGAGAG</td>
<td>R: GATGCAAAGGCTGGTTGCTCT</td>
<td>qPCR</td>
</tr>
<tr>
<td>SOX9</td>
<td>F: CAGAAGCTACTGACCTGTTGA</td>
<td>R: TTAGGATCATCTGGCGCGATC</td>
<td>qPCR</td>
</tr>
<tr>
<td>SOX10</td>
<td>F: AGCCCAAGTGAAGACAGAAGA</td>
<td>R: ATAGGGTCCTAGGCTGAGGA</td>
<td>qPCR</td>
</tr>
<tr>
<td>TWIST1</td>
<td>F: GTGCCAGGCTTCTGAGGAAGAG</td>
<td>R: GCTGAGGTGCTGAATCTTGGCT</td>
<td>qPCR</td>
</tr>
<tr>
<td>WNT2B</td>
<td>F: TGACAAATATCCCTGGTTTGG</td>
<td>R: GGTCCAGGGTTGTCAGCTC</td>
<td>qPCR</td>
</tr>
<tr>
<td>18S</td>
<td>F: GAG GAT GAG GTG GAA CCG GCT</td>
<td>R: TCT TCA GTC GCT CCA CCA GTT</td>
<td>qPCR</td>
</tr>
<tr>
<td>ACTIN</td>
<td>F: CTCTTCCAGCCTTCCTCCTCCT</td>
<td>R: AGCAGCTGTTTGGCCTCAGACAG</td>
<td>PCR</td>
</tr>
<tr>
<td>GFAP</td>
<td>F: CAGGAGACAGCTCTCAATGTCAA</td>
<td>R: ATCTCCAGGCTCCGACCCAC</td>
<td>PCR</td>
</tr>
<tr>
<td>NANO</td>
<td>F: CTCGTCGCTGGAGGAGGAGAAGA</td>
<td>R: ATAGGGTCCTAGGCTGAGGA</td>
<td>PCR</td>
</tr>
<tr>
<td>NCAM-1</td>
<td>F: TGT TTT TCT CTG GGA ACT GC</td>
<td>R: ATCTCCGCGCTGAACACAC</td>
<td>PCR</td>
</tr>
<tr>
<td>NEATIN</td>
<td>F: AGAGAAACGAGAGACCATGCA</td>
<td>R: TCTCTTCTGGCCCGAGACCTT</td>
<td>PCR</td>
</tr>
<tr>
<td>OTX2</td>
<td>F: ACAATGACGCAATTACCTCC</td>
<td>R: ATGCCCCAAGATGAAAGAT</td>
<td>PCR</td>
</tr>
<tr>
<td>PAX6</td>
<td>F: GGCAACTACCGCAAGGATGGC</td>
<td>R: TGAGGCTCTGCTGGCTTGGC</td>
<td>PCR</td>
</tr>
<tr>
<td>SOX1</td>
<td>F: CAATGCGGGGAGGAGAACGT</td>
<td>R: CTCTGCGAAACACTCTGGCG</td>
<td>PCR</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC up</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>37500</td>
<td>4735</td>
<td>septin 2</td>
<td>2.38</td>
</tr>
<tr>
<td>39692</td>
<td>23176</td>
<td>septin 8</td>
<td>2.05</td>
</tr>
<tr>
<td>(vide)</td>
<td>(vide)</td>
<td>CDNA clone IMAGE:4152983</td>
<td>34.42</td>
</tr>
<tr>
<td>15112</td>
<td>283459</td>
<td>Hypothetical protein LCC283459</td>
<td>2.71</td>
</tr>
<tr>
<td>769F</td>
<td>27229</td>
<td>Gamma tubulin ring complex protein (76p gene)</td>
<td>3.37</td>
</tr>
<tr>
<td>ABID6</td>
<td>57406</td>
<td>adharylase domain containing 6</td>
<td>2.79</td>
</tr>
<tr>
<td>ABI2</td>
<td>10152</td>
<td>Abi interactor 2</td>
<td>2.23</td>
</tr>
<tr>
<td>ABL2</td>
<td>27</td>
<td>V-abl Abelson murine leukemia viral oncogene homolog 2 (arg, Abelson-related gene)</td>
<td>2.02</td>
</tr>
<tr>
<td>ABR</td>
<td>29</td>
<td>active BCR-related gene</td>
<td>2.41</td>
</tr>
<tr>
<td>ACOX3</td>
<td>8310</td>
<td>acyl-Coenzyme A oxidase 3, pristanoyl</td>
<td>3.38</td>
</tr>
<tr>
<td>ACSBG2</td>
<td>81616</td>
<td>Acyl-CoA synthetase bubblegum family member 2</td>
<td>2.68</td>
</tr>
<tr>
<td>ACSL3</td>
<td>2181</td>
<td>Acyl-CoA synthetase long-chain family member 3</td>
<td>2.04</td>
</tr>
<tr>
<td>ACTA2</td>
<td>59</td>
<td>actin, alpha 2, smooth muscle, aorta</td>
<td>8.75</td>
</tr>
<tr>
<td>ACYLY1</td>
<td>135293</td>
<td>aminocarboxylylase 1-like 2</td>
<td>2.60</td>
</tr>
<tr>
<td>ADAM12</td>
<td>8038</td>
<td>ADAM metallopeptidase domain 12 (meltrin alpha)</td>
<td>4.25</td>
</tr>
<tr>
<td>ADAM17</td>
<td>6868</td>
<td>ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme)</td>
<td>2.02</td>
</tr>
<tr>
<td>ADAM19</td>
<td>8728</td>
<td>ADAM metallopeptidase domain 19 (meltrin beta)</td>
<td>2.15</td>
</tr>
<tr>
<td>ADAM23</td>
<td>8745</td>
<td>ADAM metallopeptidase domain 23</td>
<td>2.30</td>
</tr>
<tr>
<td>ADAMTS1</td>
<td>9510</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif, 1</td>
<td>2.62</td>
</tr>
<tr>
<td>ADAMTS18</td>
<td>170692</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif, 18</td>
<td>7.82</td>
</tr>
<tr>
<td>ADAMTS6</td>
<td>11174</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif, 6</td>
<td>5.92</td>
</tr>
<tr>
<td>ADAMTS9</td>
<td>56999</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif, 9</td>
<td>19.15</td>
</tr>
<tr>
<td>ADARB1</td>
<td>104</td>
<td>adenosine deaminase, RNA-specific, B1 (RED1 homol rat)</td>
<td>2.79</td>
</tr>
<tr>
<td>ADCY6</td>
<td>112</td>
<td>adenylyl cyclase 6</td>
<td>2.06</td>
</tr>
<tr>
<td>ADSS1</td>
<td>122622</td>
<td>adenylosuccinate synthase like 1</td>
<td>3.26</td>
</tr>
<tr>
<td>AFF3</td>
<td>3899</td>
<td>AF4/FMR2 family, member 3</td>
<td>2.51</td>
</tr>
<tr>
<td>AFF4</td>
<td>27125</td>
<td>AF4/FMR2 family, member 4</td>
<td>3.76</td>
</tr>
<tr>
<td>AFFG3L1</td>
<td>172</td>
<td>AFG3 ATPase family gene 3-like 1 (yeast)</td>
<td>2.26</td>
</tr>
<tr>
<td>AG1</td>
<td>440673</td>
<td>AG1 protein</td>
<td>3.17</td>
</tr>
<tr>
<td>AGPAT3</td>
<td>56896</td>
<td>1-acylglycerol-3-phosphate O-acyltransferase 3</td>
<td>2.02</td>
</tr>
<tr>
<td>AGPAT4</td>
<td>56895</td>
<td>1-acylglycerol-3-phosphate O-acyltransferase 4 (lyosphosphatic acid acyltransferase, type II)</td>
<td>3.89</td>
</tr>
<tr>
<td>AGTPBP1</td>
<td>23287</td>
<td>ATP/GTP binding protein 1</td>
<td>3.23</td>
</tr>
<tr>
<td>AH1H</td>
<td>54806</td>
<td>Abelson helper integration site</td>
<td>4.09</td>
</tr>
<tr>
<td>ANK1AK</td>
<td>79028</td>
<td>ANK1AK nucleoprotein (desmoyokin)</td>
<td>7.26</td>
</tr>
<tr>
<td>ANK1AT2</td>
<td>13972</td>
<td>ANK1AT2, activator of heat shock 90kDa protein ATPase homolog 2 (yeast)</td>
<td>3.05</td>
</tr>
<tr>
<td>AKAP13</td>
<td>11214</td>
<td>A kinase (PRKA) anchor protein 13</td>
<td>2.63</td>
</tr>
<tr>
<td>AKAP9</td>
<td>10142</td>
<td>A kinase (PRKA) anchor protein (ytloa) 9</td>
<td>2.23</td>
</tr>
<tr>
<td>AKR1C1</td>
<td>1645</td>
<td>aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 20-alpha (3-alkyoxy-4-chlorophenol); 20-beta hydroxy estrogen)</td>
<td>2.43</td>
</tr>
<tr>
<td>AKR1C2</td>
<td>1646</td>
<td>aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile acid binding protein)</td>
<td>2.32</td>
</tr>
<tr>
<td>AKT3</td>
<td>10000</td>
<td>V-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma)</td>
<td>2.78</td>
</tr>
<tr>
<td>ALCAM</td>
<td>214</td>
<td>activated leukocyte cell adhesion molecule</td>
<td>2.30</td>
</tr>
<tr>
<td>ALDH1A1</td>
<td>216</td>
<td>aldehyde dehydrogenase 1 family, member A1</td>
<td>8.67</td>
</tr>
<tr>
<td>ALPK2</td>
<td>115701</td>
<td>ALPK2 kinase 2</td>
<td>4.74</td>
</tr>
<tr>
<td>ALS2CR4</td>
<td>65062</td>
<td>amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 4</td>
<td>2.93</td>
</tr>
<tr>
<td>AMIGO2</td>
<td>347902</td>
<td>adhesion molecule with Ig-like domain 2</td>
<td>4.13</td>
</tr>
<tr>
<td>AMOT1L1</td>
<td>154810</td>
<td>angiomotin like 1</td>
<td>3.05</td>
</tr>
<tr>
<td>AMOT2L1</td>
<td>51421</td>
<td>angiomotin like 2</td>
<td>3.72</td>
</tr>
<tr>
<td>ANPH</td>
<td>273</td>
<td>amphiphysin (Shih-Mamm syndrome with breast cancer 128kDa autoantigen)</td>
<td>2.77</td>
</tr>
<tr>
<td>AMY1A</td>
<td>77 /// 278</td>
<td>amylyase, alpha 1A; salivary /// amylyase, alpha 1B; salivary /// amylyase, alpha 1C; salivary /// amylyase, alpha 2A; pancreatic /// amylyase, alpha 2B; pancreatic</td>
<td>2.34</td>
</tr>
<tr>
<td>ANAPC5</td>
<td>51433</td>
<td>Anaphase promoting complex subunit 5</td>
<td>2.42</td>
</tr>
<tr>
<td>ANAPC7</td>
<td>51437</td>
<td>anaphase promoting complex subunit 7</td>
<td>2.70</td>
</tr>
<tr>
<td>ANGPT1L1</td>
<td>9068</td>
<td>Angiprotein-1-like 1</td>
<td>2.45</td>
</tr>
<tr>
<td>ANGPT2L2</td>
<td>23452</td>
<td>angiprotein-2-like 2</td>
<td>2.97</td>
</tr>
<tr>
<td>ANK2</td>
<td>287</td>
<td>ankyrin 2, neuronal</td>
<td>4.55</td>
</tr>
<tr>
<td>ANKHD1</td>
<td>047343 /// 54840</td>
<td>ankyrin repeat and KH domain containing 1 /// MASK-4E-BP3 alternate reading frame</td>
<td>2.18</td>
</tr>
<tr>
<td>ANKMY2</td>
<td>57037</td>
<td>ankyrin repeat and MYND domain containing 2</td>
<td>3.49</td>
</tr>
<tr>
<td>ANKRD10</td>
<td>55608</td>
<td>ankyrin repeat domain 10</td>
<td>2.05</td>
</tr>
<tr>
<td>ANKRD13</td>
<td>88455</td>
<td>ankyrin repeat domain 13</td>
<td>2.00</td>
</tr>
<tr>
<td>ANKRD38</td>
<td>163782</td>
<td>ankyrin repeat domain 38</td>
<td>21.36</td>
</tr>
<tr>
<td>ANKRD6</td>
<td>22881</td>
<td>ankyrin repeat domain 6</td>
<td>6.12</td>
</tr>
<tr>
<td>ANTXR2</td>
<td>118429</td>
<td>Anthrax toxin receptor 2</td>
<td>2.23</td>
</tr>
<tr>
<td>ANX1A3</td>
<td>312</td>
<td>Annexin A13</td>
<td>2.90</td>
</tr>
<tr>
<td>APAM1</td>
<td>26985</td>
<td>adaptor-related protein complex 3, mu 1 subunit</td>
<td>2.12</td>
</tr>
<tr>
<td>APPB2</td>
<td>321</td>
<td>amyloid beta (A4) precursor protein binding, family A, member 2 (X11-like)</td>
<td>6.89</td>
</tr>
<tr>
<td>APCCD1</td>
<td>147495</td>
<td>adenosaminosis polyposis coli down-regulated 1</td>
<td>2.95</td>
</tr>
<tr>
<td>AP6</td>
<td>8539</td>
<td>Apoptosis inhibitor 5</td>
<td>2.93</td>
</tr>
<tr>
<td>APPB2</td>
<td>10513</td>
<td>amyloid beta precursor protein (cytoplasmic tail) binding protein 2</td>
<td>3.26</td>
</tr>
<tr>
<td>AQP3</td>
<td>360</td>
<td>aquaporin 3</td>
<td>2.73</td>
</tr>
<tr>
<td>ARHGAP24</td>
<td>83478</td>
<td>Rho GTPase activating protein 24</td>
<td>2.62</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>ARHGA28</td>
<td>79822</td>
<td>Rh GDPase activating protein 28</td>
<td>2.76</td>
</tr>
<tr>
<td>ARHGA29</td>
<td>9411</td>
<td>Rh GDPase activating protein 29</td>
<td>5.06</td>
</tr>
<tr>
<td>ARHGA5</td>
<td>394</td>
<td>Rh GDPase activating protein 5</td>
<td>2.87</td>
</tr>
<tr>
<td>ARHGA6</td>
<td>395</td>
<td>Rh GDPase activating protein 6</td>
<td>3.44</td>
</tr>
<tr>
<td>ARHGDB</td>
<td>397</td>
<td>Rh GDPase dissociation inhibitor (GDI) beta</td>
<td>4.10</td>
</tr>
<tr>
<td>ARHGEF17</td>
<td>9828</td>
<td>Rh guanine nucleotide exchange factor (GEF) 17</td>
<td>3.07</td>
</tr>
<tr>
<td>ARHGEF4</td>
<td>50649</td>
<td>Rh guanine nucleotide exchange factor (GEF) 4</td>
<td>2.38</td>
</tr>
<tr>
<td>ARHGEF7</td>
<td>8874</td>
<td>Rh guanine nucleotide exchange factor (GEF) 7</td>
<td>2.59</td>
</tr>
<tr>
<td>ARID1B</td>
<td>57492</td>
<td>AT rich interactive domain 1B (SWI1-like)</td>
<td>2.02</td>
</tr>
<tr>
<td>ARID2</td>
<td>196528</td>
<td>AT rich interactive domain 2 (ARID, RFX-like)</td>
<td>2.53</td>
</tr>
<tr>
<td>ARID5B</td>
<td>84159</td>
<td>AT rich interactive domain 5B (MRF1-like)</td>
<td>10.53</td>
</tr>
<tr>
<td>ARF6P5</td>
<td>10550</td>
<td>ADP-ribosylation-like factor 6 interacting protein 5</td>
<td>2.12</td>
</tr>
<tr>
<td>ARF7</td>
<td>10123</td>
<td>ADP-ribosylation factor 7</td>
<td>13.85</td>
</tr>
<tr>
<td>ARMC8</td>
<td>25852</td>
<td>armadillo repeat containing 8</td>
<td>2.52</td>
</tr>
<tr>
<td>ARMCX3</td>
<td>51566</td>
<td>armadillo repeat containing, X-linked 3</td>
<td>2.58</td>
</tr>
<tr>
<td>ARNT2</td>
<td>9915</td>
<td>aryl-hydrocarbon receptor nuclear translocator 2</td>
<td>2.67</td>
</tr>
<tr>
<td>ARRD4C</td>
<td>91947</td>
<td>arrestin domain containing 4</td>
<td>2.45</td>
</tr>
<tr>
<td>ARS1</td>
<td>340075</td>
<td>arylsulfatase I</td>
<td>2.07</td>
</tr>
<tr>
<td>ARX</td>
<td>170302</td>
<td>arrestase related homeobox</td>
<td>2.74</td>
</tr>
<tr>
<td>ASCC3L1</td>
<td>23020</td>
<td>Activating signal contorter 1 complex subunit 3-like 1</td>
<td>2.68</td>
</tr>
<tr>
<td>ASH4L1</td>
<td>56870</td>
<td>POL domain, class 6, transcription factor 1</td>
<td>8.38</td>
</tr>
<tr>
<td>ASPH</td>
<td>444</td>
<td>Aspartate beta-hydroxylase</td>
<td>4.17</td>
</tr>
<tr>
<td>ASTN</td>
<td>96</td>
<td>astroactin</td>
<td>4.43</td>
</tr>
<tr>
<td>ASXL1</td>
<td>171023</td>
<td>additional sex combs like 1 (Drosophila)</td>
<td>7.40</td>
</tr>
<tr>
<td>ATAD1</td>
<td>84896</td>
<td>ATPase family, AAA domain containing 1</td>
<td>2.19</td>
</tr>
<tr>
<td>ATBF1</td>
<td>463</td>
<td>AT-binding transcription factor 1</td>
<td>3.03</td>
</tr>
<tr>
<td>ATF6</td>
<td>22926</td>
<td>Activating transcription factor 6</td>
<td>2.62</td>
</tr>
<tr>
<td>ATP1D0</td>
<td>57205</td>
<td>ATPase, Class V, type 100</td>
<td>2.81</td>
</tr>
<tr>
<td>ATP11A</td>
<td>23250</td>
<td>ATPase, Class VI, type 11A</td>
<td>2.28</td>
</tr>
<tr>
<td>ATP1A2</td>
<td>477</td>
<td>ATPase, Na+,K+ transporting, alpha 2 (+) polypeptide</td>
<td>2.48</td>
</tr>
<tr>
<td>ATP2B1</td>
<td>490</td>
<td>ATPase, Ca++, transporting, plasma membrane 1</td>
<td>3.56</td>
</tr>
<tr>
<td>ATP2B4</td>
<td>493</td>
<td>ATPase, Ca++, transporting, plasma membrane 4</td>
<td>2.75</td>
</tr>
<tr>
<td>ATP2C1</td>
<td>27032</td>
<td>ATPase, Ca++, transporting, type 2C, member 1</td>
<td>2.89</td>
</tr>
<tr>
<td>ATP7A</td>
<td>538</td>
<td>ATPase, Cu++, transporting, alpha polypeptide (Menkes syndrome)</td>
<td>3.10</td>
</tr>
<tr>
<td>ATP7B</td>
<td>540</td>
<td>ATPase, Cu++, transporting, beta polypeptide (Wilson disease)</td>
<td>3.42</td>
</tr>
<tr>
<td>ATP9A</td>
<td>10079</td>
<td>ATPase, Class II, type 9A</td>
<td>3.03</td>
</tr>
<tr>
<td>ATRX</td>
<td>546</td>
<td>Alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog, S. cerevisiae)</td>
<td>2.13</td>
</tr>
<tr>
<td>AXL</td>
<td>558</td>
<td>AXL receptor tyrosine kinase</td>
<td>2.71</td>
</tr>
<tr>
<td>B3GALT6</td>
<td>126792</td>
<td>UDP-Gal-betaGal beta 1,3-galactosyltransferase polypeptide 6</td>
<td>2.66</td>
</tr>
<tr>
<td>B3GNT5</td>
<td>84002</td>
<td>UDP-GlcNAc:betaGal beta 1,3-N-acetylgalcosaminyltransferase 5</td>
<td>3.05</td>
</tr>
<tr>
<td>B3GTL</td>
<td>145173</td>
<td>beta 3-glycosyltransferase-like</td>
<td>2.45</td>
</tr>
<tr>
<td>BACE1</td>
<td>23621</td>
<td>beta-site APP-cleaving enzyme 1</td>
<td>3.31</td>
</tr>
<tr>
<td>BACH2</td>
<td>60486</td>
<td>BTB and CNC homology 1, basic leucine zipper transcription factor 2 // BTB and CNC homology 1</td>
<td>4.17</td>
</tr>
<tr>
<td>BAT1</td>
<td>7919</td>
<td>HLA-B associated transcript 1</td>
<td>2.16</td>
</tr>
<tr>
<td>BBS1</td>
<td>582</td>
<td>Bardet-Biedl syndrome 1</td>
<td>2.61</td>
</tr>
<tr>
<td>BBS2</td>
<td>583</td>
<td>Bardet-Biedl syndrome 2</td>
<td>2.27</td>
</tr>
<tr>
<td>BCRAR</td>
<td>8412</td>
<td>Breast cancer anti-estrogen resistance 3</td>
<td>2.17</td>
</tr>
<tr>
<td>BCHE</td>
<td>590</td>
<td>butyrylcholinesterase</td>
<td>7.49</td>
</tr>
<tr>
<td>BCL2</td>
<td>596</td>
<td>B-cell CLL/lymphoma 2</td>
<td>2.47</td>
</tr>
<tr>
<td>BCL2L11</td>
<td>10018</td>
<td>BCL2-like 11 (apoptosis facilitator)</td>
<td>3.19</td>
</tr>
<tr>
<td>BCL7A</td>
<td>605</td>
<td>B-cell CLL/lymphoma 7A</td>
<td>2.02</td>
</tr>
<tr>
<td>BDH1</td>
<td>622</td>
<td>3-hydroxybutyrate dehydrogenase, type 1</td>
<td>2.07</td>
</tr>
<tr>
<td>BID</td>
<td>637</td>
<td>BH3 interacting domain death agonist</td>
<td>2.08</td>
</tr>
<tr>
<td>BIN1</td>
<td>274</td>
<td>bridging integrator 1</td>
<td>2.08</td>
</tr>
<tr>
<td>BIRC1</td>
<td>4671</td>
<td>baculoviral IAP repeat-containing 1</td>
<td>3.46</td>
</tr>
<tr>
<td>BIRC6</td>
<td>57448</td>
<td>Splicing factor, arginine/serine-rich 12</td>
<td>2.11</td>
</tr>
<tr>
<td>BMP7</td>
<td>655</td>
<td>Bone morphogenetic protein 7 (osteonectin protein)</td>
<td>2.09</td>
</tr>
<tr>
<td>BMPR2</td>
<td>659</td>
<td>bone morphogenetic protein receptor, type II (serine/threonine kinase)</td>
<td>2.29</td>
</tr>
<tr>
<td>BMS14</td>
<td>64</td>
<td>baseosinulin 1</td>
<td>2.63</td>
</tr>
<tr>
<td>BNP3L</td>
<td>665</td>
<td>BCL2/adenovirus E1B 19kDa interacting protein 3-like // BCL2/adenovirus E1B 19kDa interacting protein 3-like // BCL2/adenovirus E1B 19kDa interacting protein 3-like</td>
<td>2.63</td>
</tr>
<tr>
<td>BOC</td>
<td>91653</td>
<td>brother of COO</td>
<td>11.85</td>
</tr>
<tr>
<td>BRUNOL5</td>
<td>60680</td>
<td>bruno-like 5, RNA binding protein (Drosophila)</td>
<td>3.57</td>
</tr>
<tr>
<td>BRWD2</td>
<td>55717</td>
<td>bromodomain and WD repeat domain containing 2</td>
<td>3.05</td>
</tr>
<tr>
<td>BST2</td>
<td>684</td>
<td>bone marrow stromal cell antigen 2</td>
<td>2.18</td>
</tr>
<tr>
<td>BTAF1</td>
<td>9044</td>
<td>BTAF1 RNA polymerase II, B-TFIID transcription factor-associated, 170kDa (Mxt1 homolog)</td>
<td>2.50</td>
</tr>
<tr>
<td>BTBD3</td>
<td>22903</td>
<td>BTB (POZ) domain containing 3</td>
<td>2.86</td>
</tr>
<tr>
<td>BTBD5</td>
<td>54813</td>
<td>BTB (POZ) domain containing 5</td>
<td>2.46</td>
</tr>
<tr>
<td>BTBD7</td>
<td>55727</td>
<td>BTB (POZ) domain containing 7</td>
<td>2.03</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>BTG1</td>
<td>694</td>
<td>B-cell translocation gene 1, anti-proliferative</td>
<td>2,19</td>
</tr>
<tr>
<td>BTG2</td>
<td>7832</td>
<td>BTG family, member 2</td>
<td>3,78</td>
</tr>
<tr>
<td>BZRAP1</td>
<td>9256</td>
<td>benzodiazepine receptor (peripheral) associated protein 1</td>
<td>2,39</td>
</tr>
<tr>
<td>C1orf104</td>
<td>119504</td>
<td>chromosome 10 open reading frame 104</td>
<td>2,81</td>
</tr>
<tr>
<td>C1orf118</td>
<td>54906</td>
<td>chromosome 10 open reading frame 18</td>
<td>2,18</td>
</tr>
<tr>
<td>C1orf50</td>
<td>222389</td>
<td>chromosome 10 open reading frame 39</td>
<td>2,34</td>
</tr>
<tr>
<td>C1orf52</td>
<td>119032</td>
<td>chromosome 10 open reading frame 32</td>
<td>3,17</td>
</tr>
<tr>
<td>C1orf53</td>
<td>84795</td>
<td>chromosome 10 open reading frame 33</td>
<td>2,13</td>
</tr>
<tr>
<td>C1orf58</td>
<td>221061</td>
<td>chromosome 10 open reading frame 38</td>
<td>2,17</td>
</tr>
<tr>
<td>C1orf45</td>
<td>83641</td>
<td>chromosome 10 open reading frame 45</td>
<td>2,47</td>
</tr>
<tr>
<td>C1orf46</td>
<td>143384</td>
<td>chromosome 10 open reading frame 46</td>
<td>2,40</td>
</tr>
<tr>
<td>C1orf56</td>
<td>219654</td>
<td>chromosome 10 open reading frame 56</td>
<td>2,65</td>
</tr>
<tr>
<td>C1orf58</td>
<td>84293</td>
<td>chromosome 10 open reading frame 59</td>
<td>3,81</td>
</tr>
<tr>
<td>C1orf17</td>
<td>6672 /// 81789</td>
<td>chromosome 11 open reading frame 17 /// chromosome 11 open reading frame 17 /// N</td>
<td>5,37</td>
</tr>
<tr>
<td>C1orf9</td>
<td>745</td>
<td>chromosome 11 open reading frame 9</td>
<td>3,92</td>
</tr>
<tr>
<td>C1orf22</td>
<td>81566</td>
<td>chromosome 12 open reading frame 22 /// chromosome 12 open reading frame 22</td>
<td>2,07</td>
</tr>
<tr>
<td>C1orf101</td>
<td>54916</td>
<td>chromosome 14 open reading frame 101</td>
<td>2,39</td>
</tr>
<tr>
<td>C1orf162</td>
<td>56936</td>
<td>chromosome 14 open reading frame 162</td>
<td>4,47</td>
</tr>
<tr>
<td>C1orf52</td>
<td>93487</td>
<td>chromosome 14 open reading frame 32</td>
<td>2,64</td>
</tr>
<tr>
<td>C1orf59</td>
<td>317761</td>
<td>chromosome 14 open reading frame 39</td>
<td>3,15</td>
</tr>
<tr>
<td>C1orf65</td>
<td>317762</td>
<td>chromosome 14 open reading frame 65</td>
<td>2,65</td>
</tr>
<tr>
<td>C1orf17</td>
<td>57184</td>
<td>chromosome 15 open reading frame 17</td>
<td>2,25</td>
</tr>
<tr>
<td>C1orf21</td>
<td>283651</td>
<td>chromosome 15 open reading frame 21</td>
<td>2,54</td>
</tr>
<tr>
<td>C1orf29</td>
<td>79768</td>
<td>chromosome 15 open reading frame 29</td>
<td>2,96</td>
</tr>
<tr>
<td>C1orf38</td>
<td>348110</td>
<td>chromosome 15 open reading frame 38</td>
<td>2,46</td>
</tr>
<tr>
<td>C1orf46</td>
<td>123775</td>
<td>chromosome 16 open reading frame 46</td>
<td>2,60</td>
</tr>
<tr>
<td>C1orf48</td>
<td>84080</td>
<td>chromosome 16 open reading frame 48</td>
<td>2,06</td>
</tr>
<tr>
<td>C1orf55</td>
<td>124045</td>
<td>chromosome 16 open reading frame 65</td>
<td>2,58</td>
</tr>
<tr>
<td>C1orf42</td>
<td>79736</td>
<td>chromosome 17 open reading frame 42</td>
<td>2,99</td>
</tr>
<tr>
<td>C1orf45</td>
<td>125144</td>
<td>chromosome 17 open reading frame 45</td>
<td>4,23</td>
</tr>
<tr>
<td>C1orf51</td>
<td>125704</td>
<td>chromosome 18 open reading frame 51</td>
<td>2,70</td>
</tr>
<tr>
<td>C1GALT1C1</td>
<td>29071</td>
<td>G1GALT1-specific chaperone 1</td>
<td>3,05</td>
</tr>
<tr>
<td>C1orf104</td>
<td>284618</td>
<td>chromosome 1 open reading frame 104</td>
<td>2,31</td>
</tr>
<tr>
<td>C1orf112</td>
<td>55732</td>
<td>chromosome 1 open reading frame 112</td>
<td>2,03</td>
</tr>
<tr>
<td>C1orf129</td>
<td>79971</td>
<td>chromosome 10 open reading frame 133</td>
<td>20,92</td>
</tr>
<tr>
<td>C1orf168</td>
<td>199920</td>
<td>chromosome 1 open reading frame 168</td>
<td>2,86</td>
</tr>
<tr>
<td>C1orf21</td>
<td>81563</td>
<td>chromosome 1 open reading frame 21 /// chromosome 1 open reading frame 21</td>
<td>2,25</td>
</tr>
<tr>
<td>C1orf54</td>
<td>79630</td>
<td>chromosome 1 open reading frame 54</td>
<td>2,08</td>
</tr>
<tr>
<td>C1orf63</td>
<td>57035</td>
<td>chromosome 1 open reading frame 63</td>
<td>2,16</td>
</tr>
<tr>
<td>C1orf65</td>
<td>112770</td>
<td>chromosome 1 open reading frame 85</td>
<td>2,19</td>
</tr>
<tr>
<td>C1orf9</td>
<td>51430</td>
<td>chromosome 1 open reading frame 9</td>
<td>2,08</td>
</tr>
<tr>
<td>C10BP</td>
<td>708</td>
<td>Complement component 1, q subcomponent binding protein</td>
<td>2,30</td>
</tr>
<tr>
<td>C1R</td>
<td>51297</td>
<td>complement component 1, r subcomponent wie</td>
<td>2,32</td>
</tr>
<tr>
<td>C2orf108</td>
<td>116151</td>
<td>chromosome 20 open reading frame 108</td>
<td>2,36</td>
</tr>
<tr>
<td>C2orf112</td>
<td>140688</td>
<td>chromosome 20 open reading frame 112</td>
<td>2,82</td>
</tr>
<tr>
<td>C2orf12</td>
<td>55184</td>
<td>chromosome 20 open reading frame 12</td>
<td>2,05</td>
</tr>
<tr>
<td>C2orf133</td>
<td>140733</td>
<td>chromosome 20 open reading frame 133</td>
<td>3,27</td>
</tr>
<tr>
<td>C2orf142</td>
<td>128486</td>
<td>chromosome 20 open reading frame 142</td>
<td>2,24</td>
</tr>
<tr>
<td>C2orf194</td>
<td>25943</td>
<td>chromosome 20 open reading frame 194</td>
<td>2,38</td>
</tr>
<tr>
<td>C2orf58</td>
<td>128414</td>
<td>chromosome 20 open reading frame 58</td>
<td>2,37</td>
</tr>
<tr>
<td>C2orf61</td>
<td>64773</td>
<td>chromosome 20 open reading frame 81</td>
<td>2,76</td>
</tr>
<tr>
<td>C2orf25</td>
<td>25966</td>
<td>chromosome 21 open reading frame 25</td>
<td>2,14</td>
</tr>
<tr>
<td>C2orf51</td>
<td>54065</td>
<td>chromosome 21 open reading frame 51</td>
<td>2,85</td>
</tr>
<tr>
<td>C2orf66</td>
<td>94104</td>
<td>chromosome 21 open reading frame 66</td>
<td>4,60</td>
</tr>
<tr>
<td>C2orf23</td>
<td>65055</td>
<td>chromosome 2 open reading frame 23</td>
<td>2,73</td>
</tr>
<tr>
<td>C2orf4</td>
<td>51072</td>
<td>chromosome 2 open reading frame 4</td>
<td>2,57</td>
</tr>
<tr>
<td>C3orf15</td>
<td>88986</td>
<td>chromosome 3 open reading frame 15</td>
<td>7,16</td>
</tr>
<tr>
<td>C3orf6</td>
<td>152137</td>
<td>chromosome 3 open reading frame 6</td>
<td>8,53</td>
</tr>
<tr>
<td>C5</td>
<td>727</td>
<td>complement component 5</td>
<td>2,62</td>
</tr>
<tr>
<td>C5orf13</td>
<td>9315</td>
<td>chromosome 5 open reading frame 13</td>
<td>3,04</td>
</tr>
<tr>
<td>C5orf5</td>
<td>51306</td>
<td>chromosome 5 open reading frame 5</td>
<td>2,41</td>
</tr>
<tr>
<td>C6orf11</td>
<td>25957</td>
<td>chromosome 6 open reading frame 111</td>
<td>3,14</td>
</tr>
<tr>
<td>C6orf12</td>
<td>154467</td>
<td>chromosome 6 open reading frame 129</td>
<td>2,24</td>
</tr>
<tr>
<td>C6orf14</td>
<td>133938</td>
<td>chromosome 6 open reading frame 141</td>
<td>4,10</td>
</tr>
<tr>
<td>C6orf145</td>
<td>221749</td>
<td>chromosome 6 open reading frame 145</td>
<td>3,21</td>
</tr>
<tr>
<td>C6orf155</td>
<td>79940</td>
<td>chromosome 6 open reading frame 155</td>
<td>5,74</td>
</tr>
<tr>
<td>C6orf166</td>
<td>55122</td>
<td>chromosome 6 open reading frame 166</td>
<td>2,56</td>
</tr>
<tr>
<td>C6orf49</td>
<td>29964</td>
<td>chromosome 6 open reading frame 49</td>
<td>3,34</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Ensembl Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>C6orf59</td>
<td>chromosome 6 open reading frame 59</td>
<td>2.63</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf69</td>
<td>chromosome 6 open reading frame 69</td>
<td>2.01</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf84</td>
<td>chromosome 6 open reading frame 84</td>
<td>2.33</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf19</td>
<td>chromosome 6 open reading frame 19</td>
<td>2.76</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf15</td>
<td>chromosome 6 open reading frame 15</td>
<td>2.55</td>
<td>chr7</td>
</tr>
<tr>
<td>C6orf32</td>
<td>chromosome 6 open reading frame 32</td>
<td>2.07</td>
<td>chr8</td>
</tr>
<tr>
<td>C6orf70</td>
<td>chromosome 6 open reading frame 70</td>
<td>2.58</td>
<td>chr8</td>
</tr>
<tr>
<td>C6orf72</td>
<td>chromosome 6 open reading frame 72</td>
<td>2.15</td>
<td>chr8</td>
</tr>
<tr>
<td>C6orf28</td>
<td>chromosome 6 open reading frame 28</td>
<td>2.77</td>
<td>chr8</td>
</tr>
<tr>
<td>C6orf5</td>
<td>chromosome 6 open reading frame 5</td>
<td>2.46</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf7</td>
<td>chromosome 6 open reading frame 7</td>
<td>2.99</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf72</td>
<td>chromosome 6 open reading frame 72</td>
<td>2.97</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf50</td>
<td>chromosome 9 open reading frame 50</td>
<td>2.38</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf20</td>
<td>chromosome 9 open reading frame 20</td>
<td>2.68</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf21</td>
<td>chromosome 9 open reading frame 21</td>
<td>2.79</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf22</td>
<td>chromosome 9 open reading frame 22</td>
<td>2.89</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf23</td>
<td>chromosome 9 open reading frame 23</td>
<td>2.99</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf24</td>
<td>chromosome 9 open reading frame 24</td>
<td>3.09</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf25</td>
<td>chromosome 9 open reading frame 25</td>
<td>3.19</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf26</td>
<td>chromosome 9 open reading frame 26</td>
<td>3.29</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf27</td>
<td>chromosome 9 open reading frame 27</td>
<td>3.39</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf28</td>
<td>chromosome 9 open reading frame 28</td>
<td>3.49</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf29</td>
<td>chromosome 9 open reading frame 29</td>
<td>3.59</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf30</td>
<td>chromosome 9 open reading frame 30</td>
<td>3.69</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf31</td>
<td>chromosome 9 open reading frame 31</td>
<td>3.79</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf32</td>
<td>chromosome 9 open reading frame 32</td>
<td>3.89</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf33</td>
<td>chromosome 9 open reading frame 33</td>
<td>3.99</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf34</td>
<td>chromosome 9 open reading frame 34</td>
<td>4.09</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf35</td>
<td>chromosome 9 open reading frame 35</td>
<td>4.19</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf36</td>
<td>chromosome 9 open reading frame 36</td>
<td>4.29</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf37</td>
<td>chromosome 9 open reading frame 37</td>
<td>4.39</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf38</td>
<td>chromosome 9 open reading frame 38</td>
<td>4.49</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf39</td>
<td>chromosome 9 open reading frame 39</td>
<td>4.59</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf40</td>
<td>chromosome 9 open reading frame 40</td>
<td>4.69</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf41</td>
<td>chromosome 9 open reading frame 41</td>
<td>4.79</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf42</td>
<td>chromosome 9 open reading frame 42</td>
<td>4.89</td>
<td>chr9</td>
</tr>
<tr>
<td>C6orf43</td>
<td>chromosome 9 open reading frame 43</td>
<td>4.99</td>
<td>chr9</td>
</tr>
</tbody>
</table>
Table S2 : Genes overexpressed in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avidas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEP68</td>
<td>23177</td>
<td>Centrosomal protein 68kDa</td>
<td>2.54</td>
<td>chr2</td>
</tr>
<tr>
<td>CHD1L</td>
<td>9557</td>
<td>Chromodomain helicase DNA binding protein 1-like</td>
<td>2.83</td>
<td>chr1</td>
</tr>
<tr>
<td>CHD2</td>
<td>1106</td>
<td>chromodomain helicase DNA binding protein 2</td>
<td>2.21</td>
<td>chr15</td>
</tr>
<tr>
<td>CHD7</td>
<td>55636</td>
<td>chromodomain helicase DNA binding protein 7</td>
<td>5.92</td>
<td>chr8</td>
</tr>
<tr>
<td>CHD9</td>
<td>80205</td>
<td>Chromodomain helicase DNA binding protein 9</td>
<td>3.66</td>
<td>chr16</td>
</tr>
<tr>
<td>CHKB</td>
<td>1130 /// 1275</td>
<td>cholrae kinase beta // carmine palmitoyltransferase 1B (muscle)</td>
<td>3.32</td>
<td>chr22</td>
</tr>
<tr>
<td>CHN2</td>
<td>1124</td>
<td>Chimerin (chimaerin) 2</td>
<td>3.09</td>
<td>chr7</td>
</tr>
<tr>
<td>CHST5</td>
<td>23563</td>
<td>carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 5</td>
<td>2.87</td>
<td>chr16</td>
</tr>
<tr>
<td>CHST5</td>
<td>23563 /// 8438</td>
<td>carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 5 /// hypothetical protein MGC</td>
<td>2.15</td>
<td>chr16</td>
</tr>
<tr>
<td>CIRBP</td>
<td>1153</td>
<td>small inducible RNA binding protein</td>
<td>3.04</td>
<td>chr19</td>
</tr>
<tr>
<td>CKLFSF3</td>
<td>122900</td>
<td>chemokine-like factor superfamily 3</td>
<td>2.39</td>
<td>chr16</td>
</tr>
<tr>
<td>CLCN4</td>
<td>1183</td>
<td>Chloride channel 4</td>
<td>2.43</td>
<td>chrX</td>
</tr>
<tr>
<td>CNL1</td>
<td>1047</td>
<td>cnelagen</td>
<td>0.29</td>
<td>chr4</td>
</tr>
<tr>
<td>CLIP-S9</td>
<td>25999</td>
<td>CLIP-170-related protein</td>
<td>3.37</td>
<td>chr19</td>
</tr>
<tr>
<td>CLK1</td>
<td>1195</td>
<td>CDC-like kinase 1</td>
<td>2.62</td>
<td>chr2</td>
</tr>
<tr>
<td>CMKOR1</td>
<td>57007</td>
<td>chemokine orphan receptor 1</td>
<td>4.25</td>
<td>chr2</td>
</tr>
<tr>
<td>CMPK</td>
<td>51727</td>
<td>cipylidate kinase</td>
<td>2.09</td>
<td>chr1</td>
</tr>
<tr>
<td>CNH</td>
<td>10175</td>
<td>Cornichon homolog (Drosophila)</td>
<td>2.08</td>
<td>chr14</td>
</tr>
<tr>
<td>CNKSR3</td>
<td>154043</td>
<td>CNKSR family member 3</td>
<td>2.86</td>
<td>chr6</td>
</tr>
<tr>
<td>CNM6</td>
<td>26555</td>
<td>Cyclin M3</td>
<td>2.43</td>
<td>chr2</td>
</tr>
<tr>
<td>CNOT7</td>
<td>29983</td>
<td>CNOT transcription complex, subunit 7</td>
<td>2.28</td>
<td>chr1</td>
</tr>
<tr>
<td>CNTN2</td>
<td>6900</td>
<td>contactin 2 (axonal)</td>
<td>3.66</td>
<td>chr1</td>
</tr>
<tr>
<td>CNTN4</td>
<td>152330</td>
<td>contactin 4</td>
<td>4.47</td>
<td>chr3</td>
</tr>
<tr>
<td>COL11A1</td>
<td>1301</td>
<td>collagen, type XI, alpha 1</td>
<td>13.78</td>
<td>chr1</td>
</tr>
<tr>
<td>COL12A1</td>
<td>1303</td>
<td>collagen, type XII, alpha 1</td>
<td>5.97</td>
<td>chr6</td>
</tr>
<tr>
<td>COL13A1</td>
<td>1305</td>
<td>collagen, type XII, alpha 1</td>
<td>2.86</td>
<td>chr10</td>
</tr>
<tr>
<td>COL1A1</td>
<td>1277</td>
<td>collagen, type I, alpha 1</td>
<td>3.69</td>
<td>chr17</td>
</tr>
<tr>
<td>COL1A2</td>
<td>1278</td>
<td>collagen, type I, alpha 2</td>
<td>4.82</td>
<td>chr2</td>
</tr>
<tr>
<td>COL2A1</td>
<td>169044</td>
<td>collagen, type I, alpha 1</td>
<td>2.71</td>
<td>chr8</td>
</tr>
<tr>
<td>COL2A1</td>
<td>85301</td>
<td>Collagen, type XXXII, alpha 1</td>
<td>2.69</td>
<td>chr9</td>
</tr>
<tr>
<td>COL2A2</td>
<td>1280</td>
<td>collagen, type II, alpha 1 (primary osteoarthritis, spondyloepiphysseal dysplasia, congenital dislocation of the hip)</td>
<td>21.25</td>
<td>chr12</td>
</tr>
<tr>
<td>COL3A1</td>
<td>1281</td>
<td>collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)</td>
<td>64.06</td>
<td>(vide)</td>
</tr>
<tr>
<td>COL4A2</td>
<td>1284</td>
<td>collagen, type IV, alpha 2</td>
<td>2.39</td>
<td>chr13</td>
</tr>
<tr>
<td>COL4A5</td>
<td>1287</td>
<td>collagen, type IV, alpha 5 (Alport syndrome)</td>
<td>3.60</td>
<td>chrX</td>
</tr>
<tr>
<td>COL4A6</td>
<td>1288</td>
<td>collagen, type IV, alpha 6</td>
<td>8.80</td>
<td>chrX</td>
</tr>
<tr>
<td>COL5A1</td>
<td>1289</td>
<td>collagen, type V, alpha 1</td>
<td>11.41</td>
<td>chr9</td>
</tr>
<tr>
<td>COL5A2</td>
<td>1290</td>
<td>collagen, type V, alpha 2</td>
<td>8.05</td>
<td>chr2</td>
</tr>
<tr>
<td>COL6A3</td>
<td>1293</td>
<td>collagen, type VI, alpha 3</td>
<td>27.77</td>
<td>chr2</td>
</tr>
<tr>
<td>COL9A1</td>
<td>1297</td>
<td>collagen, type IX, alpha 1</td>
<td>3.10</td>
<td>chr6</td>
</tr>
<tr>
<td>COL12C12</td>
<td>81035</td>
<td>collectin sub-family member 12 // collectin sub-family member 12</td>
<td>8.88</td>
<td>chr18</td>
</tr>
<tr>
<td>COMMD3</td>
<td>23412</td>
<td>COMMD domain containing 3</td>
<td>2.43</td>
<td>chr10</td>
</tr>
<tr>
<td>COPG2</td>
<td>26958</td>
<td>Coatometer protein complex, subunit gamma 2</td>
<td>6.24</td>
<td>chr7</td>
</tr>
<tr>
<td>CORD1C</td>
<td>23603</td>
<td>coronin, actin binding protein, 1C</td>
<td>2.56</td>
<td>chr12</td>
</tr>
<tr>
<td>COX4I1</td>
<td>1327</td>
<td>cytochrome c oxidase subunit IV isoform 1</td>
<td>2.15</td>
<td>chr16</td>
</tr>
<tr>
<td>CPAMD8</td>
<td>27151</td>
<td>C3 and P2P-like, alpha-2-macroglobulin domain containing 8</td>
<td>2.63</td>
<td>chr19</td>
</tr>
<tr>
<td>CPE</td>
<td>1363</td>
<td>Carbonic anhydrase E</td>
<td>3.56</td>
<td>chr4</td>
</tr>
<tr>
<td>CPS1</td>
<td>1373</td>
<td>Carbamoyl-phosphate synthase 1, mitochondrial</td>
<td>4.28</td>
<td>chr2</td>
</tr>
<tr>
<td>CPXM</td>
<td>56265</td>
<td>Carboxypeptidase X (M14 family)</td>
<td>2.40</td>
<td>chr20</td>
</tr>
<tr>
<td>CREBS</td>
<td>9586</td>
<td>cAMP responsive element binding protein 5</td>
<td>2.73</td>
<td>chr7</td>
</tr>
<tr>
<td>CRELD1</td>
<td>79897</td>
<td>cysteine-rich with EGF-like domains 1</td>
<td>2.58</td>
<td>chr2</td>
</tr>
<tr>
<td>CREM</td>
<td>1390</td>
<td>cAMP responsive element modulator</td>
<td>2.01</td>
<td>chr10</td>
</tr>
<tr>
<td>CRLF3</td>
<td>51379</td>
<td>Cytokine receptor-like factor 3</td>
<td>5.71</td>
<td>chr17</td>
</tr>
<tr>
<td>CROCC</td>
<td>9696</td>
<td>elliptic rootlet coiled-coil, rootletin</td>
<td>2.42</td>
<td>chr1</td>
</tr>
<tr>
<td>CROT</td>
<td>54677</td>
<td>cystamine O-octanoyltransferase</td>
<td>4.57</td>
<td>chr7</td>
</tr>
<tr>
<td>CRYZ1</td>
<td>9946</td>
<td>crystallin, zeta (quinoine reductase)-like 1</td>
<td>3.27</td>
<td>chr21</td>
</tr>
<tr>
<td>CSAD</td>
<td>51380</td>
<td>cysteine sulfenic acid decarboxylase</td>
<td>3.08</td>
<td>chr12</td>
</tr>
<tr>
<td>CSK</td>
<td>1145</td>
<td>c-src tyrosine kinase</td>
<td>2.02</td>
<td>chr15</td>
</tr>
<tr>
<td>CSPG3</td>
<td>1463</td>
<td>chondroitin sulfate proteoglycan 3 (neurocan)</td>
<td>3.86</td>
<td>chr19</td>
</tr>
<tr>
<td>CTDSPL</td>
<td>10217</td>
<td>CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase</td>
<td>2.40</td>
<td>chr3</td>
</tr>
<tr>
<td>CTGF</td>
<td>23753 /// 39979</td>
<td>centaurin, gamma-like family, member 1 /// hypothetical gene supported by AK093334; CTGF /// LOC399753 /// FLJ00312 /// CTGLF2</td>
<td>2.44</td>
<td>chr10</td>
</tr>
<tr>
<td>CTGF</td>
<td>23753 /// 39979</td>
<td>centaurin, gamma-like family, member 1 /// hypothetical gene supported by AK093334; CTGF /// LOC399753 /// FLJ00312 /// CTGLF2</td>
<td>2.44</td>
<td>chr10</td>
</tr>
<tr>
<td>CTNN1A</td>
<td>1495</td>
<td>Catenin (cadherin-associated protein), alpha 1, 102kDa</td>
<td>2.08</td>
<td>chr9</td>
</tr>
<tr>
<td>CTNN2A</td>
<td>1496</td>
<td>Catenin (cadherin-associated protein), alpha 2</td>
<td>7.17</td>
<td>chr2</td>
</tr>
<tr>
<td>CTTNBIP1</td>
<td>56998</td>
<td>Catenin, beta interacting protein 1</td>
<td>3.94</td>
<td>chr1</td>
</tr>
<tr>
<td>CTTNBD2</td>
<td>1501</td>
<td>Catenin (cadherin-associated protein), delta 2 (neural plakophilin-related arm-repeat protein)</td>
<td>3.32</td>
<td>chr2</td>
</tr>
<tr>
<td>CTTNB2P2</td>
<td>83992</td>
<td>Cortactin binding protein 2</td>
<td>2.30</td>
<td>chr7</td>
</tr>
<tr>
<td>CTTNB2P2NL</td>
<td>55917</td>
<td>CTTNB2P2 N-terminal like</td>
<td>2.50</td>
<td>chr1</td>
</tr>
<tr>
<td>CUEDC1</td>
<td>404093</td>
<td>CUE domain containing 1</td>
<td>2.03</td>
<td>chr17</td>
</tr>
</tbody>
</table>
Table S2: Genes overexpressed in NPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUGBP2</td>
<td>10659</td>
<td>CUG triple repeat, RNA binding protein 2</td>
<td>3.44</td>
<td>chr10</td>
</tr>
<tr>
<td>CUL1</td>
<td>8454</td>
<td>Culiin 1</td>
<td>2.13</td>
<td>chr7</td>
</tr>
<tr>
<td>CUL3</td>
<td>8452</td>
<td>Culiin 3</td>
<td>3.04</td>
<td>chr2</td>
</tr>
<tr>
<td>CUL7</td>
<td>9620</td>
<td>Culiin 7</td>
<td>2.40</td>
<td>chr6</td>
</tr>
<tr>
<td>CUTL1</td>
<td>1523</td>
<td>Cut-like 1, CCAAT displacement protein (Drosophila)</td>
<td>2.31</td>
<td>chr7</td>
</tr>
<tr>
<td>CXXC14</td>
<td>9647</td>
<td>chemokin- (C-X-C motif) ligand 14</td>
<td>16.10</td>
<td>chr5</td>
</tr>
<tr>
<td>CXXCR4</td>
<td>7852</td>
<td>chemokin- (C-X-C motif) receptor 4</td>
<td>4.95</td>
<td>chr2</td>
</tr>
<tr>
<td>CXorf33</td>
<td>139322</td>
<td>chromosome X open reading frame 33</td>
<td>2.21</td>
<td>chrX</td>
</tr>
<tr>
<td>CXorf9</td>
<td>139321</td>
<td>Chromosome X open reading frame 39</td>
<td>2.21</td>
<td>chrX</td>
</tr>
<tr>
<td>DACH1</td>
<td>1602</td>
<td>dachshund homolog 1 (Drosophila)</td>
<td>27.40</td>
<td>chr13</td>
</tr>
<tr>
<td>DCLBD2</td>
<td>131566</td>
<td>discoidin, CUB and LCCL domain containing 2</td>
<td>2.47</td>
<td>chr3</td>
</tr>
<tr>
<td>DCHS1</td>
<td>8642</td>
<td>dachshund 1 (Drosophila)</td>
<td>2.11</td>
<td>chr11</td>
</tr>
<tr>
<td>DCT</td>
<td>1638</td>
<td>dopachrome tautomerase (dopachrome delta-isomerase, tyrosine-related protein 2)</td>
<td>17.25</td>
<td>chr13</td>
</tr>
<tr>
<td>DCTN3</td>
<td>11258</td>
<td>dynactin 3</td>
<td>2.42</td>
<td>chr9</td>
</tr>
<tr>
<td>DCUN1D4</td>
<td>23142</td>
<td>DCUN1, defective in cullin neddylation 1, domain containing 4 (S. cerevisiae)</td>
<td>3.75</td>
<td>chr4</td>
</tr>
<tr>
<td>DCK</td>
<td>1647</td>
<td>doublecortin, Lsnesceprathy, X-linked (doublecortin)</td>
<td>3.86</td>
<td>chrX</td>
</tr>
<tr>
<td>DDEA30</td>
<td>50807</td>
<td>development and differentiation enhancer factor 2</td>
<td>2.69</td>
<td>chr8</td>
</tr>
<tr>
<td>DDEF2</td>
<td>8853</td>
<td>development and differentiation enhancing factor 2</td>
<td>4.81</td>
<td>chr2</td>
</tr>
<tr>
<td>DDHD2</td>
<td>23259</td>
<td>DDHD domain containing 2</td>
<td>5.47</td>
<td>chr8</td>
</tr>
<tr>
<td>DDDR</td>
<td>4921</td>
<td>Discord domain receptor family, member 2</td>
<td>4.77</td>
<td>chr1</td>
</tr>
<tr>
<td>DDX17</td>
<td>10521</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 17</td>
<td>2.13</td>
<td>chr22</td>
</tr>
<tr>
<td>DDX50</td>
<td>79009</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 50</td>
<td>2.13</td>
<td>chr10</td>
</tr>
<tr>
<td>DEND2A</td>
<td>27147</td>
<td>Dendin/MADD domain containing 2A</td>
<td>3.98</td>
<td>chr7</td>
</tr>
<tr>
<td>DERAD1</td>
<td>51071</td>
<td>E2-deoxyribose 5-phosphate aldolase homolog (C. elegans)</td>
<td>2.83</td>
<td>chr12</td>
</tr>
<tr>
<td>DFN5</td>
<td>1687</td>
<td>deafness, autosomal dominant 5</td>
<td>2.39</td>
<td>chr7</td>
</tr>
<tr>
<td>DGCR8</td>
<td>54487</td>
<td>DiGeorge syndrome critical region gene 8</td>
<td>2.06</td>
<td>chr22</td>
</tr>
<tr>
<td>DGKD</td>
<td>8527</td>
<td>diacylglycerol kinase, delta 130kDa</td>
<td>2.09</td>
<td>chr2</td>
</tr>
<tr>
<td>DHX32</td>
<td>55760</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 32</td>
<td>2.52</td>
<td>chr10</td>
</tr>
<tr>
<td>DHX57</td>
<td>90957</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 57</td>
<td>2.16</td>
<td>chr2</td>
</tr>
<tr>
<td>DICER1</td>
<td>23405</td>
<td>Dicer I, Dcr-1 homolog (Drosophila)</td>
<td>2.11</td>
<td>chr14</td>
</tr>
<tr>
<td>DMD</td>
<td>1735</td>
<td>dmdactin, idohydron, type III</td>
<td>2.12</td>
<td>chr12</td>
</tr>
<tr>
<td>DIP1B</td>
<td>55198</td>
<td>DIP13 beta</td>
<td>2.42</td>
<td>chr12</td>
</tr>
<tr>
<td>DIP2A</td>
<td>23181</td>
<td>DIP2 disco-interacting protein 2 homolog A (Drosophila)</td>
<td>2.66</td>
<td>chr21</td>
</tr>
<tr>
<td>DJ32E19.C1</td>
<td>44067</td>
<td>hypothetical protein DJ32E19.C1.1 /// hypothetical protein FLJ20719 /// hypothetical protein</td>
<td>3.04</td>
<td>chr1_random</td>
</tr>
<tr>
<td>DJ32E19.C1</td>
<td>44067</td>
<td>hypothetical protein DJ32E19.C1.1 /// hypothetical protein FLJ20719 /// hypothetical protein</td>
<td>2.46</td>
<td>chr1_random</td>
</tr>
<tr>
<td>DKKFp313A2432</td>
<td>258010</td>
<td>hypothetical protein DKFP313A2432</td>
<td>2.35</td>
<td>chr11</td>
</tr>
<tr>
<td>DKKFp348B0335</td>
<td>25851</td>
<td>hypothetical protein DKFP348B0335</td>
<td>2.74</td>
<td>chr7</td>
</tr>
<tr>
<td>DKKFp348F0318</td>
<td>81575</td>
<td>hypothetical protein DKFP348F0318 /// hypothetical protein DKFP348F0318</td>
<td>2.14</td>
<td>chr12</td>
</tr>
<tr>
<td>DKKFp348H0115</td>
<td>85358</td>
<td>hypothetical protein DKFP348H0115</td>
<td>2.39</td>
<td>chr12</td>
</tr>
<tr>
<td>DKKFp348P055</td>
<td>91531</td>
<td>hypothetical protein DKFP348P055</td>
<td>2.42</td>
<td>chr2</td>
</tr>
<tr>
<td>DKKFp451M2119</td>
<td>285023</td>
<td>hypothetical protein DKFP451M2119</td>
<td>3.08</td>
<td>chr8</td>
</tr>
<tr>
<td>DKKFp564D172</td>
<td>83989</td>
<td>hypothetical protein DKFP564D172</td>
<td>2.09</td>
<td>chr5</td>
</tr>
<tr>
<td>DKKFp566N034</td>
<td>81615</td>
<td>hypothetical protein DKFP566N034</td>
<td>2.62</td>
<td>chr2</td>
</tr>
<tr>
<td>DKKFp586H1213</td>
<td>25891</td>
<td>regeneration associated protein</td>
<td>13.26</td>
<td>chr11</td>
</tr>
<tr>
<td>DKKFp761M1511</td>
<td>54492</td>
<td>hypothetical protein DKFP761M1511</td>
<td>2.22</td>
<td>chr5</td>
</tr>
<tr>
<td>DKKFp761N0912</td>
<td>57183</td>
<td>hypothetical protein DKFP761N0912</td>
<td>10.12</td>
<td>(vide)</td>
</tr>
<tr>
<td>DKKFp761O0218</td>
<td>92293</td>
<td>hypothetical protein DKFP761O0218</td>
<td>4.07</td>
<td>chr12</td>
</tr>
<tr>
<td>DKKFp762A217</td>
<td>160335</td>
<td>hypothetical protein DKFP762A217</td>
<td>3.19</td>
<td>chr12</td>
</tr>
<tr>
<td>DKKK</td>
<td>22943</td>
<td>dickkopf homolog 1 (Xenopus laevis)</td>
<td>4.99</td>
<td>chr10</td>
</tr>
<tr>
<td>Ddda1</td>
<td>10395</td>
<td>deleted in liver cancer 1</td>
<td>8.48</td>
<td>chr8</td>
</tr>
<tr>
<td>DLK1</td>
<td>8788</td>
<td>delta-like 1 homolog (Drosophila)</td>
<td>39.62</td>
<td>chr14</td>
</tr>
<tr>
<td>DLL1</td>
<td>28514</td>
<td>delta-like 1 (Drosophila)</td>
<td>24.34</td>
<td>chr6</td>
</tr>
<tr>
<td>DLL2</td>
<td>1745</td>
<td>distal-less homeo box 1</td>
<td>2.62</td>
<td>chr2</td>
</tr>
<tr>
<td>DLL2</td>
<td>1746</td>
<td>distal-less homeo box 2</td>
<td>4.32</td>
<td>chr2</td>
</tr>
<tr>
<td>DMD</td>
<td>1756</td>
<td>dystrophin (muscular dystrophy, Duchenne and Becker types)</td>
<td>3.45</td>
<td>chrX</td>
</tr>
<tr>
<td>DMRT3</td>
<td>58524</td>
<td>doublesex and mab-3 related transcription factor 3</td>
<td>3.27</td>
<td>chr9</td>
</tr>
<tr>
<td>DMXL2</td>
<td>23312</td>
<td>Dmlx-2</td>
<td>5.22</td>
<td>chr15</td>
</tr>
<tr>
<td>DNAJC1</td>
<td>64215</td>
<td>DNAJ (Hsp40) homolog, subfamily C, member 1</td>
<td>3.02</td>
<td>chr10</td>
</tr>
<tr>
<td>DNAJC12</td>
<td>65621</td>
<td>DNAJ (Hsp40) homolog, subfamily C, member 12</td>
<td>3.13</td>
<td>chr10</td>
</tr>
<tr>
<td>DNAJC6</td>
<td>9829</td>
<td>DNAJ (Hsp40) homolog, subfamily C, member 6</td>
<td>3.57</td>
<td>chr1</td>
</tr>
<tr>
<td>DAAU1</td>
<td>7862</td>
<td>dysnein, axonemal, light intermediate protein 1</td>
<td>4.36</td>
<td>chr1</td>
</tr>
<tr>
<td>DCHN2</td>
<td>79659</td>
<td>dysnein, cytoplasmic, heavy polypeptide 2</td>
<td>2.28</td>
<td>chr11</td>
</tr>
<tr>
<td>DNM1</td>
<td>1759</td>
<td>dynamin 1</td>
<td>4.23</td>
<td>chr9</td>
</tr>
<tr>
<td>DOC1</td>
<td>11259</td>
<td>downregulated in ovarian cancer 1</td>
<td>3.17</td>
<td>chr3</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>DOCK1</td>
<td>1793</td>
<td>dedicator of cytokinesis 1</td>
<td>2.41</td>
<td>chr10</td>
</tr>
<tr>
<td>DOCK3</td>
<td>1795</td>
<td>dedicator of cytokinesis 3</td>
<td>2.46</td>
<td>chr3</td>
</tr>
<tr>
<td>DOCK7</td>
<td>85440</td>
<td>Dedicator of cytokinesis 7</td>
<td>2.75</td>
<td>chr1</td>
</tr>
<tr>
<td>DOT1L</td>
<td>84444</td>
<td>DOT1-Like, histone H3 methyltransferase (S. cerevisiae)</td>
<td>2.79</td>
<td>chr19</td>
</tr>
<tr>
<td>DPY19L1</td>
<td>23333</td>
<td>dpy-19-like 1 (C. elegans)</td>
<td>2.45</td>
<td>chr7</td>
</tr>
<tr>
<td>DPY19L2</td>
<td>26347</td>
<td>dpy-19-like 2 (C. elegans)</td>
<td>2.11</td>
<td>chr7</td>
</tr>
<tr>
<td>DYPD</td>
<td>1806</td>
<td>dihydropyrimidine dehydrogenase</td>
<td>2.27</td>
<td>chr12</td>
</tr>
<tr>
<td>DYS1L5</td>
<td>56896</td>
<td>dihydropyrimidine-synthetase-like 5</td>
<td>3.84</td>
<td>chr2</td>
</tr>
<tr>
<td>DREV1</td>
<td>51108</td>
<td>DORA reverse strand protein 1</td>
<td>2.32</td>
<td>chr16</td>
</tr>
<tr>
<td>DSC2</td>
<td>1824</td>
<td>desmosin 2</td>
<td>4.07</td>
<td>chr18</td>
</tr>
<tr>
<td>DSC3</td>
<td>1825</td>
<td>desmosin 3</td>
<td>3.96</td>
<td>chr18</td>
</tr>
<tr>
<td>DSCR1</td>
<td>1827</td>
<td>Down syndrome critical region gene 1</td>
<td>2.04</td>
<td>chr21</td>
</tr>
<tr>
<td>DSGER</td>
<td>53820</td>
<td>Down syndrome critical region gene 6</td>
<td>2.65</td>
<td>chr21</td>
</tr>
<tr>
<td>DST</td>
<td>667</td>
<td>dystonin</td>
<td>4.69</td>
<td>chr6</td>
</tr>
<tr>
<td>DTX4</td>
<td>23220</td>
<td>deltex 4 homolog (Drosophila)</td>
<td>4.16</td>
<td>chr11</td>
</tr>
<tr>
<td>DUSSP4</td>
<td>1846</td>
<td>dual specificity phosphatase 4</td>
<td>7.87</td>
<td>chr8</td>
</tr>
<tr>
<td>DVL3</td>
<td>1857</td>
<td>dishevelled, dish homolog 3 (Drosophila)</td>
<td>2.40</td>
<td>chr3</td>
</tr>
<tr>
<td>DZIP1</td>
<td>22873</td>
<td>DAZ interacting protein 1</td>
<td>2.07</td>
<td>chr13</td>
</tr>
<tr>
<td>EBF</td>
<td>1879</td>
<td>Early B-cell factor</td>
<td>2.92</td>
<td>chr5</td>
</tr>
<tr>
<td>ECHDC1</td>
<td>55682</td>
<td>Enol-Coenzyme A hydratase domain containing 1</td>
<td>3.92</td>
<td>chr6</td>
</tr>
<tr>
<td>EDG2</td>
<td>1901</td>
<td>endothelial differentiation, lysophosphatidic acid G-protein-coupled receptor, 2</td>
<td>4.01</td>
<td>chr7</td>
</tr>
<tr>
<td>EDG3</td>
<td>1903</td>
<td>endothelial differentiation, sphingolipid G-protein-coupled receptor, 3</td>
<td>7.18</td>
<td>chr9</td>
</tr>
<tr>
<td>EDNRA</td>
<td>1909</td>
<td>endothelin receptor type A</td>
<td>6.36</td>
<td>chr4</td>
</tr>
<tr>
<td>EEFEMP1</td>
<td>2202</td>
<td>EGF-containing fibulin-like extracellular matrix protein 1</td>
<td>3.92</td>
<td>chr2</td>
</tr>
<tr>
<td>EEFEMP2</td>
<td>30008</td>
<td>EGF-containing fibulin-like extracellular matrix protein 2</td>
<td>2.51</td>
<td>chr11</td>
</tr>
<tr>
<td>EFC1H1</td>
<td>114327</td>
<td>EF-hand domain (C-terminal) containing 1</td>
<td>3.83</td>
<td>chr6</td>
</tr>
<tr>
<td>EHF1D1</td>
<td>80303</td>
<td>EF-hand domain family, member D1</td>
<td>2.22</td>
<td>chr3</td>
</tr>
<tr>
<td>EHF1A1</td>
<td>1942</td>
<td>Ephrin-A1</td>
<td>2.08</td>
<td>chr1</td>
</tr>
<tr>
<td>EHF1A5</td>
<td>1946</td>
<td>Ephrin-A5</td>
<td>10.87</td>
<td>chr5</td>
</tr>
<tr>
<td>EHF1B2</td>
<td>1948</td>
<td>ephrin-B2</td>
<td>5.61</td>
<td>chr13</td>
</tr>
<tr>
<td>EHF1B3</td>
<td>1949</td>
<td>ephrin-B3</td>
<td>3.08</td>
<td>chr17</td>
</tr>
<tr>
<td>EFS</td>
<td>10278</td>
<td>embryonal Fyn-associated substrate</td>
<td>3.80</td>
<td>chr14</td>
</tr>
<tr>
<td>EGFL5</td>
<td>1951</td>
<td>EGF-like-domain, multiple 5</td>
<td>2.94</td>
<td>chr9</td>
</tr>
<tr>
<td>EGFR</td>
<td>1956</td>
<td>epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog 2, ERB-2)</td>
<td>2.62</td>
<td>chr7</td>
</tr>
<tr>
<td>EGR1</td>
<td>1958</td>
<td>Early growth response 1</td>
<td>6.71</td>
<td>chr2</td>
</tr>
<tr>
<td>EIF1</td>
<td>10200</td>
<td>Eukaryotic translation initiation factor 1</td>
<td>2.08</td>
<td>chr17</td>
</tr>
<tr>
<td>EIF2C3</td>
<td>192669</td>
<td>Eukaryotic translation initiation factor 2C, 3</td>
<td>2.38</td>
<td>chr1</td>
</tr>
<tr>
<td>EIF2C4</td>
<td>192670</td>
<td>Eukaryotic translation initiation factor 2C, 4</td>
<td>2.87</td>
<td>chr1</td>
</tr>
<tr>
<td>EIF2S1</td>
<td>1965</td>
<td>Eukaryotic translation initiation factor 2, subunit 1 alpha, 35kDa</td>
<td>2.63</td>
<td>chr14</td>
</tr>
<tr>
<td>EIF4G3</td>
<td>8672</td>
<td>Eukaryotic translation initiation factor 4 gamma, 3</td>
<td>2.64</td>
<td>chr1</td>
</tr>
<tr>
<td>EIF5</td>
<td>1983</td>
<td>Eukaryotic translation initiation factor 5</td>
<td>2.06</td>
<td>chr14</td>
</tr>
<tr>
<td>ELAC1</td>
<td>55520</td>
<td>eloAC homolog 1 (E. coli)</td>
<td>2.01</td>
<td>chr18</td>
</tr>
<tr>
<td>ELAV1</td>
<td>1994</td>
<td>ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu antigen R)</td>
<td>3.31</td>
<td>chr19</td>
</tr>
<tr>
<td>ELAVL4</td>
<td>1996</td>
<td>ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 (Hu antigen D)</td>
<td>4.69</td>
<td>chr9</td>
</tr>
<tr>
<td>ELOVL2</td>
<td>54898</td>
<td>elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 2</td>
<td>5.49</td>
<td>chr6</td>
</tr>
<tr>
<td>ELOVL5</td>
<td>60481</td>
<td>ELOVL family member 5, elongation of long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 2</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>EMID2</td>
<td>136227</td>
<td>EMI domain containing 2</td>
<td>2.55</td>
<td>chr7</td>
</tr>
<tr>
<td>EMLN2</td>
<td>84034</td>
<td>elastin microfibril interactor 2 III elastin microfibril interactor 2</td>
<td>2.47</td>
<td>chr18</td>
</tr>
<tr>
<td>EML1</td>
<td>2009</td>
<td>eukaryotic microtubule associated protein like 1</td>
<td>2.27</td>
<td>chr14</td>
</tr>
<tr>
<td>EMP1</td>
<td>2012</td>
<td>epithelial membrane protein 1</td>
<td>5.86</td>
<td>chr12</td>
</tr>
<tr>
<td>EMP2</td>
<td>2013</td>
<td>epithelial membrane protein 2</td>
<td>3.91</td>
<td>chr16</td>
</tr>
<tr>
<td>EMX2</td>
<td>2018</td>
<td>empty spiracles homolog 2 (Drosophila)</td>
<td>10.30</td>
<td>chr10</td>
</tr>
<tr>
<td>EMX2OS</td>
<td>196047</td>
<td>empty spiracles homolog 2 (Drosophila) opposite strand</td>
<td>2.81</td>
<td>chr10</td>
</tr>
<tr>
<td>ENAH</td>
<td>55740</td>
<td>enabled homolog (Drosophila)</td>
<td>2.55</td>
<td>chr1</td>
</tr>
<tr>
<td>ENC1</td>
<td>8507</td>
<td>ectodermal-neural-cortex (with BTB-like domain)</td>
<td>8.44</td>
<td>chr5</td>
</tr>
<tr>
<td>ENO3</td>
<td>2027</td>
<td>enolase 3 (beta, muscle)</td>
<td>3.30</td>
<td>chr17</td>
</tr>
<tr>
<td>ENOSF1</td>
<td>55556</td>
<td>enolase superfamily member 1</td>
<td>2.13</td>
<td>chr18</td>
</tr>
<tr>
<td>ENPP3</td>
<td>5168</td>
<td>ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin)</td>
<td>2.43</td>
<td>chr8</td>
</tr>
<tr>
<td>ENTPD4</td>
<td>9583</td>
<td>ectonucleotide diphosphatase/diphosphohydrolase 4</td>
<td>3.54</td>
<td>chr8</td>
</tr>
<tr>
<td>EP000</td>
<td>57634</td>
<td>E1A binding protein p400</td>
<td>2.38</td>
<td>chr12</td>
</tr>
<tr>
<td>EPAS1</td>
<td>2034</td>
<td>endothelial PAS domain protein 1</td>
<td>8.51</td>
<td>chr2</td>
</tr>
<tr>
<td>EPB41</td>
<td>2035</td>
<td>erythrocyte membrane protein band 4.1 (elliptocytosis 1, RH-linked)</td>
<td>2.95</td>
<td>chr1</td>
</tr>
<tr>
<td>EPB41L5</td>
<td>57689</td>
<td>erythrocyte membrane protein band 4.1 like 5</td>
<td>4.25</td>
<td>chr2</td>
</tr>
<tr>
<td>EPC1</td>
<td>80314</td>
<td>Enhancer of polycomb homolog 1 (Drosophila)</td>
<td>2.24</td>
<td>chr10</td>
</tr>
<tr>
<td>EPHA4</td>
<td>2043</td>
<td>EPH receptor A4</td>
<td>12.56</td>
<td>chr2</td>
</tr>
<tr>
<td>EPHA7</td>
<td>2045</td>
<td>EPH receptor A7</td>
<td>7.42</td>
<td>chr6</td>
</tr>
<tr>
<td>EPHB2</td>
<td>2048</td>
<td>EPH receptor B2</td>
<td>2.96</td>
<td>chr1</td>
</tr>
<tr>
<td>EPHB3</td>
<td>2049</td>
<td>EPH receptor B3</td>
<td>2.56</td>
<td>chr3</td>
</tr>
</tbody>
</table>
Table S2: Genes overexpressed in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPM2AIP1</td>
<td>9852</td>
<td>EPM2A (afadin) interacting protein 1</td>
<td>6.40</td>
<td>chr3</td>
</tr>
<tr>
<td>EPS8</td>
<td>2059</td>
<td>epidermal growth factor receptor pathway substrate 8</td>
<td>3.04</td>
<td>chr12</td>
</tr>
<tr>
<td>ESRRG</td>
<td>2104</td>
<td>estrogen-related receptor gamma</td>
<td>2.58</td>
<td>chr1</td>
</tr>
<tr>
<td>EVI1</td>
<td>2122</td>
<td>ecdysone viral integration site 1</td>
<td>9.29</td>
<td>chr3</td>
</tr>
<tr>
<td>EVL</td>
<td>51466</td>
<td>Evi-Vasp-like</td>
<td>3.39</td>
<td>chr14</td>
</tr>
<tr>
<td>EWSR1</td>
<td>2130</td>
<td>Ewing sarcoma breakpoint region 1</td>
<td>3.64</td>
<td>chr22</td>
</tr>
<tr>
<td>EXT1</td>
<td>2131</td>
<td>Extososes (multiple) 1</td>
<td>2.75</td>
<td>chr8</td>
</tr>
<tr>
<td>EYA1</td>
<td>2138</td>
<td>eyes absent homolog 1 (Drosophila)</td>
<td>3.91</td>
<td>chr8</td>
</tr>
<tr>
<td>EYA2</td>
<td>2139</td>
<td>eyes absent homolog 2 (Drosophila)</td>
<td>4.33</td>
<td>chr20</td>
</tr>
<tr>
<td>EYA4</td>
<td>2070</td>
<td>Eyes absent homolog 4 (Drosophila)</td>
<td>4.11</td>
<td>chr6</td>
</tr>
<tr>
<td>F2RL2</td>
<td>2151</td>
<td>coagulation factor II (thrombin) receptor-like 2</td>
<td>7.64</td>
<td>chr5</td>
</tr>
<tr>
<td>FABP7</td>
<td>2173</td>
<td>fatty acid binding protein 7, brain</td>
<td>7.06</td>
<td>chr6</td>
</tr>
<tr>
<td>FAM13C1</td>
<td>220965</td>
<td>family with sequence similarity 13, member C1</td>
<td>2.78</td>
<td>chr10</td>
</tr>
<tr>
<td>FAM19A5</td>
<td>25817</td>
<td>family with sequence similarity 19 (chemokine (C-C motif)-like), member A5</td>
<td>2.06</td>
<td>chr22</td>
</tr>
<tr>
<td>FAM46A</td>
<td>55603</td>
<td>family with sequence similarity 46, member A</td>
<td>2.92</td>
<td>chr6</td>
</tr>
<tr>
<td>FAM51A6</td>
<td>24160</td>
<td>Family with sequence similarity 51, member A1</td>
<td>2.03</td>
<td>chrX</td>
</tr>
<tr>
<td>FAM6A4</td>
<td>54478</td>
<td>Family with sequence similarity 64, member A</td>
<td>2.03</td>
<td>chr17</td>
</tr>
<tr>
<td>FAM77D</td>
<td>286183</td>
<td>Family with sequence similarity 77, member D</td>
<td>5.59</td>
<td>chr8</td>
</tr>
<tr>
<td>FAM7A2</td>
<td>89839</td>
<td>Family with sequence similarity 7, member A2</td>
<td>2.31</td>
<td>(vide)</td>
</tr>
<tr>
<td>FAM88A</td>
<td>375881</td>
<td>family with sequence similarity 89, member A</td>
<td>4.01</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM89B</td>
<td>239265</td>
<td>family with sequence similarity 89, member B</td>
<td>2.11</td>
<td>chr11</td>
</tr>
<tr>
<td>FANCA</td>
<td>2175</td>
<td>Fanconi anemia, complementation group A</td>
<td>2.35</td>
<td>chr16</td>
</tr>
<tr>
<td>FANK1</td>
<td>92565</td>
<td>fibronectin type III and ankyrin repeat domains 1</td>
<td>3.56</td>
<td>chr10</td>
</tr>
<tr>
<td>FARP1</td>
<td>10160</td>
<td>FERM, RhodGF (RhodGF) and pleckstrin domain protein 1 (chondrocyte-derived)</td>
<td>2.75</td>
<td>chr13</td>
</tr>
<tr>
<td>FBLN1</td>
<td>2192</td>
<td>filbin 1</td>
<td>2.75</td>
<td>chr22</td>
</tr>
<tr>
<td>FBN1</td>
<td>2200</td>
<td>fibrillin 1 (Marfan syndrome)</td>
<td>10.66</td>
<td>chr15</td>
</tr>
<tr>
<td>FBN2</td>
<td>2201</td>
<td>fibrillin 2 (congenital contractual arachnodactylyt)</td>
<td>11.24</td>
<td>chr5</td>
</tr>
<tr>
<td>FBXL14</td>
<td>144699</td>
<td>F-box and leucine-rich repeat protein 14</td>
<td>6.25</td>
<td>chr12</td>
</tr>
<tr>
<td>FBXL17</td>
<td>64839</td>
<td>F-box and leucine-rich repeat protein 17</td>
<td>2.15</td>
<td>chr5</td>
</tr>
<tr>
<td>FBXO33</td>
<td>254170</td>
<td>F-box protein 33</td>
<td>2.04</td>
<td>chr14</td>
</tr>
<tr>
<td>FBXQ1</td>
<td>26259</td>
<td>F-box and WD-40 domain protein 8</td>
<td>2.27</td>
<td>chr12</td>
</tr>
<tr>
<td>FCHS2D</td>
<td>9873</td>
<td>FCH and double SH3 domains 2</td>
<td>2.97</td>
<td>chr11</td>
</tr>
<tr>
<td>FCMO</td>
<td>2218</td>
<td>Fukuama type congenital muscular dystrophy (fukutin)</td>
<td>2.04</td>
<td>chr9</td>
</tr>
<tr>
<td>FGFI7</td>
<td>2252</td>
<td>Fibroblast growth factor 7 (keratinocyte growth factor)</td>
<td>2.25</td>
<td>(vide)</td>
</tr>
<tr>
<td>FGFI9</td>
<td>2254</td>
<td>fibroblast growth factor 9 (gli-activating factor)</td>
<td>2.13</td>
<td>chr11</td>
</tr>
<tr>
<td>FHO3D</td>
<td>80206</td>
<td>formin homology 2 domain containing 3</td>
<td>7.10</td>
<td>chr18</td>
</tr>
<tr>
<td>FIGN</td>
<td>55137</td>
<td>Fidgetin</td>
<td>4.91</td>
<td>chr2</td>
</tr>
<tr>
<td>FIPP1</td>
<td>27145</td>
<td>Fiamin A interacting protein 1</td>
<td>3.28</td>
<td>chr6</td>
</tr>
<tr>
<td>FXJ1</td>
<td>24147</td>
<td>four pointed box 1 (Drosophila)</td>
<td>6.85</td>
<td>chr11</td>
</tr>
<tr>
<td>FKBP7</td>
<td>51661</td>
<td>FK506 binding protein 7</td>
<td>3.51</td>
<td>chr2</td>
</tr>
<tr>
<td>FKBP9</td>
<td>11328</td>
<td>FK506 binding protein 9, 63 kDa</td>
<td>3.15</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ10081</td>
<td>55683</td>
<td>hypothetical protein FLJ10081</td>
<td>2.26</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ10099</td>
<td>50069</td>
<td>hypothetical protein FLJ10099</td>
<td>2.31</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ10154</td>
<td>55082</td>
<td>hypothetical protein FLJ10154</td>
<td>4.61</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ10159</td>
<td>55084</td>
<td>hypothetical protein FLJ10159</td>
<td>3.28</td>
<td>chr6</td>
</tr>
<tr>
<td>FLJ10178</td>
<td>55086</td>
<td>hypothetical protein FLJ10178</td>
<td>3.09</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ10213</td>
<td>55096</td>
<td>hypothetical protein FLJ10213</td>
<td>2.20</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ10287</td>
<td>54482</td>
<td>hypothetical protein FLJ10287</td>
<td>3.29</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ10357</td>
<td>55701</td>
<td>hypothetical protein FLJ10357</td>
<td>4.05</td>
<td>chr14</td>
</tr>
<tr>
<td>FLJ10996</td>
<td>54520</td>
<td>hypothetical protein FLJ10996</td>
<td>2.19</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ12700</td>
<td>79970</td>
<td>hypothetical protein FLJ12700</td>
<td>2.18</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ13089</td>
<td>80018</td>
<td>hypothetical protein FLJ13089</td>
<td>2.41</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ13197</td>
<td>79667</td>
<td>hypothetical protein FLJ13197</td>
<td>2.52</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ14054</td>
<td>79614</td>
<td>hypothetical protein FLJ14054</td>
<td>9.16</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ14525</td>
<td>84886</td>
<td>hypothetical protein FLJ14525</td>
<td>2.08</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ14640</td>
<td>84902</td>
<td>hypothetical protein FLJ14640</td>
<td>2.08</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ16088</td>
<td>339761</td>
<td>PLJ16088 protein</td>
<td>3.85</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ20054</td>
<td>54530</td>
<td>hypothetical protein FLJ20054</td>
<td>3.69</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ20719</td>
<td>55672</td>
<td>hypothetical protein FLJ20719</td>
<td>4.93</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ20719</td>
<td>40670</td>
<td>hypothetical protein FLJ20719 // hypothetical protein LOC200030 // hypothetical protein</td>
<td>2.59</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ20719</td>
<td>40673</td>
<td>hypothetical protein FLJ20719 // AG1 protein</td>
<td>2.41</td>
<td>chr1 , random</td>
</tr>
<tr>
<td>FLJ20719</td>
<td>0</td>
<td>hypothetical protein FLJ20719 // hypothetical protein MGC8902 // AG1 mRNA // AG1</td>
<td>2.35</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ21125</td>
<td>79680</td>
<td>hypothetical protein FLJ21125</td>
<td>2.04</td>
<td>chr22</td>
</tr>
<tr>
<td>FLJ21127</td>
<td>79690</td>
<td>hypothetical protein FLJ21127</td>
<td>2.77</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ21616</td>
<td>79618</td>
<td>hypothetical protein FLJ21616</td>
<td>2.96</td>
<td>chr8</td>
</tr>
<tr>
<td>FLJ21827</td>
<td>56912</td>
<td>hypothetical protein FLJ21827</td>
<td>2.19</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ21865</td>
<td>64772</td>
<td>endo-beta-N-acetylgalactosaminidase</td>
<td>2.32</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ21986</td>
<td>79974</td>
<td>hypothetical protein FLJ21986</td>
<td>3.82</td>
<td>chr7</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>FLJ22313</td>
<td>64224</td>
<td>hypothetical protein FL22313</td>
<td>2.34</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ22471</td>
<td>80212</td>
<td>markin beta 2</td>
<td>6.73</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ23191</td>
<td>79625</td>
<td>hypothetical protein FL23191</td>
<td>4.87</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ23342</td>
<td>79684</td>
<td>hypothetical protein FL23342</td>
<td>2.60</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ23518</td>
<td>75970</td>
<td>hypothetical protein FL23518</td>
<td>2.21</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ25976</td>
<td>134111</td>
<td>similar to CG4592-PA</td>
<td>2.49</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ25476</td>
<td>149076</td>
<td>FLJ25476 protein</td>
<td>2.24</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ25694</td>
<td>283492</td>
<td>hypothetical protein FL25694</td>
<td>5.59</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ25715</td>
<td>284241</td>
<td>hypothetical protein FL25715</td>
<td>2.12</td>
<td>chr18</td>
</tr>
<tr>
<td>FLJ25967</td>
<td>440823</td>
<td>hypothetical gene supported by AK098633</td>
<td>2.71</td>
<td>chr22</td>
</tr>
<tr>
<td>FLJ30092</td>
<td>196515</td>
<td>AF-1 specific protein phosphatase // AF-1 specific protein phosphatase</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ30851</td>
<td>375190</td>
<td>FLJ30851 protein</td>
<td>2.71</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ30901</td>
<td>150378</td>
<td>hypothetical protein FLJ30901</td>
<td>7.03</td>
<td>chr22</td>
</tr>
<tr>
<td>FLJ31438</td>
<td>130182</td>
<td>hypothetical protein FLJ31438</td>
<td>2.95</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ31818</td>
<td>154743</td>
<td>hypothetical protein FLJ31818</td>
<td>2.18</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ31951</td>
<td>153830</td>
<td>hypothetical protein FLJ31951</td>
<td>3.92</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ34208</td>
<td>401106</td>
<td>Hypothetical gene supported by AK091527</td>
<td>2.15</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ34443</td>
<td>285464</td>
<td>hypothetical protein FLJ34443</td>
<td>2.90</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ36031</td>
<td>168455</td>
<td>hypothetical protein FLJ36031</td>
<td>3.36</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ36166</td>
<td>349152</td>
<td>hypothetical protein FLJ36166</td>
<td>2.36</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ37440</td>
<td>129804</td>
<td>hypothetical protein FLJ37440</td>
<td>2.69</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ37562</td>
<td>134553</td>
<td>hypothetical protein FLJ37562</td>
<td>2.50</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ38379</td>
<td>285097</td>
<td>hypothetical protein FLJ38379</td>
<td>2.87</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ39155</td>
<td>133584</td>
<td>hypothetical protein FLJ39155</td>
<td>3.06</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ39378</td>
<td>353116</td>
<td>hypothetical protein FLJ39378</td>
<td>2.38</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ39653</td>
<td>200240</td>
<td>hypothetical protein FLJ39653</td>
<td>2.30</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ42933</td>
<td>401105</td>
<td>FLJ42933 protein</td>
<td>2.27</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ42709</td>
<td>441094</td>
<td>hypothetical gene supported by AK124699</td>
<td>3.83</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ42957</td>
<td>400077</td>
<td>FLJ42957 protein</td>
<td>2.28</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ44216</td>
<td>375484</td>
<td>FLJ44216 protein</td>
<td>2.75</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ45187</td>
<td>387640</td>
<td>FLJ45187 protein</td>
<td>13.87</td>
<td>chr10</td>
</tr>
<tr>
<td>FLJ45831</td>
<td>400576</td>
<td>FLJ45831 protein // MRNA; cDNA DCFZP564A222 (from clone DCFZP564A222)</td>
<td>2.06</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ90757</td>
<td>404065</td>
<td>FLJ90757 protein</td>
<td>4.70</td>
<td>chr17</td>
</tr>
<tr>
<td>FLT2</td>
<td>23768</td>
<td>fibronectin lecine rich transmembrane protein 2</td>
<td>6.72</td>
<td>chr14</td>
</tr>
<tr>
<td>FLT3</td>
<td>23767</td>
<td>fibronectin lecine rich transmembrane protein 3</td>
<td>20.66</td>
<td>chr14</td>
</tr>
<tr>
<td>FNB1P</td>
<td>23048</td>
<td>Formin binding protein 1</td>
<td>3.16</td>
<td>chr9</td>
</tr>
<tr>
<td>FNB1P.1</td>
<td>54874</td>
<td>Famin binding protein 1-like</td>
<td>2.21</td>
<td>chr1</td>
</tr>
<tr>
<td>FNB4P</td>
<td>23360</td>
<td>fomin binding protein 4</td>
<td>2.24</td>
<td>chr11</td>
</tr>
<tr>
<td>FND5C</td>
<td>252995</td>
<td>fibronectin type III domain containing 5</td>
<td>3.30</td>
<td>chr1</td>
</tr>
<tr>
<td>FOSL2</td>
<td>2355</td>
<td>FOS-like antigen 2</td>
<td>2.36</td>
<td>chr2</td>
</tr>
<tr>
<td>FOXC1</td>
<td>2296</td>
<td>forkhead box C1</td>
<td>5.17</td>
<td>chr6</td>
</tr>
<tr>
<td>FOXG1B</td>
<td>2290</td>
<td>forkhead box G1B</td>
<td>14.70</td>
<td>chr14</td>
</tr>
<tr>
<td>FOXK1</td>
<td>221937</td>
<td>forkhead box K1</td>
<td>2.38</td>
<td>chr7</td>
</tr>
<tr>
<td>FOXO3A</td>
<td>2309</td>
<td>forkhead box O3A</td>
<td>2.14</td>
<td>chr6</td>
</tr>
<tr>
<td>FOXP1</td>
<td>27086</td>
<td>Forkhead box P1</td>
<td>3.05</td>
<td>chr3</td>
</tr>
<tr>
<td>FRMD4A</td>
<td>55691</td>
<td>FERM domain containing 4A</td>
<td>3.61</td>
<td>chr10</td>
</tr>
<tr>
<td>FRMD4A</td>
<td>1810 /// 55691</td>
<td>FERM domain containing 4A /// Down-regulator of transcription 1, TBP-binding (negative)</td>
<td>6.08</td>
<td>chr1</td>
</tr>
<tr>
<td>FRMD4B</td>
<td>23150</td>
<td>FERM domain containing 4B</td>
<td>2.36</td>
<td>chr9</td>
</tr>
<tr>
<td>FRMD6</td>
<td>122786</td>
<td>FERM domain containing 6</td>
<td>3.92</td>
<td>chr14</td>
</tr>
<tr>
<td>FSBZ</td>
<td>2487</td>
<td>fuzed-related protein</td>
<td>13.30</td>
<td>chr2</td>
</tr>
<tr>
<td>FSD1CL</td>
<td>405752</td>
<td>GTPase activating Rap/RanGAP domain-like 1</td>
<td>3.17</td>
<td>chr9</td>
</tr>
<tr>
<td>FSD1L</td>
<td>405752</td>
<td>FSD1-like</td>
<td>2.01</td>
<td>chr9</td>
</tr>
<tr>
<td>FST</td>
<td>10468</td>
<td>follistatin</td>
<td>3.11</td>
<td>chr5</td>
</tr>
<tr>
<td>FUBP1</td>
<td>8880</td>
<td>Far upstream element (FUSE) binding protein 1</td>
<td>2.47</td>
<td>chr1</td>
</tr>
<tr>
<td>FXYD6</td>
<td>53826</td>
<td>FXYD domain containing ion transport regulator 6</td>
<td>2.91</td>
<td>chr11</td>
</tr>
<tr>
<td>FYTTD1</td>
<td>84248</td>
<td>forty-two-three domain containing 1</td>
<td>2.72</td>
<td>chr3</td>
</tr>
<tr>
<td>FZD1</td>
<td>8321</td>
<td>fuzed homolog 1 (Drosophila)</td>
<td>10.39</td>
<td>chr7</td>
</tr>
<tr>
<td>FZD2</td>
<td>2835</td>
<td>fuzed homolog 2 (Drosophila)</td>
<td>10.50</td>
<td>chr7</td>
</tr>
<tr>
<td>FZD3</td>
<td>3976</td>
<td>fuzed homolog 3 (Drosophila)</td>
<td>3.20</td>
<td>chr8</td>
</tr>
<tr>
<td>GAB2</td>
<td>9846</td>
<td>GRB2-associated binding protein 2</td>
<td>2.33</td>
<td>chr11</td>
</tr>
<tr>
<td>GAB2RP</td>
<td>2568</td>
<td>gamma-aminobutyric acid (GABA) A receptor, pi</td>
<td>15.76</td>
<td>chr5</td>
</tr>
<tr>
<td>GAD1</td>
<td>2571</td>
<td>glutamate decarboxylase 1 (brain, 67kDa)</td>
<td>3.77</td>
<td>chr2</td>
</tr>
<tr>
<td>GALNT10</td>
<td>55568</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 10 (membrane anchor)</td>
<td>2.68</td>
<td>chr1</td>
</tr>
<tr>
<td>GALNT11</td>
<td>57452</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 11 (membrane anchor)</td>
<td>3.56</td>
<td>chr14</td>
</tr>
<tr>
<td>GAPVD1</td>
<td>26130</td>
<td>GTPase activating protein and VPS9 domains 1, (vide)</td>
<td>2.15</td>
<td>vide</td>
</tr>
<tr>
<td>GAS1</td>
<td>2619</td>
<td>growth arrest-specific 1</td>
<td>29.68</td>
<td>chr9</td>
</tr>
<tr>
<td>GAS2L3</td>
<td>283431</td>
<td>growth arrest-specific 2 like 3</td>
<td>2.33</td>
<td>chr12</td>
</tr>
<tr>
<td>GAS6</td>
<td>2621</td>
<td>growth arrest-specific 6</td>
<td>2.91</td>
<td>chr13</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>GAS7</td>
<td>8522</td>
<td>growth arrest-specific 7</td>
<td>2.85</td>
<td>chr17</td>
</tr>
<tr>
<td>GATA3</td>
<td>2625</td>
<td>GATA binding protein 3</td>
<td>5.80</td>
<td>chr10</td>
</tr>
<tr>
<td>GDPD1</td>
<td>284161</td>
<td>Glycrophosphodiester phosphodiesterase domain containing 1</td>
<td>2.17</td>
<td>chr17</td>
</tr>
<tr>
<td>GGA2</td>
<td>23062</td>
<td>golgi associated, gamma adaptin ear containing, ARF binding protein 2</td>
<td>2.26</td>
<td>chr16</td>
</tr>
<tr>
<td>GGH</td>
<td>8836</td>
<td>gamma-glutamyl hydrolase (conjugase, folypolygamma glutamyl hydrolase)</td>
<td>2.68</td>
<td>chr8</td>
</tr>
<tr>
<td>GKP1</td>
<td>80318</td>
<td>G kinase anchoring protein 1</td>
<td>3.06</td>
<td>chr9</td>
</tr>
<tr>
<td>GLC2C11</td>
<td>113263</td>
<td>glucocorticoid induced transcript 1</td>
<td>2.40</td>
<td>chr7</td>
</tr>
<tr>
<td>GLI3</td>
<td>2737</td>
<td>GLI-Kruppel family member GLI3 (Greig cephalopolysyndactyly syndrome)</td>
<td>4.08</td>
<td>chr7</td>
</tr>
<tr>
<td>GLIS3</td>
<td>169792</td>
<td>GLIS family zinc finger 3</td>
<td>9.00</td>
<td>chr9</td>
</tr>
<tr>
<td>GLRB</td>
<td>2743</td>
<td>glycine receptor, beta</td>
<td>2.22</td>
<td>chr4</td>
</tr>
<tr>
<td>GLT25D2</td>
<td>23127</td>
<td>glycosyltransferase 25 domain containing 2</td>
<td>11.19</td>
<td>chr1</td>
</tr>
<tr>
<td>GLU1D</td>
<td>2746</td>
<td>glutamate dehydrogenase 1</td>
<td>2.37</td>
<td>chrX</td>
</tr>
<tr>
<td>GNAA5</td>
<td>2778</td>
<td>GNAA5</td>
<td>2.61</td>
<td>chr20</td>
</tr>
<tr>
<td>GNAZ</td>
<td>2781</td>
<td>guanine nucleotide binding protein (G protein), alpha z polypeptide</td>
<td>4.73</td>
<td>chr22</td>
</tr>
<tr>
<td>GNB1</td>
<td>2782</td>
<td>guanine nucleotide binding protein (G protein), beta polypeptide 1</td>
<td>2.25</td>
<td>chr1</td>
</tr>
<tr>
<td>GNE</td>
<td>10002</td>
<td>guanosine (UDP-N-acetyl-2-epimerase/N-acethylmannosamine kinase</td>
<td>2.12</td>
<td>chr9</td>
</tr>
<tr>
<td>GNG12</td>
<td>55970</td>
<td>guanine nucleotide binding protein (G protein), gamma 12</td>
<td>3.30</td>
<td>chr1</td>
</tr>
<tr>
<td>GNG2</td>
<td>54331</td>
<td>Guanine nucleotide binding protein (G protein), gamma 2</td>
<td>2.66</td>
<td>chr14</td>
</tr>
<tr>
<td>GOLGA6A</td>
<td>23015</td>
<td>golgi autoantigen, golgin subfamily a, 8A</td>
<td>6.17</td>
<td>chr15</td>
</tr>
<tr>
<td>GOLGA6B</td>
<td>440270</td>
<td>golgi autoantigen, golgin subfamily a, 8B</td>
<td>5.32</td>
<td>chr15</td>
</tr>
<tr>
<td>GQPC</td>
<td>57120</td>
<td>Golgi associated PDZ and coiled-coil motif containing</td>
<td>3.70</td>
<td>chr6</td>
</tr>
<tr>
<td>GQSR2</td>
<td>9570</td>
<td>Golgi SNAP receptor complex member 2</td>
<td>2.63</td>
<td>chr17</td>
</tr>
<tr>
<td>GPC1</td>
<td>2817</td>
<td>glycican 1</td>
<td>3.13</td>
<td>chr2</td>
</tr>
<tr>
<td>GPC3</td>
<td>2719</td>
<td>glycican 3</td>
<td>9.11</td>
<td>chrX</td>
</tr>
<tr>
<td>GPC6</td>
<td>10082</td>
<td>Glypican 6</td>
<td>3.22</td>
<td>chr13</td>
</tr>
<tr>
<td>GPM6A</td>
<td>2823</td>
<td>glycoprotein M6A</td>
<td>17.26</td>
<td>chr4</td>
</tr>
<tr>
<td>GPR153</td>
<td>367539</td>
<td>G protein-coupled receptor 153</td>
<td>2.69</td>
<td>chr1</td>
</tr>
<tr>
<td>GPR161</td>
<td>23432</td>
<td>G protein-coupled receptor 161</td>
<td>6.66</td>
<td>chr1</td>
</tr>
<tr>
<td>GPR23</td>
<td>2846</td>
<td>G protein-coupled receptor 23</td>
<td>2.36</td>
<td>chrX</td>
</tr>
<tr>
<td>GPR24</td>
<td>2847</td>
<td>G protein-coupled receptor 24</td>
<td>2.29</td>
<td>chr22</td>
</tr>
<tr>
<td>GPR56</td>
<td>9289</td>
<td>G protein-coupled receptor 56</td>
<td>10.06</td>
<td>chr16</td>
</tr>
<tr>
<td>GPRASP1</td>
<td>9737</td>
<td>G protein-coupled receptor associated sorting protein 1</td>
<td>3.08</td>
<td>chrX</td>
</tr>
<tr>
<td>GPR5M1</td>
<td>26086</td>
<td>G protein signalling modulator 1 (AGS3-like, C. elegans)</td>
<td>4.14</td>
<td>chr9</td>
</tr>
<tr>
<td>GRAMD1B</td>
<td>57476</td>
<td>GRAM domain containing 1B</td>
<td>2.28</td>
<td>Chr11</td>
</tr>
<tr>
<td>GREB1</td>
<td>9687</td>
<td>GREB1 protein</td>
<td>4.39</td>
<td>chr2</td>
</tr>
<tr>
<td>GREM1</td>
<td>26585</td>
<td>gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)</td>
<td>6.32</td>
<td>chr15</td>
</tr>
<tr>
<td>GRH1L1</td>
<td>29841</td>
<td>grainyhead-like 1 (Drosophila)</td>
<td>2.15</td>
<td>chr2</td>
</tr>
<tr>
<td>GRIA1</td>
<td>2890</td>
<td>glutamate receptor, ionotropic, AMPA 1</td>
<td>4.04</td>
<td>chr5</td>
</tr>
<tr>
<td>GRIK5</td>
<td>2869</td>
<td>G protein-coupled receptor kinase 5</td>
<td>2.95</td>
<td>chr10</td>
</tr>
<tr>
<td>GRM3</td>
<td>2913</td>
<td>glutamate receptor, metabotropic 3</td>
<td>3.02</td>
<td>chr7</td>
</tr>
<tr>
<td>GSSDL</td>
<td>55876</td>
<td>glasdermin-like</td>
<td>2.64</td>
<td>chr17</td>
</tr>
<tr>
<td>GSMBB</td>
<td>2932</td>
<td>Glycogen synthase kinase 3 beta</td>
<td>3.45</td>
<td>chr3</td>
</tr>
<tr>
<td>GSTA4</td>
<td>2941</td>
<td>glutathione S-transferase A4</td>
<td>3.57</td>
<td>chr6</td>
</tr>
<tr>
<td>GSTM3</td>
<td>2947</td>
<td>glutathione S-transferase M3 (brain)</td>
<td>3.47</td>
<td>chr1</td>
</tr>
<tr>
<td>GUCY1A3</td>
<td>2982</td>
<td>guanylate cyclase 1, soluble, alpha 3</td>
<td>8.68</td>
<td>chr4</td>
</tr>
<tr>
<td>H19</td>
<td>283120</td>
<td>H19, imprinted maternally expressed untranslated mRNA</td>
<td>28.54</td>
<td>chr11</td>
</tr>
<tr>
<td>HIF0</td>
<td>3005</td>
<td>H1 histone family, member 0</td>
<td>3.22</td>
<td>chr22</td>
</tr>
<tr>
<td>HIFX</td>
<td>6971</td>
<td>H1 histone family, member X</td>
<td>2.06</td>
<td>chr3</td>
</tr>
<tr>
<td>H2AFV1</td>
<td>94239</td>
<td>H2A histone family, member V</td>
<td>2.99</td>
<td>chr7</td>
</tr>
<tr>
<td>H2AFV2</td>
<td>9555</td>
<td>H2A histone family, member Y</td>
<td>4.70</td>
<td>chr5</td>
</tr>
<tr>
<td>H2AFY2</td>
<td>55506</td>
<td>H2A histone family, member Y2</td>
<td>3.19</td>
<td>chr10</td>
</tr>
<tr>
<td>H3F3B</td>
<td>3021</td>
<td>H3 histone, family 3B (H3.3B)</td>
<td>2.65</td>
<td>chr12</td>
</tr>
<tr>
<td>HABP4</td>
<td>22927</td>
<td>hyaluronan binding protein 4</td>
<td>2.37</td>
<td>chr9</td>
</tr>
<tr>
<td>HAPLN1</td>
<td>1404</td>
<td>Hyaluronan and proteoglycan link protein 1</td>
<td>12.40</td>
<td>chr5</td>
</tr>
<tr>
<td>HDAC6</td>
<td>10013</td>
<td>histone deacetylase 6</td>
<td>2.43</td>
<td>chrX</td>
</tr>
<tr>
<td>HECA</td>
<td>51696</td>
<td>headcase homolog (Drosophila)</td>
<td>2.85</td>
<td>chr6</td>
</tr>
<tr>
<td>HEODW2</td>
<td>57520</td>
<td>HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2</td>
<td>2.85</td>
<td>chr2</td>
</tr>
<tr>
<td>HEG1</td>
<td>57493</td>
<td>HEG homolog 1 (zebrafish)</td>
<td>4.43</td>
<td>chr3</td>
</tr>
<tr>
<td>HEL308</td>
<td>113510</td>
<td>DNA helicase HEL308</td>
<td>2.25</td>
<td>chr4</td>
</tr>
<tr>
<td>HES1</td>
<td>3280</td>
<td>hairy and enhancer of split 1, (Drosophila)</td>
<td>5.20</td>
<td>chr3</td>
</tr>
<tr>
<td>HES5</td>
<td>388585</td>
<td>hairy and enhancer of split 5 (Drosophila)</td>
<td>3.79</td>
<td>chr1</td>
</tr>
<tr>
<td>HEXOM1</td>
<td>10614</td>
<td>hexamethylen bis-acetamide inducible 1</td>
<td>2.00</td>
<td>chr17</td>
</tr>
<tr>
<td>HEY1</td>
<td>23462</td>
<td>hairy/enhancer-of-split related with YRPW motif 1</td>
<td>4.70</td>
<td>chr8</td>
</tr>
<tr>
<td>HHAT</td>
<td>55733</td>
<td>hedgehog acyltransferase</td>
<td>2.62</td>
<td>chr1</td>
</tr>
<tr>
<td>HIC2</td>
<td>23119</td>
<td>hypermethylated in cancer 2</td>
<td>2.01</td>
<td>chr22</td>
</tr>
<tr>
<td>HIPK2</td>
<td>28996</td>
<td>Homeodomain interacting protein kinase 2</td>
<td>4.15</td>
<td>chr7</td>
</tr>
<tr>
<td>HIST1H2BD</td>
<td>3017</td>
<td>Histone 1, H2bd</td>
<td>2.88</td>
<td>chr6</td>
</tr>
</tbody>
</table>
Table S2: Genes overexpressed in NPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMCN1</td>
<td>83872</td>
<td>hemerin 1</td>
<td>3.68</td>
<td>chr1</td>
</tr>
<tr>
<td>HNRPAP0</td>
<td>10949</td>
<td>heterogeneous nuclear ribonucleoprotein A0</td>
<td>2.32</td>
<td>chr5</td>
</tr>
<tr>
<td>HNRPAP1</td>
<td>3178</td>
<td>heterogeneous nuclear ribonucleoprotein A1</td>
<td>2.02</td>
<td>chr12</td>
</tr>
<tr>
<td>HNRPAP3</td>
<td>220988</td>
<td>heterogeneous nuclear ribonucleoprotein A3</td>
<td>2.37</td>
<td>chr2</td>
</tr>
<tr>
<td>HNRPAC</td>
<td>3183</td>
<td>heterogeneous nuclear ribonucleoprotein C (C1/C2)</td>
<td>2.87</td>
<td>chr14</td>
</tr>
<tr>
<td>HNRPDP</td>
<td>3184</td>
<td>heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37)</td>
<td>2.69</td>
<td>chr4</td>
</tr>
<tr>
<td>HNRRP</td>
<td>10236</td>
<td>heterogeneous nuclear ribonucleoprotein R</td>
<td>3.46</td>
<td>chr1</td>
</tr>
<tr>
<td>HNT</td>
<td>50863</td>
<td>neurotrimin</td>
<td>2.01</td>
<td>chr11</td>
</tr>
<tr>
<td>HOMER2</td>
<td>9455</td>
<td>Homer homolog 2 (Drosophila)</td>
<td>2.13</td>
<td>chr15</td>
</tr>
<tr>
<td>HOMER3</td>
<td>9454</td>
<td>Homer homolog 3 (Drosophila)</td>
<td>2.99</td>
<td>chr19</td>
</tr>
<tr>
<td>HOXA1</td>
<td>3198</td>
<td>homeo box A1</td>
<td>3.61</td>
<td>chr7</td>
</tr>
<tr>
<td>HOXB9</td>
<td>3205</td>
<td>homeo box A9</td>
<td>3.29</td>
<td>chr7</td>
</tr>
<tr>
<td>HOXB2</td>
<td>3212</td>
<td>homeo box B2</td>
<td>4.46</td>
<td>chr17</td>
</tr>
<tr>
<td>HP1BP3</td>
<td>50809</td>
<td>heterochromatin protein 1, binding protein 3</td>
<td>2.63</td>
<td>chr1</td>
</tr>
<tr>
<td>HRB2</td>
<td>11103</td>
<td>HIV-1 rev binding protein 2</td>
<td>2.13</td>
<td>chr12</td>
</tr>
<tr>
<td>HMT1L1</td>
<td>3275</td>
<td>HMT1 hnrRNP methyltransferase-like 1 (S. cerevisiae)</td>
<td>2.44</td>
<td>chr21</td>
</tr>
<tr>
<td>HS6ST2</td>
<td>90161</td>
<td>heparan sulfate 6-O-sulfotransferase 2</td>
<td>3.89</td>
<td>chrX</td>
</tr>
<tr>
<td>HSA277841</td>
<td>55421</td>
<td>ELG protein</td>
<td>2.31</td>
<td>chr17</td>
</tr>
<tr>
<td>HSF2</td>
<td>3298</td>
<td>heat shock transcription factor 2</td>
<td>2.95</td>
<td>chr6</td>
</tr>
<tr>
<td>HSPAS5</td>
<td>3309</td>
<td>heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)</td>
<td>2.49</td>
<td>chr9</td>
</tr>
<tr>
<td>HSPASB6P1</td>
<td>54972</td>
<td>heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) binding protein 1</td>
<td>2.81</td>
<td>chr11</td>
</tr>
<tr>
<td>HSPCC05</td>
<td>29070</td>
<td>HSPC056 protein</td>
<td>2.05</td>
<td>chr16</td>
</tr>
<tr>
<td>HTR1E</td>
<td>3354</td>
<td>5-hydroxytryptamine (serotonin) receptor 1E</td>
<td>2.01</td>
<td>chr6</td>
</tr>
<tr>
<td>HUNK</td>
<td>30811</td>
<td>hormonally upregulated Neu-associated kinase</td>
<td>2.65</td>
<td>chr21</td>
</tr>
<tr>
<td>ID2</td>
<td>3398</td>
<td>inhibitor of DNA binding 2, dominant negative helix-loop-helix protein</td>
<td>6.35</td>
<td>chr2</td>
</tr>
<tr>
<td>ID2 II/ID2B</td>
<td>3398 /// 84099</td>
<td>inhibitor of DNA binding 2, dominant negative helix-loop-helix protein // inhibitor of DNA binding 2</td>
<td>5.95</td>
<td>chr2</td>
</tr>
<tr>
<td>ID3</td>
<td>3399</td>
<td>inhibitor of DNA binding 3, dominant negative helix-loop-helix protein</td>
<td>2.05</td>
<td>chr1</td>
</tr>
<tr>
<td>ID4</td>
<td>3400</td>
<td>inhibitor of DNA binding 4, dominant negative helix-loop-helix protein</td>
<td>6.63</td>
<td>chr6</td>
</tr>
<tr>
<td>IDH2</td>
<td>3418</td>
<td>succinate dehydrogenase 2 (NADP+), mitochondrial</td>
<td>2.16</td>
<td>chr15</td>
</tr>
<tr>
<td>IERSL</td>
<td>389792</td>
<td>immediate early response 5-like</td>
<td>7.56</td>
<td>chr9</td>
</tr>
<tr>
<td>IFI16</td>
<td>3428</td>
<td>interferon, gamma-inducible protein 16</td>
<td>3.56</td>
<td>chr1</td>
</tr>
<tr>
<td>IFNGR1</td>
<td>3459</td>
<td>interferon gamma receptor 1</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>IGF2BP3</td>
<td>3486</td>
<td>insulin-like growth factor binding protein 3</td>
<td>11.27</td>
<td>chr7</td>
</tr>
<tr>
<td>IGF2BP5</td>
<td>3488</td>
<td>insulin-like growth factor binding protein 5</td>
<td>25.08</td>
<td>chr2</td>
</tr>
<tr>
<td>IGF2BP7</td>
<td>3490</td>
<td>insulin-like growth factor binding protein 7</td>
<td>8.24</td>
<td>chr5</td>
</tr>
<tr>
<td>IGFBF11</td>
<td>152404</td>
<td>immunoglobulin superfamily, member 11</td>
<td>2.05</td>
<td>chr3</td>
</tr>
<tr>
<td>IGSF4</td>
<td>23705</td>
<td>Immunoglobulin superfamily, member 4</td>
<td>8.38</td>
<td>chr11</td>
</tr>
<tr>
<td>IKP</td>
<td>121457</td>
<td>IGF interacting protein</td>
<td>2.81</td>
<td>chr12</td>
</tr>
<tr>
<td>IL11RA</td>
<td>3590</td>
<td>interleukin 11 receptor, alpha</td>
<td>2.53</td>
<td>chr9</td>
</tr>
<tr>
<td>IL17D</td>
<td>53342</td>
<td>interleukin 17D</td>
<td>2.19</td>
<td>chr13</td>
</tr>
<tr>
<td>IL1R1</td>
<td>3554</td>
<td>interleukin 1 receptor, type I</td>
<td>2.39</td>
<td>chr2</td>
</tr>
<tr>
<td>ISLET6</td>
<td>3572</td>
<td>interleukin 6 signal transducer, I6 (signal transducer, I6)</td>
<td>2.88</td>
<td>chr17</td>
</tr>
<tr>
<td>IMP1L</td>
<td>196294</td>
<td>IMP1 long; mitochondrial ribosomal protein, leucine-rich (S. cerevisiae)</td>
<td>2.11</td>
<td>chr11</td>
</tr>
<tr>
<td>ING3</td>
<td>54556</td>
<td>inhibitor of growth family, member 3</td>
<td>2.11</td>
<td>chr7</td>
</tr>
<tr>
<td>ING4</td>
<td>51147</td>
<td>inhibitor of growth family, member 4</td>
<td>2.29</td>
<td>chr12</td>
</tr>
<tr>
<td>INPP1</td>
<td>3628</td>
<td>inositol polyphosphate-1-phosphatase</td>
<td>2.42</td>
<td>chr2</td>
</tr>
<tr>
<td>INPP5E</td>
<td>56623</td>
<td>inositol polyphosphate-5-phosphatase, 72 kDa</td>
<td>2.21</td>
<td>chr9</td>
</tr>
<tr>
<td>INSM1</td>
<td>3642</td>
<td>insulin-like growth factor receptor-1</td>
<td>2.84</td>
<td>chr20</td>
</tr>
<tr>
<td>IPO9</td>
<td>55705</td>
<td>importin 9</td>
<td>2.05</td>
<td>chr1</td>
</tr>
<tr>
<td>IPP</td>
<td>3652</td>
<td>inositol 1,4,5-trisphosphate 3-phosphatase</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>IQC</td>
<td>23288</td>
<td>IQ domain containing E</td>
<td>2.16</td>
<td>chr7</td>
</tr>
<tr>
<td>IRS4</td>
<td>8471</td>
<td>insulin receptor substrate 4</td>
<td>7.48</td>
<td>chrX</td>
</tr>
<tr>
<td>ISL1</td>
<td>3670</td>
<td>ISL1 transcription factor, LIM/homeodomain, (islet-1)</td>
<td>4.91</td>
<td>chr5</td>
</tr>
<tr>
<td>ITGAA</td>
<td>3676</td>
<td>integrin alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)</td>
<td>4.20</td>
<td>chr2</td>
</tr>
<tr>
<td>ITGAV</td>
<td>3685</td>
<td>integrin alpha V (vitronectin receptor, alpha polyepitope, antigen CD51)</td>
<td>6.90</td>
<td>chr7</td>
</tr>
<tr>
<td>ITGAV6</td>
<td>3696</td>
<td>integrin beta 8</td>
<td>2.37</td>
<td>chr7</td>
</tr>
<tr>
<td>JNK2</td>
<td>8629</td>
<td>JNK2 (JNK2, JNK2)</td>
<td>2.16</td>
<td>chr8</td>
</tr>
<tr>
<td>JUB</td>
<td>84962</td>
<td>jub, ajuba homolog (Xenopus laevis)</td>
<td>4.72</td>
<td>chr14</td>
</tr>
<tr>
<td>KALRN</td>
<td>8997</td>
<td>kalr, RhofGEF kinase</td>
<td>2.89</td>
<td>chr3</td>
</tr>
<tr>
<td>KBTBD11</td>
<td>9920</td>
<td>kelch repeat and BTB (POZ) domain containing 11</td>
<td>2.36</td>
<td>chr8</td>
</tr>
<tr>
<td>KBTBD9</td>
<td>114818</td>
<td>kelch repeat and BTB (POZ) domain containing 9</td>
<td>3.93</td>
<td>chr2</td>
</tr>
<tr>
<td>KCNJ13</td>
<td>3769</td>
<td>potassium inwardly-rectifying channel, subfamily J, member 13</td>
<td>4.61</td>
<td>chr2</td>
</tr>
<tr>
<td>KCNJ2</td>
<td>3759</td>
<td>potassium inwardly-rectifying channel, subfamily J, member 2</td>
<td>2.36</td>
<td>chr17</td>
</tr>
<tr>
<td>KCNJ4</td>
<td>3761</td>
<td>potassium inwardly-rectifying channel, subfamily J, member 4</td>
<td>3.63</td>
<td>chr22</td>
</tr>
<tr>
<td>KCNK10</td>
<td>54207</td>
<td>potassium channel, subfamily K, member 10</td>
<td>6.54</td>
<td>chr14</td>
</tr>
<tr>
<td>KCNT2</td>
<td>343450</td>
<td>potassium channel, subfamily T, member 2</td>
<td>4.19</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>KCTD1</td>
<td>284252</td>
<td>potassium channel tetramerisation domain containing 1</td>
<td>2.13</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA0101</td>
<td>9768</td>
<td>KIAA0101 /// KIAA0101</td>
<td>2.65</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA0247</td>
<td>9766</td>
<td>KIAA0247</td>
<td>2.68</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA0265</td>
<td>23008</td>
<td>KIAA0265 protein</td>
<td>2.79</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0323</td>
<td>23351</td>
<td>KIAA0323</td>
<td>2.30</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA0600</td>
<td>57237</td>
<td>KIAA0600 protein</td>
<td>3.13</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA0515</td>
<td>84726</td>
<td>KIAA0515</td>
<td>2.11</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA0556</td>
<td>23247</td>
<td>KIAA0556 protein</td>
<td>2.03</td>
<td>chr16</td>
</tr>
<tr>
<td>KIAA0582</td>
<td>23177</td>
<td>KIAA0582</td>
<td>2.21</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA0690</td>
<td>23223</td>
<td>KIAA0690</td>
<td>2.10</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA0738</td>
<td>9477</td>
<td>KIAA0738 gene product</td>
<td>2.17</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0826</td>
<td>23045</td>
<td>KIAA0826</td>
<td>2.05</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA0830</td>
<td>23052</td>
<td>KIAA0830 protein</td>
<td>3.25</td>
<td>chr11</td>
</tr>
<tr>
<td>KIAA0841</td>
<td>23354</td>
<td>KIAA0841</td>
<td>3.12</td>
<td>chr19</td>
</tr>
<tr>
<td>KIAA0882</td>
<td>23158</td>
<td>KIAA0882 protein</td>
<td>15.64</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA0889</td>
<td>25781</td>
<td>KIAA0889 protein</td>
<td>3.19</td>
<td>chr20</td>
</tr>
<tr>
<td>KIAA0895</td>
<td>23366</td>
<td>KIAA0895 protein</td>
<td>2.17</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0934</td>
<td>22982</td>
<td>KIAA0934</td>
<td>3.36</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA0960</td>
<td>23249</td>
<td>KIAA0960 protein</td>
<td>2.17</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0992</td>
<td>23022</td>
<td>palladin</td>
<td>8.10</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1043</td>
<td>23331</td>
<td>KIAA1043 protein</td>
<td>4.72</td>
<td>chr22</td>
</tr>
<tr>
<td>KIAA1102</td>
<td>22998</td>
<td>KIAA1102 protein</td>
<td>4.18</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1128</td>
<td>54462</td>
<td>KIAA1128</td>
<td>2.94</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1217</td>
<td>56243</td>
<td>KIAA1217</td>
<td>3.05</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1276</td>
<td>27146</td>
<td>KIAA1276 protein</td>
<td>2.63</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1434</td>
<td>56261</td>
<td>hypothetical protein KIAA1434</td>
<td>2.54</td>
<td>chr20</td>
</tr>
<tr>
<td>KIAA1447</td>
<td>57597</td>
<td>KIAA1447 protein</td>
<td>4.03</td>
<td>chr17</td>
</tr>
<tr>
<td>KIAA1524</td>
<td>57650</td>
<td>KIAA1524</td>
<td>2.62</td>
<td>chr3</td>
</tr>
<tr>
<td>KIAA1530</td>
<td>57654</td>
<td>KIAA1530 protein</td>
<td>3.20</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1545</td>
<td>57666</td>
<td>KIAA1545 protein</td>
<td>2.26</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA1546</td>
<td>57667</td>
<td>KIAA1546 protein</td>
<td>3.62</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1641</td>
<td>57730</td>
<td>KIAA1641</td>
<td>5.13</td>
<td>(vide)</td>
</tr>
<tr>
<td>KIAA1704</td>
<td>55425</td>
<td>KIAA1704</td>
<td>2.99</td>
<td>chr13</td>
</tr>
<tr>
<td>KIAA1713</td>
<td>80816</td>
<td>KIAA1713</td>
<td>6.29</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA1729</td>
<td>85460</td>
<td>KIAA1729 protein</td>
<td>10.42</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1772</td>
<td>80000</td>
<td>KIAA1772</td>
<td>7.10</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA1838</td>
<td>84498</td>
<td>KIAA1838</td>
<td>3.14</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1841</td>
<td>84542</td>
<td>KIAA1841 protein</td>
<td>2.92</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1856</td>
<td>84629</td>
<td>KIAA1856 protein</td>
<td>2.07</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA1909</td>
<td>153478</td>
<td>KIAA1909 protein</td>
<td>2.27</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA1919</td>
<td>91749</td>
<td>KIAA1919</td>
<td>2.27</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA2022</td>
<td>340533</td>
<td>KIAA2022 protein</td>
<td>2.43</td>
<td>chrX</td>
</tr>
<tr>
<td>KDIINT220</td>
<td>57498</td>
<td>Kinesin D interacting substance of 220 kDa</td>
<td>2.65</td>
<td>chr2</td>
</tr>
<tr>
<td>KIF3A</td>
<td>11127</td>
<td>Kinesin family member 3A</td>
<td>2.04</td>
<td>chr5</td>
</tr>
<tr>
<td>KIF3C</td>
<td>3800</td>
<td>Kinesin family member 5C</td>
<td>2.34</td>
<td>chr2</td>
</tr>
<tr>
<td>KIFAP3</td>
<td>22920</td>
<td>Kinesin-associated protein 3</td>
<td>2.78</td>
<td>chr1</td>
</tr>
<tr>
<td>KIRREL</td>
<td>55243</td>
<td>kin of IRRE like (Drosophila)</td>
<td>3.89</td>
<td>chr1</td>
</tr>
<tr>
<td>KLF11</td>
<td>8462</td>
<td>Knuckle-like factor 11</td>
<td>2.85</td>
<td>chr2</td>
</tr>
<tr>
<td>KLF12</td>
<td>11278</td>
<td>Knuckle-like factor 12</td>
<td>2.12</td>
<td>chr13</td>
</tr>
<tr>
<td>KLF3</td>
<td>51274</td>
<td>Knuckle-like factor 3 (basic)</td>
<td>3.38</td>
<td>chr4</td>
</tr>
<tr>
<td>KLF6</td>
<td>1316</td>
<td>Knuckle-like factor 6</td>
<td>3.24</td>
<td>chr10</td>
</tr>
<tr>
<td>KLHDC5</td>
<td>57542</td>
<td>kelch domain containing 5</td>
<td>2.70</td>
<td>chr12</td>
</tr>
<tr>
<td>KLHDC8A</td>
<td>55220</td>
<td>Kelch domain containing 8A</td>
<td>9.69</td>
<td>chr1</td>
</tr>
<tr>
<td>KLI14</td>
<td>57565</td>
<td>kelch-like 14 (Drosophila)</td>
<td>7.04</td>
<td>chr18</td>
</tr>
<tr>
<td>KLIHL2</td>
<td>84861</td>
<td>kelch-like 22 (Drosophila)</td>
<td>2.78</td>
<td>chr22</td>
</tr>
<tr>
<td>KLIHL4</td>
<td>54800</td>
<td>kelch-like 24 (Drosophila)</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>KLIHL5</td>
<td>51088</td>
<td>Kelch-like 5 (Drosophila)</td>
<td>2.62</td>
<td>chr4</td>
</tr>
<tr>
<td>KLIHL8</td>
<td>57663</td>
<td>kelch-like 8 (Drosophila)</td>
<td>3.15</td>
<td>chr4</td>
</tr>
<tr>
<td>KPN1A</td>
<td>3836</td>
<td>karyopherin alpha 1 (importin alpha 5)</td>
<td>2.19</td>
<td>chr3</td>
</tr>
<tr>
<td>KPNB1</td>
<td>3837</td>
<td>Karyopherin (importin) beta 1</td>
<td>2.02</td>
<td>chr17</td>
</tr>
<tr>
<td>L3MBT1</td>
<td>26013</td>
<td>l3mbt-like (Drosophila)</td>
<td>2.49</td>
<td>chr20</td>
</tr>
<tr>
<td>L3MBT1L3</td>
<td>84456</td>
<td>l3mbt-like 3 (Drosophila)</td>
<td>2.09</td>
<td>chr6</td>
</tr>
<tr>
<td>LAMA1</td>
<td>264217</td>
<td>laminin, alpha 1</td>
<td>2.36</td>
<td>chr18</td>
</tr>
<tr>
<td>LAMB2</td>
<td>3913</td>
<td>laminin, beta 2 (laminin S)</td>
<td>2.96</td>
<td>chr3</td>
</tr>
<tr>
<td>LAS5S</td>
<td>91012</td>
<td>LAG1 longevity assurance homolog 5 (S. cerevisiae)</td>
<td>2.08</td>
<td>chr12</td>
</tr>
<tr>
<td>LASS6</td>
<td>253782</td>
<td>LAG1 longevity assurance homolog 6 (S. cerevisiae)</td>
<td>2.60</td>
<td>chr2</td>
</tr>
<tr>
<td>LDOC1L</td>
<td>84247</td>
<td>eucine zipper, down-regulated in cancer 1-like</td>
<td>2.23</td>
<td>chr22</td>
</tr>
<tr>
<td>LEAP-2</td>
<td>116842</td>
<td>liver-expressed antimicrobial peptide 2</td>
<td>2.23</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>ENTREZ Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>LIX1</td>
<td>51176</td>
<td>lymphoid enhancer-binding factor 1</td>
<td>12.44</td>
<td>chr4</td>
</tr>
<tr>
<td>LEMD1</td>
<td>93273</td>
<td>LEM domain containing 1</td>
<td>3.95</td>
<td>chr1</td>
</tr>
<tr>
<td>LEPR</td>
<td>3953</td>
<td>Leptin receptor</td>
<td>4.22</td>
<td>chr1</td>
</tr>
<tr>
<td>LEPROT</td>
<td>54741</td>
<td>leptin receptor overlapping transcript</td>
<td>2.90</td>
<td>chr1</td>
</tr>
<tr>
<td>LFNG</td>
<td>3955</td>
<td>laminin fragment homolog (Drosophila)</td>
<td>2.74</td>
<td>chr7</td>
</tr>
<tr>
<td>LGALS8</td>
<td>2646</td>
<td>lectin, galactoside-binding, soluble, 8 (galectin 8)</td>
<td>3.87</td>
<td>chr1</td>
</tr>
<tr>
<td>LG1</td>
<td>8211</td>
<td>leucine-rich, glioma inactivated 1</td>
<td>8.42</td>
<td>chr10</td>
</tr>
<tr>
<td>LGFR</td>
<td>8549</td>
<td>leucine-rich repeat-containing G protein-coupled receptor 5</td>
<td>6.45</td>
<td>chr12</td>
</tr>
<tr>
<td>LHGR</td>
<td>3973</td>
<td>Luteinizing hormone receptor/choriogonadotropin receptor</td>
<td>4.91</td>
<td>chr2</td>
</tr>
<tr>
<td>LHX2</td>
<td>9351</td>
<td>LIM homeobox 2</td>
<td>135.71</td>
<td>chr9</td>
</tr>
<tr>
<td>LHX9</td>
<td>56956</td>
<td>LIM homeobox 9</td>
<td>3.81</td>
<td>chr1</td>
</tr>
<tr>
<td>LIX1</td>
<td>167410</td>
<td>LIM homeobox 1 (mouse)</td>
<td>24.29</td>
<td>chr5</td>
</tr>
<tr>
<td>LIXTL</td>
<td>128077</td>
<td>LIM homeobox (mouse) like</td>
<td>6.85</td>
<td>chr1</td>
</tr>
<tr>
<td>LKAP</td>
<td>9665</td>
<td>leucine-rich, glioma inactivated</td>
<td>2.03</td>
<td>chr16</td>
</tr>
<tr>
<td>LMC2</td>
<td>4005</td>
<td>LIM domain only 2 (rhombotin-like 1)</td>
<td>2.35</td>
<td>chr11</td>
</tr>
<tr>
<td>LMC3</td>
<td>55885</td>
<td>LIM domain only 3 (rhombotin-like 2)</td>
<td>26.62</td>
<td>chr12</td>
</tr>
<tr>
<td>LNEP</td>
<td>4012</td>
<td>leucine-rich, glioma inactivated</td>
<td>2.30</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC112476</td>
<td>112476</td>
<td>similar to lymphocyte antigen 6 complex, locus G5B: G5b protein; open reading frame 3</td>
<td>4.16</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC113386</td>
<td>113386</td>
<td>similar to leucine-rich, glioma inactivated</td>
<td>2.25</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC115648</td>
<td>115648</td>
<td>similar to hypothetical protein FLJ13659</td>
<td>3.51</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC114203</td>
<td>14203</td>
<td>similar to hypothetical protein FLJ13659</td>
<td>2.37</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC132241</td>
<td>132241</td>
<td>hypothetical protein LOC132241</td>
<td>2.86</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC143381</td>
<td>143381</td>
<td>hypothetical protein LOC143381</td>
<td>16.72</td>
<td>chr10</td>
</tr>
<tr>
<td>LOC144997</td>
<td>144997</td>
<td>hypothetical protein LOC144997</td>
<td>7.95</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC145786</td>
<td>145786</td>
<td>hypothetical protein LOC145786</td>
<td>72.07</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC147670</td>
<td>147670</td>
<td>hypothetical protein LOC147670</td>
<td>2.25</td>
<td>(vide)</td>
</tr>
<tr>
<td>LOC148988</td>
<td>148988</td>
<td>hypothetical protein BC007899</td>
<td>6.09</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC150759</td>
<td>150759</td>
<td>hypothetical protein LOC150759</td>
<td>4.35</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC151194</td>
<td>151194</td>
<td>similar to hepatocellular carcinoma-associated antigen HCA557b</td>
<td>2.43</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC153222</td>
<td>153222</td>
<td>adult retina protein</td>
<td>2.68</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC153561</td>
<td>153561</td>
<td>hypothetical protein LOC153561</td>
<td>4.43</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC153682</td>
<td>153682</td>
<td>hypothetical protein LOC153682</td>
<td>2.28</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC158563</td>
<td>158563</td>
<td>hypothetical protein LOC158563</td>
<td>3.15</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC200030</td>
<td>200030</td>
<td>hypothetical protein LOC200030</td>
<td>4.14</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC200030</td>
<td>200030</td>
<td>hypothetical protein LOC200030</td>
<td>2.45</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC220930</td>
<td>220930</td>
<td>hypothetical protein LOC220930</td>
<td>3.37</td>
<td>chr10</td>
</tr>
<tr>
<td>LOC221362</td>
<td>221362</td>
<td>hypothetical protein LOC221362</td>
<td>2.68</td>
<td>chr6</td>
</tr>
<tr>
<td>LOC221981</td>
<td>221981</td>
<td>hypothetical protein LOC221981</td>
<td>2.99</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC255326</td>
<td>255326</td>
<td>hypothetical protein LOC255326</td>
<td>2.64</td>
<td>chr10</td>
</tr>
<tr>
<td>LOC283130</td>
<td>283130</td>
<td>hypothetical protein LOC283130</td>
<td>4.59</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC283484</td>
<td>283484</td>
<td>hypothetical protein LOC283484</td>
<td>2.56</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC283481</td>
<td>283481</td>
<td>hypothetical protein LOC283481</td>
<td>2.87</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC283508</td>
<td>283508</td>
<td>hypothetical protein LOC283508</td>
<td>3.87</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC283677</td>
<td>283677</td>
<td>hypothetical protein LOC283677</td>
<td>2.56</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC284244</td>
<td>284244</td>
<td>hypothetical protein LOC284244</td>
<td>2.93</td>
<td>chr18</td>
</tr>
<tr>
<td>LOC284262</td>
<td>284262</td>
<td>hypothetical protein LOC284262</td>
<td>3.78</td>
<td>chr18</td>
</tr>
<tr>
<td>LOC284356</td>
<td>284356</td>
<td>hypothetical protein LOC284356</td>
<td>3.97</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC284409</td>
<td>284409</td>
<td>hypothetical protein LOC284409</td>
<td>2.65</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC285382</td>
<td>285382</td>
<td>hypothetical gene supported by A51969745</td>
<td>2.98</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC285431</td>
<td>285431</td>
<td>hypothetical protein LOC285431</td>
<td>2.27</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC285535</td>
<td>285535</td>
<td>hypothetical protein LOC285535</td>
<td>3.18</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC285831</td>
<td>285831</td>
<td>hypothetical protein LOC285831</td>
<td>3.15</td>
<td>chr6</td>
</tr>
<tr>
<td>LOC285989</td>
<td>285989</td>
<td>hypothetical protein LOC285989</td>
<td>2.26</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC286052</td>
<td>286052</td>
<td>hypothetical protein LOC286052</td>
<td>2.19</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC286170</td>
<td>286170</td>
<td>hypothetical protein LOC286170</td>
<td>2.11</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC286334</td>
<td>286334</td>
<td>hypothetical protein LOC286334</td>
<td>2.61</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC286382</td>
<td>286382</td>
<td>hypothetical protein LOC286382</td>
<td>2.95</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC338768</td>
<td>338768</td>
<td>hypothetical protein LOC338768</td>
<td>3.78</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC339025</td>
<td>339025</td>
<td>hypothetical protein LOC339025</td>
<td>2.12</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC339287</td>
<td>339287</td>
<td>hypothetical protein LOC339287</td>
<td>2.25</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC340281</td>
<td>340281</td>
<td>hypothetical protein LOC340281</td>
<td>2.55</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC346355</td>
<td>346355</td>
<td>similar to RIKEN cDNA A930017N06 gene</td>
<td>2.25</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC347475</td>
<td>347475</td>
<td>hypothetical gene supported by BC019758</td>
<td>2.57</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC348094</td>
<td>348094</td>
<td>hypothetical protein LOC348094</td>
<td>2.40</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC387758</td>
<td>387758</td>
<td>hypothetical protein LOC387758</td>
<td>4.77</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC387790</td>
<td>387790</td>
<td>hypothetical protein LOC387790</td>
<td>3.05</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC387976</td>
<td>387976</td>
<td>hypothetical gene supported by BX248251</td>
<td>2.08</td>
<td>chr14</td>
</tr>
<tr>
<td>LOC388279</td>
<td>388279</td>
<td>hypothetical gene supported by AF275804</td>
<td>2.54</td>
<td>chr16</td>
</tr>
</tbody>
</table>
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

Stem Cells and Development

Table S2: Genes overexpressed in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC390551</td>
<td>390299</td>
<td>Tetraspanin 1</td>
<td>3.03</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC390551</td>
<td>80551 /// 44027</td>
<td>similar to hct domain and RLD 2 /// similar to hct domain and RLD 2</td>
<td>2.49</td>
<td>chr15_random</td>
</tr>
<tr>
<td>LOC391269</td>
<td>391269</td>
<td>Similar to arkyrin repeat domain 20A</td>
<td>2.23</td>
<td>chr21</td>
</tr>
<tr>
<td>LOC391491</td>
<td>391491</td>
<td>Similar to guanidinoacetate methyltransferase; GAMT</td>
<td>2.74</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC399763</td>
<td>399763</td>
<td>Similar to LINE-1 reverse transcriptase homolog</td>
<td>3.22</td>
<td>chr10</td>
</tr>
<tr>
<td>LOC399959</td>
<td>399959</td>
<td>Hypothetical gene supported by BIX64706</td>
<td>5.79</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC400343</td>
<td>400343</td>
<td>Hypothetical gene supported by AK093985</td>
<td>6.24</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC400642</td>
<td>400642</td>
<td>Hypothetical gene supported by BC041875; BX648984</td>
<td>2.53</td>
<td>chr18</td>
</tr>
<tr>
<td>LOC400685</td>
<td>400685</td>
<td>Hypothetical gene supported by BC045860</td>
<td>2.59</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC400960</td>
<td>400960</td>
<td>Hypothetical gene supported by BC040598</td>
<td>2.23</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC4040134</td>
<td>4040134</td>
<td>Hypothetical LOC401394 /// hypothetical LOC401258</td>
<td>3.67</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC404285</td>
<td>404285</td>
<td>Hypothetical LOC401328</td>
<td>6.86</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC405250</td>
<td>405250 /// 405285</td>
<td>hypothetical gene supported by FLJ25003 /// Hypothetical LOC412142</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC406560</td>
<td>406560</td>
<td>Hypothetical LOC401384</td>
<td>4.01</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC409994</td>
<td>409994</td>
<td>Hypothetical gene supported by AF064843; AK025716</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC440135</td>
<td>440135</td>
<td>LOC440135</td>
<td>2.22</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC440282</td>
<td>440282</td>
<td>Hypothetical protein LOC415783</td>
<td>3.62</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC440460</td>
<td>440460</td>
<td>SH3 domain GRB2-like pseudogene 3</td>
<td>2.03</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC440526</td>
<td>440526</td>
<td>LOC440526</td>
<td>2.16</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC440934</td>
<td>440934</td>
<td>Hypothetical gene supported by BC030804</td>
<td>7.62</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC440944</td>
<td>440944</td>
<td>Hypothetical gene supported by AK128396</td>
<td>2.59</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC440995</td>
<td>440995</td>
<td>Hypothetical gene supported by BC039483; BC068085</td>
<td>2.09</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC440996</td>
<td>440996</td>
<td>Hypothetical gene supported by BC053580</td>
<td>3.68</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC441022</td>
<td>441022</td>
<td>similar to RUN and FYVE domain-containing 2; Run- and FYVE-domain containing protein</td>
<td>3.04</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC441241</td>
<td>441241 /// 441242</td>
<td>chaperonin containing TCP1, subunit 6A (zeta 1)-like /// chaperonin containing TCP1, subunit 6A (zeta 1)-like</td>
<td>2.57</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC441300</td>
<td>441300</td>
<td>LOC441300</td>
<td>2.83</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC441351</td>
<td>441351</td>
<td>Hypothetical gene supported by BX537800</td>
<td>4.46</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC441428</td>
<td>441428</td>
<td>Hypothetical gene supported by BX641914</td>
<td>2.59</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC442934</td>
<td>442934</td>
<td>Putative insulin-like growth factor II associated protein</td>
<td>16.83</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC494141</td>
<td>494141</td>
<td>Similar to mitochondrial carrier triple repeat 1</td>
<td>2.36</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC56757</td>
<td>56757</td>
<td>Hypothetical protein LOC56757</td>
<td>3.05</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC641522</td>
<td>641522</td>
<td>ADP-ribosylation factor-like 17 pseudogene 1</td>
<td>2.01</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC90110</td>
<td>90110</td>
<td>Hypothetical protein LOC90110</td>
<td>2.99</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC90693</td>
<td>90693</td>
<td>LOC90693 protein</td>
<td>2.51</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC91137</td>
<td>91137</td>
<td>Hypothetical protein BC021769</td>
<td>3.24</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC91316</td>
<td>91316</td>
<td>Similar to BCO36801.1 (immunoglobulin lambda-like polypeptide 1, pre-B-cell specific)</td>
<td>7.35</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC91461</td>
<td>91461</td>
<td>Hypothetical protein BC007901</td>
<td>5.60</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC92162</td>
<td>92162</td>
<td>similar to RIKEN cDNA 2600017H02</td>
<td>6.69</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC92321</td>
<td>92321</td>
<td>Hypothetical protein LOC92312</td>
<td>2.98</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC92949</td>
<td>92949</td>
<td>Hypothetical protein BC008604</td>
<td>7.23</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC94431</td>
<td>94431</td>
<td>similar to RNA polymerase I transcription factor RRN3</td>
<td>2.77</td>
<td>chr16</td>
</tr>
<tr>
<td>LOCNL00</td>
<td>83752</td>
<td>Peroxisomal LON protease like</td>
<td>4.46</td>
<td>chr16</td>
</tr>
<tr>
<td>LOCNL01</td>
<td>4016</td>
<td>Vpyl oxidase-like 1</td>
<td>2.84</td>
<td>chr15</td>
</tr>
<tr>
<td>LOCNL02</td>
<td>4017</td>
<td>Vpyl oxidase-like 2</td>
<td>3.76</td>
<td>chr8</td>
</tr>
<tr>
<td>LPGAT1</td>
<td>9926</td>
<td>Lysophosphatidylglycerol acyltransferase 1</td>
<td>2.33</td>
<td>chr1</td>
</tr>
<tr>
<td>LPHN3</td>
<td>23284</td>
<td>Iatrophilin 3</td>
<td>6.67</td>
<td>chr4</td>
</tr>
<tr>
<td>LPIN1</td>
<td>23175</td>
<td>Ipin 1</td>
<td>5.55</td>
<td>chr2</td>
</tr>
<tr>
<td>LPIN2</td>
<td>9663</td>
<td>Ipin 2</td>
<td>2.31</td>
<td>chr18</td>
</tr>
<tr>
<td>LPL</td>
<td>4023</td>
<td>Lipoprotein lipase</td>
<td>3.81</td>
<td>chr8</td>
</tr>
<tr>
<td>LRCH2</td>
<td>57631</td>
<td>Leucine-rich repeats and calponin homology (CH) domain containing 2</td>
<td>2.07</td>
<td>chrX</td>
</tr>
<tr>
<td>LRCH3</td>
<td>84859</td>
<td>Leucine-rich repeats and calponin homology (CH) domain containing 3</td>
<td>3.56</td>
<td>chr3</td>
</tr>
<tr>
<td>LRP12</td>
<td>29967</td>
<td>Low density lipoprotein-related protein 12</td>
<td>2.62</td>
<td>chr8</td>
</tr>
<tr>
<td>LRP2</td>
<td>4036</td>
<td>Low density lipoprotein-related protein 2</td>
<td>21.79</td>
<td>chr2</td>
</tr>
<tr>
<td>LRP4</td>
<td>4038</td>
<td>Low density lipoprotein receptor-related protein 4</td>
<td>3.17</td>
<td>chr11</td>
</tr>
<tr>
<td>LRPAP1</td>
<td>4043</td>
<td>Low density lipoprotein receptor-related protein associated protein 1</td>
<td>3.71</td>
<td>chr4</td>
</tr>
<tr>
<td>LRRC17</td>
<td>10234</td>
<td>Leucine rich repeat containing 17</td>
<td>5.05</td>
<td>chr7</td>
</tr>
<tr>
<td>LRRC3B</td>
<td>116135</td>
<td>Leucine rich repeat containing 3B</td>
<td>2.35</td>
<td>chr3</td>
</tr>
<tr>
<td>LRRC49</td>
<td>54839</td>
<td>Leucine rich repeat containing 49</td>
<td>2.35</td>
<td>chr15</td>
</tr>
<tr>
<td>LRRC4C</td>
<td>57689</td>
<td>Leucine rich repeat containing 4C</td>
<td>3.58</td>
<td>chr11</td>
</tr>
<tr>
<td>LRRN3</td>
<td>54674</td>
<td>Leucine rich repeat neuronal 3</td>
<td>6.49</td>
<td>chr7</td>
</tr>
<tr>
<td>LSAMP</td>
<td>4045</td>
<td>Limbic system-associated membrane protein</td>
<td>2.27</td>
<td>chr3</td>
</tr>
</tbody>
</table>
Table S2: Genes overexpressed in NPC compared to hES (Fold Change > 2; \textit{a} < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSM8</td>
<td>51691</td>
<td>LSM8 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td>2.69</td>
<td>chr7</td>
</tr>
<tr>
<td>LTB1P1</td>
<td>4052</td>
<td>latent transforming growth factor beta binding protein 1</td>
<td>3.84</td>
<td>chr2</td>
</tr>
<tr>
<td>LUM</td>
<td>4060</td>
<td>lumican</td>
<td>16.09</td>
<td>chr12</td>
</tr>
<tr>
<td>LZIC</td>
<td>84308</td>
<td>Leucine zipper and CTNNSIP1 domain containing</td>
<td>2.15</td>
<td>chr1</td>
</tr>
<tr>
<td>LZTFL1</td>
<td>54584</td>
<td>leucine zipper transcription factor-like 1</td>
<td>2.74</td>
<td>chr3</td>
</tr>
<tr>
<td>MAB21L1</td>
<td>4081</td>
<td>mab-21-like 1 (C. elegans)</td>
<td>5.33</td>
<td>chr13</td>
</tr>
<tr>
<td>MAB21L2</td>
<td>10586</td>
<td>mab-21-like 2 (C. elegans)</td>
<td>11.53</td>
<td>chr4</td>
</tr>
<tr>
<td>MAF</td>
<td>4094</td>
<td>v-maf musculoaponeurotic fibrosarcoma oncogene homolog (avian)</td>
<td>6.36</td>
<td>chr16</td>
</tr>
<tr>
<td>MAGEH1</td>
<td>28986</td>
<td>melanoma antigen family H, 1</td>
<td>2.63</td>
<td>chrX</td>
</tr>
<tr>
<td>MAGI3</td>
<td>260425</td>
<td>membrane associated guanylate kinase, WW and PDZ domain containing 3</td>
<td>2.96</td>
<td>chr1</td>
</tr>
<tr>
<td>MALAT1</td>
<td>379383</td>
<td>metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA)</td>
<td>7.76</td>
<td>chr11</td>
</tr>
<tr>
<td>MALM2</td>
<td>84441</td>
<td>Mastermind-like 2 (Drosophila)</td>
<td>2.20</td>
<td>chr11</td>
</tr>
<tr>
<td>MALM3</td>
<td>55534</td>
<td>Mastermind-like 3 (Drosophila)</td>
<td>2.68</td>
<td>chr4</td>
</tr>
<tr>
<td>MANI1</td>
<td>4121</td>
<td>Mannosidase, alpha, class A, member 1</td>
<td>4.33</td>
<td>chr6</td>
</tr>
<tr>
<td>MANI2</td>
<td>10905</td>
<td>Mannosidase, alpha, class A, member 2</td>
<td>2.49</td>
<td>chr1</td>
</tr>
<tr>
<td>MANI2A</td>
<td>4122</td>
<td>Mannosidase, alpha, class A, member 2</td>
<td>2.72</td>
<td>chr15</td>
</tr>
<tr>
<td>MAP2</td>
<td>4133</td>
<td>Microtubule-associated protein 2</td>
<td>25.86</td>
<td>chr2</td>
</tr>
<tr>
<td>MAPK3K1P1</td>
<td>8649</td>
<td>Mitogen-activated protein kinase kinase 1 interacting protein 1</td>
<td>2.40</td>
<td>chr4</td>
</tr>
<tr>
<td>MAPK9</td>
<td>4214</td>
<td>Mitogen-activated protein kinase kinase kinase 1</td>
<td>2.42</td>
<td>chr5</td>
</tr>
<tr>
<td>MAPK10</td>
<td>5662</td>
<td>mitogen-activated protein kinase 10</td>
<td>9.24</td>
<td>chr4</td>
</tr>
<tr>
<td>MARCH6</td>
<td>10299</td>
<td>membrane-associated ring finger (C3H4C4) 6</td>
<td>2.16</td>
<td>chr5</td>
</tr>
<tr>
<td>MARCKS</td>
<td>4082</td>
<td>Myristoylated alanine-rich protein kinase C substrate</td>
<td>2.91</td>
<td>chr1</td>
</tr>
<tr>
<td>MASP2</td>
<td>10747</td>
<td>Mannan-binding lectin serine peptidase 2</td>
<td>6.08</td>
<td>chr1</td>
</tr>
<tr>
<td>MAST4</td>
<td>23227</td>
<td>microtubule-associated serine/threonine kinase family member 4</td>
<td>2.90</td>
<td>chr5</td>
</tr>
<tr>
<td>MBD2</td>
<td>8992</td>
<td>methyl-CpG binding domain protein 2</td>
<td>3.34</td>
<td>chr18</td>
</tr>
<tr>
<td>MBNL2</td>
<td>10150</td>
<td>Muscleblind-like 2 (Drosophila)</td>
<td>9.49</td>
<td>chr13</td>
</tr>
<tr>
<td>MCAATP6</td>
<td>401612</td>
<td>Mitochondrial carrier triple repeat 6</td>
<td>3.04</td>
<td>chrX</td>
</tr>
<tr>
<td>MCF2L</td>
<td>23263</td>
<td>MCF2 cell line derived transforming sequence-like</td>
<td>3.95</td>
<td>chr13</td>
</tr>
<tr>
<td>MDC1</td>
<td>9656</td>
<td>mediator of DNA damage checkpoint 1</td>
<td>2.30</td>
<td>chr6</td>
</tr>
<tr>
<td>MDFIC</td>
<td>29969</td>
<td>MyoD family inhibitor domain containing</td>
<td>3.14</td>
<td>chr7</td>
</tr>
<tr>
<td>MDM4</td>
<td>4194</td>
<td>Mitogen-activated protein kinase 4</td>
<td>2.66</td>
<td>chr1</td>
</tr>
<tr>
<td>ME3</td>
<td>10873</td>
<td>malic enzyme 3, NADP(+) -dependent, mitochondrial</td>
<td>8.66</td>
<td>chr11</td>
</tr>
<tr>
<td>MECP2</td>
<td>4204</td>
<td>methyl-CpG binding protein 2 (Rettsyndrome)</td>
<td>2.09</td>
<td>chrX</td>
</tr>
<tr>
<td>MEF2D</td>
<td>10501</td>
<td>mediator of RNA polymerase II transcription, subunit 6 homolog (yeast)</td>
<td>2.16</td>
<td>chr4</td>
</tr>
<tr>
<td>MEF2C</td>
<td>4208</td>
<td>MADS box transcription enhancer factor 2, polyepitope C (myocyte enhancer factor 2C)</td>
<td>5.04</td>
<td>chr5</td>
</tr>
<tr>
<td>MEIS1</td>
<td>4211</td>
<td>Meis1, meiotic ectopic viral integration site 1 homolog (mouse)</td>
<td>8.07</td>
<td>chr2</td>
</tr>
<tr>
<td>MEIS2</td>
<td>4212</td>
<td>Meis1, meiotic ectopic viral integration site 1 homolog (mouse)</td>
<td>31.73</td>
<td>chr15</td>
</tr>
<tr>
<td>METAP2</td>
<td>10988</td>
<td>Methionyl aminopeptidase 2</td>
<td>2.94</td>
<td>chr12</td>
</tr>
<tr>
<td>MGAT3</td>
<td>4248</td>
<td>Mannosyl (beta-1,4-)glycoprotein beta 1,4-N-acetylgalactosaminytransferase</td>
<td>2.44</td>
<td>chr22</td>
</tr>
<tr>
<td>MGCM10850</td>
<td>84736</td>
<td>hypothetical protein MGC10850</td>
<td>2.25</td>
<td>chr11</td>
</tr>
<tr>
<td>MGCM10854</td>
<td>84260</td>
<td>hypothetical protein</td>
<td>3.82</td>
<td>chr12</td>
</tr>
<tr>
<td>MGCM12760</td>
<td>84809</td>
<td>hypothetical protein MGC12760</td>
<td>3.31</td>
<td>chr1</td>
</tr>
<tr>
<td>MGCM13057</td>
<td>84281</td>
<td>hypothetical protein MGC13057</td>
<td>2.58</td>
<td>chr2</td>
</tr>
<tr>
<td>MGCM15407</td>
<td>112942</td>
<td>Similar to RIKEN cDNA 4931426D14 gene</td>
<td>2.54</td>
<td>chr2</td>
</tr>
<tr>
<td>MGCM15875</td>
<td>85007</td>
<td>hypothetical protein MGC15875</td>
<td>2.82</td>
<td>chr5</td>
</tr>
<tr>
<td>MGCM17839</td>
<td>219902</td>
<td>hypothetical protein MGC17839</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>MGCM19764</td>
<td>162394</td>
<td>likely ortholog of mouse schlafen 5</td>
<td>2.22</td>
<td>chr17</td>
</tr>
<tr>
<td>MGCM21644</td>
<td>153768</td>
<td>hypothetical protein MGC21644</td>
<td>2.08</td>
<td>chr5</td>
</tr>
<tr>
<td>MGCM22265</td>
<td>349035</td>
<td>(clone CB1) RNA fragment</td>
<td>2.37</td>
<td>chr5</td>
</tr>
<tr>
<td>MGCM24039</td>
<td>160518</td>
<td>hypothetical protein MGC24039</td>
<td>3.90</td>
<td>chr12</td>
</tr>
<tr>
<td>MGCM25181</td>
<td>257054</td>
<td>hypothetical protein MGC25181</td>
<td>2.26</td>
<td>chr2_random</td>
</tr>
<tr>
<td>MGCM2752</td>
<td>65996</td>
<td>hypothetical protein MGC2752</td>
<td>2.12</td>
<td>chr19</td>
</tr>
<tr>
<td>MGCM2803</td>
<td>79002</td>
<td>hypothetical protein MGC2803</td>
<td>2.14</td>
<td>chr19</td>
</tr>
<tr>
<td>MGCM3002</td>
<td>65998</td>
<td>hypothetical protein MGC3002</td>
<td>2.54</td>
<td>chr11</td>
</tr>
<tr>
<td>MGCM3121</td>
<td>78994</td>
<td>hypothetical protein MGC3121</td>
<td>2.11</td>
<td>chr16</td>
</tr>
<tr>
<td>MGCM3212</td>
<td>255758</td>
<td>hypothetical protein MGC3212</td>
<td>2.44</td>
<td>chr3</td>
</tr>
<tr>
<td>MGCM3302</td>
<td>256471</td>
<td>hypothetical protein MGC3302</td>
<td>2.33</td>
<td>chr4</td>
</tr>
<tr>
<td>MGCM33926</td>
<td>130733</td>
<td>hypothetical protein MGC33926</td>
<td>3.27</td>
<td>chr2</td>
</tr>
<tr>
<td>MGCM35048</td>
<td>121452</td>
<td>hypothetical protein MGC35048</td>
<td>2.96</td>
<td>chr16</td>
</tr>
<tr>
<td>MGCM35097</td>
<td>200942</td>
<td>hypothetical protein MGC35097</td>
<td>3.06</td>
<td>chr3</td>
</tr>
<tr>
<td>MGCM3566</td>
<td>144193</td>
<td>hypothetical protein MGC3566</td>
<td>2.52</td>
<td>chr12</td>
</tr>
<tr>
<td>MGCM39900</td>
<td>286527</td>
<td>hypothetical protein MGC39900</td>
<td>7.63</td>
<td>chrX</td>
</tr>
<tr>
<td>MGCM40499</td>
<td>245812</td>
<td>hypothetical protein MGC40499</td>
<td>2.01</td>
<td>chr7</td>
</tr>
<tr>
<td>MGCM4707</td>
<td>79096</td>
<td>MyoD family inhibitor domain containing</td>
<td>2.40</td>
<td>chr11</td>
</tr>
<tr>
<td>MGCM52110</td>
<td>493753</td>
<td>hypothetical protein MGC52110</td>
<td>2.02</td>
<td>chr2</td>
</tr>
<tr>
<td>MGCM5509</td>
<td>79074</td>
<td>hypothetical protein MGC5509</td>
<td>3.05</td>
<td>chr2</td>
</tr>
<tr>
<td>MGCM5576</td>
<td>79022</td>
<td>hypothetical protein MGC5576</td>
<td>2.35</td>
<td>chr12</td>
</tr>
</tbody>
</table>
Table S2: Genes overexpressed in NPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome(Number/Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGEA5</td>
<td>10724</td>
<td>meningioma expressed antigen 5 (hyaluronidase)</td>
<td>3.74</td>
<td>chr10</td>
</tr>
<tr>
<td>MID1</td>
<td>4281</td>
<td>Midline 1 (Optic/BBB syndrome)</td>
<td>2.52</td>
<td>chrX</td>
</tr>
<tr>
<td>MIF</td>
<td>4286</td>
<td>microphthalmia-associated transcription factor</td>
<td>6.58</td>
<td>chr3</td>
</tr>
<tr>
<td>MKL2</td>
<td>57496</td>
<td>MKL/myocardin-like 2</td>
<td>2.04</td>
<td>chr16</td>
</tr>
<tr>
<td>MLL3</td>
<td>58508</td>
<td>myeloid/lymphoid or mixed-lineage leukemia 3</td>
<td>2.24</td>
<td>chr7</td>
</tr>
<tr>
<td>MLLT10</td>
<td>80287</td>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated</td>
<td>2.59</td>
<td>chr10</td>
</tr>
<tr>
<td>MLLT3</td>
<td>4300</td>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated</td>
<td>2.02</td>
<td>chr9</td>
</tr>
<tr>
<td>MLLT4</td>
<td>4301</td>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated</td>
<td>4.22</td>
<td>chr6</td>
</tr>
<tr>
<td>MLLT6</td>
<td>4302</td>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated</td>
<td>2.45</td>
<td>chr17</td>
</tr>
<tr>
<td>MLR1</td>
<td>254251</td>
<td>transcription factor MLR1</td>
<td>2.49</td>
<td>chr4</td>
</tr>
<tr>
<td>MLR2</td>
<td>84458</td>
<td>ligand-dependent corepressor</td>
<td>2.87</td>
<td>chr10</td>
</tr>
<tr>
<td>MNNR1</td>
<td>22915</td>
<td>multimerin 1</td>
<td>2.24</td>
<td>chr4</td>
</tr>
<tr>
<td>MNT1</td>
<td>4330</td>
<td>musclospecific (disrupted in balanced translocation) 1</td>
<td>3.06</td>
<td>chr22</td>
</tr>
<tr>
<td>MOBLK2B</td>
<td>79817</td>
<td>MOBL, Mps One Binder kinase activator-like 2B (yeast)</td>
<td>2.08</td>
<td>chr9</td>
</tr>
<tr>
<td>MON2</td>
<td>23041</td>
<td>MON2 homolog (yeast)</td>
<td>2.64</td>
<td>chr12</td>
</tr>
<tr>
<td>MORC4</td>
<td>79710</td>
<td>MRC family CW-type zinc finger 4</td>
<td>4.44</td>
<td>chrX</td>
</tr>
<tr>
<td>MORF4L2</td>
<td>9643</td>
<td>Mortality factor 4 like 2</td>
<td>2.04</td>
<td>chrX</td>
</tr>
<tr>
<td>MOX1D1</td>
<td>26002</td>
<td>monoxygenase, DBH-like 1</td>
<td>4.91</td>
<td>chr6</td>
</tr>
<tr>
<td>MSH6P9H</td>
<td>10198</td>
<td>M-phase phosphoprotein 9</td>
<td>2.36</td>
<td>chr12</td>
</tr>
<tr>
<td>MPZL1</td>
<td>9019</td>
<td>myelin protein zero-like 1</td>
<td>2.71</td>
<td>chr1</td>
</tr>
<tr>
<td>MRC2</td>
<td>9962</td>
<td>mannosaccharide receptor, C type 2</td>
<td>3.84</td>
<td>chr17</td>
</tr>
<tr>
<td>MRPS2S2</td>
<td>56945</td>
<td>Mitochondrial ribosomal protein S22</td>
<td>2.80</td>
<td>chr3</td>
</tr>
<tr>
<td>MRPS6S</td>
<td>64968</td>
<td>Mitochondrial ribosomal protein S6</td>
<td>2.84</td>
<td>chr21</td>
</tr>
<tr>
<td>MSH5</td>
<td>4439</td>
<td>mutant homolog 5 (E. coli)</td>
<td>2.77</td>
<td>chr6</td>
</tr>
<tr>
<td>MSR2B2</td>
<td>22921</td>
<td>methionine sulfoxide reductase B2</td>
<td>2.21</td>
<td>chr10</td>
</tr>
<tr>
<td>MSR3B3</td>
<td>253827</td>
<td>methionine sulfoxide reductase B3</td>
<td>9.04</td>
<td>chr12</td>
</tr>
<tr>
<td>MST1</td>
<td>4485</td>
<td>macrophage stimulating 1 (hepatocyte growth factor-like)</td>
<td>2.15</td>
<td>chr1</td>
</tr>
<tr>
<td>MSX1</td>
<td>4487</td>
<td>msh homeobox box homolog 1 (Drosophila)</td>
<td>7.61</td>
<td>chr4</td>
</tr>
<tr>
<td>MSX2</td>
<td>4488</td>
<td>msh homeobox box homolog 2 (Drosophila)</td>
<td>3.02</td>
<td>chr5</td>
</tr>
<tr>
<td>MTC1H2</td>
<td>23788</td>
<td>mitochondrial carrier homolog 2 (C. elegans)</td>
<td>2.17</td>
<td>chr11</td>
</tr>
<tr>
<td>MTDH</td>
<td>92140</td>
<td>Metadherin</td>
<td>2.02</td>
<td>chr8</td>
</tr>
<tr>
<td>MTERFD2</td>
<td>130916</td>
<td>MTERFD domain containing 2</td>
<td>2.25</td>
<td>chr2</td>
</tr>
<tr>
<td>MTERFD3</td>
<td>80298</td>
<td>MTERFD domain containing 3</td>
<td>2.20</td>
<td>chr12</td>
</tr>
<tr>
<td>MUMM1L1</td>
<td>139221</td>
<td>melanoma associated antigen (mutated) 1-like 1</td>
<td>3.06</td>
<td>chrX</td>
</tr>
<tr>
<td>MUSSTN1</td>
<td>369125</td>
<td>musculoskeletal, embryonic nuclear protein 1</td>
<td>2.37</td>
<td>chr3</td>
</tr>
<tr>
<td>MUX1</td>
<td>4084</td>
<td>MAX dimerization protein 1</td>
<td>2.79</td>
<td>chr2</td>
</tr>
<tr>
<td>MUX4</td>
<td>10608</td>
<td>MAX dimerization protein 4</td>
<td>3.11</td>
<td>chr4</td>
</tr>
<tr>
<td>MUX11</td>
<td>4601</td>
<td>MAX interactor 1 /// MAX interactor 1</td>
<td>2.39</td>
<td>chr10</td>
</tr>
<tr>
<td>MUXR5</td>
<td>25878</td>
<td>matrix-remodelling associated 5</td>
<td>4.01</td>
<td>chrX</td>
</tr>
<tr>
<td>MUXR7</td>
<td>439921</td>
<td>matrix-remodelling associated 7</td>
<td>2.38</td>
<td>chr17</td>
</tr>
<tr>
<td>MUXR8</td>
<td>54587</td>
<td>matrix-remodelling associated 8</td>
<td>3.26</td>
<td>chr1_random</td>
</tr>
<tr>
<td>MYADM</td>
<td>91663</td>
<td>myeloid-associated differentiation marker</td>
<td>2.11</td>
<td>chr19</td>
</tr>
<tr>
<td>MYBL1</td>
<td>4603</td>
<td>v-myb myeloblastosis viral oncogene homolog (avian)-like 1</td>
<td>2.28</td>
<td>chr8</td>
</tr>
<tr>
<td>MYEF2</td>
<td>50804</td>
<td>myelin expression factor 2</td>
<td>2.04</td>
<td>chr15</td>
</tr>
<tr>
<td>MYLK</td>
<td>4638</td>
<td>myosin, light polypeptide kinase /// myosin, light polypeptide kinase</td>
<td>4.39</td>
<td>chr6</td>
</tr>
<tr>
<td>MYSST3</td>
<td>7994</td>
<td>MYST histone acetyltransferase (monocytic leukemia) 3</td>
<td>2.94</td>
<td>chr8</td>
</tr>
<tr>
<td>NAALAD2</td>
<td>10003</td>
<td>N-acetylated alpha-linked acidic dipeptidase 2</td>
<td>2.66</td>
<td>chr11</td>
</tr>
<tr>
<td>NAB1</td>
<td>4664</td>
<td>NGFI-A binding protein 1 (EGR1 binding protein 1)</td>
<td>2.65</td>
<td>chr2</td>
</tr>
<tr>
<td>NAB2</td>
<td>4665</td>
<td>NGFI-A binding protein 2 (EGR1 binding protein 2)</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>NAC6</td>
<td>64753</td>
<td>hypothetical protein DKFZp434G156</td>
<td>2.92</td>
<td>chr7</td>
</tr>
<tr>
<td>NALP1</td>
<td>22961</td>
<td>NAACP, leucine rich repeat and PVD (pyrin domain) containing 1</td>
<td>5.90</td>
<td>chr17</td>
</tr>
<tr>
<td>NAPE-PLD</td>
<td>222236</td>
<td>N-acetyl-phosphatidylethanolamine-hydrolyzing phospholipase D</td>
<td>2.16</td>
<td>chr7</td>
</tr>
<tr>
<td>NASP</td>
<td>4678</td>
<td>Nuclear autoantigenic sperm protein (histone-binding)</td>
<td>2.41</td>
<td>chr1</td>
</tr>
<tr>
<td>NAV1</td>
<td>89796</td>
<td>neuron navigator 1</td>
<td>12.31</td>
<td>chr1</td>
</tr>
<tr>
<td>NAV3</td>
<td>89795</td>
<td>neuron navigator 3</td>
<td>5.50</td>
<td>chr12</td>
</tr>
<tr>
<td>NBEA</td>
<td>26960</td>
<td>neurobeachin</td>
<td>2.44</td>
<td>chr13</td>
</tr>
<tr>
<td>NBLA4196</td>
<td>64921</td>
<td>Putative protein product of Nbla4196</td>
<td>2.86</td>
<td>chr7</td>
</tr>
<tr>
<td>NBRFA</td>
<td>641559</td>
<td>Neuroblastoma breakpoint family, member 20</td>
<td>4.08</td>
<td>chr1</td>
</tr>
<tr>
<td>NCLD</td>
<td>83988</td>
<td>neurocalcin delta /// neurocalcin delta</td>
<td>10.89</td>
<td>chr8</td>
</tr>
<tr>
<td>NCA1M1</td>
<td>4684</td>
<td>neural cell adhesion molecule 1</td>
<td>13.84</td>
<td>chr11</td>
</tr>
<tr>
<td>NCOA5</td>
<td>57727</td>
<td>Nuclear receptor coactivator 5</td>
<td>2.49</td>
<td>chr20</td>
</tr>
<tr>
<td>NCOA6</td>
<td>23054</td>
<td>nuclear receptor coactivator 6</td>
<td>2.51</td>
<td>chr20</td>
</tr>
<tr>
<td>NCO1R</td>
<td>9611</td>
<td>Nuclear receptor co-repressor 1</td>
<td>2.05</td>
<td>chr17</td>
</tr>
<tr>
<td>NDN</td>
<td>4692</td>
<td>myelin homolog (mouse)</td>
<td>2.01</td>
<td>chr15</td>
</tr>
<tr>
<td>NDRG1</td>
<td>10397</td>
<td>N-myel downstream regulated gene 1</td>
<td>2.51</td>
<td>chr8</td>
</tr>
<tr>
<td>NEBL</td>
<td>10529</td>
<td>nebulin</td>
<td>4.19</td>
<td>chr10</td>
</tr>
<tr>
<td>NEDD9</td>
<td>4739</td>
<td>neural precursor cell expressed, developmentally down-regulated 9</td>
<td>12.90</td>
<td>chr6</td>
</tr>
<tr>
<td>NEK3</td>
<td>4752</td>
<td>NIMA (never in mitosis gene a)-related kinase 3</td>
<td>2.55</td>
<td>chr13</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>NEK9</td>
<td>91754</td>
<td>NIMA (never in mitosis gene a)- related kinase 9</td>
<td>4.50</td>
<td>chr14</td>
</tr>
<tr>
<td>NELL2</td>
<td>4753</td>
<td>NEL-like 2 (chicken) /// NEL-like 2 (chicken)</td>
<td>3.81</td>
<td>chr12</td>
</tr>
<tr>
<td>NEO1</td>
<td>4756</td>
<td>neogenin homolog 1 (chicken)</td>
<td>2.57</td>
<td>chr15</td>
</tr>
<tr>
<td>NEUROD1</td>
<td>4760</td>
<td>neurogenic differentiation 1</td>
<td>2.00</td>
<td>chr2</td>
</tr>
<tr>
<td>NEXN</td>
<td>91624</td>
<td>nexlin (F actin binding protein)</td>
<td>2.29</td>
<td>chr1</td>
</tr>
<tr>
<td>NFAT5</td>
<td>10726</td>
<td>nuclear factor of activated T-cells 5, toxicity-responsive</td>
<td>2.86</td>
<td>chr16</td>
</tr>
<tr>
<td>NFATC1</td>
<td>4772</td>
<td>nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1</td>
<td>2.57</td>
<td>chr18</td>
</tr>
<tr>
<td>NFATC4</td>
<td>4776</td>
<td>nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4</td>
<td>3.45</td>
<td>chr14</td>
</tr>
<tr>
<td>NHL2H</td>
<td>4808</td>
<td>rescent helix loop helix 2</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>NHR2C</td>
<td>374354</td>
<td>NHL repeat containing 2</td>
<td>2.24</td>
<td>chr10</td>
</tr>
<tr>
<td>NID1</td>
<td>4811</td>
<td>midgen 1</td>
<td>3.25</td>
<td>chr1</td>
</tr>
<tr>
<td>NID2</td>
<td>22795</td>
<td>midgen 2 (osteonidogen)</td>
<td>11.71</td>
<td>chr14</td>
</tr>
<tr>
<td>NIN</td>
<td>51199</td>
<td>neogenin (GSK3B interacting protein)</td>
<td>6.35</td>
<td>chr14</td>
</tr>
<tr>
<td>NISCH</td>
<td>11188</td>
<td>neogenin</td>
<td>2.21</td>
<td>chr3</td>
</tr>
<tr>
<td>NKTR</td>
<td>4820</td>
<td>natural killer-tumor recognition sequence</td>
<td>2.73</td>
<td>chr3</td>
</tr>
<tr>
<td>NLGN1</td>
<td>22871</td>
<td>neurogin 1</td>
<td>3.38</td>
<td>chr3</td>
</tr>
<tr>
<td>NME5</td>
<td>8382</td>
<td>non-metastatic cells 5, protein expressed in (nucleoside-diphosphate kinase)</td>
<td>2.77</td>
<td>chr5</td>
</tr>
<tr>
<td>NMT2</td>
<td>9397</td>
<td>N-myristoyltransferase 2</td>
<td>2.22</td>
<td>chr10</td>
</tr>
<tr>
<td>NOL7</td>
<td>51406</td>
<td>Nucleolar protein 7, 7kDa</td>
<td>2.36</td>
<td>chr6</td>
</tr>
<tr>
<td>NPE</td>
<td>57722</td>
<td>likely ortholog of mouse neighbor of Punc E11</td>
<td>5.49</td>
<td>chr15</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>4851</td>
<td>Notch homolog 1, translocation-associated (Drosophila)</td>
<td>2.73</td>
<td>chr9</td>
</tr>
<tr>
<td>NOTCH2</td>
<td>4853</td>
<td>Notch homolog 2 (Drosophila)</td>
<td>2.41</td>
<td>chr1</td>
</tr>
<tr>
<td>NOTCH2NL</td>
<td>388677</td>
<td>Notch homolog 2 (Drosophila) N-terminal like</td>
<td>4.78</td>
<td>chr1</td>
</tr>
<tr>
<td>NOVA1</td>
<td>4857</td>
<td>neuro-ontological ventral antigen 1</td>
<td>2.69</td>
<td>chr14</td>
</tr>
<tr>
<td>NOX4</td>
<td>50507</td>
<td>NADPH oxidase 4</td>
<td>2.72</td>
<td>chr11</td>
</tr>
<tr>
<td>NPH3P</td>
<td>27031</td>
<td>nephroptrophisins 3 (adolescent)</td>
<td>2.91</td>
<td>chr3</td>
</tr>
<tr>
<td>NPK3</td>
<td>4883</td>
<td>natriuretic peptide receptor C1guanylate cyclase C (atrionatriuretic peptide receptor C)</td>
<td>3.70</td>
<td>chr5</td>
</tr>
<tr>
<td>NPYR2Y</td>
<td>4887</td>
<td>neuropeptide Y receptor Y2</td>
<td>3.47</td>
<td>chr4</td>
</tr>
<tr>
<td>NR2C2</td>
<td>7182</td>
<td>Nuclear receptor subfamily 2, group C, member 2</td>
<td>2.19</td>
<td>chr3</td>
</tr>
<tr>
<td>NR2E1</td>
<td>7101</td>
<td>Nuclear receptor subfamily 2, group E, member 1</td>
<td>3.16</td>
<td>chr6</td>
</tr>
<tr>
<td>NR2F1</td>
<td>7025</td>
<td>Nuclear receptor subfamily 2, group F, member 1</td>
<td>8.52</td>
<td>chr5</td>
</tr>
<tr>
<td>NR2F2</td>
<td>7026</td>
<td>nuclear receptor subfamily 2, group F, member 2</td>
<td>11.84</td>
<td>chr15</td>
</tr>
<tr>
<td>NRBP2</td>
<td>340371</td>
<td>nuclear receptor binding protein 2</td>
<td>2.44</td>
<td>chr8</td>
</tr>
<tr>
<td>NRCAM</td>
<td>4897</td>
<td>neuronal cell adhesion molecule</td>
<td>6.28</td>
<td>chr7</td>
</tr>
<tr>
<td>NRG1</td>
<td>3084</td>
<td>neogenin 1</td>
<td>10.35</td>
<td>chr14</td>
</tr>
<tr>
<td>NRIP1</td>
<td>8204</td>
<td>nuclear receptor interacting protein 1</td>
<td>7.91</td>
<td>chr21</td>
</tr>
<tr>
<td>NRIP3</td>
<td>56675</td>
<td>nuclear receptor interacting protein 3</td>
<td>2.04</td>
<td>chr11</td>
</tr>
<tr>
<td>NRIP1</td>
<td>8829</td>
<td>neogenin 1</td>
<td>3.18</td>
<td>chr10</td>
</tr>
<tr>
<td>NRIP2</td>
<td>8828</td>
<td>Neogenin 2</td>
<td>4.20</td>
<td>chr2</td>
</tr>
<tr>
<td>NSUN6</td>
<td>221078</td>
<td>NOL1/NOP2/Sun domain family, member 6</td>
<td>6.89</td>
<td>chr10</td>
</tr>
<tr>
<td>NTR3F</td>
<td>4908</td>
<td>neurotriphenin 3</td>
<td>2.80</td>
<td>chr12</td>
</tr>
<tr>
<td>NTRK2</td>
<td>4915</td>
<td>neurotrophic tyrosine kinase, receptor, type 2</td>
<td>2.92</td>
<td>chr9</td>
</tr>
<tr>
<td>NUPA1</td>
<td>9891</td>
<td>NUAK family, SNF1-like kinase, 1</td>
<td>3.58</td>
<td>chr12</td>
</tr>
<tr>
<td>NUDT5</td>
<td>11164</td>
<td>Nudix (nucleoside diphosphate linked moiety X)-type motif 5</td>
<td>2.43</td>
<td>chr10</td>
</tr>
<tr>
<td>NUDT6</td>
<td>11162</td>
<td>nudix (nucleoside diphosphate linked moiety X)-type motif 6</td>
<td>2.77</td>
<td>chr4</td>
</tr>
<tr>
<td>NUP1L1</td>
<td>9818</td>
<td>Nucleopnin like 1</td>
<td>2.59</td>
<td>chr13</td>
</tr>
<tr>
<td>OBSL1</td>
<td>23363</td>
<td>obscin-like 1</td>
<td>2.53</td>
<td>chr2</td>
</tr>
<tr>
<td>OOD2</td>
<td>57451</td>
<td>ood, odd Oz/tm-h homolog 2 (Drosophila)</td>
<td>5.57</td>
<td>chr5</td>
</tr>
<tr>
<td>OOD4</td>
<td>26011</td>
<td>ood, odd Oz/tm-h homolog 4 (Drosophila)</td>
<td>3.54</td>
<td>chr11</td>
</tr>
<tr>
<td>OGT</td>
<td>8473</td>
<td>O-linked N-acetylgalactosamine (GalNAc) transferase (UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase)</td>
<td>2.02</td>
<td>chrX</td>
</tr>
<tr>
<td>OPTN</td>
<td>12906</td>
<td>O-GalNAc-transferase-interacting protein 106 KD</td>
<td>2.06</td>
<td>chr3</td>
</tr>
<tr>
<td>OFLM2A</td>
<td>169611</td>
<td>olfactomedin-like 2A</td>
<td>2.05</td>
<td>chr9</td>
</tr>
<tr>
<td>ONPSW</td>
<td>611</td>
<td>Opsin 1 (cone pigments), short-wave-sensitive (color blindness, tritan)</td>
<td>2.27</td>
<td>chr7</td>
</tr>
<tr>
<td>OPN3</td>
<td>23596</td>
<td>opsin 3 (encephalopsin, panopsin)</td>
<td>5.67</td>
<td>chr1</td>
</tr>
<tr>
<td>OPTN</td>
<td>10313</td>
<td>optineurin</td>
<td>2.42</td>
<td>chr10</td>
</tr>
<tr>
<td>OSBP3</td>
<td>114879</td>
<td>oxysterol binding protein-like 5</td>
<td>2.79</td>
<td>chr11</td>
</tr>
<tr>
<td>OSBP9</td>
<td>114883</td>
<td>oxysterol binding protein-like 9</td>
<td>2.60</td>
<td>chr1</td>
</tr>
<tr>
<td>OTX2</td>
<td>5015</td>
<td>orthodenticle homolog 2 (Drosophila)</td>
<td>2.24</td>
<td>chr14</td>
</tr>
<tr>
<td>OVIOS2</td>
<td>144203</td>
<td>avostatin 2</td>
<td>2.70</td>
<td>chr12</td>
</tr>
<tr>
<td>OXR1</td>
<td>55074</td>
<td>oxidation resistance 1</td>
<td>2.28</td>
<td>chr8</td>
</tr>
<tr>
<td>P18SRP</td>
<td>285672</td>
<td>p18 splicing regulatory protein</td>
<td>2.20</td>
<td>chr5</td>
</tr>
<tr>
<td>PABPN1</td>
<td>8106</td>
<td>poly(A) binding protein, nuclear 1</td>
<td>4.03</td>
<td>chr14</td>
</tr>
<tr>
<td>PAFAH1B1</td>
<td>5048</td>
<td>platelet-activating factor acetylhydrolase, isoform lb, alpha subunit 45kDa</td>
<td>2.08</td>
<td>chr17</td>
</tr>
<tr>
<td>PAG1</td>
<td>55824</td>
<td>phosphoprotein associated with glycosphingolipid microdomains 1</td>
<td>13.80</td>
<td>chr8</td>
</tr>
<tr>
<td>PAN3</td>
<td>259367</td>
<td>PABP1-dependent poly A-specific ribonuclease subunit PAN3</td>
<td>2.11</td>
<td>chr13</td>
</tr>
<tr>
<td>PANP4</td>
<td>167153</td>
<td>PAP associated domain containing 4</td>
<td>2.34</td>
<td>chr5</td>
</tr>
<tr>
<td>PAPOLA</td>
<td>10914</td>
<td>poly(A) polymerase alpha</td>
<td>2.22</td>
<td>chr14</td>
</tr>
<tr>
<td>PAPPA</td>
<td>5069</td>
<td>pregnancy-associated plasma protein A, pappalysin 1</td>
<td>3.38</td>
<td>chr9</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>PAGR8</td>
<td>85315</td>
<td>progestin and adipoQ receptor family member VIII</td>
<td>2.76</td>
<td>chr6</td>
</tr>
<tr>
<td>PARC</td>
<td>23113</td>
<td>a53-associated parkin-like cytoplasmic protein</td>
<td>2.04</td>
<td>chr6</td>
</tr>
<tr>
<td>PARDEG</td>
<td>84552</td>
<td>par-6 partitioning defective 6 homolog gamma (C. elegans)</td>
<td>2.10</td>
<td>chr18</td>
</tr>
<tr>
<td>PARP6</td>
<td>56965</td>
<td>poly (ADP-ribose) polymerase family, member 6</td>
<td>2.49</td>
<td>chr15</td>
</tr>
<tr>
<td>PARWA</td>
<td>55742</td>
<td>parvin, alpha</td>
<td>3.62</td>
<td>chr11</td>
</tr>
<tr>
<td>PARW</td>
<td>5074</td>
<td>PRKc, apoptosis, WTI, regulator</td>
<td>2.01</td>
<td>chr20</td>
</tr>
<tr>
<td>PAX3</td>
<td>5077</td>
<td>paired box gene 3 (Waardenburg syndrome 1)</td>
<td>7.02</td>
<td>chr2</td>
</tr>
<tr>
<td>PAX6</td>
<td>5080</td>
<td>paired box gene 6 (aniridia, keratitis)</td>
<td>92.76</td>
<td>chr11</td>
</tr>
<tr>
<td>PCAF</td>
<td>8850</td>
<td>p300/CBP-associated factor</td>
<td>3.29</td>
<td>chr3</td>
</tr>
<tr>
<td>PCBP2</td>
<td>5094</td>
<td>Poly(Rc) binding protein 2</td>
<td>2.28</td>
<td>chr12</td>
</tr>
<tr>
<td>PCDH17</td>
<td>27253</td>
<td>Protocadherin 17</td>
<td>6.86</td>
<td>chr13</td>
</tr>
<tr>
<td>PCDH18</td>
<td>54510</td>
<td>protocadherin 18</td>
<td>2.09</td>
<td>chr4</td>
</tr>
<tr>
<td>PCDH9</td>
<td>5101</td>
<td>protocadherin 9</td>
<td>8.49</td>
<td>chr13</td>
</tr>
<tr>
<td>PCDNB10</td>
<td>56126</td>
<td>protocadherin beta 10</td>
<td>3.63</td>
<td>chr5</td>
</tr>
<tr>
<td>PCDNB14</td>
<td>56122</td>
<td>protocadherin beta 14</td>
<td>2.58</td>
<td>chr5</td>
</tr>
<tr>
<td>PCGF3</td>
<td>10336</td>
<td>Polycystic kidney disease 3</td>
<td>2.57</td>
<td>chr4</td>
</tr>
<tr>
<td>PCGF4</td>
<td>648</td>
<td>polycystic kidney disease 4</td>
<td>2.51</td>
<td>chr10</td>
</tr>
<tr>
<td>PCGF5</td>
<td>84333</td>
<td>polycystic kidney disease 5</td>
<td>2.92</td>
<td>chr10</td>
</tr>
<tr>
<td>PCM1</td>
<td>5108</td>
<td>Pericentriolar material 1</td>
<td>2.91</td>
<td>chr8</td>
</tr>
<tr>
<td>PCMTD1</td>
<td>115294</td>
<td>Protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 1</td>
<td>3.12</td>
<td>chr8</td>
</tr>
<tr>
<td>PCSK5</td>
<td>5125</td>
<td>Proprotein convertase subtilisin/kexin type 5</td>
<td>4.59</td>
<td>chr9</td>
</tr>
<tr>
<td>PCTK2</td>
<td>5128</td>
<td>PCTRAE protein kinase 2</td>
<td>3.18</td>
<td>chr12</td>
</tr>
<tr>
<td>PDCD4</td>
<td>27250</td>
<td>programmed cell death 4</td>
<td>2.77</td>
<td>chr10</td>
</tr>
<tr>
<td>PDE7A</td>
<td>5150</td>
<td>phosphodiesterase 7A</td>
<td>2.00</td>
<td>chr8</td>
</tr>
<tr>
<td>PDGFC</td>
<td>56034</td>
<td>platelet-derived growth factor C</td>
<td>7.92</td>
<td>chr4</td>
</tr>
<tr>
<td>PDGFRB</td>
<td>5159</td>
<td>platelet-derived growth factor receptor, beta polypeptide</td>
<td>2.36</td>
<td>chr5</td>
</tr>
<tr>
<td>PDERN3</td>
<td>23024</td>
<td>PDZ domain containing RING finger 3</td>
<td>3.06</td>
<td>chr3</td>
</tr>
<tr>
<td>PEG10</td>
<td>23089</td>
<td>paternally expressed 10</td>
<td>2.75</td>
<td>chr17</td>
</tr>
<tr>
<td>PFAAP5</td>
<td>11443</td>
<td>Hypothetical gene CG012</td>
<td>4.32</td>
<td>chr13</td>
</tr>
<tr>
<td>PGA1</td>
<td>80055</td>
<td>GPI deacylase</td>
<td>6.04</td>
<td>chr2</td>
</tr>
<tr>
<td>PGAM5</td>
<td>5239</td>
<td>phosphoglucomutase 5</td>
<td>3.61</td>
<td>chr9</td>
</tr>
<tr>
<td>PHC2</td>
<td>1912</td>
<td>polyhemotactic-like 2 (Drosophila)</td>
<td>11.78</td>
<td>chr1</td>
</tr>
<tr>
<td>PHF10</td>
<td>55274</td>
<td>PHD finger protein 10</td>
<td>2.31</td>
<td>chr6</td>
</tr>
<tr>
<td>PHF2</td>
<td>5253</td>
<td>PHD finger protein 2</td>
<td>2.74</td>
<td>chr9</td>
</tr>
<tr>
<td>PHF20L1</td>
<td>51105</td>
<td>PHD finger protein 20-like 1</td>
<td>2.35</td>
<td>chr8</td>
</tr>
<tr>
<td>PHF21B</td>
<td>112885</td>
<td>PHD finger protein 21B</td>
<td>2.15</td>
<td>chr22</td>
</tr>
<tr>
<td>PHTF1</td>
<td>10745</td>
<td>patutative homodomain transcription factor 1</td>
<td>2.09</td>
<td>chr1</td>
</tr>
<tr>
<td>PIA1</td>
<td>8554</td>
<td>protein inhibitor of activated STAT, 1</td>
<td>2.92</td>
<td>chr15</td>
</tr>
<tr>
<td>PKCJ2A</td>
<td>5286</td>
<td>Phosphoinositide-3-kinase, class 2, alpha polypeptide</td>
<td>2.80</td>
<td>chr11</td>
</tr>
<tr>
<td>PKCJ3C</td>
<td>5289</td>
<td>Phosphoinositide-3-kinase, class 3</td>
<td>2.58</td>
<td>chr18</td>
</tr>
<tr>
<td>PKCJ3R1</td>
<td>5295</td>
<td>phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha)</td>
<td>3.61</td>
<td>chr5</td>
</tr>
<tr>
<td>PKCJ3R3</td>
<td>8053</td>
<td>phosphoinositide-3-kinase, regulatory subunit 3 (p55, gamma)</td>
<td>3.93</td>
<td>chr10</td>
</tr>
<tr>
<td>PKCJ4C</td>
<td>5297</td>
<td>phosphatidylinositol 4-kinase, catalytic, alpha polypeptide</td>
<td>2.05</td>
<td>chr20</td>
</tr>
<tr>
<td>PKCJ4CA</td>
<td>206866 // 529</td>
<td>phosphatidylinositol 4-kinase, catalytic, alpha polypeptide // hypothetical protein LOC224009</td>
<td>2.64</td>
<td>chr22</td>
</tr>
<tr>
<td>PILRB</td>
<td>29990</td>
<td>paired immunoglobin-like type 2 receptor beta</td>
<td>2.31</td>
<td>chr7</td>
</tr>
<tr>
<td>PITPA</td>
<td>5306</td>
<td>phosphatidylinositol transfer protein, alpha</td>
<td>2.52</td>
<td>chr17</td>
</tr>
<tr>
<td>PITPNB</td>
<td>23760</td>
<td>phosphatidylinositol transfer protein, beta</td>
<td>2.04</td>
<td>chr22</td>
</tr>
<tr>
<td>PKA</td>
<td>5569</td>
<td>Protein kinase (cAMP-dependent, catalytic) inhibitor alpha</td>
<td>3.14</td>
<td>chr8</td>
</tr>
<tr>
<td>PKNOX2</td>
<td>63876</td>
<td>PXK/knotched 1 homeobox 2</td>
<td>5.62</td>
<td>chr11</td>
</tr>
<tr>
<td>PKP4</td>
<td>8502</td>
<td>Plekstrin 4</td>
<td>2.36</td>
<td>chr2</td>
</tr>
<tr>
<td>PLAGL1</td>
<td>5325</td>
<td>pleiomorphic adenoma gene-like 1</td>
<td>5.59</td>
<td>chr6</td>
</tr>
<tr>
<td>PLAT</td>
<td>5327</td>
<td>plasminogen activator, tissue</td>
<td>3.10</td>
<td>chr8</td>
</tr>
<tr>
<td>PLCB1</td>
<td>23236</td>
<td>phospholipase C, beta 1 (phosphoinositide-specific)</td>
<td>2.44</td>
<td>chr20</td>
</tr>
<tr>
<td>PLCCE1</td>
<td>51196</td>
<td>phospholipase C, epsilon 1</td>
<td>2.01</td>
<td>chr10</td>
</tr>
<tr>
<td>PLCCE3</td>
<td>23007</td>
<td>phospholipase C-like 3</td>
<td>2.01</td>
<td>chr3</td>
</tr>
<tr>
<td>PLEKH4A1</td>
<td>59338</td>
<td>pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1</td>
<td>2.26</td>
<td>chr10</td>
</tr>
<tr>
<td>PLEKH4A5</td>
<td>54477</td>
<td>Pleckstrin homology domain containing, family A member 5</td>
<td>2.21</td>
<td>chr12</td>
</tr>
<tr>
<td>PLEKH7G1</td>
<td>57480</td>
<td>pleckstrin homology domain containing, family G (with Rhogef domain) member 1</td>
<td>9.86</td>
<td>chr6</td>
</tr>
<tr>
<td>PLK1</td>
<td>5347</td>
<td>Polo-like kinase 1 (Drosophila)</td>
<td>3.42</td>
<td>chr16</td>
</tr>
<tr>
<td>PLXNA1</td>
<td>5361</td>
<td>plecin A1</td>
<td>2.39</td>
<td>chr3</td>
</tr>
<tr>
<td>PLXNA2</td>
<td>5362</td>
<td>plecin A2</td>
<td>3.82</td>
<td>chr1</td>
</tr>
<tr>
<td>PLXNB2</td>
<td>23654</td>
<td>plecin B2</td>
<td>2.42</td>
<td>chr22</td>
</tr>
<tr>
<td>PLXNC1</td>
<td>10154</td>
<td>plecin C1</td>
<td>3.11</td>
<td>chr12</td>
</tr>
<tr>
<td>PMP22</td>
<td>5376</td>
<td>peripheral myelin protein 22</td>
<td>7.19</td>
<td>chr17</td>
</tr>
<tr>
<td>PMR2 5376 /// 5830</td>
<td>postmeiotic segregation increased 2-like 1 // postmeiotic segregation increased 2-like 5</td>
<td>2.13</td>
<td>chr7</td>
<td></td>
</tr>
<tr>
<td>POFUT2</td>
<td>23275</td>
<td>protein O-fucosyltransferase 2</td>
<td>2.18</td>
<td>chr21</td>
</tr>
<tr>
<td>POLR2J2</td>
<td>246721</td>
<td>DNA directed RNA polymerase II polypeptide J-related gene</td>
<td>2.34</td>
<td>chr7</td>
</tr>
<tr>
<td>POMT1</td>
<td>10585</td>
<td>protein-O-mannosyltransferase 1</td>
<td>2.28</td>
<td>chr9</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avasis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PON2</td>
<td>5445</td>
<td>Paracoxerase 2</td>
<td>2.12</td>
<td>chr7</td>
</tr>
<tr>
<td>POSTN</td>
<td>10631</td>
<td>periostin, osteoblast specific factor</td>
<td>45.10</td>
<td>chr13</td>
</tr>
<tr>
<td>POU3F2</td>
<td>5454</td>
<td>POU domain, class 3, transcription factor 2</td>
<td>3.76</td>
<td>chr6</td>
</tr>
<tr>
<td>POU4F1</td>
<td>5457</td>
<td>POU domain, class 4, transcription factor 1</td>
<td>3.70</td>
<td>chr13</td>
</tr>
<tr>
<td>PPP1B1</td>
<td>440091</td>
<td>PTPRF interacting protein, binding protein 1 (lphin beta 1) // similar to PTPRF interacting protein 1</td>
<td>-</td>
<td>chr12</td>
</tr>
<tr>
<td>PRPF1</td>
<td>9647</td>
<td>protein phosphatase 1F // (PP2C domain containing)</td>
<td>2.46</td>
<td>chr22</td>
</tr>
<tr>
<td>PRML1</td>
<td>151742</td>
<td>Protein phosphatase 1 (formerly 2C)-like</td>
<td>2.71</td>
<td>chr3</td>
</tr>
<tr>
<td>PPOX</td>
<td>5498</td>
<td>protoporphyrinogen oxigen</td>
<td>3.33</td>
<td>chr1</td>
</tr>
<tr>
<td>PPP2SC</td>
<td>5527</td>
<td>protein phosphatase 2, regulatory subunit B (B56), gamma isoform</td>
<td>2.17</td>
<td>chr14</td>
</tr>
<tr>
<td>PPP3CA</td>
<td>5530</td>
<td>Protein phosphatase 3 (formerly 2B), catalytic subunit, alpha isoform (calcineurin A alpha)</td>
<td>2.06</td>
<td>chr4</td>
</tr>
<tr>
<td>PPT2 // EGFL8</td>
<td>808646 // 9379</td>
<td>palmitoyl-protein-thioesterase 2 // EGF-like-domain, multiple 8</td>
<td>3.63</td>
<td>chr6</td>
</tr>
<tr>
<td>PRDM16</td>
<td>66976</td>
<td>PR domain containing 15</td>
<td>6.13</td>
<td>chr1</td>
</tr>
<tr>
<td>PRKX1</td>
<td>57580</td>
<td>phospholipidinositol 3,4,5-trisphosphate-dependent RAC effector 1</td>
<td>2.79</td>
<td>chr20</td>
</tr>
<tr>
<td>PRKAA2</td>
<td>5563</td>
<td>Protein kinase, AMP-activated, alpha 2 catalytic subunit</td>
<td>2.74</td>
<td>chr1</td>
</tr>
<tr>
<td>PRKX1</td>
<td>5587</td>
<td>protein kinase D1</td>
<td>2.52</td>
<td>chr14</td>
</tr>
<tr>
<td>PRKRA</td>
<td>8575</td>
<td>protein kinase, interferon-inducible double stranded RNA dependent activator</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>PRD2</td>
<td>114224</td>
<td>hypothetical protein PRO2852</td>
<td>2.03</td>
<td>chr9</td>
</tr>
<tr>
<td>PRF1</td>
<td>5627</td>
<td>protein S (alpha)</td>
<td>5.53</td>
<td>chr3</td>
</tr>
<tr>
<td>PRF46A</td>
<td>55660</td>
<td>PIP40 pre-mRNA processing factor 40 homolog A (yeast)</td>
<td>2.56</td>
<td>chr2</td>
</tr>
<tr>
<td>PRF3</td>
<td>80742</td>
<td>prion rich 3</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>PRX1</td>
<td>5396</td>
<td>paired related homobox 1</td>
<td>5.41</td>
<td>chr1</td>
</tr>
<tr>
<td>PRSS23</td>
<td>11098</td>
<td>protease, serine, 23</td>
<td>36.19</td>
<td>chr11</td>
</tr>
<tr>
<td>PRTG</td>
<td>283639</td>
<td>Ptenogen homolog (Gallus gallus)</td>
<td>38.57</td>
<td>chr15</td>
</tr>
<tr>
<td>PSCD2</td>
<td>9266</td>
<td>Pleckstrin homology, Sec7 and coiled-coil domains 2 (cytosin-2)</td>
<td>2.30</td>
<td>chr19</td>
</tr>
<tr>
<td>PSD3</td>
<td>23362</td>
<td>pleckstrin and Sec7 domain containing</td>
<td>2.42</td>
<td>chr8</td>
</tr>
<tr>
<td>PSEN1</td>
<td>5663</td>
<td>Presenilin 1 (Alzheimer disease 3)</td>
<td>2.50</td>
<td>chr14</td>
</tr>
<tr>
<td>PSMB7</td>
<td>5695</td>
<td>Proteosome (prosome, macropain) subunit, beta type, 7</td>
<td>2.13</td>
<td>chr9</td>
</tr>
<tr>
<td>PSME4</td>
<td>23198</td>
<td>Proteosome (prosome, macropain) activator subunit 4</td>
<td>2.16</td>
<td>chr12</td>
</tr>
<tr>
<td>PTB2</td>
<td>58155</td>
<td>Polyprimidine tract binding protein 2</td>
<td>2.41</td>
<td>chr1</td>
</tr>
<tr>
<td>PTE1</td>
<td>5728</td>
<td>Phosphatase and tensin homolog (mutated in multiple advanced cancers 1)</td>
<td>2.23</td>
<td>chr10</td>
</tr>
<tr>
<td>PTK2</td>
<td>5747</td>
<td>PTK2 protein tyrosine kinase 2</td>
<td>2.47</td>
<td>chr8</td>
</tr>
<tr>
<td>PTKN</td>
<td>5764</td>
<td>pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor)</td>
<td>3.49</td>
<td>chr7</td>
</tr>
<tr>
<td>PTTPN1</td>
<td>5783</td>
<td>Protein tyrosine phosphatase, receptor-type 13 (APO1-CD95) (Fas)-associated phosphatase</td>
<td>2.57</td>
<td>chr4</td>
</tr>
<tr>
<td>PTTPN21</td>
<td>11099</td>
<td>Protein tyrosine phosphatase, receptor-type 21</td>
<td>2.75</td>
<td>chr14</td>
</tr>
<tr>
<td>PTTPN3</td>
<td>8867</td>
<td>protein tyrosine phosphatase, receptor-type 5 (strinain-enriched)</td>
<td>3.59</td>
<td>chr11</td>
</tr>
<tr>
<td>PTTPR1</td>
<td>5789</td>
<td>Protein tyrosine phosphatase, receptor type, D</td>
<td>4.30</td>
<td>chr9</td>
</tr>
<tr>
<td>PTTPRQ</td>
<td>5793</td>
<td>Protein tyrosine phosphatase, receptor type, G</td>
<td>2.25</td>
<td>chr3</td>
</tr>
<tr>
<td>PTTPRJ</td>
<td>5795</td>
<td>Protein tyrosine phosphatase, receptor type, J</td>
<td>3.32</td>
<td>chr11</td>
</tr>
<tr>
<td>PTTRM</td>
<td>5797</td>
<td>protein tyrosine phosphatase, receptor type, M</td>
<td>4.86</td>
<td>chr7</td>
</tr>
<tr>
<td>PTE3</td>
<td>5806</td>
<td>pentraxin-related gene, rapidly induced by IL-1 beta</td>
<td>5.15</td>
<td>chr3</td>
</tr>
<tr>
<td>PUM2</td>
<td>23069</td>
<td>Pumilio homolog 2 (Drosophila)</td>
<td>3.87</td>
<td>chr2</td>
</tr>
<tr>
<td>PUNC</td>
<td>9543</td>
<td>Putative neuronal cell adhesion molecule</td>
<td>4.01</td>
<td>chr15</td>
</tr>
<tr>
<td>PURB</td>
<td>5814</td>
<td>purine-rich element binding protein B</td>
<td>2.26</td>
<td>chr7</td>
</tr>
<tr>
<td>PURG</td>
<td>29942</td>
<td>purine-rich element binding protein G</td>
<td>4.14</td>
<td>chr8</td>
</tr>
<tr>
<td>PVRL3</td>
<td>25945</td>
<td>Poliovirus receptor-like 3</td>
<td>2.81</td>
<td>chr3</td>
</tr>
<tr>
<td>PXMP3</td>
<td>5828</td>
<td>Peroxisomal membrane protein 3, 35kDa (Zellweger syndrome)</td>
<td>2.02</td>
<td>chr8</td>
</tr>
<tr>
<td>QKI</td>
<td>9444</td>
<td>quaking homolog, KH domain RNA binding (mouse)</td>
<td>2.74</td>
<td>chr6</td>
</tr>
<tr>
<td>RAB22A</td>
<td>57403</td>
<td>RAB22A, member RAS oncogene family</td>
<td>2.15</td>
<td>chr20</td>
</tr>
<tr>
<td>RAB27B</td>
<td>5874</td>
<td>RAB27B, member RAS oncogene family</td>
<td>3.53</td>
<td>chr18</td>
</tr>
<tr>
<td>RAB30</td>
<td>23714</td>
<td>RAB30, member RAS oncogene family</td>
<td>2.10</td>
<td>chr16</td>
</tr>
<tr>
<td>RAB31</td>
<td>11031</td>
<td>RAB31, member RAS oncogene family</td>
<td>2.18</td>
<td>chr18</td>
</tr>
<tr>
<td>RAB40B</td>
<td>10966</td>
<td>RAB40B, member RAS oncogene family</td>
<td>3.04</td>
<td>chr17</td>
</tr>
<tr>
<td>RAB6B</td>
<td>51560</td>
<td>RAB6B, member RAS oncogene family</td>
<td>2.51</td>
<td>chr3</td>
</tr>
<tr>
<td>RAB6F1</td>
<td>23258</td>
<td>RAB6 interacting protein 1</td>
<td>2.27</td>
<td>chr11</td>
</tr>
<tr>
<td>RABGAP1</td>
<td>23637</td>
<td>RAB GTPase activating protein 1</td>
<td>2.73</td>
<td>chr9</td>
</tr>
<tr>
<td>RABL2B</td>
<td>11158</td>
<td>RAB, member of RAS oncogene family-like 2B // RAB, member of RAS oncogene family</td>
<td>2.34</td>
<td>chr2</td>
</tr>
<tr>
<td>RAPF</td>
<td>5894</td>
<td>V-ral-1 murine leukemia viral oncogene homolog 1</td>
<td>2.34</td>
<td>chr3</td>
</tr>
<tr>
<td>RAI1</td>
<td>10743</td>
<td>retinoid acid induced 1</td>
<td>4.81</td>
<td>chr17</td>
</tr>
<tr>
<td>RALGD5</td>
<td>57178</td>
<td>retinoid acid induced 17</td>
<td>2.34</td>
<td>chr10</td>
</tr>
<tr>
<td>RALGBP2L2</td>
<td>440872</td>
<td>Ran binding protein 2-like</td>
<td>2.63</td>
<td>chr2</td>
</tr>
<tr>
<td>RAP1F40</td>
<td>23272</td>
<td>retinoblastoma-associated protein 14</td>
<td>2.22</td>
<td>chr3</td>
</tr>
<tr>
<td>RARB</td>
<td>5915</td>
<td>retinoid acid receptor, beta</td>
<td>2.60</td>
<td>chr3</td>
</tr>
<tr>
<td>RASA2A</td>
<td>5922</td>
<td>RAS p21 protein activator 2</td>
<td>2.88</td>
<td>chr3</td>
</tr>
<tr>
<td>RASA4A</td>
<td>8156 /// 4013</td>
<td>RAS p21 protein activator 4 // hypothetical protein FLJ21767</td>
<td>2.06</td>
<td>chr7</td>
</tr>
<tr>
<td>RASSF1</td>
<td>10125</td>
<td>RAS guanyl releasing protein 1 (calcium and DAG-regulated)</td>
<td>3.62</td>
<td>chr15</td>
</tr>
<tr>
<td>RASSF3</td>
<td>283349</td>
<td>Ras association (RalGDS/AF-6) domain family 3</td>
<td>2.25</td>
<td>chr14</td>
</tr>
<tr>
<td>RBBP6</td>
<td>5930</td>
<td>retinoblastoma binding protein 6</td>
<td>2.47</td>
<td>chr16</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>RBM24</td>
<td>221662</td>
<td>RNA binding motif protein 24</td>
<td>8.43</td>
<td>chr6</td>
</tr>
<tr>
<td>RBM25</td>
<td>58517</td>
<td>RNA binding motif protein 25</td>
<td>2.10</td>
<td>chr14</td>
</tr>
<tr>
<td>RBM33</td>
<td>155435</td>
<td>RNA binding motif protein 33</td>
<td>2.38</td>
<td>chr7</td>
</tr>
<tr>
<td>RBM48</td>
<td>83759</td>
<td>RNA binding motif protein 4B</td>
<td>2.49</td>
<td>chr11</td>
</tr>
<tr>
<td>RBM5</td>
<td>10181</td>
<td>RNA binding motif protein 5</td>
<td>2.63</td>
<td>chr3</td>
</tr>
<tr>
<td>RBM6</td>
<td>10180</td>
<td>RNA binding motif protein 6</td>
<td>3.28</td>
<td>chr3</td>
</tr>
<tr>
<td>RBMS1</td>
<td>5937</td>
<td>RNA binding motif, single stranded interacting protein 1</td>
<td>2.61</td>
<td>chr2</td>
</tr>
<tr>
<td>RBMS2</td>
<td>27303</td>
<td>RNA binding motif, single stranded interacting protein</td>
<td>2.50</td>
<td>chr3</td>
</tr>
<tr>
<td>RCBT2B</td>
<td>1102</td>
<td>regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein</td>
<td>2.95</td>
<td>chr13</td>
</tr>
<tr>
<td>RCN1</td>
<td>5954</td>
<td>reticulocalbin 1, EF-hand calcium binding domain</td>
<td>2.29</td>
<td>chr11</td>
</tr>
<tr>
<td>RCO3</td>
<td>55758</td>
<td>REST corepressor 3</td>
<td>2.47</td>
<td>chr1</td>
</tr>
<tr>
<td>RELN</td>
<td>5649</td>
<td>relen</td>
<td>15.67</td>
<td>chr7</td>
</tr>
<tr>
<td>RERE</td>
<td>473</td>
<td>Arginine-glutamic acid dipeptidase (RE) repeats</td>
<td>2.11</td>
<td>chr1</td>
</tr>
<tr>
<td>REV3L</td>
<td>5980</td>
<td>REV3-like, catalytic subunit of DNA polymerase zeta (yeast)</td>
<td>5.11</td>
<td>chr6</td>
</tr>
<tr>
<td>RFC3</td>
<td>5983</td>
<td>Replication factor C (activator 1) 3, 38kdA</td>
<td>2.37</td>
<td>chr13</td>
</tr>
<tr>
<td>RFX3</td>
<td>5991</td>
<td>Regulatory factor X, 3 (influences HLA class II expression)</td>
<td>2.83</td>
<td>chr9</td>
</tr>
<tr>
<td>RGL1</td>
<td>23179</td>
<td>nicotinamide nucleotide binding protein 1</td>
<td>7.87</td>
<td>chr1</td>
</tr>
<tr>
<td>RGS12</td>
<td>6002</td>
<td>regulator of G-protein signalling 12</td>
<td>2.04</td>
<td>chr4</td>
</tr>
<tr>
<td>RGS20</td>
<td>8601</td>
<td>regulator of G-protein signalling 20</td>
<td>2.60</td>
<td>chr8</td>
</tr>
<tr>
<td>RGS3</td>
<td>5998</td>
<td>regulator of G-protein signalling 3</td>
<td>2.24</td>
<td>chr9</td>
</tr>
<tr>
<td>RGS4</td>
<td>5998</td>
<td>regulator of G-protein signalling 4</td>
<td>8.95</td>
<td>chr1</td>
</tr>
<tr>
<td>RHOB1T1</td>
<td>9866</td>
<td>Rho-related BTB domain containing 1</td>
<td>2.75</td>
<td>chr10</td>
</tr>
<tr>
<td>RHOB1T2B</td>
<td>22836</td>
<td>Rho-related BTB domain containing 3</td>
<td>6.84</td>
<td>chr5</td>
</tr>
<tr>
<td>RHOU</td>
<td>58480</td>
<td>ras homolog gene family, member U</td>
<td>6.94</td>
<td>chr1</td>
</tr>
<tr>
<td>RN2</td>
<td>54453</td>
<td>Ras and Rab interactor 2</td>
<td>6.62</td>
<td>chr20</td>
</tr>
<tr>
<td>RIPX</td>
<td>22902</td>
<td>rap2 interacting protein x</td>
<td>5.22</td>
<td>chr4</td>
</tr>
<tr>
<td>RIT1</td>
<td>6016</td>
<td>Ras-like without CAAX 1</td>
<td>2.44</td>
<td>chr1</td>
</tr>
<tr>
<td>RNF130</td>
<td>7844</td>
<td>ring finger protein 103</td>
<td>2.85</td>
<td>chr2</td>
</tr>
<tr>
<td>RNFL103</td>
<td>55819</td>
<td>ring finger protein 130</td>
<td>3.33</td>
<td>chr5</td>
</tr>
<tr>
<td>RNF144</td>
<td>9781</td>
<td>ring finger protein 144</td>
<td>2.53</td>
<td>chr2</td>
</tr>
<tr>
<td>RNF165</td>
<td>494470</td>
<td>ring finger protein 165</td>
<td>9.91</td>
<td>chr18</td>
</tr>
<tr>
<td>RNF17S</td>
<td>285533</td>
<td>ring finger protein 175</td>
<td>3.51</td>
<td>chr4</td>
</tr>
<tr>
<td>RNF19</td>
<td>25689</td>
<td>ring finger protein 19</td>
<td>2.02</td>
<td>chr8</td>
</tr>
<tr>
<td>ROBO1</td>
<td>6091</td>
<td>Roundabout, axon guidance receptor, homolog 1 (Drosophila)</td>
<td>2.78</td>
<td>chr3</td>
</tr>
<tr>
<td>ROBO2</td>
<td>6092</td>
<td>Roundabout, axon guidance receptor, homolog 2 (Drosophila)</td>
<td>3.55</td>
<td>chr3</td>
</tr>
<tr>
<td>ROCK2</td>
<td>9475</td>
<td>Rho-associated, coiled-coil containing protein kinase 2</td>
<td>2.12</td>
<td>chr2</td>
</tr>
<tr>
<td>ROR2</td>
<td>4920</td>
<td>receptor tyrosine kinase-like orphan receptor 2</td>
<td>2.65</td>
<td>chr9</td>
</tr>
<tr>
<td>RP11-343N15.3</td>
<td>440608</td>
<td>Similar to Formin binding protein 2 (srGAP2)</td>
<td>2.87</td>
<td>chr1</td>
</tr>
<tr>
<td>RP3-473B4.1</td>
<td>159091</td>
<td>Hypothetical protein P37090</td>
<td>2.80</td>
<td>chrX</td>
</tr>
<tr>
<td>RPL28</td>
<td>6158</td>
<td>ribosomal protein L28</td>
<td>2.02</td>
<td>chr19</td>
</tr>
<tr>
<td>RPL31</td>
<td>6160</td>
<td>ribosomal protein L31</td>
<td>3.69</td>
<td>chr2</td>
</tr>
<tr>
<td>RPRC1</td>
<td>55700</td>
<td>arginine/proline rich coiled-coil 1</td>
<td>3.64</td>
<td>chr1</td>
</tr>
<tr>
<td>RPS15A</td>
<td>6210</td>
<td>Ribosomal protein S15a</td>
<td>2.67</td>
<td>chr16</td>
</tr>
<tr>
<td>RPS23</td>
<td>6228</td>
<td>ribosomal protein S23</td>
<td>3.13</td>
<td>chr5</td>
</tr>
<tr>
<td>RPS29</td>
<td>6235</td>
<td>Ribosomal protein S29</td>
<td>2.38</td>
<td>chr14</td>
</tr>
<tr>
<td>RPS6KA3</td>
<td>6197</td>
<td>ribosomal protein S6 kinase, 90kdA, polypeptide 3</td>
<td>3.80</td>
<td>chrX</td>
</tr>
<tr>
<td>RPS6KA5</td>
<td>9252</td>
<td>ribosomal protein S6 kinase, 90kdA, polypeptide 5</td>
<td>2.11</td>
<td>chr14</td>
</tr>
<tr>
<td>RNR3</td>
<td>54700</td>
<td>RNR3 RNA polymerase I transcription factor homolog (yeast)</td>
<td>2.13</td>
<td>chr16</td>
</tr>
<tr>
<td>RSB1N1</td>
<td>54665</td>
<td>round spermatid basic protein 1</td>
<td>2.23</td>
<td>chr1</td>
</tr>
<tr>
<td>RSL1D1</td>
<td>26156</td>
<td>Ribosomal L1 domain containing 1</td>
<td>4.33</td>
<td>chr16</td>
</tr>
<tr>
<td>RSNL2</td>
<td>79745</td>
<td>ribosomal RNA small</td>
<td>4.15</td>
<td>chr2</td>
</tr>
<tr>
<td>RSPO3</td>
<td>84870</td>
<td>R-spondin 3 homolog (Xenopus laevis)</td>
<td>5.79</td>
<td>chr6</td>
</tr>
<tr>
<td>RTN1</td>
<td>6252</td>
<td>reticulin 1</td>
<td>6.98</td>
<td>chr14</td>
</tr>
<tr>
<td>RUNX1</td>
<td>861</td>
<td>runt-related transcription factor 1 (acute myeloid leukemia 1; ami1 oncogene)</td>
<td>2.59</td>
<td>chr21</td>
</tr>
<tr>
<td>RUTCBC1</td>
<td>9905</td>
<td>RUN and TBC1 domain containing 1</td>
<td>2.40</td>
<td>chr17</td>
</tr>
<tr>
<td>SAPS2</td>
<td>9701</td>
<td>SAPS domain family, member 2</td>
<td>2.14</td>
<td>chr22</td>
</tr>
<tr>
<td>SBF2</td>
<td>81846</td>
<td>SET binding factor 2</td>
<td>2.11</td>
<td>chr11</td>
</tr>
<tr>
<td>SBLF</td>
<td>11037</td>
<td>stoned-B-like factor</td>
<td>3.81</td>
<td>chr2</td>
</tr>
<tr>
<td>SCL-112</td>
<td>23244</td>
<td>SCL-112 protein</td>
<td>2.34</td>
<td>chr4</td>
</tr>
<tr>
<td>SCDF5</td>
<td>79966</td>
<td>sterol-CoA desaturase 5</td>
<td>18.32</td>
<td>chr4</td>
</tr>
<tr>
<td>SCFD1</td>
<td>23256</td>
<td>SCL-112 family domain containing 1</td>
<td>2.07</td>
<td>chr14</td>
</tr>
<tr>
<td>SCHIP4</td>
<td>29970</td>
<td>schravomin interacting protein 1</td>
<td>2.20</td>
<td>chr3</td>
</tr>
<tr>
<td>SCM1H</td>
<td>22555</td>
<td>sex comb on midleg homolog 1 (Drosophila)</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>SCM1L</td>
<td>6322</td>
<td>sex comb on midleg 1 (Drosophila)</td>
<td>3.10</td>
<td>chrX</td>
</tr>
<tr>
<td>SCG51</td>
<td>11341</td>
<td>scrape responsive protein 1</td>
<td>3.80</td>
<td>chr4</td>
</tr>
<tr>
<td>SCUBE2</td>
<td>57758</td>
<td>signal peptide, CUB domain, EGF-like 2</td>
<td>2.88</td>
<td>chr11</td>
</tr>
<tr>
<td>SCUBE3</td>
<td>222663</td>
<td>signal peptide, CUB domain, EGF-like 3</td>
<td>14.58</td>
<td>chr6</td>
</tr>
<tr>
<td>SDC1</td>
<td>6382</td>
<td>syndecan 1</td>
<td>2.08</td>
<td>chr2</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SDC2</td>
<td>6383</td>
<td>syndecan 2 (heparan sulfate proteoglycan 1, cell surface-associated, fibroglycan)</td>
<td>4.54</td>
<td>chr8</td>
</tr>
<tr>
<td>SDCCA33</td>
<td>10194</td>
<td>serologically defined colon cancer antigen 33</td>
<td>4.76</td>
<td>chr18</td>
</tr>
<tr>
<td>SDHAL2</td>
<td>255812</td>
<td>succinate dehydrogenase complex, subunit A, flavoprotein-like 2</td>
<td>3.76</td>
<td>chr3</td>
</tr>
<tr>
<td>SDK1</td>
<td>221935</td>
<td>sidekick homolog 1 (chicken)</td>
<td>2.89</td>
<td>chr7</td>
</tr>
<tr>
<td>SDK2</td>
<td>54549</td>
<td>sidekick homolog 2 (chicken)</td>
<td>13.25</td>
<td>chr17</td>
</tr>
<tr>
<td>SEC15L1</td>
<td>54536</td>
<td>SEC15-like 1 (S. cerevisiae)</td>
<td>2.47</td>
<td>chr10</td>
</tr>
<tr>
<td>SED6L1</td>
<td>11336</td>
<td>SED6-like 1 (S. cerevisiae)</td>
<td>2.53</td>
<td>chr5</td>
</tr>
<tr>
<td>SELENBP1</td>
<td>8991</td>
<td>selenium binding protein 1 (Selenium binding protein 1)</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>SEMA3A</td>
<td>10371</td>
<td>sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin)</td>
<td>2.56</td>
<td>chr7</td>
</tr>
<tr>
<td>SEMA3C</td>
<td>10512</td>
<td>sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin)</td>
<td>8.75</td>
<td>chr7</td>
</tr>
<tr>
<td>SEMA3F</td>
<td>6405</td>
<td>sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin)</td>
<td>2.29</td>
<td>chr3</td>
</tr>
<tr>
<td>SEMA4F</td>
<td>10505</td>
<td>sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain</td>
<td>2.34</td>
<td>chr2</td>
</tr>
<tr>
<td>SGGH1A</td>
<td>9043</td>
<td>N-sulfoglucosamine sulfohydrolase (sulfamidase) (S. cerevisiae)</td>
<td>8.06</td>
<td>chr15</td>
</tr>
<tr>
<td>SENP6</td>
<td>20654</td>
<td>SUMO1/sentrin specific peptidase 6</td>
<td>2.82</td>
<td>chr6</td>
</tr>
<tr>
<td>SENP7</td>
<td>57337</td>
<td>SUMO1/sentrin specific peptidase 7</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>SERTA2</td>
<td>9772</td>
<td>SERTA domain containing 2</td>
<td>4.46</td>
<td>chr2</td>
</tr>
<tr>
<td>SERTA4</td>
<td>56256</td>
<td>SERTA domain containing 4</td>
<td>2.68</td>
<td>chr1</td>
</tr>
<tr>
<td>SESN3</td>
<td>143686</td>
<td>Sestrin 3</td>
<td>5.17</td>
<td>chr11</td>
</tr>
<tr>
<td>SESTD1</td>
<td>91040</td>
<td>SEC14 and spectrin domains 1</td>
<td>3.24</td>
<td>chr2</td>
</tr>
<tr>
<td>SET7</td>
<td>80954</td>
<td>SET domain-containing protein 7</td>
<td>3.84</td>
<td>chr4</td>
</tr>
<tr>
<td>SETBP1</td>
<td>26040</td>
<td>SET binding protein 1</td>
<td>3.15</td>
<td>chr18</td>
</tr>
<tr>
<td>SETD5</td>
<td>55209</td>
<td>SET domain containing 5</td>
<td>2.25</td>
<td>chr3</td>
</tr>
<tr>
<td>SETD6</td>
<td>79918</td>
<td>SET domain containing 6</td>
<td>2.02</td>
<td>chr16</td>
</tr>
<tr>
<td>SEZ6L</td>
<td>23544</td>
<td>Seizure related 6 homolog (mouse)-like</td>
<td>3.21</td>
<td>chr22</td>
</tr>
<tr>
<td>SFI1</td>
<td>9814</td>
<td>SFI1 homolog, spindle assembly associated (yeast)</td>
<td>2.49</td>
<td>chr22</td>
</tr>
<tr>
<td>SFPQ</td>
<td>6421</td>
<td>Splicing factor proline/glutamine-rich (polyproline tract binding protein associated)</td>
<td>3.94</td>
<td>chr1</td>
</tr>
<tr>
<td>SFRP2</td>
<td>6423</td>
<td>Spliceotransformed frizzled related protein 2</td>
<td>5.56</td>
<td>chr1</td>
</tr>
<tr>
<td>SFRS1</td>
<td>6426</td>
<td>Splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate splicing factor)</td>
<td>2.65</td>
<td>chr17</td>
</tr>
<tr>
<td>SFRS11</td>
<td>9295</td>
<td>splicing factor, arginine/serine-rich 11</td>
<td>4.06</td>
<td>chr1</td>
</tr>
<tr>
<td>SFRS14</td>
<td>10147</td>
<td>Splicing factor, arginine/serine-rich 14</td>
<td>2.20</td>
<td>chr19</td>
</tr>
<tr>
<td>SFRS20P</td>
<td>9169</td>
<td>Splicing factor, arginine/serine-rich 2, interacting protein</td>
<td>3.45</td>
<td>chr12</td>
</tr>
<tr>
<td>SFRS4</td>
<td>6429</td>
<td>Splicing factor, arginine/serine-rich 4</td>
<td>2.26</td>
<td>chr1</td>
</tr>
<tr>
<td>SXN1</td>
<td>94081</td>
<td>sideroflexin 1</td>
<td>2.14</td>
<td>chr5</td>
</tr>
<tr>
<td>SGB3</td>
<td>6448</td>
<td>N-sulfoglucosamine sulfohydrolase (sulfamidase)</td>
<td>2.36</td>
<td>chr17</td>
</tr>
<tr>
<td>SHBG2RIL2</td>
<td>83699</td>
<td>SH3 domain binding glutamic acid-rich protein like 2</td>
<td>2.84</td>
<td>chr6</td>
</tr>
<tr>
<td>SH3MD1</td>
<td>9644</td>
<td>SH3 multiple domains 1</td>
<td>2.26</td>
<td>chr10</td>
</tr>
<tr>
<td>SHANK3</td>
<td>85358</td>
<td>SH3 and multiple ankyrin repeat domains 3</td>
<td>2.51</td>
<td>chr22</td>
</tr>
<tr>
<td>SHC2</td>
<td>25759</td>
<td>SHC (Src homology 2 domain containing) transforming protein 2</td>
<td>2.99</td>
<td>chr19</td>
</tr>
<tr>
<td>SHRM</td>
<td>57619</td>
<td>Shroom</td>
<td>2.20</td>
<td>chr4</td>
</tr>
<tr>
<td>SID2</td>
<td>51092</td>
<td>SID1 transmembrane family, member 2</td>
<td>2.62</td>
<td>chr11</td>
</tr>
<tr>
<td>SILV</td>
<td>6490</td>
<td>silver homolog (mouse)</td>
<td>3.28</td>
<td>chr12</td>
</tr>
<tr>
<td>SIPA1L2</td>
<td>57668</td>
<td>signal-induced proliferation-associated 1 like 2</td>
<td>3.19</td>
<td>chr1</td>
</tr>
<tr>
<td>SIK3</td>
<td>6496</td>
<td>Sine oculis homeobox homolog 3 (Drosophila)</td>
<td>37.88</td>
<td>chr2</td>
</tr>
<tr>
<td>SX6</td>
<td>4990</td>
<td>sine oculis homeobox homolog 6 (Drosophila)</td>
<td>6.24</td>
<td>chr14</td>
</tr>
<tr>
<td>SLCA14</td>
<td>151473</td>
<td>solute carrier family 16 (monocarboxylic acid transporters), member 14</td>
<td>3.79</td>
<td>chr2</td>
</tr>
<tr>
<td>SLCA16A4</td>
<td>9122</td>
<td>solute carrier family 16 (monocarboxylic acid transporters), member 4</td>
<td>2.35</td>
<td>chr1</td>
</tr>
<tr>
<td>SLCA1A2</td>
<td>6506</td>
<td>solute carrier family 1 (gial high affinity glutamate transporter), member 2</td>
<td>3.01</td>
<td>chr11</td>
</tr>
<tr>
<td>SLCA1A3</td>
<td>6507</td>
<td>solute carrier family 1 (gial high affinity glutamate transporter), member 3</td>
<td>3.22</td>
<td>chr5</td>
</tr>
<tr>
<td>SLCA1A4</td>
<td>6509</td>
<td>solute carrier family 1 (glutamate/neural amino acid transporter), member 4</td>
<td>2.27</td>
<td>chr2</td>
</tr>
<tr>
<td>SLC25A16</td>
<td>8034</td>
<td>solute carrier family 25 (mitochondrial carrier, Graves disease autoantigen), member 16</td>
<td>2.37</td>
<td>chr10</td>
</tr>
<tr>
<td>SLC25A27</td>
<td>9481</td>
<td>solute carrier family 25, member 27</td>
<td>4.25</td>
<td>chr6</td>
</tr>
<tr>
<td>SLC25A37</td>
<td>9312</td>
<td>solute carrier family 25, member 37</td>
<td>3.10</td>
<td>chr8</td>
</tr>
<tr>
<td>SLC26A2</td>
<td>1836</td>
<td>solute carrier family 26 (sulfate transporter), member 2</td>
<td>2.29</td>
<td>chr5</td>
</tr>
<tr>
<td>SLC3A01</td>
<td>7779</td>
<td>solute carrier family 30 (zinc transporter), member 1</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC3D1</td>
<td>23169</td>
<td>solute carrier family 35 (UDP-gluconic acid/UDP-N-acetylgalactosamine dual transporter)</td>
<td>2.31</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC3E2</td>
<td>9956</td>
<td>solute carrier family 35, member E2</td>
<td>3.24</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC3F1</td>
<td>220553</td>
<td>solute carrier family 35, member F1</td>
<td>2.16</td>
<td>chr6</td>
</tr>
<tr>
<td>SLC3N01</td>
<td>57181</td>
<td>solute carrier family 39 (zinc transporter), member 10</td>
<td>2.96</td>
<td>chr2</td>
</tr>
<tr>
<td>SLC4A7</td>
<td>9497</td>
<td>solute carrier family 4, sodium bicarbonate cotransporter, member 7</td>
<td>2.04</td>
<td>chr3</td>
</tr>
<tr>
<td>SLC5A3</td>
<td>6526</td>
<td>solute carrier family 5 (inositol transporters), member 3</td>
<td>4.29</td>
<td>chr21</td>
</tr>
<tr>
<td>SLC6A16</td>
<td>28968</td>
<td>solute carrier family 6, member 16</td>
<td>7.77</td>
<td>chr19</td>
</tr>
<tr>
<td>SLC7A6</td>
<td>9057</td>
<td>solute carrier family 7 (caticonic amino acid transporter, y+ system), member 6</td>
<td>2.31</td>
<td>chr16</td>
</tr>
<tr>
<td>SLC8A1</td>
<td>6546</td>
<td>solute carrier family 8 (sodium/calcium exchanger), member 1</td>
<td>2.12</td>
<td>chr2</td>
</tr>
<tr>
<td>SLC9A3</td>
<td>6550</td>
<td>solute carrier family 9 (sodium/hydrogen exchanger), member 3</td>
<td>2.28</td>
<td>chr5</td>
</tr>
<tr>
<td>SLIT2</td>
<td>9353</td>
<td>slit homolog 2 (Drosophila)</td>
<td>7.63</td>
<td>chr4</td>
</tr>
<tr>
<td>SLITRK4</td>
<td>139065</td>
<td>SLIT and NTRK-like family, member 4</td>
<td>2.70</td>
<td>chrX</td>
</tr>
<tr>
<td>SLITRK5</td>
<td>26050</td>
<td>SLIT and NTRK-like family, member 5</td>
<td>3.43</td>
<td>chr13</td>
</tr>
</tbody>
</table>

Table S2: Genes overexpressed in NPC compared to HES (Fold Change > 2, α < 0.05)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLTRK6</td>
<td>84189</td>
<td>SLIT and NTRK-like family, member 6</td>
<td>6.19</td>
<td>chr13</td>
</tr>
<tr>
<td>SLN</td>
<td>6588</td>
<td>sarcoplakin</td>
<td>4.50</td>
<td>chr11</td>
</tr>
<tr>
<td>SMD3</td>
<td>4088</td>
<td>SMAD, mothers against DPP homolog 3 (Drosophila)</td>
<td>3.50</td>
<td>chr15</td>
</tr>
<tr>
<td>SMD5</td>
<td>4090</td>
<td>SMAD, mothers against DPP homolog 5 (Drosophila)</td>
<td>2.22</td>
<td>chr5</td>
</tr>
<tr>
<td>SARM2C1</td>
<td>6599</td>
<td>SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily Y</td>
<td>3.05</td>
<td>chr3</td>
</tr>
<tr>
<td>SARM2C3</td>
<td>6604</td>
<td>SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily Y</td>
<td>2.51</td>
<td>chr7</td>
</tr>
<tr>
<td>SARM2E1</td>
<td>6605</td>
<td>SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily Y</td>
<td>2.05</td>
<td>chr17</td>
</tr>
<tr>
<td>SAMP</td>
<td>56889</td>
<td>SM-11044 binding protein</td>
<td>2.38</td>
<td>chr10</td>
</tr>
<tr>
<td>SMDPL3A</td>
<td>10924</td>
<td>sphingomyelin phosphodiesterase, acid-like 3A</td>
<td>2.24</td>
<td>chr6</td>
</tr>
<tr>
<td>SMU1</td>
<td>55234</td>
<td>Smu-1 suppressor of mec-8 and unc-52 homolog (C. elegans)</td>
<td>2.41</td>
<td>chr9</td>
</tr>
<tr>
<td>SNAI2</td>
<td>6591</td>
<td>small homolog 2 (Drosophila)</td>
<td>9.44</td>
<td>chr8</td>
</tr>
<tr>
<td>SNCAL</td>
<td>6622</td>
<td>synuclein, alpha (non A4 component of amyloid precursor)</td>
<td>2.70</td>
<td>chr4</td>
</tr>
<tr>
<td>SNC1LX</td>
<td>150098</td>
<td>SHN1-like kinase // SHN1-like kinase</td>
<td>2.54</td>
<td>chr10</td>
</tr>
<tr>
<td>SNF8</td>
<td>11267</td>
<td>NSF, ESCRT-II complex subunit, homolog (S. cerevisiae)</td>
<td>2.33</td>
<td>chr17</td>
</tr>
<tr>
<td>SNRP4A1</td>
<td>6627</td>
<td>small nuclear ribonucleoprotein polyepitope A'</td>
<td>2.47</td>
<td>chr15</td>
</tr>
<tr>
<td>SNX1</td>
<td>6642</td>
<td>sorting nexin 1</td>
<td>2.14</td>
<td>chr15</td>
</tr>
<tr>
<td>SOCS3</td>
<td>9021</td>
<td>suppressor of cytokine signaling 3</td>
<td>2.60</td>
<td>chr17</td>
</tr>
<tr>
<td>SORBS2</td>
<td>8470</td>
<td>sorbin and SH3 domain containing 2</td>
<td>2.69</td>
<td>chr4</td>
</tr>
<tr>
<td>SORCS1</td>
<td>114915</td>
<td>sorcin-related VPS10 domain containing receptor 1</td>
<td>3.02</td>
<td>chr10</td>
</tr>
<tr>
<td>SORCS2</td>
<td>57537</td>
<td>sorcin-related VPS10 domain containing receptor 2</td>
<td>3.39</td>
<td>chr4</td>
</tr>
<tr>
<td>SOSTDC1</td>
<td>25928</td>
<td>sclerostin domain containing 1</td>
<td>2.03</td>
<td>chr7</td>
</tr>
<tr>
<td>SOX1</td>
<td>6656</td>
<td>SRY (sex determining region Y)-box 1</td>
<td>8.01</td>
<td>chr13</td>
</tr>
<tr>
<td>SOX10</td>
<td>6663</td>
<td>SRY (sex determining region Y)-box 10</td>
<td>2.90</td>
<td>chr22</td>
</tr>
<tr>
<td>SOX11</td>
<td>6664</td>
<td>SRY (sex determining region Y)-box 11</td>
<td>8.85</td>
<td>chr2</td>
</tr>
<tr>
<td>SOX3</td>
<td>6658</td>
<td>SRY (sex determining region Y)-box 3</td>
<td>3.38</td>
<td>chr8</td>
</tr>
<tr>
<td>SOX5</td>
<td>6660</td>
<td>SRY (sex determining region Y)-box 5</td>
<td>28.58</td>
<td>chr12</td>
</tr>
<tr>
<td>SOX6</td>
<td>55553</td>
<td>SRY (sex determining region Y)-box 6</td>
<td>7.05</td>
<td>chr11</td>
</tr>
<tr>
<td>SOX9</td>
<td>6662</td>
<td>SRY (sex determining region Y)-box 9 (campomelic dysplasia, autosomal sex-reversal)</td>
<td>5.02</td>
<td>chr17</td>
</tr>
<tr>
<td>SOXL</td>
<td>282</td>
<td>Splex transcription factor</td>
<td>16.95</td>
<td>chr7</td>
</tr>
<tr>
<td>SP1A7</td>
<td>53340</td>
<td>sperm autoantigenic protein 17</td>
<td>3.09</td>
<td>chr11</td>
</tr>
<tr>
<td>SPAG9</td>
<td>9043</td>
<td>sperm associated antigen 9</td>
<td>2.23</td>
<td>chr17</td>
</tr>
<tr>
<td>SPARC</td>
<td>6678</td>
<td>secreted protein, acidic, cysteine-rich (osteonectin) // secreted protein, acidic, cysteine-rich (osteonectin)</td>
<td>2.25</td>
<td>chr16</td>
</tr>
<tr>
<td>SPH1K</td>
<td>8877</td>
<td>sphingosine kinase 1</td>
<td>6.46</td>
<td>chr17</td>
</tr>
<tr>
<td>SPCK</td>
<td>6695</td>
<td>sparc/osteoclast, cwcw and kazal-like domains proteoglycan (testican)</td>
<td>4.73</td>
<td>chr5</td>
</tr>
<tr>
<td>SWCN1</td>
<td>10418</td>
<td>spectrin 1, extracellular matrix protein</td>
<td>9.36</td>
<td>chr17</td>
</tr>
<tr>
<td>SPPL3</td>
<td>121665</td>
<td>signal peptide peptide 3</td>
<td>2.02</td>
<td>chr12</td>
</tr>
<tr>
<td>SPBP4</td>
<td>92369</td>
<td>spalianine receptor domain and SOCS box containing 4</td>
<td>2.16</td>
<td>chr3</td>
</tr>
<tr>
<td>SPTBN1</td>
<td>6711</td>
<td>spectrin, beta, non-erythrocytic 1</td>
<td>2.29</td>
<td>chr2</td>
</tr>
<tr>
<td>SREBF1</td>
<td>6720</td>
<td>sterol regulatory element binding transcription factor 1</td>
<td>2.06</td>
<td>chr17</td>
</tr>
<tr>
<td>SRGAP2</td>
<td>23380</td>
<td>SLIT-ROBO Rho GTPase activating protein 2</td>
<td>3.08</td>
<td>chr1</td>
</tr>
<tr>
<td>SRGAP3</td>
<td>9901</td>
<td>SLIT-ROBO Rho GTPase activating protein 3</td>
<td>6.11</td>
<td>chr3</td>
</tr>
<tr>
<td>SRFP4</td>
<td>6729</td>
<td>signal recognition particle 54kDa</td>
<td>2.10</td>
<td>chr14</td>
</tr>
<tr>
<td>SRF</td>
<td>63826</td>
<td>spectrin, beta</td>
<td>4.61</td>
<td>chr17</td>
</tr>
<tr>
<td>SSBP2</td>
<td>23635</td>
<td>single-stranded DNA binding protein 2</td>
<td>7.89</td>
<td>chr5</td>
</tr>
<tr>
<td>SSF2A</td>
<td>6744</td>
<td>sperm specific antigen 2</td>
<td>4.38</td>
<td>chr2</td>
</tr>
<tr>
<td>SSH1</td>
<td>54434</td>
<td>slingshot homolog 1 (Drosophila)</td>
<td>2.21</td>
<td>chr12</td>
</tr>
<tr>
<td>SSPO</td>
<td>23145</td>
<td>SCO-spondin homolog (Bos taurus)</td>
<td>2.06</td>
<td>chr7</td>
</tr>
<tr>
<td>SSR1</td>
<td>6745</td>
<td>signal sequence receptor, alpha (translocase-associated protein alpha)</td>
<td>3.14</td>
<td>chr6</td>
</tr>
<tr>
<td>SST</td>
<td>6750</td>
<td>somatostatin</td>
<td>5.09</td>
<td>chr3</td>
</tr>
<tr>
<td>ST3GAL3</td>
<td>6487</td>
<td>ST3 beta-galactoside alpha-2,3-sialyltransferase 3</td>
<td>2.35</td>
<td>chr1</td>
</tr>
<tr>
<td>ST3GAL5</td>
<td>8869</td>
<td>ST3 beta-galactoside alpha-2,6-sialyltransferase 5</td>
<td>2.13</td>
<td>chr2</td>
</tr>
<tr>
<td>ST5</td>
<td>23635</td>
<td>suppressor of tumorigenicity 5</td>
<td>2.17</td>
<td>chr11</td>
</tr>
<tr>
<td>ST6GALNAC5</td>
<td>81849</td>
<td>ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosidase)</td>
<td>8.46</td>
<td>chr1</td>
</tr>
<tr>
<td>ST7L</td>
<td>54879</td>
<td>suppression of tumorigenicity 7 like</td>
<td>7.03</td>
<td>chr1</td>
</tr>
<tr>
<td>ST8IA2</td>
<td>8128</td>
<td>ST8 alpha-N-acetyl-neuraminyl-alpha-2,8-sialyltransferase 2</td>
<td>7.30</td>
<td>(vide)</td>
</tr>
<tr>
<td>STK17A</td>
<td>9263</td>
<td>Serine/threonine kinase 17a (apoptosis-inducing)</td>
<td>2.04</td>
<td>chr7</td>
</tr>
<tr>
<td>STM1N2</td>
<td>11075</td>
<td>stathmin-like 2</td>
<td>12.77</td>
<td>chr8</td>
</tr>
<tr>
<td>STM1N4</td>
<td>81551</td>
<td>stathmin-like 4 // stathmin-like 4</td>
<td>3.21</td>
<td>chr8</td>
</tr>
<tr>
<td>STOX1</td>
<td>219736</td>
<td>storkhead box 1</td>
<td>2.04</td>
<td>chr10</td>
</tr>
<tr>
<td>STT3B</td>
<td>201595</td>
<td>STT3, subunit of the oligosaccharyltransferase complex, homolog B (S. cerevisiae)</td>
<td>2.12</td>
<td>chr3</td>
</tr>
<tr>
<td>STX12</td>
<td>23673</td>
<td>syntanxin 12</td>
<td>2.42</td>
<td>chr1</td>
</tr>
<tr>
<td>STX7</td>
<td>8417</td>
<td>Syntanxin 7</td>
<td>2.33</td>
<td>chr6</td>
</tr>
<tr>
<td>SULF1</td>
<td>23213</td>
<td>sulfatase 1</td>
<td>20.55</td>
<td>chr8</td>
</tr>
<tr>
<td>SUP7L</td>
<td>9913</td>
<td>suppressor of Ty7 (S. cerevisiae)-like</td>
<td>2.06</td>
<td>chr2</td>
</tr>
<tr>
<td>SURI4001H1</td>
<td>51111</td>
<td>suppressor of vanadate 4-20 homolog 1 (Drosophila)</td>
<td>2.41</td>
<td>chr11</td>
</tr>
<tr>
<td>SVIL</td>
<td>6840</td>
<td>supervilin</td>
<td>2.59</td>
<td>chr10</td>
</tr>
<tr>
<td>SYNE1</td>
<td>23345</td>
<td>spectrin repeat containing, nuclear envelope 1</td>
<td>2.07</td>
<td>chr6</td>
</tr>
<tr>
<td>SYT11</td>
<td>23208</td>
<td>synaptotagmin XI</td>
<td>3.88</td>
<td>chr1</td>
</tr>
</tbody>
</table>
Table S2: Genes overexpressed in NPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC up</th>
<th>Chromosome Number/Avadis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYT17</td>
<td>51760</td>
<td>Synaptogamin XVII</td>
<td>3.76</td>
<td>chr16</td>
</tr>
<tr>
<td>SYT2L</td>
<td>54843</td>
<td>synaptogamin-like 2</td>
<td>5.56</td>
<td>chr11</td>
</tr>
<tr>
<td>TAF15</td>
<td>8148</td>
<td>TAF15 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 68kDa</td>
<td>2.84</td>
<td>chr17</td>
</tr>
<tr>
<td>TAGLN3</td>
<td>29114</td>
<td>transgelin 3</td>
<td>3.36</td>
<td>chr3</td>
</tr>
<tr>
<td>TAPI-2</td>
<td>80034</td>
<td>TGF-beta induced apoptosis protein 2</td>
<td>2.28</td>
<td>chr2</td>
</tr>
<tr>
<td>TANGC</td>
<td>85641</td>
<td>TPR domain, arkyrin-repeat and coiled-coil-containing</td>
<td>2.91</td>
<td>chrC</td>
</tr>
<tr>
<td>TARDBP</td>
<td>23435</td>
<td>TAR DNA binding protein</td>
<td>2.19</td>
<td>chr1</td>
</tr>
<tr>
<td>TBC1D12</td>
<td>23232</td>
<td>TBC1 domain family, member 12</td>
<td>2.51</td>
<td>chr10</td>
</tr>
<tr>
<td>TBC1D3</td>
<td>14060</td>
<td>TBC1 domain family, member 3 // TBC1 domain family, member 3C</td>
<td>6.00</td>
<td>chr17 _random</td>
</tr>
<tr>
<td>TBC1D8</td>
<td>11138</td>
<td>TBC1 domain family, member 8 (with GRAM domain)</td>
<td>2.20</td>
<td>chr2</td>
</tr>
<tr>
<td>TBL1X</td>
<td>6907</td>
<td>transducin (beta)-like 1X-linked</td>
<td>2.71</td>
<td>chrX</td>
</tr>
<tr>
<td>TBP1G1</td>
<td>84897</td>
<td>transforming growth factor beta regulator 1</td>
<td>2.48</td>
<td>chr11</td>
</tr>
<tr>
<td>TCF12</td>
<td>6938</td>
<td>Transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)</td>
<td>2.55</td>
<td>chr15</td>
</tr>
<tr>
<td>TCF8</td>
<td>6935</td>
<td>Transcription factor 8 (represses interleukin 2 expression)</td>
<td>6.03</td>
<td>chr10</td>
</tr>
<tr>
<td>TDRD7</td>
<td>23424</td>
<td>tudor domain containing 7</td>
<td>3.05</td>
<td>chr9</td>
</tr>
<tr>
<td>TEAD1</td>
<td>7003</td>
<td>TEA domain family member 1 (SV40 transcriptional enhancer factor)</td>
<td>2.63</td>
<td>chr11</td>
</tr>
<tr>
<td>TERF2</td>
<td>7014</td>
<td>telomeric repeat binding factor 2</td>
<td>2.26</td>
<td>chr16</td>
</tr>
<tr>
<td>TEX10</td>
<td>54881</td>
<td>Testis expressed sequence 10</td>
<td>2.17</td>
<td>chr9</td>
</tr>
<tr>
<td>TFA2PA</td>
<td>7020</td>
<td>Transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha)</td>
<td>20.12</td>
<td>chr6</td>
</tr>
<tr>
<td>TFA2PB</td>
<td>7021</td>
<td>Transcription factor AP-2 beta (activating enhancer binding protein 2 beta)</td>
<td>13.06</td>
<td>chr6</td>
</tr>
<tr>
<td>TFGF2</td>
<td>7029</td>
<td>Transcription factor Dp-2 (E2F dimerization partner 2)</td>
<td>2.21</td>
<td>chr3</td>
</tr>
<tr>
<td>TFPI</td>
<td>7035</td>
<td>tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor)</td>
<td>4.00</td>
<td>chr2</td>
</tr>
<tr>
<td>TGBF2</td>
<td>7042</td>
<td>Transforming growth factor, beta 2</td>
<td>2.81</td>
<td>chr1</td>
</tr>
<tr>
<td>TGBFI</td>
<td>7045</td>
<td>Transforming growth factor, beta, induced, 68kDa</td>
<td>7.02</td>
<td>chr5</td>
</tr>
<tr>
<td>TGBR1</td>
<td>7046</td>
<td>Transforming growth factor, beta receptor I (activin A receptor type II-like kinase, 53kDa)</td>
<td>2.88</td>
<td>chr9</td>
</tr>
<tr>
<td>TGBR3</td>
<td>7049</td>
<td>Transforming growth factor, beta receptor III (betaTigican, 300kDa)</td>
<td>5.34</td>
<td>chr1</td>
</tr>
<tr>
<td>THBS3</td>
<td>7059</td>
<td>thrombospondin 3</td>
<td>4.71</td>
<td>chr1</td>
</tr>
<tr>
<td>TRAP2</td>
<td>23839</td>
<td>Thyroid hormone receptor associated protein 2</td>
<td>2.79</td>
<td>chr12</td>
</tr>
<tr>
<td>THSD1</td>
<td>74500</td>
<td>thrombospondin, type I, domain containing 1 // thrombospondin, type I, domain containing 2</td>
<td>3.05</td>
<td>chr13</td>
</tr>
<tr>
<td>TIA1</td>
<td>7072</td>
<td>TIA1 cytotoxic granule-associated RNA binding protein</td>
<td>2.69</td>
<td>chr2</td>
</tr>
<tr>
<td>TIA1M</td>
<td>7074</td>
<td>T cell lymphoma invasion and metastasis 1</td>
<td>3.51</td>
<td>chr21</td>
</tr>
<tr>
<td>TIFA</td>
<td>90210</td>
<td>TRAF-interacting protein with a forhead-associated domain</td>
<td>2.81</td>
<td>chr4</td>
</tr>
<tr>
<td>TIGA1</td>
<td>114915</td>
<td>TIGA1</td>
<td>2.74</td>
<td>chr5</td>
</tr>
<tr>
<td>TIP2</td>
<td>7077</td>
<td>TIMP metalloepididase inhibitor 2</td>
<td>2.40</td>
<td>chr17</td>
</tr>
<tr>
<td>TIP3</td>
<td>7078</td>
<td>TIMP metalloepididase inhibitor 3 (Sorsby fundus dystrophy, pseudoinflammatory)</td>
<td>6.97</td>
<td>chr22</td>
</tr>
<tr>
<td>TIPRL</td>
<td>261726</td>
<td>TIPRL, TOR signaling pathway regulator-like (S. cerevisiae)</td>
<td>2.24</td>
<td>chr1</td>
</tr>
<tr>
<td>TK2</td>
<td>7084</td>
<td>thymidine kinase 2, mitochondrial</td>
<td>2.16</td>
<td>chr16</td>
</tr>
<tr>
<td>TLE4</td>
<td>7091</td>
<td>transducin-like enhancer of split 4 (E(spl)1 homolog, Drosophila)</td>
<td>4.03</td>
<td>chr9</td>
</tr>
<tr>
<td>TM2D1</td>
<td>83941</td>
<td>TM2 domain containing 1</td>
<td>2.09</td>
<td>chr1</td>
</tr>
<tr>
<td>TMCC1</td>
<td>23023</td>
<td>transmembrane and coiled-coil domain family 1</td>
<td>2.08</td>
<td>chr3</td>
</tr>
<tr>
<td>TMCC3</td>
<td>57458</td>
<td>Transmembrane and coiled-coil domain family 3</td>
<td>2.53</td>
<td>chr12</td>
</tr>
<tr>
<td>TMED4</td>
<td>222068</td>
<td>transmembrane emp24 protein transport domain containing 4</td>
<td>2.59</td>
<td>chr7</td>
</tr>
<tr>
<td>TMED5F2</td>
<td>23671</td>
<td>transmembrane protein with EGF-like and two follistatin-like domains 2</td>
<td>9.12</td>
<td>chr2</td>
</tr>
<tr>
<td>TEMEM118</td>
<td>84900</td>
<td>Transmembrane protein 118</td>
<td>3.17</td>
<td>chr12</td>
</tr>
<tr>
<td>TEMEM2</td>
<td>23670</td>
<td>transmembrane protein 2</td>
<td>2.97</td>
<td>chr9</td>
</tr>
<tr>
<td>TEMEM20</td>
<td>159371</td>
<td>transmembrane protein 20</td>
<td>2.31</td>
<td>chr10</td>
</tr>
<tr>
<td>TEMEM29</td>
<td>29057</td>
<td>transmembrane protein 29</td>
<td>2.03</td>
<td>chrX</td>
</tr>
<tr>
<td>TEMEM46</td>
<td>387914</td>
<td>transmembrane protein 46</td>
<td>4.82</td>
<td>chr13</td>
</tr>
<tr>
<td>TEMEM5</td>
<td>10329</td>
<td>transmembrane protein 5</td>
<td>2.67</td>
<td>chr12</td>
</tr>
<tr>
<td>TEMEM50B</td>
<td>757</td>
<td>transmembrane protein 50B</td>
<td>2.01</td>
<td>chr21</td>
</tr>
<tr>
<td>TEMEM76</td>
<td>138050</td>
<td>transmembrane protein 76</td>
<td>4.68</td>
<td>chr8</td>
</tr>
<tr>
<td>TEMSL8</td>
<td>11013</td>
<td>thyminosin-like 8</td>
<td>2.67</td>
<td>chrX</td>
</tr>
<tr>
<td>TMT2C2</td>
<td>160335</td>
<td>Transmembrane and tetratricopeptide repeat containing 2</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>TNC</td>
<td>3371</td>
<td>tenasin C (hexabrachion)</td>
<td>6.97</td>
<td>chr9</td>
</tr>
<tr>
<td>TnTraRNA</td>
<td>283131</td>
<td>trophoblast-derived noncoding RNA</td>
<td>4.46</td>
<td>chr11</td>
</tr>
<tr>
<td>TNFA9P1</td>
<td>7126</td>
<td>tumor necrosis factor, alpha-induced protein 1 (endothelial)</td>
<td>3.35</td>
<td>chr17</td>
</tr>
<tr>
<td>TNFA9P3</td>
<td>7128</td>
<td>tumor necrosis factor, alpha-induced protein 3</td>
<td>3.65</td>
<td>chr6</td>
</tr>
<tr>
<td>TNFRSF19</td>
<td>55054</td>
<td>tumor necrosis factor receptor superfamily, member 19</td>
<td>8.90</td>
<td>chr9</td>
</tr>
<tr>
<td>TNS1</td>
<td>7145</td>
<td>tensin 1 // tensin 1</td>
<td>3.69</td>
<td>chr2</td>
</tr>
<tr>
<td>TP53INP1</td>
<td>94241</td>
<td>tumor protein p53 inducible nuclear protein 1</td>
<td>3.60</td>
<td>chr8</td>
</tr>
<tr>
<td>TPBG</td>
<td>7162</td>
<td>trophoblast glycoprotein</td>
<td>6.71</td>
<td>chr6</td>
</tr>
<tr>
<td>TPM1</td>
<td>7168</td>
<td>Tropomyosin 1 (alpha)</td>
<td>11.80</td>
<td>chr15</td>
</tr>
<tr>
<td>TRA2A</td>
<td>29866</td>
<td>Transforamer-2 alpha</td>
<td>4.88</td>
<td>chr7</td>
</tr>
<tr>
<td>TRAM2</td>
<td>9691</td>
<td>translocation associated membrane protein 2</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>TRB2</td>
<td>29861</td>
<td>ribosomes homolog 2 (Drosophila)</td>
<td>2.63</td>
<td>chr9</td>
</tr>
<tr>
<td>TRM44</td>
<td>54765</td>
<td>tripartite motif-containing 44</td>
<td>2.44</td>
<td>chr11</td>
</tr>
<tr>
<td>TRM45</td>
<td>80263</td>
<td>tripartite motif-containing 45</td>
<td>2.69</td>
<td>chr1</td>
</tr>
<tr>
<td>TRM50B</td>
<td>375593</td>
<td>tripartite motif-containing 50B</td>
<td>3.84</td>
<td>chr7</td>
</tr>
</tbody>
</table>
Global transcriptomic analysis of several cell lines and datasets with a focus on the developmental stages of neural and mesenchymal progenitors derived from human embryonic stem cells is presented. The data is used to identify genes that are differentially expressed between these stages and to provide insights into the underlying molecular mechanisms. Notably, the analysis reveals a number of genes that are overexpressed in NPCs compared to NES, including WNT5B, WNT5A, WNT2B, and WHSC1. These genes are involved in various cellular processes and have been implicated in the regulation of neural development. The study also highlights the importance of transcriptional profiling in understanding the complex regulatory networks that govern cell fate determination in embryonic stem cells.
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSB1</td>
<td>26118</td>
<td>WD repeat and SOCS box-containing 1</td>
<td>7.05</td>
<td>chr17</td>
</tr>
<tr>
<td>WWOX</td>
<td>51741</td>
<td>B-box and SPRY domain containing</td>
<td>2.51</td>
<td>chr16</td>
</tr>
<tr>
<td>XPA</td>
<td>7507</td>
<td>xeroderma pigmentosum, complementation group A</td>
<td>4.10</td>
<td>chr9</td>
</tr>
<tr>
<td>XPR1</td>
<td>9213</td>
<td>Xenotropic and polypolitic retrovirus receptor</td>
<td>2.32</td>
<td>chr1</td>
</tr>
<tr>
<td>YAF2</td>
<td>10138</td>
<td>YY1 associated factor 2</td>
<td>4.72</td>
<td>chr12</td>
</tr>
<tr>
<td>YEATS2</td>
<td>56689</td>
<td>YEATS domain containing 2</td>
<td>3.40</td>
<td>chr3</td>
</tr>
<tr>
<td>YPEL1</td>
<td>29799</td>
<td>ypepe-like 1 (Drosophila)</td>
<td>2.76</td>
<td>chr22</td>
</tr>
<tr>
<td>YPEL2</td>
<td>388403</td>
<td>ypepe-like 2 (Drosophila)</td>
<td>3.51</td>
<td>chr17</td>
</tr>
<tr>
<td>YPEL5</td>
<td>51646</td>
<td>ypepe-like 5 (Drosophila)</td>
<td>2.92</td>
<td>chr2</td>
</tr>
<tr>
<td>ZADH2</td>
<td>284273</td>
<td>zinc binding alcohol dehydrogenase, domain containing 2</td>
<td>6.70</td>
<td>chr18</td>
</tr>
<tr>
<td>ZAK</td>
<td>51776</td>
<td>sterile alpha motif and leucine zipper containing kinase AZK</td>
<td>2.45</td>
<td>chr2</td>
</tr>
<tr>
<td>ZBTB10</td>
<td>65986</td>
<td>zinc finger and BTB domain containing 10</td>
<td>2.33</td>
<td>chr8</td>
</tr>
<tr>
<td>ZBTB16</td>
<td>7704</td>
<td>zinc finger and BTB domain containing 16</td>
<td>12.49</td>
<td>chr11</td>
</tr>
<tr>
<td>ZBTB20</td>
<td>26137</td>
<td>zinc finger and BTB domain containing 20</td>
<td>2.97</td>
<td>chr3</td>
</tr>
<tr>
<td>ZBTB33</td>
<td>10009</td>
<td>zinc finger and BTB domain containing 33</td>
<td>2.01</td>
<td>chrX</td>
</tr>
<tr>
<td>ZBTB4</td>
<td>57659</td>
<td>zinc finger and BTB domain containing 4</td>
<td>2.08</td>
<td>chr17</td>
</tr>
<tr>
<td>ZC3H11A</td>
<td>9877</td>
<td>zinc finger CCCH-type containing 11A</td>
<td>2.08</td>
<td>chr1</td>
</tr>
<tr>
<td>ZC3H12B</td>
<td>340554</td>
<td>zinc finger CCCH-type containing 12B</td>
<td>2.18</td>
<td>chrX</td>
</tr>
<tr>
<td>ZC3H12C</td>
<td>85463</td>
<td>zinc finger CCCH-type containing 12C</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>ZC3H8</td>
<td>84524</td>
<td>zinc finger CCCH-type containing 8</td>
<td>2.17</td>
<td>chr2</td>
</tr>
<tr>
<td>ZC3H211</td>
<td>23318</td>
<td>zinc finger, CCHC domain containing 11</td>
<td>3.81</td>
<td>chr1</td>
</tr>
<tr>
<td>ZCSL2</td>
<td>285381</td>
<td>zinc finger, CSL-type containing 2</td>
<td>2.00</td>
<td>chr3</td>
</tr>
<tr>
<td>ZCSL3</td>
<td>120526</td>
<td>zinc finger, CSL-type containing 3</td>
<td>2.67</td>
<td>chr11</td>
</tr>
<tr>
<td>ZFAND3</td>
<td>60685</td>
<td>zinc finger, AN1-type domain 3</td>
<td>2.77</td>
<td>chr6</td>
</tr>
<tr>
<td>ZFHX1B</td>
<td>9839</td>
<td>zinc finger homeobox 1b</td>
<td>3.92</td>
<td>chr2</td>
</tr>
<tr>
<td>ZFXH4</td>
<td>79776</td>
<td>zinc finger homeodomain 4</td>
<td>7.11</td>
<td>chr8</td>
</tr>
<tr>
<td>ZFFP90</td>
<td>146198</td>
<td>zinc finger protein 90 homolog (mouse)</td>
<td>3.17</td>
<td>chr16</td>
</tr>
<tr>
<td>ZFP21</td>
<td>23414</td>
<td>zinc finger protein, multitype 2</td>
<td>3.06</td>
<td>chr8</td>
</tr>
<tr>
<td>ZFR</td>
<td>51663</td>
<td>zinc finger RNA binding protein</td>
<td>2.01</td>
<td>chr5</td>
</tr>
<tr>
<td>ZFYVE16</td>
<td>9765</td>
<td>zinc finger, FYVE domain containing 16</td>
<td>4.24</td>
<td>chr5</td>
</tr>
<tr>
<td>ZHL1</td>
<td>11244</td>
<td>zinc fingers and homeoboxes 1</td>
<td>5.85</td>
<td>chr8</td>
</tr>
<tr>
<td>ZIC1</td>
<td>7545</td>
<td>zinc family member 1 (add-homolog, Drosophila)</td>
<td>24.39</td>
<td>chr3</td>
</tr>
<tr>
<td>ZKSCAN1</td>
<td>7586</td>
<td>zinc finger with KRB and SCAN domains 1</td>
<td>4.07</td>
<td>chr7</td>
</tr>
<tr>
<td>ZMYND11</td>
<td>10771</td>
<td>zinc finger, MYND domain containing 11</td>
<td>2.46</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF117</td>
<td>7670</td>
<td>zinc finger protein 117 (HNF9)</td>
<td>5.17</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF124</td>
<td>7678</td>
<td>zinc finger protein 124 (HNF-16)</td>
<td>3.45</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF131</td>
<td>7690</td>
<td>zinc finger protein 131 (clone pHZ-10)</td>
<td>2.04</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF141</td>
<td>7700</td>
<td>zinc finger protein 141 (clone pHZ-44)</td>
<td>2.37</td>
<td>chr4</td>
</tr>
<tr>
<td>ZNF148</td>
<td>7707</td>
<td>zinc finger protein 148 (clone PHZ-52)</td>
<td>3.57</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF161</td>
<td>7716</td>
<td>zinc finger protein 161</td>
<td>2.75</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF177</td>
<td>7730</td>
<td>zinc finger protein 177</td>
<td>2.93</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF185</td>
<td>7739</td>
<td>zinc finger protein 185 (LIM domain)</td>
<td>2.31</td>
<td>chrX</td>
</tr>
<tr>
<td>ZNF193</td>
<td>7746</td>
<td>zinc finger protein 193</td>
<td>2.42</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF218</td>
<td>128553</td>
<td>zinc finger protein 218</td>
<td>2.30</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF22</td>
<td>7570</td>
<td>zinc finger protein 22 (KOX 15)</td>
<td>2.16</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF226</td>
<td>7769</td>
<td>zinc finger protein 226</td>
<td>2.21</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF264</td>
<td>9422</td>
<td>zinc finger protein 264</td>
<td>2.17</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF266</td>
<td>10781</td>
<td>zinc finger protein 266</td>
<td>2.46</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF274</td>
<td>10782</td>
<td>zinc finger protein 274</td>
<td>2.12</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF297B</td>
<td>23099</td>
<td>zinc finger protein 297B</td>
<td>2.24</td>
<td>chr9</td>
</tr>
<tr>
<td>ZNF302</td>
<td>55900</td>
<td>zinc finger protein 302</td>
<td>2.20</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF334</td>
<td>55713</td>
<td>zinc finger protein 334</td>
<td>2.12</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF343</td>
<td>79175</td>
<td>zinc finger protein 343</td>
<td>2.21</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF346</td>
<td>23567</td>
<td>zinc finger protein 346</td>
<td>3.63</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF354B</td>
<td>117608</td>
<td>zinc finger protein 354B</td>
<td>2.27</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF37B</td>
<td>256112</td>
<td>zinc finger protein 37B (KOX 21)</td>
<td>2.25</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF390</td>
<td>222896</td>
<td>zinc finger protein 390</td>
<td>2.16</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF395</td>
<td>55683</td>
<td>zinc finger protein 395</td>
<td>2.17</td>
<td>chr8</td>
</tr>
<tr>
<td>ZNF410</td>
<td>57862</td>
<td>zinc finger protein 410</td>
<td>2.36</td>
<td>chr14</td>
</tr>
<tr>
<td>ZNF42</td>
<td>7593</td>
<td>zinc finger protein 42 (myeloid-specific retinoic acid-responsive)</td>
<td>2.01</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF436</td>
<td>80818</td>
<td>zinc finger protein 436</td>
<td>4.19</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF44</td>
<td>51710</td>
<td>zinc finger protein 44 (KOX 7)</td>
<td>3.06</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF447</td>
<td>65982</td>
<td>zinc finger protein 447</td>
<td>3.12</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF452</td>
<td>114821</td>
<td>zinc finger protein 452</td>
<td>2.01</td>
<td>chr9 (vide)</td>
</tr>
<tr>
<td>ZNF471</td>
<td>57573</td>
<td>zinc finger protein 471</td>
<td>3.01</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF503</td>
<td>84858</td>
<td>zinc finger protein 503</td>
<td>16.13</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF510</td>
<td>22869</td>
<td>zinc finger protein 510</td>
<td>2.15</td>
<td>chr9</td>
</tr>
<tr>
<td>ZNF514</td>
<td>84874</td>
<td>zinc finger protein 514</td>
<td>3.44</td>
<td>chr2</td>
</tr>
</tbody>
</table>
Table S2: Genes overexpressed in NPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC up</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNF516</td>
<td>9658</td>
<td>zinc finger protein 516</td>
<td>4.43</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF518</td>
<td>9849</td>
<td>zinc finger protein 518</td>
<td>2.33</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF519</td>
<td>162655</td>
<td>zinc finger protein 519</td>
<td>4.03</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF521</td>
<td>25925</td>
<td>zinc finger protein 521</td>
<td>13.21</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF533</td>
<td>151126</td>
<td>zinc finger protein 533</td>
<td>4.31</td>
<td>chr2</td>
</tr>
<tr>
<td>ZNF544</td>
<td>27300</td>
<td>zinc finger protein 544</td>
<td>3.33</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF548</td>
<td>147684</td>
<td>zinc finger protein 548</td>
<td>2.16</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF580</td>
<td>51157</td>
<td>zinc finger protein 580</td>
<td>2.39</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF606</td>
<td>80095</td>
<td>zinc finger protein 606</td>
<td>2.25</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF608</td>
<td>57507</td>
<td>zinc finger protein 608</td>
<td>2.55</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF618</td>
<td>114991</td>
<td>zinc finger protein 618</td>
<td>2.82</td>
<td>chr9</td>
</tr>
<tr>
<td>ZNF621</td>
<td>285268</td>
<td>zinc finger protein 621</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF629</td>
<td>23361</td>
<td>zinc finger protein 629</td>
<td>2.66</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF641</td>
<td>121274</td>
<td>zinc finger protein 641</td>
<td>3.75</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF664</td>
<td>144348</td>
<td>zinc finger protein 664</td>
<td>4.39</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF70</td>
<td>7621</td>
<td>Zinc finger protein 70 (Cos17)</td>
<td>3.67</td>
<td>chr22</td>
</tr>
<tr>
<td>ZNF703</td>
<td>80139</td>
<td>zinc finger protein 703</td>
<td>4.24</td>
<td>chr8</td>
</tr>
<tr>
<td>ZNF708</td>
<td>7562</td>
<td>Zinc finger protein 708 (KOCX8)</td>
<td>2.32</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF709</td>
<td>163051</td>
<td>zinc finger protein 709</td>
<td>2.86</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF710</td>
<td>374655</td>
<td>zinc finger protein 710</td>
<td>8.82</td>
<td>chr15</td>
</tr>
<tr>
<td>ZNF83</td>
<td>55769</td>
<td>Zinc finger protein 83 (HPF1)</td>
<td>3.79</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF84</td>
<td>7637</td>
<td>Zinc finger protein 84 (HPF2)</td>
<td>4.42</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF91</td>
<td>7644</td>
<td>Zinc finger protein 91 (HPF7, HTF10)</td>
<td>2.89</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF9F1</td>
<td>84937</td>
<td>zinc and ring finger 1</td>
<td>2.10</td>
<td>chr16</td>
</tr>
<tr>
<td>ZRF1</td>
<td>27000</td>
<td>Zuo1in related factor 1</td>
<td>2.83</td>
<td>chr7</td>
</tr>
<tr>
<td>ZSWIM6</td>
<td>57688</td>
<td>zinc finger, SWIM-type containing 8</td>
<td>5.08</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>37316</td>
<td>92935</td>
<td>methionine-tRNA synthetase 2 (mitochondrial)</td>
<td>2.04</td>
<td>chr2</td>
</tr>
<tr>
<td>37500</td>
<td>4735</td>
<td>septin 2</td>
<td>2.17</td>
<td>chr2</td>
</tr>
<tr>
<td>38861</td>
<td>23157</td>
<td>septin 6</td>
<td>2.96</td>
<td>chrX</td>
</tr>
<tr>
<td>AAMP</td>
<td>14</td>
<td>angio-associated, migratory cell protein</td>
<td>2.36</td>
<td>chr2</td>
</tr>
<tr>
<td>AARS</td>
<td>16</td>
<td>alanyl-tRNA synthetase</td>
<td>2.24</td>
<td>chr16</td>
</tr>
<tr>
<td>AASS</td>
<td>10157</td>
<td>aminoadipate-semialdehyde synthase</td>
<td>6.49</td>
<td>chr7</td>
</tr>
<tr>
<td>ABHD4</td>
<td>63874</td>
<td>adenosine diphosphate domain containing 4</td>
<td>3.19</td>
<td>chr14</td>
</tr>
<tr>
<td>ABHD5</td>
<td>51099</td>
<td>adenosine diphosphate domain containing 7</td>
<td>3.19</td>
<td>chr3</td>
</tr>
<tr>
<td>ABHD9</td>
<td>79852</td>
<td>adenosine diphosphate domain containing 9</td>
<td>5.63</td>
<td>chr19</td>
</tr>
<tr>
<td>ACA2</td>
<td>10449</td>
<td>acetyl-CoA transferase 2 (mitochondrial 3-oxyo-CoA transferase)</td>
<td>2.51</td>
<td>chr18</td>
</tr>
<tr>
<td>ACAD8</td>
<td>27034</td>
<td>acetyl-CoA dehydrogenase, family member 8</td>
<td>2.11</td>
<td>chr11</td>
</tr>
<tr>
<td>ACADSB</td>
<td>36</td>
<td>acetyl-CoA dehydrogenase, short/branched chain</td>
<td>2.18</td>
<td>chr10</td>
</tr>
<tr>
<td>ACOT7</td>
<td>11332</td>
<td>acyl-CoA thioesterase 7</td>
<td>2.37</td>
<td>chr1</td>
</tr>
<tr>
<td>AKAP7</td>
<td>10005</td>
<td>Acyl-CoA thioesterase 8</td>
<td>3.12</td>
<td>chr20</td>
</tr>
<tr>
<td>ACOX1</td>
<td>51</td>
<td>acyl-CoA synthetase 1, palmityl</td>
<td>3.16</td>
<td>chr17</td>
</tr>
<tr>
<td>ACSL1</td>
<td>2180</td>
<td>acyl-CoA synthetase long-chain family member 1</td>
<td>2.48</td>
<td>chr4</td>
</tr>
<tr>
<td>ACTB</td>
<td>60</td>
<td>actin, beta</td>
<td>2.34</td>
<td>(vitrin)</td>
</tr>
<tr>
<td>ACY1</td>
<td>95</td>
<td>aminocarboxylase 1</td>
<td>2.59</td>
<td>chr3</td>
</tr>
<tr>
<td>AD-003</td>
<td>28989</td>
<td>ADP-ribose synthase 3</td>
<td>2.48</td>
<td>chr9</td>
</tr>
<tr>
<td>ADAMTS8</td>
<td>11095</td>
<td>ADAM metalloproteinase with thrombospondin type 1 motif, 8</td>
<td>4.79</td>
<td>chr11</td>
</tr>
<tr>
<td>ADCY2</td>
<td>108</td>
<td>adenylyl cyclase 2 (brain)</td>
<td>15.50</td>
<td>chr5</td>
</tr>
<tr>
<td>ADD2</td>
<td>119</td>
<td>adenylyl cyclase 2 (beta)</td>
<td>4.26</td>
<td>chr2</td>
</tr>
<tr>
<td>ADM</td>
<td>133</td>
<td>adrenomedullin</td>
<td>2.02</td>
<td>chr11</td>
</tr>
<tr>
<td>ADRA2A</td>
<td>150</td>
<td>adrenocortical, alpha-A2A, receptor /// adrenocortical, alpha-A2, receptor</td>
<td>3.05</td>
<td>chr10</td>
</tr>
<tr>
<td>ADRM1</td>
<td>11047</td>
<td>adhesion regulating molecule 1</td>
<td>3.40</td>
<td>chr20</td>
</tr>
<tr>
<td>AER61</td>
<td>285203</td>
<td>AER61 glycosyltransferase</td>
<td>2.95</td>
<td>chr3</td>
</tr>
<tr>
<td>AFG3L2</td>
<td>10938</td>
<td>AFG3 ATPase family gene 3-like 2 (yeast)</td>
<td>2.56</td>
<td>chr18</td>
</tr>
<tr>
<td>AGPS</td>
<td>8540</td>
<td>Alkylglycerone phosphate synthase</td>
<td>2.08</td>
<td>chr2</td>
</tr>
<tr>
<td>AGTRAP</td>
<td>57085</td>
<td>angiotensin II receptor-associated protein</td>
<td>2.26</td>
<td>chr1</td>
</tr>
<tr>
<td>AIM1</td>
<td>202</td>
<td>absent in melanoma 1</td>
<td>8.04</td>
<td>chr6</td>
</tr>
<tr>
<td>AK2</td>
<td>204</td>
<td>adenylyl kinase 2</td>
<td>2.32</td>
<td>chr1</td>
</tr>
<tr>
<td>AK3L1</td>
<td>205</td>
<td>adenylyl kinase 3-like 1</td>
<td>3.20</td>
<td>chr1</td>
</tr>
<tr>
<td>AK3L1</td>
<td>205 // 387851</td>
<td>adenylyl kinase 3-like 1 /// adenylyl kinase 3-like 2</td>
<td>4.00</td>
<td>chr1</td>
</tr>
<tr>
<td>AKAP1</td>
<td>8165</td>
<td>A kinase (PRKA) anchor protein 1</td>
<td>2.21</td>
<td>chr17</td>
</tr>
<tr>
<td>AKAP7</td>
<td>9465</td>
<td>A kinase (PRKA) anchor protein 7</td>
<td>2.66</td>
<td>chr6</td>
</tr>
<tr>
<td>ALDOA</td>
<td>226</td>
<td>aldolase A, fructose-bisphosphatase</td>
<td>2.39</td>
<td>chr16</td>
</tr>
<tr>
<td>ALDOC</td>
<td>230</td>
<td>aldolase C, fructose-bisphosphatase</td>
<td>3.69</td>
<td>chr17</td>
</tr>
<tr>
<td>ALG3</td>
<td>10195</td>
<td>asparagine-linked glycosylation 3 homolog (yeast, alpha-1,3-mannosyltransferase)</td>
<td>2.21</td>
<td>chr3</td>
</tr>
<tr>
<td>ALMS1</td>
<td>7840</td>
<td>Alstrom syndrome 1</td>
<td>3.31</td>
<td>chr2</td>
</tr>
<tr>
<td>AMID</td>
<td>84883</td>
<td>apoptosis-inducing factor (AIF)-like mitochondrial-associated inducer of death</td>
<td>2.13</td>
<td>chr10</td>
</tr>
<tr>
<td>AMMECR1</td>
<td>9949</td>
<td>Alport syndrome, mental retardation, mitochondrial protein, pleiotropic loci</td>
<td>2.30</td>
<td>chrX</td>
</tr>
<tr>
<td>AMSH-LP</td>
<td>57559</td>
<td>associated molecule with the SH3 domain of STAM (AMSH) like protein</td>
<td>2.86</td>
<td>chr10</td>
</tr>
<tr>
<td>ANGEL2</td>
<td>90806</td>
<td>Angel homolog 2 (Drosophila)</td>
<td>8.58</td>
<td>chr1</td>
</tr>
<tr>
<td>ANKH1D</td>
<td>54882</td>
<td>ankrynyl repeat and KH domain containing 1</td>
<td>3.44</td>
<td>chr5</td>
</tr>
<tr>
<td>ANKRDD1</td>
<td>29123</td>
<td>ankrynyl repeat domain 11</td>
<td>2.09</td>
<td>chr16</td>
</tr>
<tr>
<td>ANKRDR9</td>
<td>51239</td>
<td>ankrynyl repeat domain 9</td>
<td>2.70</td>
<td>chr2</td>
</tr>
<tr>
<td>ANKRDR41</td>
<td>126549</td>
<td>ankrynyl repeat domain 41</td>
<td>2.22</td>
<td>chr19</td>
</tr>
<tr>
<td>ANP32A</td>
<td>8125</td>
<td>Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A</td>
<td>2.14</td>
<td>chr15</td>
</tr>
<tr>
<td>ANX4A</td>
<td>307</td>
<td>annexin A4</td>
<td>2.67</td>
<td>chr2</td>
</tr>
<tr>
<td>AP1M2</td>
<td>10053</td>
<td>adipose-related protein complex 1, mu 2 subunit</td>
<td>6.96</td>
<td>chr19</td>
</tr>
<tr>
<td>AP1S3</td>
<td>130340</td>
<td>Adaptron-related protein complex 1, sigma 3 subunit</td>
<td>2.14</td>
<td>chr2</td>
</tr>
<tr>
<td>AP2S1</td>
<td>1175</td>
<td>adipose-related protein complex 2, sigma 1 subunit</td>
<td>2.04</td>
<td>chr19</td>
</tr>
<tr>
<td>APB2B</td>
<td>323</td>
<td>amyloid beta (A4) precursor protein-binding, family B, member 2 (Fe65-like)</td>
<td>2.24</td>
<td>chr4</td>
</tr>
<tr>
<td>APOBEC3B</td>
<td>9582</td>
<td>apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B</td>
<td>2.97</td>
<td>chr22</td>
</tr>
<tr>
<td>APOC1</td>
<td>341</td>
<td>apolipoprotein C1</td>
<td>3.35</td>
<td>chr19</td>
</tr>
<tr>
<td>APOE</td>
<td>348</td>
<td>apolipoprotein E</td>
<td>3.65</td>
<td>chr19</td>
</tr>
<tr>
<td>APTR</td>
<td>353</td>
<td>adenyyl phosphoryltransferase</td>
<td>2.63</td>
<td>chr16</td>
</tr>
<tr>
<td>ARF4</td>
<td>378</td>
<td>ADP-ribosylation factor 4</td>
<td>2.25</td>
<td>chr3</td>
</tr>
<tr>
<td>ARF6</td>
<td>382</td>
<td>ADP-ribosylation factor 6</td>
<td>2.72</td>
<td>chr14</td>
</tr>
<tr>
<td>ARFGEF1</td>
<td>10565</td>
<td>ADP-ribosylation factor guanine nucleotide-exchange factor 1(brefeldin A binding protein)</td>
<td>2.46</td>
<td>chr8</td>
</tr>
<tr>
<td>ARHGA38</td>
<td>23779 // 553150</td>
<td>Rho GTPase activating protein 8 // PRS5-AKGAP8 fusion</td>
<td>4.84</td>
<td>chr22</td>
</tr>
<tr>
<td>ARHGEF5</td>
<td>7984</td>
<td>Rho guanine nucleotide exchange factor (GEF) 5</td>
<td>2.72</td>
<td>chr7</td>
</tr>
<tr>
<td>ARHGEF9</td>
<td>23229</td>
<td>Cdc42 guanine nucleotide exchange factor (GEF) 9</td>
<td>3.08</td>
<td>chrX</td>
</tr>
<tr>
<td>ARH2</td>
<td>10425</td>
<td>aradihe homolog 2 (Drosophila)</td>
<td>2.08</td>
<td>chr3</td>
</tr>
<tr>
<td>ARL8</td>
<td>221079</td>
<td>ADP-ribosylation factor 8-like</td>
<td>2.15</td>
<td>chr10</td>
</tr>
<tr>
<td>ARPC5L</td>
<td>81873</td>
<td>actin related protein 2/3 complex, subunit 5-like</td>
<td>2.33</td>
<td>chr9</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ASAHL</td>
<td>27163</td>
<td>N-acetylphosphine amidohydrolase (acid ceramidase)-like</td>
<td>2.29</td>
<td>chr4</td>
</tr>
<tr>
<td>ASS</td>
<td>445</td>
<td>argininosuccinate synthetase</td>
<td>7.38</td>
<td>chr5</td>
</tr>
<tr>
<td>ATF1</td>
<td>466</td>
<td>activating transcription factor 1</td>
<td>2.38</td>
<td>chr12</td>
</tr>
<tr>
<td>ATG3</td>
<td>64422</td>
<td>ATG3 autophagy related 3 homolog (S. cerevisiae)</td>
<td>2.62</td>
<td>chr3</td>
</tr>
<tr>
<td>ATG5</td>
<td>9474</td>
<td>ATG5 autophagy related 5 homolog (S. cerevisiae)</td>
<td>2.22</td>
<td>chr6</td>
</tr>
<tr>
<td>ATP5G1</td>
<td>516</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit d)</td>
<td>2.93</td>
<td>chr17</td>
</tr>
<tr>
<td>ATP5G3</td>
<td>518</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit d)</td>
<td>2.50</td>
<td>chr2</td>
</tr>
<tr>
<td>ATP5H</td>
<td>10476</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit d</td>
<td>2.40</td>
<td>chr9</td>
</tr>
<tr>
<td>ATP5I</td>
<td>521</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit e</td>
<td>2.51</td>
<td>chr4</td>
</tr>
<tr>
<td>ATP6V1C1</td>
<td>528</td>
<td>ATPase, H+ transporting, lysosomal 42KDa, V1 subunit C, isoform 1</td>
<td>3.29</td>
<td>chr8</td>
</tr>
<tr>
<td>ATP5B1</td>
<td>54707</td>
<td>ATP binding domain 1 family, member B</td>
<td>2.23</td>
<td>chr1</td>
</tr>
<tr>
<td>AURKAIP1</td>
<td>54998</td>
<td>aurora kinase A interacting protein 1</td>
<td>2.94</td>
<td>chr1_random</td>
</tr>
<tr>
<td>AVP1</td>
<td>60370</td>
<td>arginine vasopressin-induced 1</td>
<td>2.08</td>
<td>chr10</td>
</tr>
<tr>
<td>B3GNT7</td>
<td>93010</td>
<td>UDP-GlcNAc:betaGel beta-1,3-N-acetylglucosaminyltransferase 7</td>
<td>7.97</td>
<td>chr2</td>
</tr>
<tr>
<td>B4GALT4</td>
<td>8702</td>
<td>UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 4</td>
<td>2.26</td>
<td>chr3</td>
</tr>
<tr>
<td>BAG2</td>
<td>9532</td>
<td>BCL2-associated athanogene 2</td>
<td>4.88</td>
<td>chr6</td>
</tr>
<tr>
<td>BAG4</td>
<td>9530</td>
<td>BCL2-associated athanogene 4</td>
<td>2.02</td>
<td>chr8</td>
</tr>
<tr>
<td>BAT2D1</td>
<td>23215</td>
<td>BAT2 domain containing 1</td>
<td>2.02</td>
<td>chr1</td>
</tr>
<tr>
<td>BAX</td>
<td>581</td>
<td>BCL2-associated X protein</td>
<td>3.17</td>
<td>chr9</td>
</tr>
<tr>
<td>BCCIP</td>
<td>56647</td>
<td>BRC4a and CDKN1A interacting protein</td>
<td>2.37</td>
<td>chr10</td>
</tr>
<tr>
<td>BCL11A</td>
<td>53335</td>
<td>B-cell CLL/lymphoma 11A (zinc finger protein)</td>
<td>4.92</td>
<td>chr2</td>
</tr>
<tr>
<td>BCL11B</td>
<td>64919</td>
<td>B-cell CLL/lymphoma 11B (zinc finger protein)</td>
<td>3.88</td>
<td>chr14</td>
</tr>
<tr>
<td>BCL2L11</td>
<td>10018</td>
<td>BCL2-like 11 (apoptosis facilitator)</td>
<td>3.29</td>
<td>chr2</td>
</tr>
<tr>
<td>BCL2L12</td>
<td>83596</td>
<td>BCL2-like 12 (proline rich)</td>
<td>2.47</td>
<td>chr19</td>
</tr>
<tr>
<td>BCOR</td>
<td>54880</td>
<td>BCL6 co-repressor</td>
<td>3.24</td>
<td>chrX</td>
</tr>
<tr>
<td>BDP1</td>
<td>55814</td>
<td>B double prime 1, subunit of RNA polymerase III initiation factor</td>
<td>2.53</td>
<td>chr5</td>
</tr>
<tr>
<td>BBCD1</td>
<td>636</td>
<td>bcadual D homolog 1 (Drosophila)</td>
<td>4.31</td>
<td>chr12</td>
</tr>
<tr>
<td>BLVRA</td>
<td>644</td>
<td>biliverdin reductase A</td>
<td>2.02</td>
<td>chr7</td>
</tr>
<tr>
<td>BLVRB</td>
<td>645</td>
<td>biliverdin reductase B (flavin reductase (NADPH))</td>
<td>2.47</td>
<td>chr19</td>
</tr>
<tr>
<td>BMP2R2</td>
<td>659</td>
<td>bone morphogenetic protein receptor, type II (serine/threonine kinase)</td>
<td>2.18</td>
<td>chr2</td>
</tr>
<tr>
<td>BNC2</td>
<td>54796</td>
<td>Basosanin 2</td>
<td>2.54</td>
<td>chr9</td>
</tr>
<tr>
<td>BOLA2</td>
<td>552900</td>
<td>bola-like 2 (E. coli)</td>
<td>2.82</td>
<td>chr16</td>
</tr>
<tr>
<td>BOLA3</td>
<td>388962</td>
<td>bola-like 3 (E. coli)</td>
<td>2.09</td>
<td>chr2</td>
</tr>
<tr>
<td>BOP1</td>
<td>23246</td>
<td>block of proliferation 1</td>
<td>2.58</td>
<td>chr8</td>
</tr>
<tr>
<td>BRF4</td>
<td>673</td>
<td>v-raf murine sarcoma viral oncogene homolog B1</td>
<td>2.03</td>
<td>chr7</td>
</tr>
<tr>
<td>BRWD3</td>
<td>254065</td>
<td>chromodomain and WD repeat domain containing 3</td>
<td>2.22</td>
<td>chrX</td>
</tr>
<tr>
<td>BSCL2</td>
<td>221092 /// 26580</td>
<td>Bernardinielli-Sep congenital lipodystrophy 2 (elpin) /// heterogeneous nuclear ribonucleoprotein D</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>BSPPR</td>
<td>54836</td>
<td>B-box and SPRY domain containing</td>
<td>2.33</td>
<td>chr9</td>
</tr>
<tr>
<td>BTBD15</td>
<td>29068</td>
<td>BTB (POZ) domain containing 15</td>
<td>2.17</td>
<td>chr11</td>
</tr>
<tr>
<td>BTBD7</td>
<td>55727</td>
<td>BTB (POZ) domain containing 7</td>
<td>3.07</td>
<td>chr14</td>
</tr>
<tr>
<td>BTD</td>
<td>686</td>
<td>birtidase</td>
<td>2.34</td>
<td>chr3</td>
</tr>
<tr>
<td>BUB1</td>
<td>699</td>
<td>BUB1 budding unlimited by benzimidazoles 1 homolog (yeast)</td>
<td>2.78</td>
<td>chr2</td>
</tr>
<tr>
<td>BXDC1</td>
<td>84154</td>
<td>brix domain containing 1</td>
<td>2.04</td>
<td>chr6</td>
</tr>
<tr>
<td>BYS1L</td>
<td>705</td>
<td>blys-like</td>
<td>2.15</td>
<td>chr6</td>
</tr>
<tr>
<td>C10orf42</td>
<td>90550</td>
<td>chromosome 10 open reading frame 42</td>
<td>2.05</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf47</td>
<td>254427</td>
<td>chromosome 10 open reading frame 47</td>
<td>2.10</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf70</td>
<td>55847</td>
<td>chromosome 10 open reading frame 70</td>
<td>2.11</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf77</td>
<td>79847</td>
<td>chromosome 10 open reading frame 77</td>
<td>2.08</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf95</td>
<td>54808 /// 79946</td>
<td>Chromosome 10 open reading frame 95 /// Dymeclin</td>
<td>3.30</td>
<td>chr10</td>
</tr>
<tr>
<td>C11orf12</td>
<td>442871</td>
<td>Chromosome 11 open reading frame 32</td>
<td>2.69</td>
<td>chr11</td>
</tr>
<tr>
<td>C11orf3</td>
<td>60314</td>
<td>chromosome 12 open reading frame 10</td>
<td>2.16</td>
<td>chr12</td>
</tr>
<tr>
<td>C11orf4</td>
<td>155726</td>
<td>chromosome 12 open reading frame 11</td>
<td>2.08</td>
<td>chr12</td>
</tr>
<tr>
<td>C13orf3</td>
<td>221150</td>
<td>chromosome 13 open reading frame 3</td>
<td>2.52</td>
<td>chr13</td>
</tr>
<tr>
<td>C14orf115</td>
<td>55237</td>
<td>chromosome 14 open reading frame 15</td>
<td>7.70</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf122</td>
<td>51016</td>
<td>chromosome 14 open reading frame 12</td>
<td>2.28</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf150</td>
<td>112840</td>
<td>chromosome 14 open reading frame 150</td>
<td>2.08</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf151</td>
<td>84800</td>
<td>chromosome 14 open reading frame 151 /// chromosome 14 open reading 151</td>
<td>2.04</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf156</td>
<td>81892</td>
<td>chromosome 14 open reading frame 156 /// chromosome 14 open reading 156</td>
<td>2.26</td>
<td>chr14</td>
</tr>
<tr>
<td>C15orf25</td>
<td>55142</td>
<td>chromosome 15 open reading frame 25</td>
<td>2.25</td>
<td>chr15</td>
</tr>
<tr>
<td>C16orf35</td>
<td>8131</td>
<td>chromosome 16 open reading frame 35</td>
<td>2.07</td>
<td>chr16</td>
</tr>
<tr>
<td>C17orf39</td>
<td>79018</td>
<td>chromosome 17 open reading frame 39</td>
<td>2.20</td>
<td>chr17</td>
</tr>
<tr>
<td>C18orf25</td>
<td>148223</td>
<td>chromosome 19 open reading frame 25</td>
<td>2.08</td>
<td>chr19</td>
</tr>
<tr>
<td>C18orf33</td>
<td>64073</td>
<td>chromosome 19 open reading frame 33</td>
<td>2.81</td>
<td>chr19</td>
</tr>
<tr>
<td>C19orf1</td>
<td>56913</td>
<td>core 1 synthase, glycoprotein-N-acetylglucosamine 3-beta-galactosyltransferase</td>
<td>2.68</td>
<td>chr7</td>
</tr>
<tr>
<td>C10orf10</td>
<td>79647</td>
<td>chromosome 1 open reading frame 108</td>
<td>4.91</td>
<td>chr1</td>
</tr>
<tr>
<td>C10orf121</td>
<td>51029</td>
<td>chromosome 1 open reading frame 121</td>
<td>4.24</td>
<td>chr1</td>
</tr>
</tbody>
</table>
Table S3 : Genes downregulated in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1orf135</td>
<td>79000</td>
<td>chromosome 1 open reading frame 135</td>
<td>2.13</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf163</td>
<td>65260</td>
<td>chromosome 1 open reading frame 163</td>
<td>3.02</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf25</td>
<td>81627</td>
<td>chromosome 1 open reading frame 25</td>
<td>2.25</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf31</td>
<td>388753</td>
<td>chromosome 1 open reading frame 31</td>
<td>2.19</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf43</td>
<td>25912</td>
<td>chromosome 1 open reading frame 43</td>
<td>6.30</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf59</td>
<td>113802</td>
<td>chromosome 1 open reading frame 59</td>
<td>3.56</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf67</td>
<td>200095</td>
<td>chromosome 1 open reading frame 67</td>
<td>3.05</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf69</td>
<td>200205</td>
<td>chromosome 1 open reading frame 69</td>
<td>2.30</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf77</td>
<td>26097</td>
<td>chromosome 1 open reading frame 77</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf97</td>
<td>84791</td>
<td>chromosome 1 open reading frame 97</td>
<td>3.59</td>
<td>chr1</td>
</tr>
<tr>
<td>C1QBP</td>
<td>708</td>
<td>Complement component 1, a subcomponent binding protein</td>
<td>2.92</td>
<td>chr17</td>
</tr>
<tr>
<td>C2orf11</td>
<td>54994</td>
<td>chromosome 20 open reading frame 11</td>
<td>2.16</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf118</td>
<td>140711</td>
<td>Chromosome 20 open reading frame 118</td>
<td>8.42</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf19</td>
<td>55857</td>
<td>chromosome 20 open reading frame 19</td>
<td>2.65</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf31</td>
<td>55741</td>
<td>chromosome 20 open reading frame 31</td>
<td>2.68</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf35</td>
<td>55861</td>
<td>chromosome 20 open reading frame 35</td>
<td>3.34</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf42</td>
<td>55612</td>
<td>chromosome 20 open reading frame 42</td>
<td>7.93</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf66</td>
<td>51575</td>
<td>chromosome 20 open reading frame 6</td>
<td>2.57</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf7</td>
<td>79133</td>
<td>chromosome 20 open reading frame 7</td>
<td>2.08</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf45</td>
<td>54069</td>
<td>chromosome 21 open reading frame 45</td>
<td>2.05</td>
<td>chr21</td>
</tr>
<tr>
<td>C2orf16</td>
<td>400916</td>
<td>chromosome 22 open reading frame 16</td>
<td>3.78</td>
<td>chr22</td>
</tr>
<tr>
<td>C2F</td>
<td>10436</td>
<td>C2F protein</td>
<td>3.21</td>
<td>chr12</td>
</tr>
<tr>
<td>C3F</td>
<td>10162</td>
<td>putative protein similar to nesx (Drosophila)</td>
<td>2.56</td>
<td>chr12</td>
</tr>
<tr>
<td>C3orf14</td>
<td>57415</td>
<td>chromosome 3 open reading frame 14</td>
<td>2.29</td>
<td>chr3</td>
</tr>
<tr>
<td>C3orf18</td>
<td>7905</td>
<td>chromosome 3 open reading frame 18</td>
<td>2.65</td>
<td>chr5</td>
</tr>
<tr>
<td>C3orf117</td>
<td>112609</td>
<td>chromosome 3 open reading frame 117</td>
<td>9.75</td>
<td>chr6</td>
</tr>
<tr>
<td>C3orf150</td>
<td>115004</td>
<td>chromosome 3 open reading frame 150</td>
<td>2.12</td>
<td>chr6</td>
</tr>
<tr>
<td>C3orf189</td>
<td>221303</td>
<td>chromosome 3 open reading frame 189</td>
<td>2.21</td>
<td>chr6</td>
</tr>
<tr>
<td>C3orf192</td>
<td>116843</td>
<td>chromosome 3 open reading frame 192</td>
<td>2.41</td>
<td>chr6</td>
</tr>
<tr>
<td>C3orf211</td>
<td>79624</td>
<td>chromosome 3 open reading frame 211</td>
<td>2.19</td>
<td>chr6</td>
</tr>
<tr>
<td>C3orf55</td>
<td>51534</td>
<td>chromosome 3 open reading frame 55</td>
<td>2.34</td>
<td>chr6</td>
</tr>
<tr>
<td>C3orf62</td>
<td>81688</td>
<td>chromosome 3 open reading frame 62</td>
<td>2.14</td>
<td>chr6</td>
</tr>
<tr>
<td>C3orf66</td>
<td>29078</td>
<td>chromosome 3 open reading frame 66</td>
<td>2.97</td>
<td>chr6</td>
</tr>
<tr>
<td>C7orf20</td>
<td>51608</td>
<td>chromosome 7 open reading frame 20</td>
<td>2.00</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf28A</td>
<td>221960 /// 51622</td>
<td>chromosome 7 open reading frame 28A</td>
<td>2.42</td>
<td>chr3</td>
</tr>
<tr>
<td>C7orf50</td>
<td>115416</td>
<td>chromosome 7 open reading frame 30</td>
<td>2.05</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf58</td>
<td>137682</td>
<td>chromosome 7 open reading frame 38</td>
<td>2.34</td>
<td>chr8</td>
</tr>
<tr>
<td>C7orf42</td>
<td>157695</td>
<td>chromosome 7 open reading frame 42</td>
<td>2.07</td>
<td>chr8</td>
</tr>
<tr>
<td>C7orf41</td>
<td>138199</td>
<td>chromosome 9 open reading frame 41</td>
<td>2.26</td>
<td>chr9</td>
</tr>
<tr>
<td>C7orf82</td>
<td>79886</td>
<td>chromosome 9 open reading frame 82</td>
<td>2.01</td>
<td>chr9</td>
</tr>
<tr>
<td>CABYR</td>
<td>26256</td>
<td>calcium binding tyrosine-(Y)-phosphorylation regulated (fibrousheathin 2)</td>
<td>2.27</td>
<td>chr18</td>
</tr>
<tr>
<td>CACYPB</td>
<td>27101</td>
<td>calcycin binding protein</td>
<td>3.07</td>
<td>chr1</td>
</tr>
<tr>
<td>CADPS2</td>
<td>93664</td>
<td>Ca2+-dependent activator protein for secretion 2</td>
<td>2.86</td>
<td>chr7</td>
</tr>
<tr>
<td>CALB1</td>
<td>793</td>
<td>calbindin 1, 28kDa</td>
<td>6.00</td>
<td>chr6</td>
</tr>
<tr>
<td>CALM3</td>
<td>808</td>
<td>calmodulin 3 (phosphorylation kinase, delta)</td>
<td>2.37</td>
<td>chr19</td>
</tr>
<tr>
<td>CALN1</td>
<td>83698</td>
<td>Calneurin 1</td>
<td>3.54</td>
<td>chr7</td>
</tr>
<tr>
<td>CALU</td>
<td>813</td>
<td>calumenin</td>
<td>2.00</td>
<td>chr7</td>
</tr>
<tr>
<td>CAMKV</td>
<td>79012</td>
<td>CaM kinase-like vesicle-associated</td>
<td>2.99</td>
<td>chr3</td>
</tr>
<tr>
<td>CANX</td>
<td>821</td>
<td>calnexin</td>
<td>2.24</td>
<td>chr5</td>
</tr>
<tr>
<td>CAPG</td>
<td>822</td>
<td>capping protein (actin filament), gelsolin-like</td>
<td>6.00</td>
<td>chr2</td>
</tr>
<tr>
<td>CAPN1</td>
<td>823</td>
<td>calpain 1, (mu/l) large subunit</td>
<td>2.60</td>
<td>chr11</td>
</tr>
<tr>
<td>CAPZB</td>
<td>832</td>
<td>capping protein (actin filament) muscle Z-line, beta</td>
<td>2.03</td>
<td>chr1</td>
</tr>
<tr>
<td>CARD11</td>
<td>84433</td>
<td>caspase recruitment domain family, member 11</td>
<td>3.90</td>
<td>chr7</td>
</tr>
<tr>
<td>CARHSP1</td>
<td>23589</td>
<td>calcium regulated heat stable protein 1, 24kDa</td>
<td>2.59</td>
<td>chr16</td>
</tr>
<tr>
<td>CASP3</td>
<td>836</td>
<td>caspase 3, apoptosis-related cysteine peptidase</td>
<td>2.31</td>
<td>chr4</td>
</tr>
<tr>
<td>CBIR1</td>
<td>873</td>
<td>carbonoyl reductase 1</td>
<td>6.13</td>
<td>chr21</td>
</tr>
<tr>
<td>CBIR3</td>
<td>874</td>
<td>carbonoyl reductase 3</td>
<td>4.42</td>
<td>chr21</td>
</tr>
<tr>
<td>CCDC4</td>
<td>389206</td>
<td>coiled-coil domain containing 4</td>
<td>4.98</td>
<td>chr4</td>
</tr>
<tr>
<td>CCNA1</td>
<td>8900</td>
<td>cyclin A1</td>
<td>2.06</td>
<td>chr13</td>
</tr>
<tr>
<td>CCNA2</td>
<td>890</td>
<td>cyclin A2</td>
<td>2.16</td>
<td>chr4</td>
</tr>
<tr>
<td>CCND2</td>
<td>894</td>
<td>Cyclin D2</td>
<td>2.79</td>
<td>chr12</td>
</tr>
<tr>
<td>CCNF</td>
<td>899</td>
<td>cyclin F</td>
<td>2.60</td>
<td>chr16</td>
</tr>
<tr>
<td>CCRN4L</td>
<td>25819</td>
<td>CCR4 carbon catabolite repression 4-like (S. cerevisiae)</td>
<td>2.27</td>
<td>chr4</td>
</tr>
<tr>
<td>CCT2</td>
<td>10578</td>
<td>chaperonin containing TCP1, subunit 2 (beta)</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>CD164</td>
<td>8763</td>
<td>CD164 antigen, sialomucin</td>
<td>2.47</td>
<td>chr6</td>
</tr>
<tr>
<td>CD24</td>
<td>934</td>
<td>CD24 antigen (small cell lung carcinoma cluster 4 antigen)</td>
<td>15.01</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CD2AP</td>
<td>23607</td>
<td>CD2-associated protein</td>
<td>2.45</td>
<td>chr6</td>
</tr>
<tr>
<td>CD320</td>
<td>51293</td>
<td>CD320 antigen</td>
<td>2.22</td>
<td>chr19</td>
</tr>
<tr>
<td>CD3EAP</td>
<td>10849</td>
<td>CD3E antigen, epsilon polypeptide associated protein</td>
<td>2.65</td>
<td>chr19</td>
</tr>
<tr>
<td>CD9</td>
<td>928</td>
<td>CD9 antigen (p24)</td>
<td>9.84</td>
<td>chr12</td>
</tr>
<tr>
<td>CDC37L1</td>
<td>55664</td>
<td>CDC37 cell division cycle 37 homolog (S. cerevisiae)-like 1</td>
<td>2.81</td>
<td>chr9</td>
</tr>
<tr>
<td>CDC2A</td>
<td>157313</td>
<td>cell division cycle associated 2</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>CDC2AL</td>
<td>55355</td>
<td>cell division cycle associated 7-like</td>
<td>2.71</td>
<td>chr7</td>
</tr>
<tr>
<td>CDCP1</td>
<td>64866</td>
<td>GUB domain containing protein 1</td>
<td>3.37</td>
<td>chr3</td>
</tr>
<tr>
<td>CDH1</td>
<td>999</td>
<td>cadherin 1, type 1, E-cadherin (epithelial)</td>
<td>3.71</td>
<td>chr16</td>
</tr>
<tr>
<td>CDH3</td>
<td>1001</td>
<td>cadherin 3, type 1, P-cadherin (placental)</td>
<td>2.37</td>
<td>chr16</td>
</tr>
<tr>
<td>CDK2AP2</td>
<td>10263</td>
<td>CDK2-associated protein 2</td>
<td>2.37</td>
<td>chr11</td>
</tr>
<tr>
<td>CDK5</td>
<td>1020</td>
<td>cyclin-dependent kinase 5</td>
<td>2.01</td>
<td>chr8</td>
</tr>
<tr>
<td>CDK6</td>
<td>1021</td>
<td>cyclin-dependent kinase 6</td>
<td>3.10</td>
<td>chr7</td>
</tr>
<tr>
<td>CDK7</td>
<td>1022</td>
<td>cyclin-dependent kinase 7 (MDM2 homolog, Xenopus laevis, cdk-activating)</td>
<td>2.23</td>
<td>chr5</td>
</tr>
<tr>
<td>CDK5L</td>
<td>6792</td>
<td>Cyclin-dependent kinase 5</td>
<td>3.07</td>
<td>chrX</td>
</tr>
<tr>
<td>CEBP2</td>
<td>10153</td>
<td>CCAAT/enhancer binding protein zeta</td>
<td>3.32</td>
<td>chr2</td>
</tr>
<tr>
<td>CECR2</td>
<td>27443</td>
<td>cat eye syndrome chromosome region, candidate 2</td>
<td>3.39</td>
<td>chr22</td>
</tr>
<tr>
<td>CENTB1</td>
<td>9744</td>
<td>centaurin, beta 1</td>
<td>2.05</td>
<td>chr17</td>
</tr>
<tr>
<td>CGI-115</td>
<td>51018</td>
<td>CGI-115 protein</td>
<td>2.41</td>
<td>chr1</td>
</tr>
<tr>
<td>CGI-37</td>
<td>51388</td>
<td>comparative gene identification transcript 37</td>
<td>2.04</td>
<td>chr16</td>
</tr>
<tr>
<td>CGI-69</td>
<td>51629</td>
<td>CGI-69 protein</td>
<td>2.15</td>
<td>chr17</td>
</tr>
<tr>
<td>CGNL1</td>
<td>84952</td>
<td>cingulin-like 1</td>
<td>4.15</td>
<td>chr15</td>
</tr>
<tr>
<td>CHCHD4</td>
<td>131474</td>
<td>coiled-coil-helix-coiled-coil-helix domain containing 4</td>
<td>2.36</td>
<td>chr3</td>
</tr>
<tr>
<td>CHCHD7</td>
<td>79145</td>
<td>coiled-coil-helix-coiled-coil-helix domain containing 7</td>
<td>3.05</td>
<td>chr8</td>
</tr>
<tr>
<td>CHEK1</td>
<td>1111</td>
<td>CHK1 checkpoint homolog (S. pombe)</td>
<td>2.23</td>
<td>chr11</td>
</tr>
<tr>
<td>CHEK2</td>
<td>11200</td>
<td>CHK2 checkpoint homolog (S. pombe)</td>
<td>2.31</td>
<td>chr22</td>
</tr>
<tr>
<td>CHEST1</td>
<td>1112</td>
<td>checkpoint suppressor 1</td>
<td>2.22</td>
<td>chr14</td>
</tr>
<tr>
<td>CHFR</td>
<td>55743</td>
<td>checkpoint with forkhead and ring finger domains</td>
<td>2.40</td>
<td>chr12</td>
</tr>
<tr>
<td>CHGB</td>
<td>1114</td>
<td>chromogranin B (secretogranin 2)</td>
<td>2.32</td>
<td>chr20</td>
</tr>
<tr>
<td>CHIC2</td>
<td>26511</td>
<td>cysteine-rich hydrophobic domain 2</td>
<td>2.33</td>
<td>chr4</td>
</tr>
<tr>
<td>CHKA</td>
<td>1119</td>
<td>choline kinase alpha</td>
<td>2.08</td>
<td>chr11</td>
</tr>
<tr>
<td>CHPT1</td>
<td>56994</td>
<td>choline phosphotransferase 1</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>CHST4</td>
<td>10164</td>
<td>carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 4</td>
<td>7.93</td>
<td>chr16</td>
</tr>
<tr>
<td>CHST5</td>
<td>56548</td>
<td>carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7</td>
<td>5.10</td>
<td>chrX</td>
</tr>
<tr>
<td>CHURC1</td>
<td>91612</td>
<td>churhill domain containing 1</td>
<td>2.05</td>
<td>chr1</td>
</tr>
<tr>
<td>CIRH1A</td>
<td>84916</td>
<td>cirrhosis, autosomal recessive 1A (cirin)</td>
<td>2.18</td>
<td>chr16</td>
</tr>
<tr>
<td>CKMT1B</td>
<td>1159 /// 548596</td>
<td>creatine kinase, mitochondrial 1B // creatine kinase, mitochondrial 1A</td>
<td>10.16</td>
<td>chr15</td>
</tr>
<tr>
<td>CLCC1</td>
<td>23155</td>
<td>chloride channel CLC-like 1</td>
<td>2.38</td>
<td>chr11</td>
</tr>
<tr>
<td>CLDN10</td>
<td>9071</td>
<td>Claudin 10</td>
<td>2.04</td>
<td>chr13</td>
</tr>
<tr>
<td>CLDN23</td>
<td>137075</td>
<td>Claudin 23</td>
<td>2.16</td>
<td>chr8</td>
</tr>
<tr>
<td>CLDN6</td>
<td>9074</td>
<td>Claudin 6</td>
<td>6.34</td>
<td>chr1</td>
</tr>
<tr>
<td>CLDN7</td>
<td>1366</td>
<td>Claudin 7</td>
<td>4.38</td>
<td>chr17</td>
</tr>
<tr>
<td>CLIC4</td>
<td>25932</td>
<td>chloride intracellular channel 4</td>
<td>4.79</td>
<td>chr1</td>
</tr>
<tr>
<td>CLN8</td>
<td>2055</td>
<td>ceroid-lipofuscinosis, neuronal 8 (epilepsy, progressive with mental retardation)</td>
<td>2.50</td>
<td>chr6</td>
</tr>
<tr>
<td>COBL</td>
<td>23242</td>
<td>corono-bleu homolog (mouse)</td>
<td>6.85</td>
<td>chr7</td>
</tr>
<tr>
<td>COL9A3</td>
<td>1299</td>
<td>collagen, type IX, alpha 3</td>
<td>2.94</td>
<td>chr20</td>
</tr>
<tr>
<td>COMM07</td>
<td>149951</td>
<td>COMM domain containing 7</td>
<td>2.26</td>
<td>chr20</td>
</tr>
<tr>
<td>CMODT1</td>
<td>118811</td>
<td>calecho-O-methyltransferase domain containing 1</td>
<td>4.63</td>
<td>chr10</td>
</tr>
<tr>
<td>COQ3</td>
<td>51805</td>
<td>coenzyme Q3 homolog, mitochondrial 1B</td>
<td>2.28</td>
<td>chr6</td>
</tr>
<tr>
<td>COX5B</td>
<td>1329</td>
<td>cytochrome c oxidase subunit Vb</td>
<td>2.15</td>
<td>chr2</td>
</tr>
<tr>
<td>COX6A1</td>
<td>1337</td>
<td>cytochrome c oxidase subunit Vla polypeptide 1 /// cytochrome c oxidase subunit Va</td>
<td>9.62</td>
<td>chr6 // (vide)</td>
</tr>
<tr>
<td>COX7B</td>
<td>1349</td>
<td>cytochrome c oxidase subunit VIIIib</td>
<td>2.17</td>
<td>chrX</td>
</tr>
<tr>
<td>CPT1A</td>
<td>1374</td>
<td>carnitine palmitoyltransferase 1A (liver)</td>
<td>3.19</td>
<td>chr11</td>
</tr>
<tr>
<td>CRB3</td>
<td>92359</td>
<td>crumbs homolog 3 (Drosophila)</td>
<td>2.25</td>
<td>chr19</td>
</tr>
<tr>
<td>CRK7</td>
<td>51755</td>
<td>CDC2-related protein kinase 7</td>
<td>2.06</td>
<td>chr17</td>
</tr>
<tr>
<td>CRSP2</td>
<td>9082</td>
<td>cofactor required for Sp1 transcriptional activation, subunit 2, 150kDa</td>
<td>2.01</td>
<td>chrX</td>
</tr>
<tr>
<td>CRTAP</td>
<td>10491</td>
<td>cartilage associated protein</td>
<td>2.22</td>
<td>chr3</td>
</tr>
<tr>
<td>CRYM</td>
<td>1428</td>
<td>cysulin, mu</td>
<td>3.28</td>
<td>chr16</td>
</tr>
<tr>
<td>CSN4A</td>
<td>8531</td>
<td>cold shock domain protein A</td>
<td>2.46</td>
<td>chr12</td>
</tr>
<tr>
<td>CSNK1E</td>
<td>1454</td>
<td>Casein kinase 1, epsilon</td>
<td>2.32</td>
<td>chr22</td>
</tr>
<tr>
<td>CSNK2A1</td>
<td>1457</td>
<td>casein kinase 2, alpha 1 polypeptide</td>
<td>3.50</td>
<td>chr20</td>
</tr>
<tr>
<td>CSPG5</td>
<td>10675</td>
<td>chondroitin sulfate proteoglycan 5 (neuroglycan C)</td>
<td>2.00</td>
<td>chr3</td>
</tr>
<tr>
<td>CSTF1</td>
<td>1477</td>
<td>cleavage stimulation factor, 3', pre-RNA, subunit 1, 50kDa</td>
<td>2.27</td>
<td>chr20</td>
</tr>
<tr>
<td>CSTF2</td>
<td>1478</td>
<td>cleavage stimulation factor, 3', pre-RNA, subunit 2, 64kDa</td>
<td>2.49</td>
<td>chrX</td>
</tr>
<tr>
<td>CTBP2</td>
<td>1488</td>
<td>C-terminal binding protein 2</td>
<td>2.12</td>
<td>chr5</td>
</tr>
<tr>
<td>CTTN1A</td>
<td>1495</td>
<td>Catenin (cadherin-associated protein), alpha 1, 102kDa</td>
<td>2.16</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CTPS2</td>
<td>56474</td>
<td>CTP synthase II</td>
<td>3.06</td>
<td>chrX</td>
</tr>
<tr>
<td>CTSC</td>
<td>1075</td>
<td>cathepsin C</td>
<td>5.33</td>
<td>chr11</td>
</tr>
<tr>
<td>CTSD</td>
<td>1509</td>
<td>cathepsin D (lysosomal aspartyl peptidase)</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>CTTN</td>
<td>2017</td>
<td>contactin</td>
<td>2.25</td>
<td>chr11</td>
</tr>
<tr>
<td>CUL4A</td>
<td>8451</td>
<td>Cullin 4A</td>
<td>2.30</td>
<td>chr13</td>
</tr>
<tr>
<td>CXADR</td>
<td>1525</td>
<td>coxsackie virus and adenovirus receptor</td>
<td>2.26</td>
<td>chr21</td>
</tr>
<tr>
<td>CXCL12</td>
<td>6367</td>
<td>chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)</td>
<td>4.19</td>
<td>chr10</td>
</tr>
<tr>
<td>CXCL5</td>
<td>6374</td>
<td>chemokine (C-X-C motif) ligand 5</td>
<td>5.46</td>
<td>chr4</td>
</tr>
<tr>
<td>CXCL6</td>
<td>6372</td>
<td>chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2)</td>
<td>2.39</td>
<td>chr4</td>
</tr>
<tr>
<td>Cxorf15</td>
<td>55787</td>
<td>chromosome X open reading frame 15</td>
<td>2.21</td>
<td>chrX</td>
</tr>
<tr>
<td>Cxorf26</td>
<td>51260</td>
<td>chromosome X open reading frame 26</td>
<td>2.38</td>
<td>chrX</td>
</tr>
<tr>
<td>Cxorf39</td>
<td>139231</td>
<td>Chromosome X open reading frame 39</td>
<td>2.36</td>
<td>chrX</td>
</tr>
<tr>
<td>CYB5</td>
<td>1528</td>
<td>cytokerin b-5</td>
<td>2.55</td>
<td>chr18</td>
</tr>
<tr>
<td>CYB5R2</td>
<td>51700</td>
<td>cytokerin b5 reductase</td>
<td>2.28</td>
<td>chr11</td>
</tr>
<tr>
<td>CYBA</td>
<td>1535</td>
<td>cytokerin b-245, alpha polypeptide</td>
<td>2.07</td>
<td>chr16</td>
</tr>
<tr>
<td>CYP2B7P1</td>
<td>1556</td>
<td>cytochrome P450, family 2, subfamily B, polypeptide 7 pseudogene 1</td>
<td>2.44</td>
<td>chr19</td>
</tr>
<tr>
<td>CYP2S1</td>
<td>29785</td>
<td>cytochrome P450, family 2, subfamily S, polypeptide 1</td>
<td>8.51</td>
<td>chr19</td>
</tr>
<tr>
<td>CYP4X1</td>
<td>260293</td>
<td>cytochrome P450, family 4, subfamily X, polypeptide</td>
<td>2.77</td>
<td>chr1</td>
</tr>
<tr>
<td>D15Swa75e</td>
<td>27351</td>
<td>DNA segment, Chr 15, Wayne State University 75, expressed</td>
<td>2.20</td>
<td>chr22</td>
</tr>
<tr>
<td>D14S234E</td>
<td>27065</td>
<td>DNA segment on chromosome 4 (unique) 234 expressed sequence</td>
<td>2.46</td>
<td>chr4</td>
</tr>
<tr>
<td>DAB1</td>
<td>115209 // 1604</td>
<td>disabled homolog 1 (Drosophila) // OM1 homolog, zinc metalloprotease</td>
<td>2.78</td>
<td>chr1</td>
</tr>
<tr>
<td>DAF</td>
<td>1604</td>
<td>decay accelerating factor for complement (CD55, Cromer blood group system)</td>
<td>3.89</td>
<td>chr1</td>
</tr>
<tr>
<td>DATF1</td>
<td>11083</td>
<td>death associated transcription factor 1</td>
<td>3.24</td>
<td>chr20</td>
</tr>
<tr>
<td>DAZAP1</td>
<td>26528</td>
<td>DAZ associated protein 1</td>
<td>2.19</td>
<td>chr19</td>
</tr>
<tr>
<td>DCBC1</td>
<td>1620</td>
<td>deleted in bladder cancer 1</td>
<td>7.99</td>
<td>chr9</td>
</tr>
<tr>
<td>DCAMKL1</td>
<td>9201</td>
<td>doublecortin and CaM kinase-like 1</td>
<td>5.60</td>
<td>chr13</td>
</tr>
<tr>
<td>DCPS</td>
<td>28860</td>
<td>decapping enzyme, scavenger</td>
<td>2.54</td>
<td>chr11</td>
</tr>
<tr>
<td>DCUN1D5</td>
<td>84259</td>
<td>DCN1, defective in cullin neddylation 1, domain containing 5 (S. cerevisiae)</td>
<td>2.03</td>
<td>chr11</td>
</tr>
<tr>
<td>DCXR</td>
<td>51181</td>
<td>dicarboxyl-L-xylulose reductase</td>
<td>2.53</td>
<td>chr17</td>
</tr>
<tr>
<td>DDT</td>
<td>1652</td>
<td>D-dopachrome tautomerase</td>
<td>4.84</td>
<td>chr22</td>
</tr>
<tr>
<td>DDX18</td>
<td>8886</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 18</td>
<td>2.50</td>
<td>chr2</td>
</tr>
<tr>
<td>DDX25</td>
<td>29118</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 25</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>DDX3X</td>
<td>1654</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked</td>
<td>2.68</td>
<td>chrX</td>
</tr>
<tr>
<td>DDX5X</td>
<td>23586</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 58</td>
<td>2.05</td>
<td>chr9</td>
</tr>
<tr>
<td>DENND2C</td>
<td>163259</td>
<td>DENN/MADD domain containing 2C</td>
<td>2.83</td>
<td>chr1</td>
</tr>
<tr>
<td>DENTR</td>
<td>8562</td>
<td>density-regulated protein</td>
<td>2.68</td>
<td>chr12</td>
</tr>
<tr>
<td>DERL1</td>
<td>79139</td>
<td>Der1-like domain family, member 1</td>
<td>2.00</td>
<td>chr8</td>
</tr>
<tr>
<td>DFFA</td>
<td>1676</td>
<td>DNA fragmentation factor, 45Ss, alpha polypeptide</td>
<td>2.10</td>
<td>chr1</td>
</tr>
<tr>
<td>DHCRC7</td>
<td>1717</td>
<td>7-dehydrocholesterol reductase</td>
<td>2.49</td>
<td>chr11</td>
</tr>
<tr>
<td>DHFR</td>
<td>1719</td>
<td>dihydrofolate reductase</td>
<td>2.19</td>
<td>chr4</td>
</tr>
<tr>
<td>DIAPH2</td>
<td>1730</td>
<td>diaphanous homolog 2 (Drosophila)</td>
<td>3.20</td>
<td>chrX</td>
</tr>
<tr>
<td>DIPA</td>
<td>11007</td>
<td>hepatitis delta antigen-interacting protein A</td>
<td>2.71</td>
<td>chr11</td>
</tr>
<tr>
<td>DKC1</td>
<td>1736</td>
<td>dyskeratosis congenita 1, dyskerin</td>
<td>2.46</td>
<td>chrX</td>
</tr>
<tr>
<td>DKFZP564F0</td>
<td>25940</td>
<td>DKFZP564F0522 protein</td>
<td>2.66</td>
<td>chr2</td>
</tr>
<tr>
<td>DKFZP564J0</td>
<td>25923</td>
<td>DKFZP564J0863 protein</td>
<td>3.00</td>
<td>chr1</td>
</tr>
<tr>
<td>DKFZP564J1</td>
<td>25854</td>
<td>DKFZP564J102 protein</td>
<td>2.97</td>
<td>chr4</td>
</tr>
<tr>
<td>DKFZP564J1J</td>
<td>54458</td>
<td>DKFZP564J157 protein</td>
<td>2.71</td>
<td>chr12</td>
</tr>
<tr>
<td>DKFZP564M0</td>
<td>25806</td>
<td>DKFZP564M082 protein</td>
<td>2.21</td>
<td>chr11</td>
</tr>
<tr>
<td>DMXL1</td>
<td>1657</td>
<td>Dmxe-like 1</td>
<td>2.13</td>
<td>chr5</td>
</tr>
<tr>
<td>DNAJAJ2</td>
<td>10294</td>
<td>DNAJ (Hsp40) homolog, subfamily A, member 2</td>
<td>4.57</td>
<td>chr16</td>
</tr>
<tr>
<td>DNAJA4</td>
<td>55466</td>
<td>DNAJ (Hsp40) homolog, subfamily A, member 4</td>
<td>2.45</td>
<td>chr15</td>
</tr>
<tr>
<td>DNAJB6</td>
<td>10049</td>
<td>DNAJ (Hsp40) homolog, subfamily B, member 6</td>
<td>4.52</td>
<td>chr7</td>
</tr>
<tr>
<td>DNL1</td>
<td>8655</td>
<td>dynein, cytoplasmic, light polypeptide 1</td>
<td>2.05</td>
<td>chr14</td>
</tr>
<tr>
<td>DNM3TA</td>
<td>1788</td>
<td>DNA (cytosine-5-)methyltransferase 3 alpha</td>
<td>2.08</td>
<td>chr2</td>
</tr>
<tr>
<td>DNM3TB</td>
<td>1789</td>
<td>DNA (cytosine-5-)methyltransferase 3 beta</td>
<td>7.56</td>
<td>chr20</td>
</tr>
<tr>
<td>DNP2EP</td>
<td>23549</td>
<td>aspartyl aminopeptidase</td>
<td>3.20</td>
<td>chr2</td>
</tr>
<tr>
<td>DOK4</td>
<td>9732</td>
<td>dedicator of cytokinesis 4</td>
<td>2.02</td>
<td>chr7</td>
</tr>
<tr>
<td>DOK5</td>
<td>80005</td>
<td>dedicator of cytokinesis 5</td>
<td>3.08</td>
<td>chr8</td>
</tr>
<tr>
<td>DPH2</td>
<td>1802</td>
<td>DPH2 homolog (S. cerevisiae)</td>
<td>2.22</td>
<td>chr1</td>
</tr>
<tr>
<td>DPM1</td>
<td>8813</td>
<td>Dolichyl-phosphate mannosetransferase polypeptide 1, catalytic subunit</td>
<td>2.15</td>
<td>chr20</td>
</tr>
<tr>
<td>DPP3</td>
<td>10072</td>
<td>dippeptidylpeptidase 3</td>
<td>2.22</td>
<td>chr11</td>
</tr>
<tr>
<td>DPPA2</td>
<td>151871</td>
<td>developmental pluripotency associated 2</td>
<td>11.70</td>
<td>chr3</td>
</tr>
<tr>
<td>DPPA3</td>
<td>359787</td>
<td>developmental pluripotency associated 3</td>
<td>7.34</td>
<td>chr14</td>
</tr>
<tr>
<td>DPPA4</td>
<td>55211</td>
<td>developmental pluripotency associated 4</td>
<td>6.72</td>
<td>chr3</td>
</tr>
<tr>
<td>DPPA5</td>
<td>340168</td>
<td>developmental pluripotency associated 5</td>
<td>4.32</td>
<td>chr6</td>
</tr>
<tr>
<td>DPYSL3</td>
<td>1809</td>
<td>dihydropyrimidinase-like 3</td>
<td>4.18</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DR1</td>
<td>1810</td>
<td>down-regulator of transcription 1, TBP-binding (negative cofactor 2)</td>
<td>2.71</td>
<td>chr1</td>
</tr>
<tr>
<td>DRCN1B1A</td>
<td>84668</td>
<td>down-regulated by Ctnnb1, a</td>
<td>2.92</td>
<td>chr7</td>
</tr>
<tr>
<td>DRO2</td>
<td>1819</td>
<td>developmentally regulated GTP binding protein 2</td>
<td>2.02</td>
<td>chr17</td>
</tr>
<tr>
<td>DRIM</td>
<td>27340</td>
<td>down-regulated in metastasis</td>
<td>2.03</td>
<td>chr12</td>
</tr>
<tr>
<td>DSTN</td>
<td>11034</td>
<td>Destrin (actin depolymerizing factor)</td>
<td>2.37</td>
<td>chr20</td>
</tr>
<tr>
<td>DSU</td>
<td>55686</td>
<td>ditude suppressor</td>
<td>2.53</td>
<td>chr2</td>
</tr>
<tr>
<td>DTW2D</td>
<td>283605</td>
<td>DTW domain containing 2</td>
<td>2.07</td>
<td>chr5</td>
</tr>
<tr>
<td>DTXGL</td>
<td>151636</td>
<td>delta 3-like (Drosophila)</td>
<td>2.52</td>
<td>chr3</td>
</tr>
<tr>
<td>DUSL</td>
<td>56931</td>
<td>dihydrotripeptide synthase 3-like (S. cerevisiae)</td>
<td>2.02</td>
<td>chr19</td>
</tr>
<tr>
<td>DUSP5</td>
<td>1847</td>
<td>dual specificity phosphatase 5</td>
<td>2.48</td>
<td>chr10</td>
</tr>
<tr>
<td>DUT</td>
<td>1854</td>
<td>dUTP pyrophosphatase</td>
<td>2.95</td>
<td>chr15</td>
</tr>
<tr>
<td>DXS879E</td>
<td>8270</td>
<td>DNA segment on chromosome X (unique) 9879 expressed sequence</td>
<td>3.11</td>
<td>chrX</td>
</tr>
<tr>
<td>E2G5</td>
<td>26355</td>
<td>growth and transformation-dependent protein</td>
<td>2.08</td>
<td>chr3</td>
</tr>
<tr>
<td>EAF2</td>
<td>55840</td>
<td>ELL associated factor 2</td>
<td>3.45</td>
<td>chr3</td>
</tr>
<tr>
<td>EBNA1BP2</td>
<td>10969</td>
<td>EBNA1 binding protein 2</td>
<td>2.28</td>
<td>chr1</td>
</tr>
<tr>
<td>ECT11</td>
<td>54596</td>
<td>hypothetical protein FLJ10884</td>
<td>7.60</td>
<td>chr1</td>
</tr>
<tr>
<td>EDG7</td>
<td>23566</td>
<td>Endothelial differentiation, lysophosphatidic acid G-protein-coupled receptor</td>
<td>4.52</td>
<td>chr12</td>
</tr>
<tr>
<td>EHO4</td>
<td>30844</td>
<td>EHO-domain containing 4</td>
<td>2.20</td>
<td>chr15</td>
</tr>
<tr>
<td>EIF1AX</td>
<td>1964</td>
<td>eukaryotic translation initiation factor 1A, X-linked</td>
<td>2.49</td>
<td>chr1</td>
</tr>
<tr>
<td>EIF2AK4</td>
<td>440275</td>
<td>eukaryotic translation initiation factor 2 alpha kinase 4</td>
<td>3.08</td>
<td>chr15</td>
</tr>
<tr>
<td>EIF2C2</td>
<td>27161</td>
<td>Eukaryotic translation initiation factor 2C, 2</td>
<td>2.23</td>
<td>chr15</td>
</tr>
<tr>
<td>EIF3S12</td>
<td>27335</td>
<td>eukaryotic translation initiation factor 3, subunit 12</td>
<td>2.17</td>
<td>chr19</td>
</tr>
<tr>
<td>EIF3S4</td>
<td>8666</td>
<td>eukaryotic translation initiation factor 3, subunit 4 delta, 44kDa</td>
<td>2.18</td>
<td>chr19</td>
</tr>
<tr>
<td>EIF4E3</td>
<td>317649</td>
<td>eukaryotic translation initiation factor 4E member 3</td>
<td>2.61</td>
<td>chr3</td>
</tr>
<tr>
<td>EIF4EBP1</td>
<td>1978</td>
<td>eukaryotic translation initiation factor 4E binding protein 1</td>
<td>3.37</td>
<td>chr8</td>
</tr>
<tr>
<td>EIF5</td>
<td>1983</td>
<td>eukaryotic translation initiation factor 5</td>
<td>2.36</td>
<td>chr14</td>
</tr>
<tr>
<td>EIF5A</td>
<td>1984</td>
<td>eukaryotic translation initiation factor 5A</td>
<td>4.16</td>
<td>chr10</td>
</tr>
<tr>
<td>ELL2</td>
<td>22936</td>
<td>elongation factor, RNA polymerase II, 2</td>
<td>3.13</td>
<td>chr1</td>
</tr>
<tr>
<td>ELL3</td>
<td>80237</td>
<td>elongation factor RNA polymerase II-like 3</td>
<td>2.49</td>
<td>chr15</td>
</tr>
<tr>
<td>ENP1</td>
<td>5167</td>
<td>eucarotidyl pyrophosphatase/phosphodiesterase 1</td>
<td>4.84</td>
<td>chr6</td>
</tr>
<tr>
<td>ENSA</td>
<td>2029</td>
<td>endosulfine alpha</td>
<td>2.22</td>
<td>chr1</td>
</tr>
<tr>
<td>EPB41L4B</td>
<td>54566</td>
<td>erythrocye membrane protein band 4.1 like 4B</td>
<td>7.33</td>
<td>chr9</td>
</tr>
<tr>
<td>EPB41L5S</td>
<td>57669</td>
<td>erythrocye membrane protein band 4.1 like 5</td>
<td>3.65</td>
<td>chr2</td>
</tr>
<tr>
<td>EPHA1</td>
<td>2041</td>
<td>EPH receptor A1</td>
<td>8.89</td>
<td>chr7</td>
</tr>
<tr>
<td>EPS8L1</td>
<td>54869</td>
<td>EPS8-like 1</td>
<td>2.46</td>
<td>chr19</td>
</tr>
<tr>
<td>EPS8L2</td>
<td>64767</td>
<td>EPS8-like 2</td>
<td>3.98</td>
<td>chr11</td>
</tr>
<tr>
<td>ERBB2</td>
<td>2064</td>
<td>erb-b2 erbthoblastic leukemia viral oncogene homolog 2, neuro/glial blast cell autoantibody related</td>
<td>2.54</td>
<td>chr17</td>
</tr>
<tr>
<td>ESCO1</td>
<td>114799</td>
<td>establishment of cohesion homolog 1 homolog 1 (S. cerevisiae)</td>
<td>2.39</td>
<td>chr18</td>
</tr>
<tr>
<td>ESRRA</td>
<td>2101</td>
<td>estrogen-related receptor alpha</td>
<td>2.10</td>
<td>chr11</td>
</tr>
<tr>
<td>ETF1</td>
<td>2107</td>
<td>eukaryotic translation termination factor 1</td>
<td>2.07</td>
<td>chr5</td>
</tr>
<tr>
<td>ET4</td>
<td>2118</td>
<td>eukaryotic gene variant 4 (E1A enhancer binding protein, E1AF) // eukaryotic gene variant 4 (E1A enhancer binding protein, E1AF)</td>
<td>3.34</td>
<td>chr22</td>
</tr>
<tr>
<td>EXOSC2</td>
<td>23404</td>
<td>exosome component 2</td>
<td>2.62</td>
<td>chr9</td>
</tr>
<tr>
<td>EXOSC3</td>
<td>51010</td>
<td>exosome component 3</td>
<td>3.11</td>
<td>chr9</td>
</tr>
<tr>
<td>EXOSC4</td>
<td>54512</td>
<td>exosome component 4</td>
<td>2.09</td>
<td>chr6</td>
</tr>
<tr>
<td>EXOSC5</td>
<td>56915</td>
<td>exosome component 5</td>
<td>2.95</td>
<td>chr19</td>
</tr>
<tr>
<td>F11R</td>
<td>50848</td>
<td>F11 receptor</td>
<td>3.53</td>
<td>chr1</td>
</tr>
<tr>
<td>F2RL1</td>
<td>2150</td>
<td>coagulation factor II (thrombin) receptor-like 1</td>
<td>5.03</td>
<td>chr5</td>
</tr>
<tr>
<td>F8A1</td>
<td>8263</td>
<td>coagulation factor VIII-associated (intronic transcript) 1</td>
<td>2.09</td>
<td>chrX</td>
</tr>
<tr>
<td>FABP5</td>
<td>2171</td>
<td>fatty acid binding protein 5 (psoriasis-associated)</td>
<td>2.87</td>
<td>chr7</td>
</tr>
<tr>
<td>FADS3</td>
<td>3995</td>
<td>fatty acid desaturase 3</td>
<td>3.05</td>
<td>chr11</td>
</tr>
<tr>
<td>FAIM</td>
<td>55179</td>
<td>Fas apoptotic inhibitory molecule</td>
<td>2.14</td>
<td>chr3</td>
</tr>
<tr>
<td>Falz</td>
<td>2186</td>
<td>fetal Alzheimer antigen</td>
<td>3.35</td>
<td>chr17</td>
</tr>
<tr>
<td>FAM29A</td>
<td>54801</td>
<td>family with sequence similarity 29, member A</td>
<td>2.01</td>
<td>chr7</td>
</tr>
<tr>
<td>FAM6A</td>
<td>116228</td>
<td>family with sequence similarity 36, member A</td>
<td>2.46</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM46B</td>
<td>115572</td>
<td>family with sequence similarity 46, member B</td>
<td>8.50</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM68A</td>
<td>284716</td>
<td>family with sequence similarity 80, member A</td>
<td>2.18</td>
<td>chr1</td>
</tr>
<tr>
<td>FAMR1A2</td>
<td>388685 /// 572347</td>
<td>family with sequence similarity 91, member A2 // FLJ39739 protein</td>
<td>3.61</td>
<td>chr1</td>
</tr>
<tr>
<td>FANCNF</td>
<td>2188</td>
<td>Fanconi anemia, complementation group F</td>
<td>2.23</td>
<td>chr11</td>
</tr>
<tr>
<td>FARSLA</td>
<td>2193</td>
<td>phenylalanine-tRNA synthetase-like, alpha subunit</td>
<td>2.95</td>
<td>chr19</td>
</tr>
<tr>
<td>FBX1L5</td>
<td>79176</td>
<td>F-box and leucine-rich repeat protein 15</td>
<td>2.31</td>
<td>chr10</td>
</tr>
<tr>
<td>FBX1L6</td>
<td>146330</td>
<td>F-box and leucine-rich repeat protein 16</td>
<td>4.14</td>
<td>chr16</td>
</tr>
<tr>
<td>FBXO2</td>
<td>26232</td>
<td>F-box protein 2</td>
<td>2.96</td>
<td>chr1</td>
</tr>
<tr>
<td>FBXO22</td>
<td>26263</td>
<td>F-box protein 22</td>
<td>2.85</td>
<td>chr15</td>
</tr>
<tr>
<td>FBXO25</td>
<td>26260</td>
<td>F-box protein 25</td>
<td>2.62</td>
<td>chr8</td>
</tr>
<tr>
<td>FBXO28</td>
<td>23219</td>
<td>F-box protein 28</td>
<td>2.55</td>
<td>chr1</td>
</tr>
<tr>
<td>FEM1B</td>
<td>10116</td>
<td>fem-1 homolog b (C. elegans)</td>
<td>2.07</td>
<td>chr15</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>FG06</td>
<td>55785</td>
<td>FVE, RhoGGEF and PH domain containing 6</td>
<td>2.32</td>
<td>chr12</td>
</tr>
<tr>
<td>FG19</td>
<td>9965</td>
<td>fibroblast growth factor 19</td>
<td>2.77</td>
<td>chr11</td>
</tr>
<tr>
<td>FG2</td>
<td>2247</td>
<td>fibroblast growth factor 2 (basic)</td>
<td>3.80</td>
<td>chr4</td>
</tr>
<tr>
<td>FG4</td>
<td>2249</td>
<td>fibroblast growth factor 4 (heparin secretory transforming protein 1, Kaposi)</td>
<td>10.26</td>
<td>chr11</td>
</tr>
<tr>
<td>FGFR4</td>
<td>2264</td>
<td>fibroblast growth factor receptor 4</td>
<td>3.21</td>
<td>chr5</td>
</tr>
<tr>
<td>FKBP1</td>
<td>51303</td>
<td>FK506 binding protein 11, 19 kDa</td>
<td>2.86</td>
<td>chr12</td>
</tr>
<tr>
<td>FKBP1A</td>
<td>2280</td>
<td>FK506 binding protein 1A, 12kDa</td>
<td>2.43</td>
<td>chr20</td>
</tr>
<tr>
<td>FKBP1B</td>
<td>2281</td>
<td>FK506 binding protein 1B, 12.6 kDa</td>
<td>2.72</td>
<td>chr2</td>
</tr>
<tr>
<td>FKBP4</td>
<td>2288</td>
<td>FK506 binding protein 4, 59kDa</td>
<td>2.72</td>
<td>chr12</td>
</tr>
<tr>
<td>FLAD1</td>
<td>80308</td>
<td>Fad1, flavin adenine dinucleotide synthetase, homolog (yeast)</td>
<td>2.26</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ10006</td>
<td>56577</td>
<td>hypothetical protein FLJ10006</td>
<td>2.02</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ10534</td>
<td>55720</td>
<td>hypothetical protein FLJ10534</td>
<td>3.22</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ10652</td>
<td>55196</td>
<td>hypothetical protein FLJ10652</td>
<td>4.55</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ10719</td>
<td>55215</td>
<td>hypothetical protein FLJ10719</td>
<td>2.08</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ10826</td>
<td>55239</td>
<td>hypothetical protein FLJ10826</td>
<td>2.98</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ11151</td>
<td>55313</td>
<td>Hypothetical protein FLJ11151</td>
<td>2.06</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ11184</td>
<td>55319</td>
<td>hypothetical protein FLJ11184</td>
<td>2.04</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ11286</td>
<td>55337</td>
<td>hypothetical protein FLJ11286</td>
<td>6.62</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ12505</td>
<td>79805</td>
<td>hypothetical protein FLJ12505</td>
<td>6.81</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ12684</td>
<td>79584</td>
<td>hypothetical protein FLJ12684</td>
<td>4.79</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ13220</td>
<td>60558</td>
<td>hypothetical protein FLJ13220</td>
<td>2.17</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ13491</td>
<td>79676</td>
<td>hypothetical protein FLJ13491</td>
<td>2.33</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ13984</td>
<td>79828</td>
<td>hypothetical protein FLJ13984</td>
<td>3.50</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ20105</td>
<td>54821</td>
<td>FLJ20105 protein</td>
<td>2.18</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ20273</td>
<td>54502</td>
<td>RNA-binding protein</td>
<td>4.07</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ20449</td>
<td>54837</td>
<td>hypothetical protein FLJ20449</td>
<td>7.04</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ20512</td>
<td>54958</td>
<td>hypothetical protein FLJ20512</td>
<td>2.68</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ20516</td>
<td>54962</td>
<td>timeless-interacting protein</td>
<td>2.02</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ20582</td>
<td>54989</td>
<td>hypothetical protein FLJ20582</td>
<td>3.03</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ20641</td>
<td>55010</td>
<td>hypothetical protein FLJ20641</td>
<td>2.08</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ20674</td>
<td>54621</td>
<td>Hypothetical protein FLJ20674</td>
<td>4.41</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ21924</td>
<td>79832</td>
<td>hypothetical protein FLJ21924</td>
<td>2.21</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ22318</td>
<td>64777</td>
<td>hypothetical protein FLJ22318</td>
<td>2.25</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ22662</td>
<td>79887</td>
<td>hypothetical protein FLJ22662</td>
<td>3.99</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ30656</td>
<td>124801</td>
<td>hypothetical protein FLJ30656</td>
<td>2.66</td>
<td>chr8</td>
</tr>
<tr>
<td>FLJ30707</td>
<td>220108</td>
<td>hypothetical protein FLJ30707</td>
<td>3.79</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ32810</td>
<td>143872</td>
<td>hypothetical protein FLJ32810</td>
<td>2.30</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ38116</td>
<td>388666</td>
<td>hypothetical locus LOC388666</td>
<td>9.37</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ44186</td>
<td>346689</td>
<td>FLJ44186 protein</td>
<td>4.00</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ46419</td>
<td>388507</td>
<td>FLJ46419 protein</td>
<td>2.93</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ90086</td>
<td>389389</td>
<td>Similar to A661453 protein</td>
<td>2.60</td>
<td>chr6</td>
</tr>
<tr>
<td>FLJ90231</td>
<td>283176</td>
<td>hypothetical protein FLJ90231</td>
<td>14.09</td>
<td>chr11</td>
</tr>
<tr>
<td>FLNB</td>
<td>2317</td>
<td>lamin B, beta (actin binding protein 278)</td>
<td>2.37</td>
<td>chr3</td>
</tr>
<tr>
<td>PLT1</td>
<td>8321</td>
<td>Prn-related tyrosine kinase 1 (vascular endothelial growth factor/vascular endothelial growth factor)</td>
<td>6.90</td>
<td>chr13</td>
</tr>
<tr>
<td>FOXA3</td>
<td>3171</td>
<td>forkhead box A3</td>
<td>4.46</td>
<td>chr19</td>
</tr>
<tr>
<td>FOXD3</td>
<td>27022</td>
<td>forkhead box D3</td>
<td>2.70</td>
<td>chr1</td>
</tr>
<tr>
<td>FOXH1</td>
<td>8928</td>
<td>forkhead box H1</td>
<td>8.54</td>
<td>chr6</td>
</tr>
<tr>
<td>FOXO1A</td>
<td>2308</td>
<td>forkhead box O1A (rhabdomyosarcoma)</td>
<td>5.73</td>
<td>chr13</td>
</tr>
<tr>
<td>FRAG1</td>
<td>27315</td>
<td>FGF receptor activating protein 1</td>
<td>2.40</td>
<td>chr11</td>
</tr>
<tr>
<td>FRAT2</td>
<td>23401</td>
<td>frequently rearranged in advanced T-cell lymphomas 2</td>
<td>8.12</td>
<td>chr10</td>
</tr>
<tr>
<td>FTSJ1</td>
<td>24140</td>
<td>FtsJ homolog 1 (E. coli)</td>
<td>2.45</td>
<td>chrX</td>
</tr>
<tr>
<td>FXVDS</td>
<td>53827</td>
<td>FXVY domain containing ion transport regulator 5</td>
<td>6.47</td>
<td>chr19</td>
</tr>
<tr>
<td>FZD7</td>
<td>8324</td>
<td>frizzled homolog 7 (Drosophila)</td>
<td>2.91</td>
<td>chr2</td>
</tr>
<tr>
<td>G3BP2</td>
<td>9908</td>
<td>Ras-GTPase activating protein SH3 domain-binding protein 2</td>
<td>3.48</td>
<td>chr4</td>
</tr>
<tr>
<td>GABRA5</td>
<td>2558</td>
<td>gamma-aminobutyric acid (GABA) A receptor, alpha 5</td>
<td>3.52</td>
<td>chr15</td>
</tr>
<tr>
<td>GABRB3</td>
<td>2562</td>
<td>gamma-aminobutyric acid (GABA) A receptor, beta 3</td>
<td>14.57</td>
<td>chr15</td>
</tr>
<tr>
<td>GABRB3</td>
<td>1653 /// 2562</td>
<td>Gamma-aminobutyric acid (GABA) A receptor, beta 3 /// DEAD (Asp-Glu-Val-Asp)</td>
<td>16.90</td>
<td>chr19</td>
</tr>
<tr>
<td>GADD45GPI1</td>
<td>90480</td>
<td>growth arrest and DNA-damage-inducible, gamma interacting protein 1</td>
<td>3.18</td>
<td>chr19</td>
</tr>
<tr>
<td>GAL</td>
<td>51083</td>
<td>galalin</td>
<td>37.74</td>
<td>chr11</td>
</tr>
<tr>
<td>GALNT3</td>
<td>2591</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylglactosaminyltransferase</td>
<td>12.66</td>
<td>chr2</td>
</tr>
<tr>
<td>GALNT7</td>
<td>51809</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylglactosaminyltransferase</td>
<td>2.44</td>
<td>chr4</td>
</tr>
<tr>
<td>GAP43</td>
<td>2596</td>
<td>growth associated protein 4</td>
<td>2.40</td>
<td>chr3</td>
</tr>
<tr>
<td>GARNL4</td>
<td>23108</td>
<td>GTPase activating Rap/RanGAP domain-like 4</td>
<td>5.50</td>
<td>chr17</td>
</tr>
<tr>
<td>GART</td>
<td>2618</td>
<td>Phosphoribosylglycinamidinemutase transferase, phosphoribosylglycinamidinemutase</td>
<td>2.70</td>
<td>chr2</td>
</tr>
<tr>
<td>GCAT</td>
<td>23464</td>
<td>glycine C-aminotransferase (2-amino-3-ketobutyrate coenzyme A ligase)</td>
<td>2.19</td>
<td>chr2</td>
</tr>
<tr>
<td>SCHFR</td>
<td>2644</td>
<td>GTP cyclohydrolase I feedback regulator</td>
<td>2.65</td>
<td>chr15</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>GCLC</td>
<td>2729</td>
<td>glutamate-cysteine ligase, catalytic subunit</td>
<td>2.51</td>
<td>chr6</td>
</tr>
<tr>
<td>GCNT2</td>
<td>2651</td>
<td>glucosaminyl (N-acetyl) transferase 2, l-branochase enzyme</td>
<td>3.49</td>
<td>chr6</td>
</tr>
<tr>
<td>GCSH</td>
<td>2653</td>
<td>glycine cleavage system protein H (aminomethyl carrier)</td>
<td>2.31</td>
<td>chr5</td>
</tr>
<tr>
<td>GDAP1L1</td>
<td>78997</td>
<td>ganglioside-induced differentiation-associated protein 1-like 1</td>
<td>2.09</td>
<td>chr20</td>
</tr>
<tr>
<td>GDF3</td>
<td>9573</td>
<td>growth differentiation factor 3</td>
<td>17.78</td>
<td>chr12</td>
</tr>
<tr>
<td>GEMM5</td>
<td>25929</td>
<td>gem (nuclear organelle) associated protein 5</td>
<td>2.09</td>
<td>chr5</td>
</tr>
<tr>
<td>GEMM7</td>
<td>79760</td>
<td>gem (nuclear organelle) associated protein 7</td>
<td>2.69</td>
<td>chr19</td>
</tr>
<tr>
<td>GFM1</td>
<td>85476</td>
<td>G elongation factor, mitochndrial 1</td>
<td>2.00</td>
<td>chr3</td>
</tr>
<tr>
<td>GFTP1</td>
<td>2673</td>
<td>glutamine-fructose-6-phosphate transaminase 1</td>
<td>2.20</td>
<td>chr22</td>
</tr>
<tr>
<td>GT1G</td>
<td>2678</td>
<td>gamma-glutamyltransferase 1</td>
<td>2.11</td>
<td>chr22</td>
</tr>
<tr>
<td>GLOC</td>
<td>2731</td>
<td>glycine dehydrogenase (decarboxylating); glycine decarboxylase, glycollate reductase</td>
<td>2.00</td>
<td>chr4</td>
</tr>
<tr>
<td>GLOX1D1</td>
<td>84842</td>
<td>glyoxalase domain containing 1</td>
<td>4.34</td>
<td>chr1</td>
</tr>
<tr>
<td>GLS</td>
<td>2744</td>
<td>glutaminase</td>
<td>2.14</td>
<td>chr2</td>
</tr>
<tr>
<td>GLS2</td>
<td>27165</td>
<td>glutaminase 2 (liver, mitochondroial)</td>
<td>3.88</td>
<td>chr12</td>
</tr>
<tr>
<td>GMDS</td>
<td>2762</td>
<td>GDP-mannose 4,6-dehydratase</td>
<td>2.64</td>
<td>chr6</td>
</tr>
<tr>
<td>GMBF</td>
<td>2764</td>
<td>glia maturation factor, beta</td>
<td>2.40</td>
<td>chr3</td>
</tr>
<tr>
<td>GMP9A</td>
<td>29926</td>
<td>GDP-mannose pyrophosphorylase A</td>
<td>2.89</td>
<td>chr2</td>
</tr>
<tr>
<td>GNAS</td>
<td>2778</td>
<td>GNAS complex locus</td>
<td>4.11</td>
<td>chr20</td>
</tr>
<tr>
<td>GNBI</td>
<td>2782</td>
<td>guanine nucleotide binding protein (G protein), beta polyepptide 1</td>
<td>2.06</td>
<td>chr1</td>
</tr>
<tr>
<td>GNG4</td>
<td>2786</td>
<td>guanine nucleotide binding protein (G protein), gamma 4</td>
<td>2.03</td>
<td>chr1</td>
</tr>
<tr>
<td>GNPTAB</td>
<td>79158</td>
<td>N-acetylglucosamine-1-phosphate transferase, alpha and beta subunits</td>
<td>5.38</td>
<td>chr12</td>
</tr>
<tr>
<td>GOT1</td>
<td>2805</td>
<td>glutamic-oxyacetic transaminase 1, soluble (aspartate aminotransferase)</td>
<td>2.19</td>
<td>chr10</td>
</tr>
<tr>
<td>GPC4</td>
<td>2239</td>
<td>glicyican 4</td>
<td>8.40</td>
<td>chrX</td>
</tr>
<tr>
<td>GPI</td>
<td>2821</td>
<td>glucose phosphate isomerase</td>
<td>2.97</td>
<td>chr19</td>
</tr>
<tr>
<td>GPMBB</td>
<td>2824</td>
<td>glycoprotein MBB</td>
<td>2.51</td>
<td>chrX</td>
</tr>
<tr>
<td>GPR</td>
<td>11245</td>
<td>putative G protein coupled receptor</td>
<td>5.24</td>
<td>chr15</td>
</tr>
<tr>
<td>GPRR160</td>
<td>26996</td>
<td>G protein-coupled receptor 160</td>
<td>10.38</td>
<td>chr3</td>
</tr>
<tr>
<td>GPR27</td>
<td>2850</td>
<td>G protein-coupled receptor 27</td>
<td>2.67</td>
<td>chr3</td>
</tr>
<tr>
<td>GPR54</td>
<td>84634</td>
<td>G protein-coupled receptor 54</td>
<td>2.86</td>
<td>chr19</td>
</tr>
<tr>
<td>GPR64</td>
<td>10149</td>
<td>G protein-coupled receptor 64</td>
<td>11.31</td>
<td>chrX</td>
</tr>
<tr>
<td>GPRCSB</td>
<td>51704</td>
<td>G protein-coupled receptor, family C, group 5, member B</td>
<td>2.59</td>
<td>chr16</td>
</tr>
<tr>
<td>GPS2</td>
<td>2874</td>
<td>G protein pathway suppressor 2</td>
<td>2.20</td>
<td>chr17</td>
</tr>
<tr>
<td>GPT2</td>
<td>84706</td>
<td>glutamic pyruvate transaminase (alanine aminotransferase) 2</td>
<td>2.11</td>
<td>chr16</td>
</tr>
<tr>
<td>GPEX1</td>
<td>2876</td>
<td>glutathione peroxide 1</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>GPEX3</td>
<td>2878</td>
<td>glutathione peroxide 3 (plasma)</td>
<td>3.16</td>
<td>chr5</td>
</tr>
<tr>
<td>GRB10</td>
<td>2887</td>
<td>growth factor receptor-bound protein 10</td>
<td>2.74</td>
<td>chr7</td>
</tr>
<tr>
<td>GRPEL1</td>
<td>80273</td>
<td>GPE-like 1, mitochondrial (E. coli)</td>
<td>3.06</td>
<td>chr4</td>
</tr>
<tr>
<td>GRPEL2</td>
<td>134266</td>
<td>GPE-like 2, mitochondrial (E. coli)</td>
<td>2.43</td>
<td>chr5</td>
</tr>
<tr>
<td>GRSF1</td>
<td>2926</td>
<td>G-rich RNA sequence binding factor 1</td>
<td>2.44</td>
<td>chr4</td>
</tr>
<tr>
<td>GRTP1</td>
<td>79774</td>
<td>Growth hormone regulated TBC protein 1</td>
<td>3.51</td>
<td>chr13</td>
</tr>
<tr>
<td>GSDMDC1</td>
<td>79792</td>
<td>gadermin domain containing 1</td>
<td>2.21</td>
<td>chr8</td>
</tr>
<tr>
<td>GSR</td>
<td>2936</td>
<td>glutathione reductase</td>
<td>2.58</td>
<td>chr8</td>
</tr>
<tr>
<td>GSTO1</td>
<td>9446</td>
<td>glutathione S-transferase omega 1</td>
<td>2.50</td>
<td>chr3</td>
</tr>
<tr>
<td>GSTO2</td>
<td>119391</td>
<td>glutathione S-transferase omega 2</td>
<td>2.09</td>
<td>chr10</td>
</tr>
<tr>
<td>GSTP1</td>
<td>2950</td>
<td>glutathione S-transferase pi</td>
<td>3.02</td>
<td>chr11</td>
</tr>
<tr>
<td>GSTP2H2</td>
<td>2966</td>
<td>general transcription factor IIH, polyepptide 2, 44kDa</td>
<td>3.50</td>
<td>chr5</td>
</tr>
<tr>
<td>GSTFC2</td>
<td>2976</td>
<td>general transcription factor IIIC, polyepptide 2, beta 110kDa</td>
<td>2.12</td>
<td>chr2</td>
</tr>
<tr>
<td>GUCAT1A</td>
<td>2978</td>
<td>guanulate cyclase activator 1A (retina)</td>
<td>3.15</td>
<td>chr6</td>
</tr>
<tr>
<td>GULP1</td>
<td>51454</td>
<td>GULP, engulfment adaptor PTB domain containing 1</td>
<td>3.61</td>
<td>chr2</td>
</tr>
<tr>
<td>GYCG</td>
<td>2992</td>
<td>glycogen</td>
<td>2.46</td>
<td>chr3</td>
</tr>
<tr>
<td>GYLTL1B</td>
<td>120071</td>
<td>glycosyltransferase-like 1B</td>
<td>3.65</td>
<td>chr11</td>
</tr>
<tr>
<td>H2AFJ</td>
<td>55766</td>
<td>H2A histone family, member J</td>
<td>2.04</td>
<td>chr12</td>
</tr>
<tr>
<td>HAS3</td>
<td>3038</td>
<td>hyaluronan synthase 3</td>
<td>4.99</td>
<td>chr16</td>
</tr>
<tr>
<td>HBI-437</td>
<td>338427</td>
<td>HBI-437 C/D box snoRNA /// HBI-13 snoRNA</td>
<td>4.34</td>
<td>chr15</td>
</tr>
<tr>
<td>HDAC8</td>
<td>55869</td>
<td>histone deacetylase 8</td>
<td>4.13</td>
<td>chrX</td>
</tr>
<tr>
<td>HDCMA18P</td>
<td>51574</td>
<td>HDCMA18P protein</td>
<td>4.97</td>
<td>chr4</td>
</tr>
<tr>
<td>HEATR1</td>
<td>55127</td>
<td>HEAT repeat containing 1</td>
<td>2.02</td>
<td>chr1</td>
</tr>
<tr>
<td>HERC5</td>
<td>51191</td>
<td>hecct domain and RLD 5</td>
<td>10.06</td>
<td>chr4</td>
</tr>
<tr>
<td>HERC6</td>
<td>55008</td>
<td>hecct domain and RLD 6</td>
<td>3.70</td>
<td>chr4</td>
</tr>
<tr>
<td>HEY2</td>
<td>23493</td>
<td>hairy/ enhancer of split related with YRPW motif 2</td>
<td>8.67</td>
<td>chr6</td>
</tr>
<tr>
<td>HIP2</td>
<td>3093</td>
<td>Huntingtin interacting protein 2</td>
<td>2.11</td>
<td>chr4</td>
</tr>
<tr>
<td>HIST1H1A</td>
<td>3024</td>
<td>histone 1, H1a</td>
<td>4.87</td>
<td>chr6</td>
</tr>
<tr>
<td>HIST1H1C</td>
<td>3006</td>
<td>histone 1, H1c</td>
<td>3.52</td>
<td>chr6</td>
</tr>
<tr>
<td>HIST1H1D</td>
<td>3007</td>
<td>histone 1, H1d</td>
<td>2.30</td>
<td>chr6</td>
</tr>
<tr>
<td>HIST3H2A</td>
<td>82815</td>
<td>histone 3, H2a</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>HK1</td>
<td>3098</td>
<td>hexokinase 1</td>
<td>2.55</td>
<td>chr10</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>HKE2</td>
<td>10471</td>
<td>HLA class II region expressed gene KE2</td>
<td>2.29</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-DOA</td>
<td>3111</td>
<td>major histocompatibility complex, class II, DO alpha</td>
<td>2.61</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-DPB1</td>
<td>3115</td>
<td>major histocompatibility complex, class II, DP beta 1</td>
<td>2.29</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-DPB2</td>
<td>3116</td>
<td>major histocompatibility complex, class II, DP beta 2 (pseudogene)</td>
<td>48.66</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-F</td>
<td>3134</td>
<td>major histocompatibility complex, class I, F</td>
<td>2.14</td>
<td>chr6</td>
</tr>
<tr>
<td>HLRCC1</td>
<td>83475</td>
<td>HEAT-like (PBS lyase) repeat containing 1 /// HEAT-like (PBS lyase) repeat</td>
<td>2.15</td>
<td>chr19</td>
</tr>
<tr>
<td>HMGB4L</td>
<td>128872</td>
<td>high-mobility group (nonhistone chromosomal) protein 4-like</td>
<td>2.76</td>
<td>chrX</td>
</tr>
<tr>
<td>HMGB1</td>
<td>10357 /// 3146</td>
<td>high-mobility group box 1 /// high-mobility group (nonhistone chromosomal) protein 2</td>
<td>2.04</td>
<td>chr3</td>
</tr>
<tr>
<td>HMOX2</td>
<td>3163</td>
<td>heme oxygenase (decycling) 2</td>
<td>2.86</td>
<td>chr16</td>
</tr>
<tr>
<td>HIV1-Rev</td>
<td>3251</td>
<td>hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan syndrome)</td>
<td>2.14</td>
<td>chrX</td>
</tr>
<tr>
<td>HRASLS</td>
<td>57110</td>
<td>HRAS-like suppressor</td>
<td>2.04</td>
<td>chr3</td>
</tr>
<tr>
<td>HRASLS3</td>
<td>11145</td>
<td>HRAS-like suppressor 3</td>
<td>18.51</td>
<td>chr11</td>
</tr>
<tr>
<td>HRB</td>
<td>3267</td>
<td>HIV-1 Rev binding protein</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>HRLPS</td>
<td>117245</td>
<td>H-rv107-like protein 5</td>
<td>3.45</td>
<td>chr11</td>
</tr>
<tr>
<td>HRMT1L3</td>
<td>10196</td>
<td>HMT1 hnRNp methyltransferase-like 3 (S. cerevisiae)</td>
<td>2.04</td>
<td>chr11</td>
</tr>
<tr>
<td>HRMT1L6</td>
<td>55170</td>
<td>HMT1 hnRNp methyltransferase-like 6 (S. cerevisiae)</td>
<td>2.00</td>
<td>chr11</td>
</tr>
<tr>
<td>HSA9761</td>
<td>27292</td>
<td>dimethyladenosine transferase</td>
<td>2.86</td>
<td>chr5</td>
</tr>
<tr>
<td>HSD11B2</td>
<td>3291</td>
<td>hydroxyoestriol (11-beta) dehydrogenase 2</td>
<td>2.04</td>
<td>chr16</td>
</tr>
<tr>
<td>HSD17B4</td>
<td>3295</td>
<td>hydroxyoestriol (17-beta) dehydrogenase 4</td>
<td>2.89</td>
<td>chr5</td>
</tr>
<tr>
<td>HSGT1</td>
<td>11319</td>
<td>suppressor of S. cerevisiae gcr2</td>
<td>2.03</td>
<td>chr10</td>
</tr>
<tr>
<td>HSPPA2</td>
<td>3306</td>
<td>heat shock 70kDa protein 2</td>
<td>10.00</td>
<td>chr14</td>
</tr>
<tr>
<td>HSPPA4</td>
<td>3308</td>
<td>Heat shock 70kDa protein 4</td>
<td>2.74</td>
<td>chr5</td>
</tr>
<tr>
<td>HSPPA6</td>
<td>3312</td>
<td>heat shock 70kDa protein 8</td>
<td>2.75</td>
<td>chr3</td>
</tr>
<tr>
<td>HSPPA8B</td>
<td>3313</td>
<td>heat shock 70kDa protein 9B (mortalin-2)</td>
<td>2.24</td>
<td>chr2</td>
</tr>
<tr>
<td>HSPPB1</td>
<td>3315</td>
<td>heat shock 27kDa protein 1</td>
<td>2.93</td>
<td>chr7</td>
</tr>
<tr>
<td>HSPC111</td>
<td>51491</td>
<td>Hypothetical protein HSPC111</td>
<td>4.96</td>
<td>chr5</td>
</tr>
<tr>
<td>HSPC176</td>
<td>51693</td>
<td>hematopoietic stem/progenitor cells 176</td>
<td>2.39</td>
<td>chr16</td>
</tr>
<tr>
<td>HSPCB</td>
<td>3326</td>
<td>heat shock 90kDa protein 1, beta</td>
<td>3.26</td>
<td>chr6</td>
</tr>
<tr>
<td>HSPD01</td>
<td>3292</td>
<td>heat shock 60kDa protein 1 (chaperonin)</td>
<td>2.61</td>
<td>chr5</td>
</tr>
<tr>
<td>HSPF3</td>
<td>3336</td>
<td>heat shock 10kDa protein 1 (chaperonin 10)</td>
<td>2.25</td>
<td>chr2</td>
</tr>
<tr>
<td>HSUP1</td>
<td>441951</td>
<td>Similar to RPE-spondin</td>
<td>2.86</td>
<td>chr20</td>
</tr>
<tr>
<td>HTATIP2</td>
<td>10553</td>
<td>HIV-1 Tat interactive protein 2, 30kDa</td>
<td>4.92</td>
<td>chr11</td>
</tr>
<tr>
<td>HTR7</td>
<td>3363</td>
<td>5-hydroxytryptamine (serotonin) receptor 7 (adenylate cyclase-coupled)</td>
<td>2.17</td>
<td>chr8</td>
</tr>
<tr>
<td>HYLS1</td>
<td>219844</td>
<td>hydroxethylus syndrome 1</td>
<td>2.14</td>
<td>chr11</td>
</tr>
<tr>
<td>ICA1</td>
<td>3382</td>
<td>alet cell autoantigen 1, 69kDa</td>
<td>3.89</td>
<td>chr7</td>
</tr>
<tr>
<td>ICA3M3</td>
<td>3385</td>
<td>intercellular adhesion molecule 3</td>
<td>3.54</td>
<td>chr19</td>
</tr>
<tr>
<td>ID1</td>
<td>3397</td>
<td>inhibitor of DNA binding 1, dominant negative helix-loop-helix protein</td>
<td>3.54</td>
<td>chr20</td>
</tr>
<tr>
<td>IDE</td>
<td>3416</td>
<td>insulin-degrading enzyme</td>
<td>2.45</td>
<td>chr10</td>
</tr>
<tr>
<td>IDH1</td>
<td>3417</td>
<td>isocitrate dehydrogenase 1 (NADP+)-soluble</td>
<td>2.55</td>
<td>chr2</td>
</tr>
<tr>
<td>IDH3A</td>
<td>3419</td>
<td>isocitrate dehydrogenase 3 (NAD+)-alpha</td>
<td>3.56</td>
<td>chr15</td>
</tr>
<tr>
<td>IFI30</td>
<td>10437</td>
<td>interferon, gamma-inducible protein 30</td>
<td>4.68</td>
<td>chr19</td>
</tr>
<tr>
<td>IFITM1</td>
<td>8519</td>
<td>interferon induced transmembrane protein 1</td>
<td>11.53</td>
<td>chr11</td>
</tr>
<tr>
<td>IFITM2</td>
<td>10581</td>
<td>interferon induced transmembrane protein 2</td>
<td>2.06</td>
<td>chr11</td>
</tr>
<tr>
<td>IFITM3</td>
<td>10410</td>
<td>interferon induced transmembrane protein 3</td>
<td>2.86</td>
<td>chr11</td>
</tr>
<tr>
<td>IGFBP6</td>
<td>3489</td>
<td>insulin-like growth factor binding protein 6</td>
<td>2.36</td>
<td>chr12</td>
</tr>
<tr>
<td>IL27RA</td>
<td>9466</td>
<td>interleukin 27 receptor, alpha</td>
<td>2.97</td>
<td>(v)</td>
</tr>
<tr>
<td>IMP-1</td>
<td>10642</td>
<td>1GF-11 mRNA-binding protein 1</td>
<td>3.10</td>
<td>chr17</td>
</tr>
<tr>
<td>IMP3</td>
<td>55272</td>
<td>IMP3, U3 small nucleolar ribonucleoprotein, homolog (yeast)</td>
<td>2.85</td>
<td>chr15</td>
</tr>
<tr>
<td>IMP4</td>
<td>92856</td>
<td>IMP4, U3 small nucleolar ribonucleoprotein, homolog (yeast)</td>
<td>2.70</td>
<td>chr2</td>
</tr>
<tr>
<td>INDO</td>
<td>3620</td>
<td>indoleamine-pyrorle 2.3 dioxygenase</td>
<td>18.56</td>
<td>chr8</td>
</tr>
<tr>
<td>INSR</td>
<td>3643</td>
<td>insulin receptor</td>
<td>2.46</td>
<td>chr19</td>
</tr>
<tr>
<td>IPW</td>
<td>3653</td>
<td>imprinted in Prader-Willi syndrome</td>
<td>2.61</td>
<td>chr15</td>
</tr>
<tr>
<td>IQA1P1</td>
<td>8826</td>
<td>IQ motif containing GTPase activating protein 1</td>
<td>2.11</td>
<td>chr15</td>
</tr>
<tr>
<td>IQA1P2</td>
<td>10788</td>
<td>IQ motif containing GTPase activating protein 2</td>
<td>3.09</td>
<td>chr5</td>
</tr>
<tr>
<td>ISOC2</td>
<td>79763</td>
<td>isoschizomerase domain containing 2</td>
<td>3.14</td>
<td>chr19</td>
</tr>
<tr>
<td>ITCH</td>
<td>83737</td>
<td>itchy homolog E3 ubiquitin protein ligase (mouse)</td>
<td>2.04</td>
<td>chr20</td>
</tr>
<tr>
<td>ITGA6</td>
<td>3655</td>
<td>integrin, alpha 6</td>
<td>3.40</td>
<td>chr2</td>
</tr>
<tr>
<td>ITGB1B3</td>
<td>27231</td>
<td>integrin beta 1 binding protein 3</td>
<td>7.12</td>
<td>chr19</td>
</tr>
<tr>
<td>ITG4B4P</td>
<td>3692</td>
<td>integrin beta 4 binding protein</td>
<td>3.15</td>
<td>chr2</td>
</tr>
<tr>
<td>ITM2A</td>
<td>9452</td>
<td>integral membrane protein 2A</td>
<td>8.30</td>
<td>chrX</td>
</tr>
<tr>
<td>ITM2C</td>
<td>81618</td>
<td>integral membrane protein 2C</td>
<td>2.50</td>
<td>chr2</td>
</tr>
<tr>
<td>ITFA</td>
<td>3704</td>
<td>mossy trisphosphate (nucleoside trisphosphate pyrophosphatase)</td>
<td>2.25</td>
<td>chr20</td>
</tr>
<tr>
<td>TFR3</td>
<td>3710</td>
<td>proco11,1,4,5-trisphosphate receptor, type 3</td>
<td>2.86</td>
<td>chr6</td>
</tr>
</tbody>
</table>
Table S3: Genes downregulated in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>3712</td>
<td>jecovyl-Coenzyme A dehydrogenase</td>
<td>2.06</td>
<td>chr15</td>
</tr>
<tr>
<td>JAK1</td>
<td>3716</td>
<td>Janus kinase 1 (a protein tyrosine kinase)</td>
<td>2.20</td>
<td>chr1</td>
</tr>
<tr>
<td>JARID1D</td>
<td>3720</td>
<td>Lmonei, AT rich interactive domain 2</td>
<td>3.19</td>
<td>chr6</td>
</tr>
<tr>
<td>JAZF1</td>
<td>221895</td>
<td>juxtaposed with another zinc finger gene 1</td>
<td>4.31</td>
<td>chr7</td>
</tr>
<tr>
<td>JMJ1DC</td>
<td>221037</td>
<td>Lmonei domain containing 1C</td>
<td>3.21</td>
<td>chr10</td>
</tr>
<tr>
<td>JMJ1DC2</td>
<td>9682</td>
<td>Lmonei domain containing 2A</td>
<td>2.64</td>
<td>chr1</td>
</tr>
<tr>
<td>JMJ2DC</td>
<td>23081</td>
<td>Lmonei domain containing 2C</td>
<td>2.10</td>
<td>chr9</td>
</tr>
<tr>
<td>JMY</td>
<td>133746</td>
<td>junction-mediating and regulatory protein</td>
<td>2.04</td>
<td>chr5</td>
</tr>
<tr>
<td>JPH1</td>
<td>56704</td>
<td>integrin B1</td>
<td>2.82</td>
<td>chr8</td>
</tr>
<tr>
<td>KBTBD8</td>
<td>85451</td>
<td>kelch repeat and BTB (POZ) domain containing 8</td>
<td>4.06</td>
<td>chr3</td>
</tr>
<tr>
<td>KCND2</td>
<td>3751</td>
<td>potassium voltage-gated channel, Shal-related subfamily, member 2</td>
<td>2.30</td>
<td>chr7</td>
</tr>
<tr>
<td>KCNG3</td>
<td>170850</td>
<td>potassium voltage-gated channel, subfamily G, member 3</td>
<td>3.93</td>
<td>chr2</td>
</tr>
<tr>
<td>KCNK1</td>
<td>3775</td>
<td>potassium channel, subfamily K, member 1</td>
<td>3.12</td>
<td>chr2</td>
</tr>
<tr>
<td>KCNK12</td>
<td>56660</td>
<td>potassium channel, subfamily K, member 12</td>
<td>2.37</td>
<td>chr2</td>
</tr>
<tr>
<td>KCN2</td>
<td>3781</td>
<td>potassium intermediate/small conductance calcium-activated channel, subfamily C, member 1</td>
<td>3.55</td>
<td>chr5</td>
</tr>
<tr>
<td>KCNS3</td>
<td>3790</td>
<td>potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3</td>
<td>3.68</td>
<td>chr2</td>
</tr>
<tr>
<td>KCTD14</td>
<td>65967</td>
<td>potassium channel tetramerisation domain containing 14</td>
<td>5.10</td>
<td>chr11</td>
</tr>
<tr>
<td>KRIR</td>
<td>3791</td>
<td>kinase insert domain receptor (a type III receptor tyrosine kinase)</td>
<td>3.69</td>
<td>chr4</td>
</tr>
<tr>
<td>KHK</td>
<td>3795</td>
<td>ketohexokinase (fructokinase)</td>
<td>2.42</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA0020</td>
<td>9933</td>
<td>KIAA0020 protein</td>
<td>2.20</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA0182</td>
<td>23199</td>
<td>KIAA0182 protein</td>
<td>2.30</td>
<td>chr16</td>
</tr>
<tr>
<td>KIAA0368</td>
<td>23392</td>
<td>KIAA0368 protein</td>
<td>3.15</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA0494</td>
<td>9813</td>
<td>KIAA0494 protein</td>
<td>2.15</td>
<td>chr1</td>
</tr>
<tr>
<td>KIAA0859</td>
<td>51603</td>
<td>KIAA0859 protein</td>
<td>2.41</td>
<td>chr1</td>
</tr>
<tr>
<td>KIAA0888</td>
<td>26049</td>
<td>KIAA0888 protein</td>
<td>2.27</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA1008</td>
<td>22894</td>
<td>KIAA1008 protein</td>
<td>2.06</td>
<td>chr13</td>
</tr>
<tr>
<td>KIAA1033</td>
<td>23325</td>
<td>KIAA1033 protein</td>
<td>2.07</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA1155</td>
<td>400961</td>
<td>KIAA1155 protein</td>
<td>2.73</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1244</td>
<td>57221</td>
<td>KIAA1244 protein</td>
<td>2.12</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1404</td>
<td>57169</td>
<td>KIAA1404 protein</td>
<td>2.16</td>
<td>chr20</td>
</tr>
<tr>
<td>KIAA1524</td>
<td>57650</td>
<td>KIAA1524 protein</td>
<td>2.00</td>
<td>chr3</td>
</tr>
<tr>
<td>KIAA1553</td>
<td>57673</td>
<td>KIAA1553 protein</td>
<td>2.21</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1754L</td>
<td>150771</td>
<td>KIAA1754-like</td>
<td>2.17</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1804</td>
<td>84451</td>
<td>mixed lineage kinase 4</td>
<td>3.66</td>
<td>chr1</td>
</tr>
<tr>
<td>KIAA1944</td>
<td>121256</td>
<td>KIAA1944 protein</td>
<td>2.67</td>
<td>chr12</td>
</tr>
<tr>
<td>KIF1A</td>
<td>547</td>
<td>kinesin family member 1A</td>
<td>4.01</td>
<td>chr2</td>
</tr>
<tr>
<td>KIF5A</td>
<td>3798</td>
<td>kinesin family member 5A</td>
<td>3.02</td>
<td>chr12</td>
</tr>
<tr>
<td>KLF4</td>
<td>9314</td>
<td>Kruppel-like factor 4 (gut)</td>
<td>4.13</td>
<td>chr9</td>
</tr>
<tr>
<td>KLF7</td>
<td>8609</td>
<td>Kruppel-like factor 7 (ubiquitous)</td>
<td>2.26</td>
<td>chr2</td>
</tr>
<tr>
<td>KLUH</td>
<td>55975</td>
<td>kelch-like 7 (Drosophila)</td>
<td>4.38</td>
<td>chr7</td>
</tr>
<tr>
<td>KLKB1</td>
<td>3818</td>
<td>kalikrein B, plasma (Fletcher factor)</td>
<td>8.18</td>
<td>chr4</td>
</tr>
<tr>
<td>KRTAP4-7</td>
<td>85287</td>
<td>keratin associated protein 4-7</td>
<td>2.91</td>
<td>chr15</td>
</tr>
<tr>
<td>KRTCP3</td>
<td>200634</td>
<td>keratinocyte associated protein 3</td>
<td>5.12</td>
<td>chr2</td>
</tr>
<tr>
<td>KUB3</td>
<td>91419</td>
<td>KU70-binding protein 3</td>
<td>4.91</td>
<td>chr12</td>
</tr>
<tr>
<td>LACTB</td>
<td>114294</td>
<td>lactamase, beta</td>
<td>2.62</td>
<td>chr15</td>
</tr>
<tr>
<td>LACTB2</td>
<td>51110</td>
<td>lactamase, beta 2</td>
<td>2.31</td>
<td>chr8</td>
</tr>
<tr>
<td>LAMP2</td>
<td>3920</td>
<td>lysosomal-associated membrane protein 2</td>
<td>2.16</td>
<td>chrX</td>
</tr>
<tr>
<td>LANCL2</td>
<td>55915</td>
<td>LanC lanthionine synthetase component C-like 2 (bacteria)</td>
<td>2.50</td>
<td>chr7</td>
</tr>
<tr>
<td>LAPTMB4</td>
<td>55353</td>
<td>lysosomal associated protein transmembrane 4 beta</td>
<td>3.70</td>
<td>chr8</td>
</tr>
<tr>
<td>LARP2</td>
<td>55132</td>
<td>La ribonucleoprotein domain family, member 2</td>
<td>3.06</td>
<td>chr4</td>
</tr>
<tr>
<td>LARP4</td>
<td>113251</td>
<td>La ribonucleoprotein domain family, member 4</td>
<td>2.66</td>
<td>chr12</td>
</tr>
<tr>
<td>LARS</td>
<td>51520</td>
<td>leucyl-tRNA synthetase</td>
<td>2.47</td>
<td>chr5</td>
</tr>
<tr>
<td>LARS2</td>
<td>23395</td>
<td>leucyl-tRNA synthetase 2, mitochondrial</td>
<td>2.56</td>
<td>chr3</td>
</tr>
<tr>
<td>LCK</td>
<td>3932</td>
<td>lymphocyte-specific protein tyrosine kinase</td>
<td>23.95</td>
<td>chr1</td>
</tr>
<tr>
<td>LDLB2</td>
<td>9079</td>
<td>LIM domain binding 2</td>
<td>4.60</td>
<td>chr4</td>
</tr>
<tr>
<td>LECT1</td>
<td>11061</td>
<td>leukocyte cell derived chemotaxin 1</td>
<td>17.62</td>
<td>chr13</td>
</tr>
<tr>
<td>LEFTY1</td>
<td>10637</td>
<td>left-right determination factor 1</td>
<td>60.37</td>
<td>chr1</td>
</tr>
<tr>
<td>LEFTY2</td>
<td>7044</td>
<td>left-right determination factor 2</td>
<td>11.70</td>
<td>chr1</td>
</tr>
<tr>
<td>LGALS1</td>
<td>3956</td>
<td>lectin, galactoside-binding, soluble, 1 (galactin 1)</td>
<td>13.73</td>
<td>chr22</td>
</tr>
<tr>
<td>LIAS</td>
<td>11019</td>
<td>lipocalcic acid synthetase</td>
<td>2.16</td>
<td>chr4</td>
</tr>
<tr>
<td>LISC7</td>
<td>51599</td>
<td>liver-specific BHLL-Zip transcription factor</td>
<td>2.02</td>
<td>chr19</td>
</tr>
<tr>
<td>LITAF</td>
<td>9516</td>
<td>lipopolysaccharide-induced TNF factor</td>
<td>2.94</td>
<td>chr16</td>
</tr>
<tr>
<td>LNK</td>
<td>10019</td>
<td>lymphocyte adaptor protein</td>
<td>4.33</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC114977</td>
<td>114977</td>
<td>hypothetical protein BC014148</td>
<td>2.07</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC116238</td>
<td>116238</td>
<td>hypothetical protein BC014072</td>
<td>3.47</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC126295</td>
<td>126295</td>
<td>hypothetical protein LOC126295</td>
<td>3.07</td>
<td>chr19</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LOC131076</td>
<td>131076</td>
<td>hypothetical LOC131076</td>
<td>2.11</td>
<td>chr18</td>
</tr>
<tr>
<td>LOC138255</td>
<td>138255</td>
<td>OTTHUMP0000021439</td>
<td>20.90</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC150084</td>
<td>150084</td>
<td>hypothetical protein LOC150084</td>
<td>2.13</td>
<td>chr21</td>
</tr>
<tr>
<td>LOC150371</td>
<td>150371</td>
<td>hypothetical protein LOC150371</td>
<td>2.42</td>
<td>chr22</td>
</tr>
<tr>
<td>LOC151194</td>
<td>151194</td>
<td>similar to hepatocellular carcinoma-associated antigen HCA57b</td>
<td>2.47</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC151963</td>
<td>151963</td>
<td>similar to BcDNA-GH11415 gene product</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC153346</td>
<td>153346</td>
<td>hypothetical protein LOC153346</td>
<td>5.83</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC153469</td>
<td>153469</td>
<td>hypothetical protein LOC153469</td>
<td>3.95</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC155036</td>
<td>155036</td>
<td>hypothetical protein LOC155036</td>
<td>2.02</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC157627</td>
<td>157627</td>
<td>hypothetical protein LOC157627</td>
<td>6.16</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC169834</td>
<td>169834</td>
<td>hypothetical protein LOC169834</td>
<td>2.01</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC201895</td>
<td>201895</td>
<td>hypothetical protein LOC201895</td>
<td>2.28</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC202451</td>
<td>202451</td>
<td>hypothetical protein LOC202451</td>
<td>2.63</td>
<td>chr6</td>
</tr>
<tr>
<td>LOC253982</td>
<td>253982</td>
<td>hypothetical protein LOC253982</td>
<td>2.02</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC283377</td>
<td>283377</td>
<td>hypothetical protein LOC283377</td>
<td>2.41</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC283871</td>
<td>283871</td>
<td>hypothetical protein LOC283871</td>
<td>2.25</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC284611</td>
<td>284611</td>
<td>hypothetical protein LOC284611</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC284801</td>
<td>284801</td>
<td>hypothetical protein LOC284801</td>
<td>4.31</td>
<td>chr20</td>
</tr>
<tr>
<td>LOC285016</td>
<td>285016</td>
<td>hypothetical protein LOC285016</td>
<td>2.90</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC285401</td>
<td>285401</td>
<td>hypothetical protein LOC285401</td>
<td>2.02</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC286044</td>
<td>286044</td>
<td>hypothetical protein LOC286044</td>
<td>3.25</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC342979</td>
<td>342979</td>
<td>hypothetical LOC342979</td>
<td>2.77</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC388335</td>
<td>388335</td>
<td>similar to RIKEN cDNA A7300555C05 gene</td>
<td>2.23</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC388610</td>
<td>388610</td>
<td>hypothetical LOC388610</td>
<td>5.21</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC388638</td>
<td>388638</td>
<td>hypothetical LOC388638</td>
<td>4.76</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC389362</td>
<td>389362</td>
<td>hypothetical LOC389362</td>
<td>3.63</td>
<td>chr6</td>
</tr>
<tr>
<td>LOC389541</td>
<td>389541</td>
<td>similar to CG14977-PA</td>
<td>2.58</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC398957</td>
<td>398957</td>
<td>hypothetical protein</td>
<td>2.11</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC391020</td>
<td>391020</td>
<td>similar to Interferon-induced transmembrane protein 3 (Interferon-inducible transmembrane protein 3)</td>
<td>2.90</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC391833</td>
<td>391833</td>
<td>similar to 40S ribosomal protein S10</td>
<td>2.80</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC400690</td>
<td>400690</td>
<td>hypothetical gene supported by AK092138</td>
<td>2.74</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC400948</td>
<td>400948</td>
<td>similar to RIKEN cDNA 2310016E02</td>
<td>2.04</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC439949</td>
<td>439949</td>
<td>hypothetical gene supported by AK092138</td>
<td>4.36</td>
<td>chr10</td>
</tr>
<tr>
<td>LOC440122</td>
<td>440122</td>
<td>Similar to KRAB zinc finger protein 6D</td>
<td>2.44</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC440132</td>
<td>440132</td>
<td>LOC440132</td>
<td>4.16</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC440731</td>
<td>440731</td>
<td>LOC440731</td>
<td>2.20</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC440737</td>
<td>440737</td>
<td>Similar to 60S ribosomal protein L35</td>
<td>7.02</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC441164</td>
<td>441164</td>
<td>Chromosome 6 open reading frame 160</td>
<td>2.08</td>
<td>chr6</td>
</tr>
<tr>
<td>LOC441168</td>
<td>441168</td>
<td>hypothetical protein LOC441168</td>
<td>2.26</td>
<td>chr6</td>
</tr>
<tr>
<td>LOC441458</td>
<td>441458</td>
<td>hypothetical gene supported by AK091930</td>
<td>4.61</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC441628</td>
<td>441628</td>
<td>similar to POU domain, class 5, transcription factor 1 (Octamer-binding transcription factor 1)</td>
<td>18.61</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC441762</td>
<td>441762</td>
<td>Similar to CG7467-PA /// Similar to CG7467-PA</td>
<td>2.64</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC442447</td>
<td>442447</td>
<td>Similar to Chloride intracellular channel protein 4 (Intracellular chloride ion channel protein 4)</td>
<td>8.73</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC449413</td>
<td>449413</td>
<td>similar to RIKEN cDNA 2510006C20 gene</td>
<td>3.47</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC56902</td>
<td>56902</td>
<td>putative 28 kDa protein</td>
<td>2.41</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC591614</td>
<td>591614</td>
<td>novel 58.3 KDA protein</td>
<td>2.31</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC591616</td>
<td>591616</td>
<td>Hypothetical protein LOC591616</td>
<td>2.53</td>
<td>(vide)</td>
</tr>
<tr>
<td>LOC92345</td>
<td>92345</td>
<td>hypothetical protein LOC92345</td>
<td>2.58</td>
<td>chr4</td>
</tr>
<tr>
<td>LRP8</td>
<td>7804</td>
<td>low density lipoprotein receptor-related protein 8, apolipoprotein e receptor</td>
<td>2.69</td>
<td>chr9</td>
</tr>
<tr>
<td>LRC16</td>
<td>55604</td>
<td>Leucine rich repeat containing 16</td>
<td>2.43</td>
<td>chr6</td>
</tr>
<tr>
<td>LSM7</td>
<td>51690</td>
<td>LSM7 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td>2.26</td>
<td>chr9</td>
</tr>
<tr>
<td>LYAR</td>
<td>55664</td>
<td>hypothetical protein FLJ20425</td>
<td>2.45</td>
<td>chr4</td>
</tr>
<tr>
<td>LYP2</td>
<td>328340 ///</td>
<td>hypothetical gene supported by AK091930</td>
<td>2.02</td>
<td>chr1</td>
</tr>
<tr>
<td>LYSMD2</td>
<td>256386</td>
<td>LysM, putative peptidoglycan-binding, domain containing 2</td>
<td>2.36</td>
<td>chr15</td>
</tr>
<tr>
<td>MAO2L</td>
<td>10459</td>
<td>MAO2 mitotic arrest deficient-like 2 (yeast)</td>
<td>4.22</td>
<td>chr1</td>
</tr>
<tr>
<td>MAG2</td>
<td>9863</td>
<td>membrane-associated guanylate kinase, WW and PDZ domain containing 1</td>
<td>3.13</td>
<td>chr7</td>
</tr>
<tr>
<td>Magmas</td>
<td>516025</td>
<td>mitochondria-associated protein involved in granulocyte-macrophage colony-stimulating factor signal transduction</td>
<td>2.07</td>
<td>chr16</td>
</tr>
<tr>
<td>MAL2</td>
<td>114569</td>
<td>mal, T-cell differentiation protein</td>
<td>4.78</td>
<td>chr8</td>
</tr>
<tr>
<td>MAP1LC3B</td>
<td>81631</td>
<td>microtubule-associated protein 1 light chain 3 beta</td>
<td>3.04</td>
<td>chr12</td>
</tr>
<tr>
<td>MAP3K5</td>
<td>4217</td>
<td>mitogen-activated protein kinase kinase kinase 5</td>
<td>2.98</td>
<td>chr6</td>
</tr>
<tr>
<td>MAP4</td>
<td>4134</td>
<td>mitogen-activated protein 4</td>
<td>2.64</td>
<td>chr3</td>
</tr>
<tr>
<td>MAP4K1</td>
<td>11184</td>
<td>mitogen-activated protein kinase kinase kinase 1</td>
<td>2.45</td>
<td>chr19</td>
</tr>
<tr>
<td>MAP7</td>
<td>9053</td>
<td>microtubule-associated protein 7</td>
<td>4.43</td>
<td>chr6</td>
</tr>
<tr>
<td>MAPK1</td>
<td>5594</td>
<td>mitogen-activated protein kinase 1</td>
<td>2.51</td>
<td>chr22</td>
</tr>
<tr>
<td>MAPK13</td>
<td>5603</td>
<td>mitogen-activated protein kinase 13</td>
<td>3.91</td>
<td>chr6</td>
</tr>
<tr>
<td>MAPKAP1</td>
<td>79109</td>
<td>mitogen-activated protein kinase associated protein 1</td>
<td>2.96</td>
<td>chr9</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>ChromosomeNumber(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>MARC120</td>
<td>158123</td>
<td>membrane-associated ring finger (C3HC4) 3</td>
<td>3.65</td>
<td>chr5</td>
</tr>
<tr>
<td>MARS</td>
<td>4414</td>
<td>methionine-tRNA synthetase</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>MARVELD3</td>
<td>91862</td>
<td>MARVEL domain containing 3</td>
<td>4.59</td>
<td>chr16</td>
</tr>
<tr>
<td>MATK</td>
<td>44145</td>
<td>megakaryocyte-associated tyrosine kinase</td>
<td>2.49</td>
<td>chr19</td>
</tr>
<tr>
<td>MATR3</td>
<td>9782</td>
<td>Matrin 3</td>
<td>2.87</td>
<td>chr5</td>
</tr>
<tr>
<td>MCART1</td>
<td>92014</td>
<td>mitochondrial carrier triple repeat 1</td>
<td>2.04</td>
<td>chr9</td>
</tr>
<tr>
<td>MCC2</td>
<td>64087</td>
<td>methylcrotonoyl-Coenzyme A carboxylase 2 (beta)</td>
<td>2.06</td>
<td>chr5</td>
</tr>
<tr>
<td>MCL1</td>
<td>4170</td>
<td>myeloid cell leukemia sequence 1 (BCL2-related)</td>
<td>2.40</td>
<td>chr1</td>
</tr>
<tr>
<td>MCM5</td>
<td>4174</td>
<td>MCM5 minichromosome maintenance deficient 5, cell division cycle 46 (S. pombe)</td>
<td>2.79</td>
<td>chr22</td>
</tr>
<tr>
<td>MDH2</td>
<td>4191</td>
<td>malate dehydrogenase 2, NAD (mitochondrial)</td>
<td>2.26</td>
<td>chr7</td>
</tr>
<tr>
<td>MDN1</td>
<td>21395</td>
<td>MDN1, midasin homolog (yeast)</td>
<td>2.13</td>
<td>chr6</td>
</tr>
<tr>
<td>ME1</td>
<td>4199</td>
<td>Malic enzyme 1, NADP(+)-dependent, cytosolic</td>
<td>2.20</td>
<td>chr6</td>
</tr>
<tr>
<td>ME2</td>
<td>4200</td>
<td>Malic enzyme 2, NAD(+)-dependent, mitochondrial</td>
<td>2.03</td>
<td>chr18</td>
</tr>
<tr>
<td>MEF2A</td>
<td>4205</td>
<td>MADS box transcription enhancer factor 2, polypeptide A (myocyte enhancer factor 2)</td>
<td>2.22</td>
<td>chr15</td>
</tr>
<tr>
<td>MEGF10</td>
<td>84466</td>
<td>MEGF10 protein</td>
<td>4.81</td>
<td>chr5</td>
</tr>
<tr>
<td>MFSD3</td>
<td>113655</td>
<td>major facilitator superfamily domain containing 3</td>
<td>3.24</td>
<td>chr6</td>
</tr>
<tr>
<td>MGI</td>
<td>80775</td>
<td>hypothetical protein MGC10993</td>
<td>2.73</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC11324</td>
<td>84803</td>
<td>hypothetical protein MGC11324 // hypothetical protein MGC11324</td>
<td>2.30</td>
<td>chr4</td>
</tr>
<tr>
<td>MGC13017</td>
<td>91368</td>
<td>similar to RIKEN cDNA A430101B06 gene</td>
<td>2.56</td>
<td>chr5</td>
</tr>
<tr>
<td>MGC13096</td>
<td>84306</td>
<td>hypothetical protein MGC13096 // hypothetical protein MGC13096</td>
<td>3.69</td>
<td>chr19</td>
</tr>
<tr>
<td>MGC13114</td>
<td>84326</td>
<td>hypothetical protein MGC13114</td>
<td>3.11</td>
<td>chr16</td>
</tr>
<tr>
<td>MGC13170</td>
<td>84798</td>
<td>multidrug resistance-related protein // multidrug resistance-related protein</td>
<td>2.42</td>
<td>chr19</td>
</tr>
<tr>
<td>MGC14798</td>
<td>89978</td>
<td>similar to RIKEN cDNA 5730421E18 gene</td>
<td>3.29</td>
<td>chr15</td>
</tr>
<tr>
<td>MGC15763</td>
<td>92106</td>
<td>hypothetical protein BC008322</td>
<td>2.37</td>
<td>chr3</td>
</tr>
<tr>
<td>MGC17299</td>
<td>128218</td>
<td>hypothetical protein MGC17299</td>
<td>5.60</td>
<td>chr1</td>
</tr>
<tr>
<td>MGC19604</td>
<td>112812</td>
<td>similar to RIKEN cDNA B203101H17 gene</td>
<td>2.14</td>
<td>chr19</td>
</tr>
<tr>
<td>MGC21881</td>
<td>380741</td>
<td>hypothetical protein MGC21881</td>
<td>2.55</td>
<td>chr9</td>
</tr>
<tr>
<td>MGC22793</td>
<td>221908</td>
<td>hypothetical protein MGC22793</td>
<td>2.48</td>
<td>chr7</td>
</tr>
<tr>
<td>MGC2408</td>
<td>84291</td>
<td>hypothetical protein MGC2408</td>
<td>2.39</td>
<td>chr3</td>
</tr>
<tr>
<td>MGC24665</td>
<td>116028</td>
<td>hypothetical protein MGC24665</td>
<td>2.16</td>
<td>chr16</td>
</tr>
<tr>
<td>MGC2477</td>
<td>79081</td>
<td>hypothetical protein MGC2477</td>
<td>2.06</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC2574</td>
<td>79080</td>
<td>hypothetical protein MGC2574</td>
<td>2.69</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC40168</td>
<td>148645</td>
<td>hypothetical protein MGC40168</td>
<td>2.52</td>
<td>chr1</td>
</tr>
<tr>
<td>MGC40397</td>
<td>121053</td>
<td>hypothetical protein MGC40397</td>
<td>2.54</td>
<td>chr12</td>
</tr>
<tr>
<td>MGC4172</td>
<td>79154</td>
<td>short-chain dehydrogenase/reductase</td>
<td>2.51</td>
<td>chr17</td>
</tr>
<tr>
<td>MGC4504</td>
<td>79094</td>
<td>hypothetical protein MGC4504</td>
<td>2.77</td>
<td>chr15</td>
</tr>
<tr>
<td>MGC45871</td>
<td>359645</td>
<td>hypothetical protein MGC45871</td>
<td>3.23</td>
<td>chr14</td>
</tr>
<tr>
<td>MGC5352</td>
<td>192111</td>
<td>Bcl-2 binding protein v8</td>
<td>2.20</td>
<td>chr12</td>
</tr>
<tr>
<td>MGC5509</td>
<td>79074</td>
<td>Hypothetical protein MGC5509</td>
<td>2.46</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC61571</td>
<td>152100</td>
<td>hypothetical protein MGC61571</td>
<td>2.24</td>
<td>chr3</td>
</tr>
<tr>
<td>MGST1</td>
<td>4257</td>
<td>microsomal glutathione S-transferase 1</td>
<td>4.03</td>
<td>chr12</td>
</tr>
<tr>
<td>MICB</td>
<td>4277</td>
<td>MHC class I polypeptide-related sequence B</td>
<td>3.46</td>
<td>chr6</td>
</tr>
<tr>
<td>MID1P1</td>
<td>58526</td>
<td>MID1 interacting protein 1 (gasotransfer specific G12-like (zebrafish))</td>
<td>2.45</td>
<td>chrX</td>
</tr>
<tr>
<td>MK67P1</td>
<td>84365</td>
<td>MK67P1 (FHA domain) interacting nuclear phosphoprotein</td>
<td>2.04</td>
<td>chr2</td>
</tr>
<tr>
<td>MKKS</td>
<td>8195</td>
<td>McUsick-Kaufman syndrome</td>
<td>2.17</td>
<td>chr20</td>
</tr>
<tr>
<td>MKLN1</td>
<td>4289</td>
<td>muskelin 1, intracellular mediator containing kelch motifs</td>
<td>3.33</td>
<td>chr7</td>
</tr>
<tr>
<td>MOB1K1</td>
<td>55233</td>
<td>MOB1, Mps One Binder kinase activator-like 1B (yeast)</td>
<td>2.27</td>
<td>chr2</td>
</tr>
<tr>
<td>MOCOS</td>
<td>55034</td>
<td>molybdenium cofactor sulfate</td>
<td>3.29</td>
<td>chr18</td>
</tr>
<tr>
<td>MON1A</td>
<td>84315</td>
<td>MON1 homolog A (yeast) // MON1 homolog A (yeast)</td>
<td>2.11</td>
<td>chr3</td>
</tr>
<tr>
<td>MPP1</td>
<td>4354</td>
<td>membrane protein, palmitoylated 1, 55kDa</td>
<td>2.52</td>
<td>chrX</td>
</tr>
<tr>
<td>MPP6</td>
<td>51678</td>
<td>membrane protein, palmitoylated 6 (MAGUK p55 subfamily member 6)</td>
<td>3.16</td>
<td>chr7</td>
</tr>
<tr>
<td>MRGPRF</td>
<td>219928</td>
<td>MAS-related GPR, member F</td>
<td>2.86</td>
<td>chr11</td>
</tr>
<tr>
<td>MRPL11</td>
<td>65003</td>
<td>mitochondrial ribosomal protein L11</td>
<td>2.12</td>
<td>chr11</td>
</tr>
<tr>
<td>MRPL12</td>
<td>6182</td>
<td>mitochondrial ribosomal protein L12</td>
<td>2.31</td>
<td>chr17</td>
</tr>
<tr>
<td>MRPL13</td>
<td>28998</td>
<td>mitochondrial ribosomal protein L13</td>
<td>2.10</td>
<td>chr8</td>
</tr>
<tr>
<td>MRPL16</td>
<td>54948</td>
<td>mitochondrial ribosomal protein L16</td>
<td>2.69</td>
<td>chr11</td>
</tr>
<tr>
<td>MRPL17</td>
<td>63875</td>
<td>mitochondrial ribosomal protein L17</td>
<td>2.73</td>
<td>chr11</td>
</tr>
<tr>
<td>MRPL18</td>
<td>29074</td>
<td>mitochondrial ribosomal protein L18</td>
<td>2.04</td>
<td>chr6</td>
</tr>
<tr>
<td>MRPL19</td>
<td>9801</td>
<td>mitochondrial ribosomal protein L19</td>
<td>2.40</td>
<td>chr2</td>
</tr>
<tr>
<td>MRPL21</td>
<td>219927</td>
<td>mitochondrial ribosomal protein L21</td>
<td>2.29</td>
<td>chr11</td>
</tr>
<tr>
<td>MRPL30</td>
<td>51263</td>
<td>mitochondrial ribosomal protein L30</td>
<td>2.50</td>
<td>chr2</td>
</tr>
<tr>
<td>MRPL32</td>
<td>64983</td>
<td>mitochondrial ribosomal protein L32</td>
<td>2.72</td>
<td>chr7</td>
</tr>
<tr>
<td>MRPL34</td>
<td>64981</td>
<td>mitochondrial ribosomal protein L34 // mitochondrial ribosomal protein L34</td>
<td>2.28</td>
<td>chr19</td>
</tr>
<tr>
<td>MRPL35</td>
<td>51318</td>
<td>mitochondrial ribosomal protein L35</td>
<td>2.74</td>
<td>chr2</td>
</tr>
<tr>
<td>MRPL37</td>
<td>51253</td>
<td>mitochondrial ribosomal protein L37</td>
<td>2.31</td>
<td>chr1</td>
</tr>
<tr>
<td>MRPL38</td>
<td>64978</td>
<td>mitochondrial ribosomal protein L38</td>
<td>2.55</td>
<td>chr17</td>
</tr>
</tbody>
</table>
Table S3: Genes downregulated in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRPL4</td>
<td>51073</td>
<td>mitochondrial ribosomal protein L4</td>
<td>4.23</td>
<td>chr19</td>
</tr>
<tr>
<td>MRPL41</td>
<td>64975</td>
<td>mitochondrial ribosomal protein L41</td>
<td>2.65</td>
<td>chr9</td>
</tr>
<tr>
<td>MRPL42</td>
<td>28977</td>
<td>mitochondrial ribosomal protein L42</td>
<td>2.79</td>
<td>chr12</td>
</tr>
<tr>
<td>MRPL43</td>
<td>84545</td>
<td>mitochondrial ribosomal protein L43 // mitochondrial ribosomal protein L44</td>
<td>2.11</td>
<td>chr10</td>
</tr>
<tr>
<td>MRPL44</td>
<td>65080</td>
<td>mitochondrial ribosomal protein L44</td>
<td>2.56</td>
<td>chr2</td>
</tr>
<tr>
<td>MRPL50</td>
<td>54534</td>
<td>mitochondrial ribosomal protein L50</td>
<td>2.45</td>
<td>chr9</td>
</tr>
<tr>
<td>MRPL52</td>
<td>122704</td>
<td>mitochondrial ribosomal protein L52</td>
<td>2.37</td>
<td>chr14</td>
</tr>
<tr>
<td>MRPL54</td>
<td>116541</td>
<td>mitochondrial ribosomal protein L54</td>
<td>2.24</td>
<td>chr19</td>
</tr>
<tr>
<td>MRPS10</td>
<td>55173</td>
<td>mitochondrial ribosomal protein S10</td>
<td>3.56</td>
<td>chr6</td>
</tr>
<tr>
<td>MRPS12</td>
<td>6183</td>
<td>mitochondrial ribosomal protein S12 // mitochondrial ribosomal protein S15</td>
<td>5.07</td>
<td>chr19</td>
</tr>
<tr>
<td>MRPS15</td>
<td>64960</td>
<td>mitochondrial ribosomal protein S15 // mitochondrial ribosomal protein S16</td>
<td>2.38</td>
<td>chr1</td>
</tr>
<tr>
<td>MRPS16</td>
<td>51021</td>
<td>mitochondrial ribosomal protein S16</td>
<td>2.53</td>
<td>chr10</td>
</tr>
<tr>
<td>MRPS17</td>
<td>51373</td>
<td>mitochondrial ribosomal protein S17</td>
<td>2.81</td>
<td>chr7</td>
</tr>
<tr>
<td>MRPS18B</td>
<td>28973</td>
<td>mitochondrial ribosomal protein S18B</td>
<td>2.44</td>
<td>chr6</td>
</tr>
<tr>
<td>MRPS2</td>
<td>51116</td>
<td>mitochondrial ribosomal protein S2</td>
<td>2.21</td>
<td>chr9</td>
</tr>
<tr>
<td>MRPS23</td>
<td>51649</td>
<td>mitochondrial ribosomal protein S23</td>
<td>2.29</td>
<td>chr17</td>
</tr>
<tr>
<td>MRPS25</td>
<td>64432</td>
<td>mitochondrial ribosomal protein S25</td>
<td>3.02</td>
<td>chr3</td>
</tr>
<tr>
<td>MRPS28</td>
<td>28957</td>
<td>mitochondrial ribosomal protein S28</td>
<td>2.03</td>
<td>chr8</td>
</tr>
<tr>
<td>MRPS30</td>
<td>10884</td>
<td>mitochondrial ribosomal protein S30</td>
<td>2.26</td>
<td>chr5</td>
</tr>
<tr>
<td>MRPS34</td>
<td>65993</td>
<td>mitochondrial ribosomal protein S34</td>
<td>3.18</td>
<td>chr16</td>
</tr>
<tr>
<td>MRPS36</td>
<td>92259</td>
<td>mitochondrial ribosomal protein S36</td>
<td>2.21</td>
<td>chr5</td>
</tr>
<tr>
<td>MRS2L</td>
<td>57380</td>
<td>MRS2-like, magnesium homeostasis factor (S. cerevisiae)</td>
<td>6.54</td>
<td>chr6</td>
</tr>
<tr>
<td>MSH2</td>
<td>4436</td>
<td>mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)</td>
<td>2.55</td>
<td>chr2</td>
</tr>
<tr>
<td>MT1E</td>
<td>4493</td>
<td>metallothionine 1E (functional)</td>
<td>5.73</td>
<td>chr16</td>
</tr>
<tr>
<td>MT1F</td>
<td>4494</td>
<td>metallothionine 1F (functional)</td>
<td>7.66</td>
<td>chr16</td>
</tr>
<tr>
<td>MT1G</td>
<td>4495</td>
<td>metallothionine 1G</td>
<td>9.40</td>
<td>chr16</td>
</tr>
<tr>
<td>MT1H</td>
<td>4496</td>
<td>metallothionine 1H</td>
<td>8.73</td>
<td>chr16</td>
</tr>
<tr>
<td>MT1M</td>
<td>4499</td>
<td>metallothionine 1M</td>
<td>4.82</td>
<td>chr1</td>
</tr>
<tr>
<td>MT1X</td>
<td>4501</td>
<td>metallothionine 1X</td>
<td>9.12</td>
<td>chr16</td>
</tr>
<tr>
<td>MT2A</td>
<td>4502</td>
<td>metallothionine 2A</td>
<td>5.41</td>
<td>chr16</td>
</tr>
<tr>
<td>MT3A</td>
<td>57504</td>
<td>metastasis associated 1 family, member 3</td>
<td>2.74</td>
<td>chr2</td>
</tr>
<tr>
<td>MTAC2D1</td>
<td>123036</td>
<td>membrane targeting (tandem) C2 domain containing 1</td>
<td>4.93</td>
<td>chr14</td>
</tr>
<tr>
<td>MTAP</td>
<td>4507</td>
<td>methylthioadenosine phosphorylase</td>
<td>2.11</td>
<td>chr9</td>
</tr>
<tr>
<td>MTHFD1</td>
<td>4522</td>
<td>5-methyltetrahydrofolate dehydrogenase (NADP+ dependent) 1, methenyltetrahydrofolate cyclohydrolase</td>
<td>3.23</td>
<td>chr2</td>
</tr>
<tr>
<td>MTHFD1L</td>
<td>25902</td>
<td>5-methyltetrahydrofolate dehydrogenase (NADP+ dependent) 1-like</td>
<td>2.46</td>
<td>chr6</td>
</tr>
<tr>
<td>MTHFD2</td>
<td>10797</td>
<td>5-methyltetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase</td>
<td>2.40</td>
<td>chr2</td>
</tr>
<tr>
<td>MTHFS</td>
<td>10588</td>
<td>5,10-methenyltetrahydrofolate synthetase (5-formyltetrahydrofolate cyclohydrolase)</td>
<td>2.08</td>
<td>chr15</td>
</tr>
<tr>
<td>MTL5</td>
<td>9633</td>
<td>Metallothionine-like 5, testis-specific (testis)</td>
<td>2.09</td>
<td>chr11</td>
</tr>
<tr>
<td>MTP18</td>
<td>51537</td>
<td>mitochondrial protein 18 kDa</td>
<td>2.31</td>
<td>chr22</td>
</tr>
<tr>
<td>MTRF1</td>
<td>9617</td>
<td>mitochondrial translational release factor 1</td>
<td>2.08</td>
<td>chr13</td>
</tr>
<tr>
<td>MYBL2</td>
<td>4605</td>
<td>v-mb ymeloblastosis viral oncogene homolog (avian)-like 2</td>
<td>2.35</td>
<td>chr20</td>
</tr>
<tr>
<td>MYC</td>
<td>4609</td>
<td>v-mb myelocytomatosis viral oncogene homolog (avian)</td>
<td>3.58</td>
<td>chr8</td>
</tr>
<tr>
<td>MYLIP</td>
<td>29116</td>
<td>myosin regulatory light chain interacting protein</td>
<td>2.07</td>
<td>chr6</td>
</tr>
<tr>
<td>MYO1E</td>
<td>4643</td>
<td>myosin 1E</td>
<td>3.48</td>
<td>chr15</td>
</tr>
<tr>
<td>MYO23</td>
<td>91977</td>
<td>myosin 3</td>
<td>2.35</td>
<td>chr5</td>
</tr>
<tr>
<td>NALP12</td>
<td>91662</td>
<td>NACHT, leucine rich repeat and PYD containing 12</td>
<td>2.68</td>
<td>chr19</td>
</tr>
<tr>
<td>NALP2</td>
<td>55655</td>
<td>NACHT, leucine rich repeat and PYD containing 2</td>
<td>4.67</td>
<td>chr12</td>
</tr>
<tr>
<td>NANO4</td>
<td>79923</td>
<td>Nanog homeobox</td>
<td>51.32</td>
<td>chr12</td>
</tr>
<tr>
<td>NANS</td>
<td>54187</td>
<td>N-acetylspermidine acid synthase (sialic acid synthase)</td>
<td>2.29</td>
<td>chr9</td>
</tr>
<tr>
<td>NAPL12</td>
<td>4674</td>
<td>nucleosome assembly protein 1-like 2</td>
<td>2.56</td>
<td>chrX</td>
</tr>
<tr>
<td>NAPL13</td>
<td>4675</td>
<td>nucleosome assembly protein 1-like 3</td>
<td>2.03</td>
<td>chrX</td>
</tr>
<tr>
<td>NARG1</td>
<td>80155</td>
<td>NMMA receptor regulated 1</td>
<td>2.87</td>
<td>chr4</td>
</tr>
<tr>
<td>NBR1</td>
<td>4683</td>
<td>nibrin</td>
<td>2.09</td>
<td>chr8</td>
</tr>
<tr>
<td>NCBP1</td>
<td>4686</td>
<td>nuclear cap binding protein subunit 1, 80kDa</td>
<td>2.44</td>
<td>chr9</td>
</tr>
<tr>
<td>NCBP2</td>
<td>22916</td>
<td>nuclear cap binding protein subunit 2, 20kDa</td>
<td>2.33</td>
<td>chr3</td>
</tr>
<tr>
<td>NCBP9</td>
<td>22910</td>
<td>nuclear cap binding protein subunit 9, 40kDa</td>
<td>1.98</td>
<td>chr16</td>
</tr>
<tr>
<td>NUFAB1</td>
<td>4716</td>
<td>NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa</td>
<td>2.22</td>
<td>chr16</td>
</tr>
<tr>
<td>NUFAB7</td>
<td>4713</td>
<td>NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7, 18kDa</td>
<td>2.20</td>
<td>chr19</td>
</tr>
<tr>
<td>NUFAS</td>
<td>374291</td>
<td>NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzi)</td>
<td>2.87</td>
<td>chr19</td>
</tr>
<tr>
<td>NUFAS5</td>
<td>4728</td>
<td>NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa (NADH-coenzi)</td>
<td>2.44</td>
<td>chr11</td>
</tr>
<tr>
<td>NUFDV2</td>
<td>4729</td>
<td>NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa</td>
<td>2.37</td>
<td>chr18</td>
</tr>
<tr>
<td>NEDD4L</td>
<td>23327</td>
<td>neural precursor cell expressed, developmentally down-regulated 4-like</td>
<td>2.30</td>
<td>chr18</td>
</tr>
<tr>
<td>NEFH</td>
<td>4744</td>
<td>neurofilament, heavy polypeptide 200kDa</td>
<td>3.99</td>
<td>chr22</td>
</tr>
<tr>
<td>NEFL</td>
<td>4747</td>
<td>neurofilament, light polypeptide 68kDa</td>
<td>3.21</td>
<td>chr8</td>
</tr>
<tr>
<td>NETO1</td>
<td>81832</td>
<td>neuropilin (NRP) and tolloid (TLL)-like 1</td>
<td>3.92</td>
<td>chr18</td>
</tr>
<tr>
<td>NFATC2IP</td>
<td>84901</td>
<td>nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 in</td>
<td>2.62</td>
<td>chr16</td>
</tr>
<tr>
<td>NFE2L3</td>
<td>9603</td>
<td>nuclear factor (erythroid-derived 2)-like 3</td>
<td>8.22</td>
<td>chr7</td>
</tr>
</tbody>
</table>
Table S3: Genes downregulated in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFIX</td>
<td>4784</td>
<td>nuclear factor IX (CCAA-binding transcription factor)</td>
<td>2.76</td>
<td>chr19</td>
</tr>
<tr>
<td>NFYB</td>
<td>4801</td>
<td>nuclear transcription factor Y, beta</td>
<td>2.84</td>
<td>chr3</td>
</tr>
<tr>
<td>NHP2L1</td>
<td>4809</td>
<td>NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae)</td>
<td>2.13</td>
<td>chr22</td>
</tr>
<tr>
<td>NIFIE1</td>
<td>10430</td>
<td>seven transmembrane domain protein</td>
<td>2.43</td>
<td>chr19</td>
</tr>
<tr>
<td>NLE1</td>
<td>54475</td>
<td>notchless homolog 1 (Drosophila)</td>
<td>3.25</td>
<td>chr17</td>
</tr>
<tr>
<td>NLG4NX</td>
<td>57502</td>
<td>neurologin 4, X-linked</td>
<td>2.30</td>
<td>chrX</td>
</tr>
<tr>
<td>NLK</td>
<td>51701</td>
<td>neck kinase</td>
<td>2.17</td>
<td>chr17</td>
</tr>
<tr>
<td>NLM</td>
<td>57486</td>
<td>neurolysin (metalloprotease M3 family)</td>
<td>3.20</td>
<td>chr5</td>
</tr>
<tr>
<td>NMB</td>
<td>48298</td>
<td>neurogenin B</td>
<td>2.09</td>
<td>chr15</td>
</tr>
<tr>
<td>NME3</td>
<td>4832</td>
<td>non-metastatic cells 3, protein expressed in</td>
<td>2.45</td>
<td>chr16</td>
</tr>
<tr>
<td>NMI</td>
<td>9111</td>
<td>N-mycc (and STAT) interactor</td>
<td>11.10</td>
<td>chr2</td>
</tr>
<tr>
<td>NMT1</td>
<td>4836</td>
<td>N-myristoyltransferase 1</td>
<td>2.10</td>
<td>chr17</td>
</tr>
<tr>
<td>NMU</td>
<td>10874</td>
<td>neuraminidase</td>
<td>6.95</td>
<td>chr4</td>
</tr>
<tr>
<td>NOB1P</td>
<td>28897</td>
<td>nin one binding protein</td>
<td>2.56</td>
<td>chr4</td>
</tr>
<tr>
<td>NODAL</td>
<td>4838</td>
<td>nodal homolog (mouse)</td>
<td>9.78</td>
<td>chr10</td>
</tr>
<tr>
<td>NOL11</td>
<td>25926</td>
<td>nucleolar protein 11</td>
<td>2.02</td>
<td>chr17</td>
</tr>
<tr>
<td>NOLA5</td>
<td>10528</td>
<td>nucleolar protein SA (66kDa with KKE/D repeat)</td>
<td>2.00</td>
<td>chr20</td>
</tr>
<tr>
<td>NOL7</td>
<td>51406</td>
<td>Nucleolar protein 7, 27kDa</td>
<td>2.03</td>
<td>chr6</td>
</tr>
<tr>
<td>NOLA3</td>
<td>55505</td>
<td>nucleolar protein family A, member 3 (H/ACA small nucleolar RNPs)</td>
<td>2.14</td>
<td>chr15</td>
</tr>
<tr>
<td>NOLC1</td>
<td>9221</td>
<td>nucleolar and coiled-body phosphoprotein</td>
<td>3.02</td>
<td>chr10</td>
</tr>
<tr>
<td>NOM1</td>
<td>64434</td>
<td>nucleolar protein with MIF4G domain 1</td>
<td>2.66</td>
<td>chr7</td>
</tr>
<tr>
<td>NP</td>
<td>4860</td>
<td>nucleoside phosphorylation</td>
<td>3.62</td>
<td>chr14</td>
</tr>
<tr>
<td>NPM3</td>
<td>10360</td>
<td>nucleophosphin/nucleosmin, 3</td>
<td>2.94</td>
<td>chr10</td>
</tr>
<tr>
<td>NPTX1</td>
<td>4884</td>
<td>neuronal pentraxin I</td>
<td>4.53</td>
<td>chr17</td>
</tr>
<tr>
<td>NPTX2</td>
<td>4885</td>
<td>neuronal pentraxin II</td>
<td>2.15</td>
<td>chr7</td>
</tr>
<tr>
<td>NQO2</td>
<td>4835</td>
<td>NAD(P)/H dehydrogenase, quinone 2</td>
<td>2.08</td>
<td>chr6</td>
</tr>
<tr>
<td>NRAS2A</td>
<td>2494</td>
<td>nuclear receptor subfamily 5, group A, member 2</td>
<td>2.42</td>
<td>chr11</td>
</tr>
<tr>
<td>NRBF2</td>
<td>29882</td>
<td>nuclear receptor binding factor 2</td>
<td>2.37</td>
<td>chr8</td>
</tr>
<tr>
<td>NSB3P1</td>
<td>79366</td>
<td>nucleosomal binding protein 1</td>
<td>3.04</td>
<td>chrX</td>
</tr>
<tr>
<td>NSD1</td>
<td>64324</td>
<td>nuclear receptor binding SET domain protein 1</td>
<td>2.37</td>
<td>chr5</td>
</tr>
<tr>
<td>NSFL1C</td>
<td>55968</td>
<td>NSFL1 (p97) cofactor (p47)</td>
<td>2.06</td>
<td>chr20</td>
</tr>
<tr>
<td>NTHL1</td>
<td>4913</td>
<td>nth endonuclease III-like 1 (E. coli)</td>
<td>2.58</td>
<td>chr16</td>
</tr>
<tr>
<td>NTS</td>
<td>4922</td>
<td>neurotensin</td>
<td>4.45</td>
<td>chr12</td>
</tr>
<tr>
<td>NUDT1</td>
<td>4521</td>
<td>nudix (nucleoside diphosphate linked moiety X)-type motif 1</td>
<td>2.29</td>
<td>chr7</td>
</tr>
<tr>
<td>NUDT15</td>
<td>55270</td>
<td>nudix (nucleoside diphosphate linked moiety X)-type motif 15</td>
<td>2.62</td>
<td>chr13</td>
</tr>
<tr>
<td>NUDT21</td>
<td>11051</td>
<td>nudix (nucleoside diphosphate linked moiety X)-type motif 21</td>
<td>4.50</td>
<td>chr16</td>
</tr>
<tr>
<td>NUDT22</td>
<td>84304</td>
<td>nudix (nucleoside diphosphate linked moiety X)-type motif 22 // nudix (nudix domain)</td>
<td>2.00</td>
<td>chr11</td>
</tr>
<tr>
<td>NUP50</td>
<td>10762</td>
<td>nucleoprotein 50kDa</td>
<td>2.26</td>
<td>chr22</td>
</tr>
<tr>
<td>NUP88</td>
<td>4927</td>
<td>nucleoparin 88kDa</td>
<td>2.17</td>
<td>chr17</td>
</tr>
<tr>
<td>OACT1</td>
<td>154141</td>
<td>O-acetyltransferase (membrane bound) domain containing 1</td>
<td>3.41</td>
<td>chr6</td>
</tr>
<tr>
<td>OAT</td>
<td>4942</td>
<td>ornithine aminotransferase (glutamate)</td>
<td>2.41</td>
<td>chr10</td>
</tr>
<tr>
<td>OAZ1</td>
<td>4946</td>
<td>ornithine decarboxylase antizyme 1</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>OAZ2</td>
<td>4947</td>
<td>ornithine decarboxylase antizyme 2</td>
<td>2.48</td>
<td>chr15</td>
</tr>
<tr>
<td>OGDHL</td>
<td>55753</td>
<td>oxoglutarate dehydrogenase-like</td>
<td>3.01</td>
<td>chr10</td>
</tr>
<tr>
<td>OIP5</td>
<td>11339</td>
<td>Opa interacting protein 5</td>
<td>2.01</td>
<td>chr15</td>
</tr>
<tr>
<td>OLFM1</td>
<td>10439</td>
<td>olfactomedin 1</td>
<td>2.61</td>
<td>chr9</td>
</tr>
<tr>
<td>OMA1</td>
<td>115209</td>
<td>OMA1 homolog, zinc metalloprotease (S. cerevisiae)</td>
<td>3.24</td>
<td>chr1</td>
</tr>
<tr>
<td>ORC1L</td>
<td>4996</td>
<td>origin recognition complex, subunit 1-like (yeast)</td>
<td>2.54</td>
<td>chr1</td>
</tr>
<tr>
<td>OSBP10L</td>
<td>114884</td>
<td>oxysterol binding protein-like 10</td>
<td>5.40</td>
<td>chr3</td>
</tr>
<tr>
<td>OSTM1</td>
<td>28962</td>
<td>osteopetrosis associated transmembrane protein 1</td>
<td>2.15</td>
<td>chr6</td>
</tr>
<tr>
<td>OTUD6B</td>
<td>51633</td>
<td>OTU domain containing 6B</td>
<td>2.10</td>
<td>chr8</td>
</tr>
<tr>
<td>OVOL1</td>
<td>5017</td>
<td>ovo-like 1 (Drosophila)</td>
<td>2.02</td>
<td>chr11</td>
</tr>
<tr>
<td>OVOL2</td>
<td>58495</td>
<td>ovo-like 2 (Drosophila) // ovo-like 2 (Drosophila)</td>
<td>4.95</td>
<td>chr20</td>
</tr>
<tr>
<td>P2RX5</td>
<td>5026</td>
<td>purinergic receptor P2X, ligand-gated ion channel, 5</td>
<td>2.62</td>
<td>chr17</td>
</tr>
<tr>
<td>PACS1N1</td>
<td>29993</td>
<td>protein kinase C and casein kinase substrate in neurons 1</td>
<td>2.63</td>
<td>chr6</td>
</tr>
<tr>
<td>PAH</td>
<td>5053</td>
<td>phenylalanine hydroxylase</td>
<td>2.33</td>
<td>chr12</td>
</tr>
<tr>
<td>PAICS</td>
<td>10606</td>
<td>phosphoribosylaminomimidazole carboxylase, phosphoribosylaminoimidazolizinase</td>
<td>2.09</td>
<td>chr4</td>
</tr>
<tr>
<td>PAK1</td>
<td>5058</td>
<td>p21(Cdc42/Rac1-activated kinase 1) (STE20 homolog, yeast)</td>
<td>3.44</td>
<td>chr11</td>
</tr>
<tr>
<td>PAK1P1</td>
<td>55003</td>
<td>PAK1 interacting protein 1</td>
<td>2.71</td>
<td>chr6</td>
</tr>
<tr>
<td>PAPD1</td>
<td>51149</td>
<td>PAPD associated domain containing 1</td>
<td>2.13</td>
<td>chr10</td>
</tr>
<tr>
<td>PAPSS2</td>
<td>9060</td>
<td>S-phosphoethanolamine 5'-phosphosulfate synthase 2</td>
<td>4.71</td>
<td>chr10</td>
</tr>
<tr>
<td>PARG</td>
<td>54852</td>
<td>progestin and adipoQ receptor family member V</td>
<td>2.02</td>
<td>chr15</td>
</tr>
<tr>
<td>PARD6A</td>
<td>50855</td>
<td>par-6 partitioning defective 6 homolog (C.elegans)</td>
<td>2.07</td>
<td>chr16</td>
</tr>
<tr>
<td>PARP12</td>
<td>64761</td>
<td>poly (ADP-ribose) polymerase family, member 12</td>
<td>4.74</td>
<td>chr7</td>
</tr>
<tr>
<td>PAWR</td>
<td>5074</td>
<td>PAKC, apoptosis, WTI, regulator</td>
<td>2.91</td>
<td>chr20</td>
</tr>
<tr>
<td>PBP</td>
<td>5037</td>
<td>prostatic binding protein</td>
<td>2.19</td>
<td>chr12</td>
</tr>
</tbody>
</table>
Table S3: Genes downregulated in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_down</th>
<th>Chromosome Number/Avadis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBX1</td>
<td>5087</td>
<td>Pre-B-cell leukemia transcription factor 1</td>
<td>3.32</td>
<td>chr1</td>
</tr>
<tr>
<td>PCBD2</td>
<td>84105</td>
<td>6-pyruvoyl-tetrahydropyrimidine synthase/dimerization cofactor of hepatocyte nuclear factor 1</td>
<td>3.20</td>
<td>chr5</td>
</tr>
<tr>
<td>PCMT1</td>
<td>5110</td>
<td>L-Acetyl-L-lysine synthetase</td>
<td>2.11</td>
<td>chr6</td>
</tr>
<tr>
<td>PCNXL2</td>
<td>80003</td>
<td>Pecanex-like 2 (Drosophila)</td>
<td>2.72</td>
<td>chr1</td>
</tr>
<tr>
<td>PCSK9</td>
<td>255738</td>
<td>proprotein convertase subtilisin/kexin type 9</td>
<td>5.11</td>
<td>chr1</td>
</tr>
<tr>
<td>PCYT1B</td>
<td>9468</td>
<td>phosphate cytidylyltransferase 1, choline, beta</td>
<td>2.95</td>
<td>chrX</td>
</tr>
<tr>
<td>PDAP1</td>
<td>11333</td>
<td>PDGFα-associated protein 1</td>
<td>2.68</td>
<td>chr5</td>
</tr>
<tr>
<td>PDCD10</td>
<td>11235</td>
<td>programmed cell death 10</td>
<td>2.22</td>
<td>chr3</td>
</tr>
<tr>
<td>PDCD16</td>
<td>285359 /// 79013</td>
<td>phosphoinositide 3-kinase FLJ12205</td>
<td>2.45</td>
<td>chr2</td>
</tr>
<tr>
<td>PDF</td>
<td>64146 /// 84342</td>
<td>peptide deformylase-like protein // component of oligomeric golgi complex</td>
<td>2.00</td>
<td>chr16</td>
</tr>
<tr>
<td>PDGFA</td>
<td>5154</td>
<td>platelet-derived growth factor alpha polypeptide</td>
<td>2.76</td>
<td>chr7_random</td>
</tr>
<tr>
<td>PDHB</td>
<td>5162</td>
<td>pyruvate dehydrogenase (lipoamide) beta</td>
<td>2.05</td>
<td>chr3</td>
</tr>
<tr>
<td>PDAIA</td>
<td>10954</td>
<td>protein disulfide isomerase family A, member 5</td>
<td>2.69</td>
<td>chr3</td>
</tr>
<tr>
<td>PDK3</td>
<td>5165</td>
<td>pyruvate dehydrogenase kinase, isocitrate 3</td>
<td>3.03</td>
<td>chrX</td>
</tr>
<tr>
<td>PDLIM1</td>
<td>9124</td>
<td>PDZ and LIM domain 1 (effin)</td>
<td>4.00</td>
<td>chr10</td>
</tr>
<tr>
<td>PDPN</td>
<td>10630</td>
<td>podoplanin</td>
<td>5.95</td>
<td>chr1</td>
</tr>
<tr>
<td>PDZK3</td>
<td>23037</td>
<td>PDZ domain containing 3</td>
<td>2.53</td>
<td>chr5</td>
</tr>
<tr>
<td>PDZK4</td>
<td>57595</td>
<td>PDZ domain containing 4</td>
<td>3.94</td>
<td>chrX</td>
</tr>
<tr>
<td>PEPB</td>
<td>64065</td>
<td>PERP, TP53 apoptosis effector</td>
<td>2.59</td>
<td>chr6</td>
</tr>
<tr>
<td>PFDN4</td>
<td>5203</td>
<td>prefoldin 4</td>
<td>2.19</td>
<td>chr20</td>
</tr>
<tr>
<td>PFN1</td>
<td>5216</td>
<td>profilin 1</td>
<td>2.55</td>
<td>chr1</td>
</tr>
<tr>
<td>PGBD5</td>
<td>79605</td>
<td>piggyBac transposable element derived 5</td>
<td>2.80</td>
<td>chr1</td>
</tr>
<tr>
<td>PGK1</td>
<td>5230</td>
<td>phosphoglycerate kinase 1</td>
<td>2.00</td>
<td>chrX</td>
</tr>
<tr>
<td>PGM2L1</td>
<td>283209</td>
<td>phosphoglucomutase 2-like 1</td>
<td>2.22</td>
<td>chr11</td>
</tr>
<tr>
<td>PGRMC1</td>
<td>10857</td>
<td>progesterone receptor membrane component 1</td>
<td>2.19</td>
<td>chrX</td>
</tr>
<tr>
<td>PHB</td>
<td>5245</td>
<td>prohibitin</td>
<td>2.28</td>
<td>chr16</td>
</tr>
<tr>
<td>PHC1</td>
<td>1911</td>
<td>polyhomeotic-like 1 (Drosophila)</td>
<td>6.36</td>
<td>chr12</td>
</tr>
<tr>
<td>PHF15</td>
<td>23383</td>
<td>PHD finger protein 15</td>
<td>5.66</td>
<td>chr5</td>
</tr>
<tr>
<td>PHF17</td>
<td>79860</td>
<td>PHD finger protein 17</td>
<td>2.69</td>
<td>chr4</td>
</tr>
<tr>
<td>PHF19</td>
<td>26147</td>
<td>PHD finger protein 19</td>
<td>2.96</td>
<td>chr9</td>
</tr>
<tr>
<td>PHLD1A</td>
<td>22822</td>
<td>pleckstrin homology-like domain, family A, member 1</td>
<td>3.12</td>
<td>chr12</td>
</tr>
<tr>
<td>PIA2S</td>
<td>9063</td>
<td>Protein inhibitor of activated STAT 2, 2</td>
<td>2.70</td>
<td>chr18</td>
</tr>
<tr>
<td>PIGW</td>
<td>284098</td>
<td>phosphatidylinositol glycan, class W</td>
<td>2.24</td>
<td>chr17</td>
</tr>
<tr>
<td>PIK3CB</td>
<td>5291</td>
<td>phosphoinositide-3-kine, catalytic, beta polypeptide</td>
<td>2.18</td>
<td>chr3</td>
</tr>
<tr>
<td>PIK3CD</td>
<td>5293</td>
<td>phosphoinositide-3-kine, catalytic, delta polypeptide // phosphoinositide</td>
<td>2.63</td>
<td>chr1</td>
</tr>
<tr>
<td>PIM2</td>
<td>11040</td>
<td>pm-2 oncogene</td>
<td>3.86</td>
<td>chrX</td>
</tr>
<tr>
<td>PINK1</td>
<td>65018</td>
<td>PTEN-induced putative kinase 1</td>
<td>2.16</td>
<td>chr1</td>
</tr>
<tr>
<td>PINK1X</td>
<td>54984</td>
<td>PINK-interacting protein 1</td>
<td>2.33</td>
<td>chr8</td>
</tr>
<tr>
<td>PIPS2KA</td>
<td>5305</td>
<td>phosphatidylinositol-4-phosphate 5-kinease, type II, alpha</td>
<td>2.60</td>
<td>chr10</td>
</tr>
<tr>
<td>PIPOX</td>
<td>51268</td>
<td>p-epicolic acid oxidase</td>
<td>2.96</td>
<td>chr17</td>
</tr>
<tr>
<td>PITPNC1</td>
<td>26207</td>
<td>phosphatidylinositol transfer protein, cytoplasmic 1</td>
<td>3.39</td>
<td>chr17</td>
</tr>
<tr>
<td>PKB</td>
<td>5570</td>
<td>protein kinase (cAMP-dependent, catalytic) inhibitor beta</td>
<td>2.69</td>
<td>chr6</td>
</tr>
<tr>
<td>PL2G12A</td>
<td>81579</td>
<td>phospholipase A2, group XIIA // phospholipase A2, group XIIA</td>
<td>2.71</td>
<td>chr1</td>
</tr>
<tr>
<td>PLA1</td>
<td>9373</td>
<td>phospholipase A2-activating protein</td>
<td>2.01</td>
<td>chr9</td>
</tr>
<tr>
<td>PLAS1</td>
<td>5357</td>
<td>plasmin 1 (t isoform)</td>
<td>3.30</td>
<td>chr3</td>
</tr>
<tr>
<td>PLSCR1</td>
<td>5359</td>
<td>phospholipid scramblase 1</td>
<td>3.01</td>
<td>chr3</td>
</tr>
<tr>
<td>PMAP1</td>
<td>5366</td>
<td>phospholipid scramblase 1-13-acetate-induced protein 1</td>
<td>3.01</td>
<td>chr18</td>
</tr>
<tr>
<td>PMM2</td>
<td>5373</td>
<td>phosphomannomutase 2</td>
<td>2.15</td>
<td>chr16</td>
</tr>
<tr>
<td>PXLXL</td>
<td>5420</td>
<td>podocalyxin-like</td>
<td>4.34</td>
<td>chr7</td>
</tr>
<tr>
<td>POLE4</td>
<td>56655</td>
<td>polymerase (DNA-directed), epsilon 4 (p12 subunit)</td>
<td>2.16</td>
<td>chr2</td>
</tr>
<tr>
<td>POLR1A</td>
<td>25885</td>
<td>polymerase (RNA) I polypeptide A, 194kDa</td>
<td>2.16</td>
<td>chr2</td>
</tr>
<tr>
<td>POLR1B</td>
<td>84172</td>
<td>polymerase (RNA) I polypeptide B, 128kDa</td>
<td>2.93</td>
<td>chr2</td>
</tr>
<tr>
<td>POLR1D</td>
<td>51082</td>
<td>polymerase (RNA) I polypeptide D, 16kDa</td>
<td>2.58</td>
<td>chr13</td>
</tr>
<tr>
<td>POLR2E</td>
<td>5434</td>
<td>polymerase (RNA) II (DNA directed) polypeptide E, 25kDa</td>
<td>2.17</td>
<td>chr19</td>
</tr>
<tr>
<td>POLR2F</td>
<td>5435</td>
<td>polymerase (RNA) II (DNA directed) polypeptide F</td>
<td>2.39</td>
<td>chr22</td>
</tr>
<tr>
<td>POLR2I</td>
<td>5438</td>
<td>polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa</td>
<td>2.27</td>
<td>chr19</td>
</tr>
<tr>
<td>POLR2L</td>
<td>5441</td>
<td>polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa // polymerase</td>
<td>2.14</td>
<td>chr11</td>
</tr>
<tr>
<td>POLR3D</td>
<td>661</td>
<td>polymerase (RNA) III (DNA directed) polypeptide D, 44kDa</td>
<td>2.16</td>
<td>chr8</td>
</tr>
<tr>
<td>POLR3G</td>
<td>10622</td>
<td>polymerase (RNA) III (DNA directed) polypeptide G (32kD)</td>
<td>11.89</td>
<td>chr5</td>
</tr>
<tr>
<td>POLR3K</td>
<td>51728</td>
<td>polymerase (RNA) III (DNA directed) polypeptide K, 12.3kDa</td>
<td>3.17</td>
<td>chr16</td>
</tr>
<tr>
<td>POLRMT</td>
<td>5442</td>
<td>polymerase (RNA) mitochondrial (DNA directed)</td>
<td>2.19</td>
<td>chr17</td>
</tr>
<tr>
<td>POP7</td>
<td>10248</td>
<td>processing of precursor 7, ribonuclease P subunit (S. cerevisiae)</td>
<td>2.16</td>
<td>chr7</td>
</tr>
<tr>
<td>POR</td>
<td>5447</td>
<td>P450 (cytochrome) oxidoreductase</td>
<td>2.41</td>
<td>chr7</td>
</tr>
<tr>
<td>POU5F1</td>
<td>862 /// 5460 /// 5</td>
<td>POU domain, class 5, transcription factor 1 // POU domain, class 5, transcription factor 1 // POU domain, class 5, transcription factor 1</td>
<td>32.05</td>
<td>chr1</td>
</tr>
<tr>
<td>PPPAN</td>
<td>56342</td>
<td>pericentromeric protein homolog (Drosophila)</td>
<td>2.06</td>
<td>chr19</td>
</tr>
<tr>
<td>PPAPI2A</td>
<td>8611</td>
<td>phosphatidylinositol-4-phosphate 5-kinase 2A</td>
<td>3.05</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PPA2C</td>
<td>8612</td>
<td>phosphatidic acid phosphatase type 2C</td>
<td>6.09</td>
<td>chr19</td>
</tr>
<tr>
<td>PCCD</td>
<td>60490</td>
<td>phosphopantetheinylcysteine decarboxylase</td>
<td>2.41</td>
<td>chr15</td>
</tr>
<tr>
<td>PPGB</td>
<td>5476</td>
<td>protective protein for beta-galactosidase (galactosialidosis)</td>
<td>2.34</td>
<td>chr20</td>
</tr>
<tr>
<td>PPHNL1</td>
<td>51535</td>
<td>periplin 1</td>
<td>2.25</td>
<td>chr12</td>
</tr>
<tr>
<td>PPID</td>
<td>5481</td>
<td>peptidylprolyl isomerase D (cyclophilin D)</td>
<td>3.51</td>
<td>chr4</td>
</tr>
<tr>
<td>PPM1B</td>
<td>5495</td>
<td>protein phosphatase 1B (formerly 2C), magnesium-dependent, beta isoform</td>
<td>2.75</td>
<td>chr2</td>
</tr>
<tr>
<td>PPM1H</td>
<td>57460</td>
<td>protein phosphatase 1H (PP2C domain containing)</td>
<td>2.65</td>
<td>chr12</td>
</tr>
<tr>
<td>PPMU1J</td>
<td>343926</td>
<td>protein phosphatase 1U (PP2C domain containing)</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>PPP1R14A</td>
<td>94274</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 1A</td>
<td>3.61</td>
<td>chr19</td>
</tr>
<tr>
<td>PPP1R14B</td>
<td>26472</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 1B</td>
<td>3.17</td>
<td>chr22</td>
</tr>
<tr>
<td>PPP1R16B</td>
<td>26051</td>
<td>protein phosphatase 1A, regulatory (inhibitor) subunit 1B</td>
<td>4.22</td>
<td>chr20</td>
</tr>
<tr>
<td>PPP2R1B</td>
<td>5519</td>
<td>protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65), beta isoform</td>
<td>3.50</td>
<td>chr11</td>
</tr>
<tr>
<td>PPP2R5A</td>
<td>5525</td>
<td>protein phosphatase 2, regulatory subunit B (B56), alpha isoform</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>PPP6C</td>
<td>5537</td>
<td>Protein phosphatase 6, catalytic subunit</td>
<td>2.01</td>
<td>chr9</td>
</tr>
<tr>
<td>PGPB1</td>
<td>10084</td>
<td>polyglutamine binding protein 1</td>
<td>2.05</td>
<td>chrX</td>
</tr>
<tr>
<td>PQLC3</td>
<td>130814</td>
<td>PO loop repeat containing 3</td>
<td>3.76</td>
<td>chr2</td>
</tr>
<tr>
<td>PROM14</td>
<td>63978</td>
<td>PR domain containing 14</td>
<td>9.93</td>
<td>chr8</td>
</tr>
<tr>
<td>PROX6</td>
<td>9588</td>
<td>peroxiredoxin 6</td>
<td>2.01</td>
<td>chr1</td>
</tr>
<tr>
<td>PREL</td>
<td>9581</td>
<td>prolyl endopeptidase-like</td>
<td>2.04</td>
<td>chr2</td>
</tr>
<tr>
<td>PRKA1A</td>
<td>5562</td>
<td>protein kinase, AMP-activated, alpha 1 catalytic subunit</td>
<td>2.02</td>
<td>chr5</td>
</tr>
<tr>
<td>PRKB2</td>
<td>5565</td>
<td>protein kinase, AMP-activated, beta 2 non-catalytic subunit</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>PRKR1B</td>
<td>5575</td>
<td>Protein kinase, cAMP-dependent, regulatory, type I, beta</td>
<td>4.38</td>
<td>chr21</td>
</tr>
<tr>
<td>PRKR2B</td>
<td>5577</td>
<td>protein kinase, cAMP-dependent, regulatory, type II, beta</td>
<td>2.13</td>
<td>chr7</td>
</tr>
<tr>
<td>PRKCB</td>
<td>5579</td>
<td>protein kinase C, beta 1</td>
<td>2.74</td>
<td>chr16</td>
</tr>
<tr>
<td>PRKCQ</td>
<td>5588</td>
<td>protein kinase C, theta</td>
<td>3.08</td>
<td>chr10</td>
</tr>
<tr>
<td>PROO149</td>
<td>29035</td>
<td>protein phosphatase 2, regulatory subunit A (PR 65), beta isoform</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>PRO1843</td>
<td>55378</td>
<td>hypothetical protein PRO1843</td>
<td>2.53</td>
<td>chr3</td>
</tr>
<tr>
<td>PRO1853</td>
<td>55471</td>
<td>hypothetical protein PRO1853</td>
<td>2.39</td>
<td>chr2</td>
</tr>
<tr>
<td>PROC</td>
<td>10544</td>
<td>protein C receptor, endothelial (EPCR)</td>
<td>3.03</td>
<td>chr2</td>
</tr>
<tr>
<td>PRODH</td>
<td>5625</td>
<td>proline dehydrogenase (oxidase) 1</td>
<td>4.03</td>
<td>chr22</td>
</tr>
<tr>
<td>PRPF38A</td>
<td>84950</td>
<td>PRP38 pre-mRNA processing factor 38 (yeast) domain containing A</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>PRPS1</td>
<td>5631</td>
<td>phosphoribosyl pyrophosphate synthetase 1</td>
<td>3.07</td>
<td>chrX</td>
</tr>
<tr>
<td>PRPS2</td>
<td>5634</td>
<td>Phosphoribosyl pyrophosphate synthetase 2</td>
<td>2.43</td>
<td>chrX</td>
</tr>
<tr>
<td>PRSS16</td>
<td>10279</td>
<td>protease, serine, 16 (thymus)</td>
<td>2.62</td>
<td>chr6</td>
</tr>
<tr>
<td>PRSS8</td>
<td>5652</td>
<td>protease, serine, 8 (prostatin)</td>
<td>2.07</td>
<td>chr16</td>
</tr>
<tr>
<td>PSMA5</td>
<td>5686</td>
<td>proteasome (prosome, macropain) subunit, alpha type, 5</td>
<td>2.29</td>
<td>chr1</td>
</tr>
<tr>
<td>PSMB10</td>
<td>5699</td>
<td>proteasome (prosome, macropain) subunit, beta type, 10</td>
<td>3.64</td>
<td>chr16</td>
</tr>
<tr>
<td>PSMB8</td>
<td>5696</td>
<td>proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional)</td>
<td>7.99</td>
<td>chr6</td>
</tr>
<tr>
<td>PSMC4</td>
<td>5704</td>
<td>proteasome (prosome, macropain) 26S subunit, ATPase, 4</td>
<td>3.13</td>
<td>chr19</td>
</tr>
<tr>
<td>PSMD12</td>
<td>5718</td>
<td>proteasome (prosome, macropain) 26S subunit, non-ATPase, 12</td>
<td>2.33</td>
<td>chr17</td>
</tr>
<tr>
<td>PSME1</td>
<td>5720</td>
<td>proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)</td>
<td>2.57</td>
<td>chr14</td>
</tr>
<tr>
<td>PSME2</td>
<td>5721</td>
<td>proteasome (prosome, macropain) activator subunit 2 (PA28 beta)</td>
<td>2.36</td>
<td>chr5</td>
</tr>
<tr>
<td>PSME3</td>
<td>10197</td>
<td>proteasome (prosome, macropain) activator subunit 3 (PA28 gamma; K11)</td>
<td>2.65</td>
<td>chr17</td>
</tr>
<tr>
<td>PSME1</td>
<td>9491</td>
<td>proteasome (prosome, macropain) inhibitor subunit 1 (PI31)</td>
<td>2.65</td>
<td>chr20</td>
</tr>
<tr>
<td>PSPH</td>
<td>5723</td>
<td>phosphoserine phosphatase</td>
<td>2.01</td>
<td>chr7</td>
</tr>
<tr>
<td>PTCHD1</td>
<td>139411</td>
<td>patched domain containing 1</td>
<td>2.11</td>
<td>chrX</td>
</tr>
<tr>
<td>PTEN</td>
<td>5728</td>
<td>Phosphatase and tensin homolog (mutated in multiple advanced cancers)</td>
<td>2.12</td>
<td>chr10</td>
</tr>
<tr>
<td>PTXL9</td>
<td>11344</td>
<td>PTXL9 protein tyrosine kinase 9-like (A6-related protein)</td>
<td>2.27</td>
<td>chr3</td>
</tr>
<tr>
<td>PTMA</td>
<td>5757</td>
<td>prothymosin, alpha (gene sequence 28)</td>
<td>2.06</td>
<td>chr2</td>
</tr>
<tr>
<td>PTPN2</td>
<td>5771</td>
<td>protein tyrosine phosphatase, non-receptor type 2</td>
<td>2.19</td>
<td>chr13</td>
</tr>
<tr>
<td>PTPN6</td>
<td>5777</td>
<td>protein tyrosine phosphatase, non-receptor type 6</td>
<td>2.85</td>
<td>chr12</td>
</tr>
<tr>
<td>PUS1</td>
<td>80324</td>
<td>pseudouridylate synthase 1</td>
<td>2.18</td>
<td>chr12</td>
</tr>
<tr>
<td>PWP2H</td>
<td>5822</td>
<td>PWP2 periodic tryptophan protein homolog (yeast)</td>
<td>2.23</td>
<td>chr21</td>
</tr>
<tr>
<td>PX19</td>
<td>27166</td>
<td>px19-like protein</td>
<td>3.05</td>
<td>chr1</td>
</tr>
<tr>
<td>PYCARD</td>
<td>29108</td>
<td>PYP and CARD domain containing</td>
<td>8.35</td>
<td>chr16</td>
</tr>
<tr>
<td>PYCR2</td>
<td>29920</td>
<td>tyrosine-5-carboxylate reductase family, member 2</td>
<td>2.95</td>
<td>chr1</td>
</tr>
<tr>
<td>QRSL1</td>
<td>55278</td>
<td>glutaminyl-tRNA synthase (glutamine-hydroxylation)-like 1</td>
<td>2.31</td>
<td>chr6</td>
</tr>
<tr>
<td>RAB10</td>
<td>10890</td>
<td>RAB10, member RAS oncogene family</td>
<td>2.15</td>
<td>chr2</td>
</tr>
<tr>
<td>RAB11FIP4</td>
<td>84440</td>
<td>RAB11 family interacting protein 4 (class II)</td>
<td>2.81</td>
<td>chr17</td>
</tr>
<tr>
<td>RAB15</td>
<td>376267</td>
<td>RAB15, member RAS oncogene family</td>
<td>2.16</td>
<td>chr14</td>
</tr>
<tr>
<td>RAB20</td>
<td>55647</td>
<td>RAB20, member RAS oncogene family</td>
<td>4.17</td>
<td>chr13</td>
</tr>
<tr>
<td>RAB34</td>
<td>83871</td>
<td>RAB34, member RAS oncogene family</td>
<td>3.47</td>
<td>chr17</td>
</tr>
<tr>
<td>RAB38</td>
<td>23682</td>
<td>RAB38, member RAS oncogene family</td>
<td>2.19</td>
<td>chr11</td>
</tr>
<tr>
<td>RAB9B</td>
<td>116442</td>
<td>RAB9B, member RAS oncogene family</td>
<td>2.10</td>
<td>chr19</td>
</tr>
<tr>
<td>RAB3B</td>
<td>5865</td>
<td>RAB3B, member RAS oncogene family</td>
<td>2.14</td>
<td>chr1</td>
</tr>
<tr>
<td>RAB5A</td>
<td>5868</td>
<td>RAB5A, member RAS oncogene family</td>
<td>2.20</td>
<td>chr3</td>
</tr>
</tbody>
</table>
Table S3: Genes downregulated in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAB7</td>
<td>7879</td>
<td>RAB7, member RAS oncogene family</td>
<td>2.08</td>
<td>chr3</td>
</tr>
<tr>
<td>RABC1</td>
<td>10567</td>
<td>Rab acceptor 1 (prenylated)</td>
<td>2.00</td>
<td>chr19</td>
</tr>
<tr>
<td>RABEPK</td>
<td>10244</td>
<td>Rab9 effector protein with kich motifs</td>
<td>2.16</td>
<td>chr9</td>
</tr>
<tr>
<td>RABGAP1L</td>
<td>9910</td>
<td>RAB GTPase activating protein 1-like</td>
<td>9.92</td>
<td>chr1</td>
</tr>
<tr>
<td>RALA</td>
<td>5896</td>
<td>v-ras-simian leukemia viral oncogene homolog A (ras related)</td>
<td>2.68</td>
<td>chr7</td>
</tr>
<tr>
<td>RALGPS1</td>
<td>9649</td>
<td>Ras GEF with PH domain and SH3 binding motif 1</td>
<td>2.13</td>
<td>chr9</td>
</tr>
<tr>
<td>RARRES2</td>
<td>5919</td>
<td>retinoic acid receptor responder (tazarotene induced) 2</td>
<td>14.67</td>
<td>chr7</td>
</tr>
<tr>
<td>RASEF</td>
<td>158158</td>
<td>RAS and EF-hand domain containing</td>
<td>2.05</td>
<td>chr9</td>
</tr>
<tr>
<td>RASGEF1A</td>
<td>221002</td>
<td>RasGEF domain family, member 1A</td>
<td>3.22</td>
<td>chr10</td>
</tr>
<tr>
<td>RASGRP2</td>
<td>10235</td>
<td>RAS guanyl releasing protein 2 (calcium and DAG-regulated)</td>
<td>2.89</td>
<td>chr11</td>
</tr>
<tr>
<td>RASIP1</td>
<td>54922</td>
<td>Ras interacting protein 1</td>
<td>2.05</td>
<td>chr19</td>
</tr>
<tr>
<td>RASL1B</td>
<td>65997</td>
<td>RAS-like, family 11, member B</td>
<td>5.59</td>
<td>chr4</td>
</tr>
<tr>
<td>RBBP7</td>
<td>5931</td>
<td>Retinoblastoma binding protein 7</td>
<td>2.34</td>
<td>chrX</td>
</tr>
<tr>
<td>RBM13</td>
<td>84549</td>
<td>RNA binding motif protein 13 // RNA binding motif protein 13</td>
<td>2.01</td>
<td>chr8</td>
</tr>
<tr>
<td>RBM15</td>
<td>64783</td>
<td>RNA binding motif protein 15</td>
<td>2.33</td>
<td>chr1</td>
</tr>
<tr>
<td>RBM19</td>
<td>9904</td>
<td>RNA binding motif protein 19</td>
<td>2.40</td>
<td>chr12</td>
</tr>
<tr>
<td>RBM35A</td>
<td>54845</td>
<td>RNA binding motif protein 35A</td>
<td>2.31</td>
<td>chr8</td>
</tr>
<tr>
<td>RBM35B</td>
<td>80004</td>
<td>RNA binding motif protein 35B</td>
<td>3.72</td>
<td>chr16</td>
</tr>
<tr>
<td>RBBM7</td>
<td>10179</td>
<td>RNA binding motif protein 7</td>
<td>2.76</td>
<td>chr11</td>
</tr>
<tr>
<td>RBBP7</td>
<td>116362</td>
<td>retinobin binding protein 7, cellular</td>
<td>2.23</td>
<td>chr1</td>
</tr>
<tr>
<td>RBPM5S2</td>
<td>348093</td>
<td>RNA binding protein with multiple splicing</td>
<td>3.46</td>
<td>chr8</td>
</tr>
<tr>
<td>RBPSUH</td>
<td>3516</td>
<td>recombining binding protein suppressor of hairless (Drosophila)</td>
<td>2.64</td>
<td>chr4</td>
</tr>
<tr>
<td>RCC1</td>
<td>1104</td>
<td>regulator of chromosome condensation</td>
<td>2.01</td>
<td>chr1</td>
</tr>
<tr>
<td>RCHY1</td>
<td>25898</td>
<td>ring finger and CHY zinc finger domain containing 1</td>
<td>2.21</td>
<td>chr4</td>
</tr>
<tr>
<td>RCN3</td>
<td>57333</td>
<td>reticulocablin 3, EF-hand calcium binding domain</td>
<td>2.75</td>
<td>chr19</td>
</tr>
<tr>
<td>RENT1</td>
<td>5976</td>
<td>regulator of nonsense transcripts</td>
<td>5.27</td>
<td>chr19</td>
</tr>
<tr>
<td>REXQ2</td>
<td>25996</td>
<td>REX2, RNA exonuclease 2 homolog (S. cerevisiae)</td>
<td>3.49</td>
<td>chr11</td>
</tr>
<tr>
<td>RIS1</td>
<td>25907</td>
<td>Ras-induced senescence 1</td>
<td>5.18</td>
<td>chr3</td>
</tr>
<tr>
<td>RNF12</td>
<td>51132</td>
<td>ring finger protein 12</td>
<td>2.14</td>
<td>chr15</td>
</tr>
<tr>
<td>RNF125</td>
<td>54941</td>
<td>ring finger protein 125</td>
<td>3.83</td>
<td>chr18</td>
</tr>
<tr>
<td>RNF126</td>
<td>55658</td>
<td>ring finger protein 126</td>
<td>2.03</td>
<td>chr19</td>
</tr>
<tr>
<td>RNF138</td>
<td>51444</td>
<td>ring finger protein 138</td>
<td>2.63</td>
<td>chr18</td>
</tr>
<tr>
<td>RNU3IP2</td>
<td>9136</td>
<td>RNA, U3 small nucleolar interacting protein 2</td>
<td>3.17</td>
<td>chr3</td>
</tr>
<tr>
<td>RP1-112K5.2</td>
<td>90121</td>
<td>hypothetical protein DT1P1A10</td>
<td>2.16</td>
<td>chrX</td>
</tr>
<tr>
<td>RPE</td>
<td>6120</td>
<td>ribulose-5-phosphate-3-epimerase</td>
<td>2.34</td>
<td>chr2</td>
</tr>
<tr>
<td>RPE</td>
<td>440001</td>
<td>ribulose-5-phosphate-3-epimerase // similar to Ribulose-phosphate 3-epimerase</td>
<td>2.75</td>
<td>chr10</td>
</tr>
<tr>
<td>RPL22L1</td>
<td>200916</td>
<td>ribosomal protein L22-like 1</td>
<td>2.52</td>
<td>chr3</td>
</tr>
<tr>
<td>RPL36AL</td>
<td>6166</td>
<td>ribosomal protein L36a-like</td>
<td>2.25</td>
<td>chr5</td>
</tr>
<tr>
<td>RPRM</td>
<td>56475</td>
<td>represso, TPS3 dependant G2 arrest mediator candidate</td>
<td>2.30</td>
<td>chr2</td>
</tr>
<tr>
<td>RPS24</td>
<td>6229</td>
<td>Ribosomal protein S24</td>
<td>2.96</td>
<td>chr10</td>
</tr>
<tr>
<td>RPS27L</td>
<td>51065</td>
<td>Ribosomal protein S27-like</td>
<td>2.01</td>
<td>chr15</td>
</tr>
<tr>
<td>RPS6KA1</td>
<td>6195</td>
<td>ribosomal protein S6 kinase, 90kDa, polypeptide 1</td>
<td>2.35</td>
<td>chr1</td>
</tr>
<tr>
<td>RPSU2D2</td>
<td>27079</td>
<td>RNA pseudouridylation synthase domain containing 2</td>
<td>2.27</td>
<td>chr15</td>
</tr>
<tr>
<td>RRAS2</td>
<td>22800</td>
<td>related RAS viral (v-ras) oncogene homolog 2</td>
<td>4.73</td>
<td>chr1</td>
</tr>
<tr>
<td>RRBP1</td>
<td>6238</td>
<td>ribosome binding protein 1 homolog 180kDa (dog)</td>
<td>3.21</td>
<td>chr20</td>
</tr>
<tr>
<td>RRBMB</td>
<td>50484</td>
<td>ribonucleotide reductase M2 B (TP53 inducible)</td>
<td>2.36</td>
<td>chr8</td>
</tr>
<tr>
<td>RRS1</td>
<td>23212</td>
<td>RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)</td>
<td>2.36</td>
<td>chr8</td>
</tr>
<tr>
<td>RSL1D1</td>
<td>26156</td>
<td>Ribosomal L1 domain containing 1</td>
<td>2.18</td>
<td>chr16</td>
</tr>
<tr>
<td>RSU1</td>
<td>6251</td>
<td>Ras suppressor protein 1</td>
<td>2.11</td>
<td>chr10</td>
</tr>
<tr>
<td>RTN4IP1</td>
<td>84816</td>
<td>reticulin 4 interacting protein 1</td>
<td>3.90</td>
<td>chr12</td>
</tr>
<tr>
<td>SACM1L</td>
<td>22908</td>
<td>SAC1 suppressor of actin mutations 1-like (yeast)</td>
<td>2.03</td>
<td>chr3</td>
</tr>
<tr>
<td>SAMD6</td>
<td>203286</td>
<td>sterile alpha motif domain containing 6</td>
<td>2.51</td>
<td>chr9</td>
</tr>
<tr>
<td>SAMH61</td>
<td>25939</td>
<td>SAM domain and HD domain 1</td>
<td>9.21</td>
<td>chr20</td>
</tr>
<tr>
<td>SAP18</td>
<td>10284</td>
<td>sur3-associated polypeptide, 18kDa</td>
<td>3.13</td>
<td>chr13</td>
</tr>
<tr>
<td>SAS10</td>
<td>57050</td>
<td>disrupter of silencing 10</td>
<td>2.05</td>
<td>chr4</td>
</tr>
<tr>
<td>SAV1</td>
<td>60485</td>
<td>salvador homolog 1 (Drosophila)</td>
<td>2.03</td>
<td>chr14</td>
</tr>
<tr>
<td>SCAMP1</td>
<td>9522</td>
<td>secretory carrier membrane protein 1</td>
<td>2.06</td>
<td>chr5</td>
</tr>
<tr>
<td>SCAMP5</td>
<td>192683</td>
<td>secretory carrier membrane protein 5</td>
<td>2.02</td>
<td>chr15</td>
</tr>
<tr>
<td>SCAND1</td>
<td>51282</td>
<td>SCAN domain containing 1</td>
<td>2.37</td>
<td>chr20</td>
</tr>
<tr>
<td>SCARB1</td>
<td>949</td>
<td>scavenger receptor class B, member 1</td>
<td>2.49</td>
<td>chr12</td>
</tr>
<tr>
<td>SCD</td>
<td>6319</td>
<td>stearoyl-CoA desaturase (delta-9-desaturase) // stearoyl-CoA desaturase</td>
<td>2.89</td>
<td>chr10</td>
</tr>
<tr>
<td>SCG3</td>
<td>29106</td>
<td>secretogranin III</td>
<td>12.46</td>
<td>chr15</td>
</tr>
<tr>
<td>SCGB3A2</td>
<td>117156</td>
<td>secretogoglobin, family 3A, member 2</td>
<td>10.13</td>
<td>chr5</td>
</tr>
<tr>
<td>SCLY</td>
<td>51540</td>
<td>selenocysteine lyase</td>
<td>3.66</td>
<td>chr2</td>
</tr>
<tr>
<td>SCNN1A</td>
<td>6337</td>
<td>sodium channel, nonvoltage-gated 1 alpha</td>
<td>12.10</td>
<td>chr12</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC down</td>
<td>Chromosome Number(Avidis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SCNN1G</td>
<td>6340</td>
<td>sodium channel, nonvoltage-gated 1, gamma</td>
<td>2.24</td>
<td>chr16</td>
</tr>
<tr>
<td>SCO1</td>
<td>6341</td>
<td>SCO cytochrome oxidase deficient homolog 1 (yeast)</td>
<td>2.06</td>
<td>chr17</td>
</tr>
<tr>
<td>SCO2</td>
<td>9997</td>
<td>SCO cytochrome oxidase deficient homolog 2 (yeast)</td>
<td>2.04</td>
<td>chr22</td>
</tr>
<tr>
<td>SCP2</td>
<td>6342</td>
<td>Sterol carrier protein 2</td>
<td>2.01</td>
<td>chr1</td>
</tr>
<tr>
<td>SDHB</td>
<td>6390</td>
<td>succinate dehydrogenase complex, subunit B, iron sulfur (bp)</td>
<td>3.40</td>
<td>chr1</td>
</tr>
<tr>
<td>SDHD</td>
<td>6392</td>
<td>succinate dehydrogenase complex, subunit D, integral membrane protein</td>
<td>2.92</td>
<td>chr1</td>
</tr>
<tr>
<td>SEC5L1</td>
<td>80701</td>
<td>SEC11-like 3 (S. cerevisiae)</td>
<td>2.19</td>
<td>chr18</td>
</tr>
<tr>
<td>SEC22L3</td>
<td>9117</td>
<td>SEC22 vesicle trafficking protein-like 3 (S. cerevisiae) // SEC22 vesicle trafficking protein-like 3 (S. cerevisiae)</td>
<td>2.79</td>
<td>chr3</td>
</tr>
<tr>
<td>SEC24D</td>
<td>9871</td>
<td>SEC24-related gene family, member D (S. cerevisiae)</td>
<td>2.89</td>
<td>chr4</td>
</tr>
<tr>
<td>SEC5L1</td>
<td>55770</td>
<td>SEC5-like 1 (S. cerevisiae)</td>
<td>2.21</td>
<td>chr6</td>
</tr>
<tr>
<td>SEH1L</td>
<td>81929</td>
<td>SEH1-like (S. cerevisiae)</td>
<td>2.13</td>
<td>chr18</td>
</tr>
<tr>
<td>SELT</td>
<td>51714</td>
<td>selenoprotein T</td>
<td>2.03</td>
<td>chr3</td>
</tr>
<tr>
<td>SEMA6A</td>
<td>57556</td>
<td>sema domain, transmembrane domain (TM), and cytoplasmic domain, (seg)</td>
<td>2.25</td>
<td>chr5</td>
</tr>
<tr>
<td>SENP2</td>
<td>59343</td>
<td>SUMO1/sentin/SMT3 specific peptidase 2</td>
<td>2.03</td>
<td>chr3</td>
</tr>
<tr>
<td>SEPHS1</td>
<td>22929</td>
<td>Selenophosphate synthetase 1</td>
<td>7.65</td>
<td>chr2</td>
</tr>
<tr>
<td>SERF1A</td>
<td>56617 /// 8293</td>
<td>small EDRK-rich factor 1A (telomeric) // small EDRK-rich factor 1B (centromeric)</td>
<td>2.09</td>
<td>chr5</td>
</tr>
<tr>
<td>SERF2</td>
<td>10169</td>
<td>small EDRK-rich factor 2</td>
<td>2.06</td>
<td>chr15</td>
</tr>
<tr>
<td>SERF2</td>
<td>10169 /// 25764</td>
<td>small EDRK-rich factor 2 // Huntington interacting protein K</td>
<td>2.41</td>
<td>chr15</td>
</tr>
<tr>
<td>SERP1</td>
<td>27230</td>
<td>stress-associated endoplasmic reticulum protein 1</td>
<td>2.05</td>
<td>chr3</td>
</tr>
<tr>
<td>SERPINB9</td>
<td>5272</td>
<td>serpin peptidase inhibitor, clade B (ovulamin), member 9</td>
<td>2.01</td>
<td>chr6</td>
</tr>
<tr>
<td>SERPIN2</td>
<td>5272</td>
<td>serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor 1)</td>
<td>2.34</td>
<td>chr2</td>
</tr>
<tr>
<td>SERPIN1</td>
<td>5274</td>
<td>serpin peptidase inhibitor, clade I (neuroserpin), member 1</td>
<td>3.43</td>
<td>chr3</td>
</tr>
<tr>
<td>SET</td>
<td>389168 /// 6418</td>
<td>SET translocation (myeloid leukemia-associated) // similar to SET protein</td>
<td>3.25</td>
<td>chrX</td>
</tr>
<tr>
<td>SFRS2</td>
<td>6427</td>
<td>splicing factor, arginine/serine-rich 2</td>
<td>2.21</td>
<td>chr17</td>
</tr>
<tr>
<td>SFT2D1</td>
<td>113402</td>
<td>SFT2 domain containing 1</td>
<td>2.78</td>
<td>chr6</td>
</tr>
<tr>
<td>SGK</td>
<td>6446</td>
<td>serum/glucocorticoid regulated kinase</td>
<td>4.68</td>
<td>chr6</td>
</tr>
<tr>
<td>SGK3</td>
<td>23678</td>
<td>serum/glucocorticoid regulated kinase, member 3</td>
<td>2.52</td>
<td>chr8</td>
</tr>
<tr>
<td>SH3GL2</td>
<td>6456</td>
<td>SH3-domain GRB2-like 2</td>
<td>2.63</td>
<td>chr9</td>
</tr>
<tr>
<td>SHANK2</td>
<td>22941</td>
<td>SH3 and multiple ankyrin repeat domains 2</td>
<td>2.64</td>
<td>chr11</td>
</tr>
<tr>
<td>SMIT2</td>
<td>6472</td>
<td>serine hydroxymethyltransferase 2 (mitochondrial)</td>
<td>2.23</td>
<td>chr12</td>
</tr>
<tr>
<td>SGIIRR</td>
<td>59307</td>
<td>single immunoglobulin and toll-interleukin 1 receptor (TIR) domain</td>
<td>3.49</td>
<td>chr11</td>
</tr>
<tr>
<td>SIPA1L1</td>
<td>26037</td>
<td>signal-induced proliferation-associated 1 like 1</td>
<td>2.03</td>
<td>chr14</td>
</tr>
<tr>
<td>SIRT1</td>
<td>23411</td>
<td>sirtuin (silent mating type information regulation 2 homolog 1 (S. cerevisiae)</td>
<td>4.58</td>
<td>chr10</td>
</tr>
<tr>
<td>SITPEC</td>
<td>51295</td>
<td>signaling intermediate in Toll pathway, evolutionally conserved</td>
<td>2.23</td>
<td>chr19</td>
</tr>
<tr>
<td>SIVA</td>
<td>10572</td>
<td>CD27-binding (Siva) protein</td>
<td>2.30</td>
<td>chr14</td>
</tr>
<tr>
<td>SKIL</td>
<td>6498</td>
<td>SKI-like</td>
<td>4.29</td>
<td>chr3</td>
</tr>
<tr>
<td>SKP2</td>
<td>6502</td>
<td>S-phase kinase-associated protein 2 (p45)</td>
<td>2.29</td>
<td>chr5</td>
</tr>
<tr>
<td>SLC12A8</td>
<td>84561</td>
<td>solute carrier family 12 (potassium/chloride transporters), member 8</td>
<td>2.72</td>
<td>chr3</td>
</tr>
<tr>
<td>SLC13A3</td>
<td>64849</td>
<td>solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 1</td>
<td>2.03</td>
<td>chr20</td>
</tr>
<tr>
<td>SLC16A1</td>
<td>6566</td>
<td>solute carrier family 16 (monocarboxylic acid transporters), member 1</td>
<td>3.59</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC16A10</td>
<td>117247</td>
<td>solute carrier family 16 (monocarboxylic acid transporters), member 10</td>
<td>3.47</td>
<td>chr6</td>
</tr>
<tr>
<td>SLC18A2</td>
<td>6571</td>
<td>solute carrier family 18 (vesicular monoamine), member 2</td>
<td>2.02</td>
<td>chr10</td>
</tr>
<tr>
<td>SLC1A5</td>
<td>6510</td>
<td>solute carrier family 1 (neutral amino acid transporter), member 5</td>
<td>2.28</td>
<td>chr19</td>
</tr>
<tr>
<td>SLC25A19</td>
<td>60386</td>
<td>solute carrier family 25 (mitochondrial deoxyxynucleotide carrier), member 1</td>
<td>3.14</td>
<td>chr12</td>
</tr>
<tr>
<td>SLC25A21</td>
<td>86974</td>
<td>solute carrier family 25 (mitochondrial oxidative carrier), member 2</td>
<td>2.27</td>
<td>chr14</td>
</tr>
<tr>
<td>SLC25A4</td>
<td>291</td>
<td>solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocase)</td>
<td>3.22</td>
<td>chr4</td>
</tr>
<tr>
<td>SLC27A2</td>
<td>11001</td>
<td>solute carrier family 27 (fatty acid transporter), member 2</td>
<td>2.29</td>
<td>chr15</td>
</tr>
<tr>
<td>SLC27A3</td>
<td>11000</td>
<td>solute carrier family 27 (fatty acid transporter), member 3</td>
<td>2.88</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC37A1</td>
<td>54020</td>
<td>solute carrier family 37 (glycerol-3-phosphate transporter), member 1</td>
<td>2.49</td>
<td>chr21</td>
</tr>
<tr>
<td>SLC38A5</td>
<td>92745</td>
<td>solute carrier family 38, member 5</td>
<td>2.53</td>
<td>chrX</td>
</tr>
<tr>
<td>SLC39A1</td>
<td>27173</td>
<td>solute carrier family 39 (zinc transporter), member 1</td>
<td>2.07</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC39A14</td>
<td>23516</td>
<td>solute carrier family 39 (zinc transporter), member 14</td>
<td>2.95</td>
<td>chr8</td>
</tr>
<tr>
<td>SLC39A8</td>
<td>64116</td>
<td>solute carrier family 39 (zinc transporter), member 8</td>
<td>2.75</td>
<td>chr4</td>
</tr>
<tr>
<td>SLC43A1</td>
<td>8501</td>
<td>solute carrier family 43, member 1</td>
<td>2.67</td>
<td>chr11</td>
</tr>
<tr>
<td>SLC44A1</td>
<td>23446</td>
<td>solute carrier family 44, member 1</td>
<td>3.12</td>
<td>chr9</td>
</tr>
<tr>
<td>SLC44A11</td>
<td>83959</td>
<td>solute carrier family 4, sodium bicarbonate transporter-like, member 1</td>
<td>4.80</td>
<td>chr20</td>
</tr>
<tr>
<td>SLC4A5</td>
<td>57835</td>
<td>solute carrier family 4, sodium bicarbonate cotransporter, member 5</td>
<td>2.17</td>
<td>chr2</td>
</tr>
<tr>
<td>SLC7A3</td>
<td>84889</td>
<td>solute carrier family 7 (cationic amino acid transporter, y+ system), member 7</td>
<td>6.00</td>
<td>chrX</td>
</tr>
<tr>
<td>SLC04A1</td>
<td>28231</td>
<td>solute carrier organic anion transporter family, member 4A1</td>
<td>2.77</td>
<td>chr20</td>
</tr>
<tr>
<td>SLC04C1</td>
<td>353189</td>
<td>solute carrier organic anion transporter family, member 4C1</td>
<td>4.54</td>
<td>chr5</td>
</tr>
<tr>
<td>SMC6L1</td>
<td>79677</td>
<td>SMC6 structural maintenance of chromosomes 6-like 1 (yeast)</td>
<td>2.05</td>
<td>chr2</td>
</tr>
<tr>
<td>SMILE</td>
<td>160418</td>
<td>SMILE protein</td>
<td>2.14</td>
<td>chr12</td>
</tr>
<tr>
<td>SNM1</td>
<td>6606 /// 6607</td>
<td>survival of motor neuron 1, telomeric // survival of motor neuron 2, centromeric</td>
<td>2.16</td>
<td>chr5</td>
</tr>
<tr>
<td>SMPD3L3B</td>
<td>27293</td>
<td>sphingomyelin phosphodiesterase, acid-like 3B</td>
<td>5.26</td>
<td>chr1</td>
</tr>
<tr>
<td>SNRPC</td>
<td>6631</td>
<td>small nuclear ribonucleoprotein polypeptide C</td>
<td>2.02</td>
<td>chr5</td>
</tr>
<tr>
<td>SNRPN</td>
<td>6638 /// 8926</td>
<td>small nuclear ribonucleoprotein polypeptide N // SNRPN upstream reading frame</td>
<td>5.38</td>
<td>chr15</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SNRPN</td>
<td>6638</td>
<td>Small nuclear ribonucleoprotein polypeptide N</td>
<td>4.20</td>
<td>chr15</td>
</tr>
<tr>
<td>SNX5</td>
<td>27131</td>
<td>sorting nexin 5</td>
<td>2.03</td>
<td>chr20</td>
</tr>
<tr>
<td>SOCS1</td>
<td>8651</td>
<td>suppressor of cytokine signaling 1</td>
<td>3.51</td>
<td>chr16</td>
</tr>
<tr>
<td>SOD2</td>
<td>6648</td>
<td>superoxide dismutase 2, mitochondrial</td>
<td>3.16</td>
<td>chr6</td>
</tr>
<tr>
<td>SORBS1</td>
<td>10580</td>
<td>sorbin and SH3 domain containing 1</td>
<td>3.46</td>
<td>chr10</td>
</tr>
<tr>
<td>SORL1</td>
<td>8653</td>
<td>sortlin-related receptor, L(DLR class) A repeats-containing</td>
<td>2.41</td>
<td>chr11</td>
</tr>
<tr>
<td>SP110</td>
<td>3431</td>
<td>SP110 nuclear body protein</td>
<td>2.15</td>
<td>chr2</td>
</tr>
<tr>
<td>SPTA11</td>
<td>84266</td>
<td>spermatogenesis associated 11</td>
<td>2.05</td>
<td>chr19</td>
</tr>
<tr>
<td>SPC25</td>
<td>57405</td>
<td>spindle pole body component 25 homolog (S. cerevisiae)</td>
<td>2.12</td>
<td>chr2</td>
</tr>
<tr>
<td>SPG20</td>
<td>23111</td>
<td>spastic paraplegia 20, spartin (Treyor syndrome)</td>
<td>2.62</td>
<td>chr13</td>
</tr>
<tr>
<td>SPH1</td>
<td>6689</td>
<td>Spi-B transcription factor (Spi-1/Pu.1 related)</td>
<td>2.73</td>
<td>chr19</td>
</tr>
<tr>
<td>SPINT1</td>
<td>10653</td>
<td>serine peptidase inhibitor, Kunzit type 1</td>
<td>2.18</td>
<td>chr18</td>
</tr>
<tr>
<td>SPRY4</td>
<td>81848</td>
<td>Sprouty homolog 4 (Drosophila)</td>
<td>5.13</td>
<td>chr11</td>
</tr>
<tr>
<td>SPRB2</td>
<td>84727</td>
<td>sParyanodine receptor domain and SOCS box containing 2</td>
<td>2.17</td>
<td>chr12</td>
</tr>
<tr>
<td>SPTLC2</td>
<td>9517</td>
<td>serine palmitoyltransferase, long chain base subunit 2</td>
<td>2.91</td>
<td>chr14</td>
</tr>
<tr>
<td>SRD5A1</td>
<td>6715</td>
<td>steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delt)</td>
<td>2.15</td>
<td>chr5</td>
</tr>
<tr>
<td>SRM</td>
<td>6723</td>
<td>spermidine synthase</td>
<td>2.48</td>
<td>chr1</td>
</tr>
<tr>
<td>SRPRB</td>
<td>58477</td>
<td>signal recognition particle receptor, B subunit</td>
<td>2.18</td>
<td>chr3</td>
</tr>
<tr>
<td>SRY</td>
<td>6736</td>
<td>sex determining region Y</td>
<td>2.02</td>
<td>chrY</td>
</tr>
<tr>
<td>SNSA1</td>
<td>8636</td>
<td>Sogren's syndrome nuclear autoantigen 1</td>
<td>2.21</td>
<td>chr9</td>
</tr>
<tr>
<td>SSR1</td>
<td>6745</td>
<td>signal sequence receptor, alpha (translocon-associated protein alpha)</td>
<td>2.24</td>
<td>chr6</td>
</tr>
<tr>
<td>SSR3</td>
<td>6747</td>
<td>signal sequence receptor, gamma (translocon-associated protein gamma)</td>
<td>2.11</td>
<td>chr3</td>
</tr>
<tr>
<td>SSSCA1</td>
<td>10534</td>
<td>Sogren's syndrome/scleroderma autoantigen 1</td>
<td>2.31</td>
<td>chr11</td>
</tr>
<tr>
<td>SSU72</td>
<td>29101</td>
<td>Ssu72 RNA polymerase II CTD phosphatase homolog (yeast)</td>
<td>2.11</td>
<td>chr1</td>
</tr>
<tr>
<td>ST14</td>
<td>6768</td>
<td>suppression of tumorigenicity 14 (colon carcinoma, multistep, epithin)</td>
<td>2.03</td>
<td>chr11</td>
</tr>
<tr>
<td>STRIA3</td>
<td>51045</td>
<td>ST8 alpha-N-acetylneuraminide alpha 2,8-sialyltransferase 3</td>
<td>2.36</td>
<td>chr18</td>
</tr>
<tr>
<td>STAT3</td>
<td>6774</td>
<td>signal transducer and activator of transcription 3 (acute-phase response 2)</td>
<td>3.17</td>
<td>chr17</td>
</tr>
<tr>
<td>STC2</td>
<td>8614</td>
<td>stannicarcin 2</td>
<td>3.44</td>
<td>chr5</td>
</tr>
<tr>
<td>STEAP1</td>
<td>26872</td>
<td>six transmembrane epithelial antigen of the prostate 1</td>
<td>3.08</td>
<td>chr7</td>
</tr>
<tr>
<td>STEAP2</td>
<td>261729</td>
<td>six transmembrane epithelial antigen of the prostate 2</td>
<td>2.72</td>
<td>chr7</td>
</tr>
<tr>
<td>STEAP3</td>
<td>55240</td>
<td>STEAP family member 3</td>
<td>3.37</td>
<td>chr2</td>
</tr>
<tr>
<td>STIP1</td>
<td>10963</td>
<td>stress-induced-phosphoprotein 1 (Hsp70/Hsp90-organizing protein)</td>
<td>2.17</td>
<td>chr11</td>
</tr>
<tr>
<td>STMN1</td>
<td>50861</td>
<td>stathmin-3</td>
<td>4.51</td>
<td>chr20</td>
</tr>
<tr>
<td>STRBP</td>
<td>55342</td>
<td>Spermatid perinuclear RNA binding protein</td>
<td>2.09</td>
<td>chr9</td>
</tr>
<tr>
<td>STRN</td>
<td>6801</td>
<td>Striatin, calmodulin binding protein</td>
<td>2.41</td>
<td>chr2</td>
</tr>
<tr>
<td>STX6</td>
<td>10229</td>
<td>syntaxin 6</td>
<td>2.42</td>
<td>chr1</td>
</tr>
<tr>
<td>SUB1</td>
<td>10923</td>
<td>SUB1 homolog (S. cerevisiae)</td>
<td>2.47</td>
<td>chr5</td>
</tr>
<tr>
<td>SUGT1</td>
<td>10910</td>
<td>SGT1, suppressor of G2 allele of SKP1 (S. cerevisiae)</td>
<td>2.02</td>
<td>chr13</td>
</tr>
<tr>
<td>SUPT3H</td>
<td>8464</td>
<td>suppressor of Ty 3 homolog (S. cerevisiae)</td>
<td>2.19</td>
<td>chr6</td>
</tr>
<tr>
<td>SURB7</td>
<td>9412</td>
<td>SRB7 suppressor of RNA polymerase B homolog (yeast)</td>
<td>2.88</td>
<td>chr12</td>
</tr>
<tr>
<td>SURF4</td>
<td>6836</td>
<td>surfet 4</td>
<td>2.70</td>
<td>chr9</td>
</tr>
<tr>
<td>SWAP70</td>
<td>23075</td>
<td>SWAP-70 protein</td>
<td>2.21</td>
<td>chr11</td>
</tr>
<tr>
<td>SYAP1</td>
<td>94056</td>
<td>synapase associated protein 1, SAP47 homolog (Drosophilia)</td>
<td>2.15</td>
<td>chrX</td>
</tr>
<tr>
<td>SYNCRIP</td>
<td>10492</td>
<td>synaptotagmin binding, cytoplasmic RNA interacting protein</td>
<td>3.18</td>
<td>chr20</td>
</tr>
<tr>
<td>SYPL1</td>
<td>6856</td>
<td>synaptophysin-like 1</td>
<td>2.46</td>
<td>chr7</td>
</tr>
<tr>
<td>SYT6</td>
<td>148291</td>
<td>synaptotagmin VI</td>
<td>3.29</td>
<td>chr1</td>
</tr>
<tr>
<td>TACSTD1</td>
<td>4072</td>
<td>tumor-associated calcium signal transducer 1</td>
<td>4.44</td>
<td>chr2</td>
</tr>
<tr>
<td>TAF12</td>
<td>6883</td>
<td>TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated factor</td>
<td>2.08</td>
<td>chr1</td>
</tr>
<tr>
<td>TAF4B</td>
<td>6875</td>
<td>TAF4B RNA polymerase II, TATA box binding protein (TBP)-associated factor</td>
<td>2.93</td>
<td>chr18</td>
</tr>
<tr>
<td>TAF5L</td>
<td>27097</td>
<td>TAF5L-like RNA polymerase II, p300/CPA1-associated factor (PCAF)-associated</td>
<td>2.11</td>
<td>chr1</td>
</tr>
<tr>
<td>TALDD1</td>
<td>6888</td>
<td>transaldolase 1</td>
<td>2.42</td>
<td>chr11</td>
</tr>
<tr>
<td>TAP1</td>
<td>6890</td>
<td>transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)</td>
<td>4.51</td>
<td>chr6</td>
</tr>
<tr>
<td>TAP2</td>
<td>6891</td>
<td>transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)</td>
<td>4.37</td>
<td>chr6</td>
</tr>
<tr>
<td>TAR1</td>
<td>6897</td>
<td>threonyl-tRNA synthetase</td>
<td>3.28</td>
<td>chr5</td>
</tr>
<tr>
<td>TBC1D23</td>
<td>55773</td>
<td>TBC1 domain family, member 23</td>
<td>2.68</td>
<td>chr3</td>
</tr>
<tr>
<td>TBC1D4</td>
<td>9882</td>
<td>TBC1 domain family, member 4</td>
<td>2.13</td>
<td>chr13</td>
</tr>
<tr>
<td>TBC1D8</td>
<td>11138</td>
<td>TBC1 domain family, member 8 (with GRAM domain)</td>
<td>2.75</td>
<td>chr2</td>
</tr>
<tr>
<td>TBC2</td>
<td>6903</td>
<td>tubulin-specific chaperone c</td>
<td>2.02</td>
<td>chr6</td>
</tr>
<tr>
<td>TBC3</td>
<td>6905</td>
<td>tubulin-specific chaperone e</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>TBRG4</td>
<td>9238</td>
<td>transforming growth factor beta regulator 4</td>
<td>2.67</td>
<td>chr7</td>
</tr>
<tr>
<td>TCEB3</td>
<td>6924</td>
<td>transcription elongation factor B (SII), polypeptide 3 (110kDa, elongin A)</td>
<td>2.52</td>
<td>chr1</td>
</tr>
<tr>
<td>TCF7L1</td>
<td>83439</td>
<td>transcription factor 7-like 1 (T-cell specific, HMGI-box)</td>
<td>2.14</td>
<td>chr2</td>
</tr>
<tr>
<td>TCF5L</td>
<td>10732</td>
<td>Transcription factor-like 5 (basic helix-loop-helix)</td>
<td>2.26</td>
<td>chr20</td>
</tr>
<tr>
<td>TGFDF1</td>
<td>6987</td>
<td>teratocarcinoma-derived growth factor 1</td>
<td>45.48</td>
<td>chr1</td>
</tr>
<tr>
<td>TDRK4</td>
<td>11022</td>
<td>tuber and KH domain containing</td>
<td>2.02</td>
<td>chr1</td>
</tr>
</tbody>
</table>
Table S3: Genes downregulated in NPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAD4</td>
<td>7004</td>
<td>TEA domain family member 4</td>
<td>5.14</td>
<td>chr12</td>
</tr>
<tr>
<td>TEGT</td>
<td>7009</td>
<td>testis enhanced gene transcript (BAX inhibitor 1)</td>
<td>2.05</td>
<td>chr12</td>
</tr>
<tr>
<td>TERF1</td>
<td>7013</td>
<td>telomeric repeat binding factor (NIMA-interacting) 1</td>
<td>10.42</td>
<td>chr8</td>
</tr>
<tr>
<td>TEX15</td>
<td>56154</td>
<td>testis expressed sequence 15</td>
<td>2.17</td>
<td>chr8</td>
</tr>
<tr>
<td>TFBB1</td>
<td>51106</td>
<td>transcription factor B1, mitochondrial</td>
<td>2.59</td>
<td>chr6</td>
</tr>
<tr>
<td>TFDP2</td>
<td>7029</td>
<td>Transcription factor Dp-2 (E2F dimerization partner 2)</td>
<td>2.27</td>
<td>chr3</td>
</tr>
<tr>
<td>TFRC</td>
<td>7037</td>
<td>transferrin receptor (p90, CD71)</td>
<td>2.69</td>
<td>chr3</td>
</tr>
<tr>
<td>THAP11</td>
<td>57215</td>
<td>THAP domain containing 11</td>
<td>2.01</td>
<td>chr16</td>
</tr>
<tr>
<td>THAP4</td>
<td>51078</td>
<td>THAP domain containing 4</td>
<td>2.03</td>
<td>chr2_random</td>
</tr>
<tr>
<td>THBS2</td>
<td>7058</td>
<td>thrombospondin 2</td>
<td>5.05</td>
<td>chr6</td>
</tr>
<tr>
<td>THEM2</td>
<td>55856</td>
<td>thioesterase superfamily member 2</td>
<td>4.10</td>
<td>chr6</td>
</tr>
<tr>
<td>THOC4</td>
<td>10189</td>
<td>THO complex 4</td>
<td>2.15</td>
<td>chr17_random</td>
</tr>
<tr>
<td>THY1</td>
<td>7070</td>
<td>Thy-1 cell surface antigen</td>
<td>5.02</td>
<td>chr11</td>
</tr>
<tr>
<td>THY28</td>
<td>29087</td>
<td>thymocyte protein thy28</td>
<td>2.63</td>
<td>chr11</td>
</tr>
<tr>
<td>TIGD7</td>
<td>91151</td>
<td>tigger transposable element derived 7 // tigger transposable element dem 7</td>
<td>2.36</td>
<td>chr16</td>
</tr>
<tr>
<td>TIMM13</td>
<td>26517</td>
<td>translocase of inner mitochondrial membrane 13 homolog (yeast)</td>
<td>2.71</td>
<td>chr19</td>
</tr>
<tr>
<td>TIMM22</td>
<td>29826</td>
<td>translocase of inner mitochondrial membrane 22 homolog (yeast)</td>
<td>2.01</td>
<td>chr17</td>
</tr>
<tr>
<td>TIMM50</td>
<td>92609</td>
<td>translocase of inner mitochondrial membrane 50 homolog (yeast)</td>
<td>2.32</td>
<td>chr19</td>
</tr>
<tr>
<td>TIMM8A</td>
<td>1678</td>
<td>translocase of inner mitochondrial membrane 8 homolog A (yeast)</td>
<td>2.20</td>
<td>chr2</td>
</tr>
<tr>
<td>TIMM8B</td>
<td>26521</td>
<td>translocase of inner mitochondrial membrane 8 homolog B (yeast)</td>
<td>2.04</td>
<td>chr11</td>
</tr>
<tr>
<td>TIMP4</td>
<td>7079</td>
<td>TIMP metalloproteinase inhibitor 4</td>
<td>2.96</td>
<td>chr3</td>
</tr>
<tr>
<td>TJFP2</td>
<td>9414</td>
<td>tight junction protein 2 (zona occludens 2)</td>
<td>2.06</td>
<td>chr9</td>
</tr>
<tr>
<td>TKT</td>
<td>7086</td>
<td>transketolase (Wernicke-Korsakoff syndrome)</td>
<td>5.33</td>
<td>chr3</td>
</tr>
<tr>
<td>TLE2</td>
<td>7089</td>
<td>transducin-like enhancer of split 2 (E(spl) homolog, Drosophila)</td>
<td>3.41</td>
<td>chr19</td>
</tr>
<tr>
<td>TEMED2</td>
<td>10959</td>
<td>transmembrane emp24 domain trafficking protein 2</td>
<td>2.35</td>
<td>chr12</td>
</tr>
<tr>
<td>TEMED5</td>
<td>50999</td>
<td>transmembrane emp24 protein transport domain containing 5</td>
<td>2.53</td>
<td>chr1</td>
</tr>
<tr>
<td>TEMEM11</td>
<td>8834</td>
<td>transmembrane protein 11</td>
<td>2.04</td>
<td>chr17</td>
</tr>
<tr>
<td>TEMEM23</td>
<td>259230</td>
<td>transmembrane protein 23</td>
<td>3.59</td>
<td>chr10</td>
</tr>
<tr>
<td>TEMEM28</td>
<td>27112</td>
<td>transmembrane protein 28</td>
<td>2.27</td>
<td>chrX</td>
</tr>
<tr>
<td>TEMEM30B</td>
<td>161291</td>
<td>transmembrane protein 30B</td>
<td>3.79</td>
<td>chr14</td>
</tr>
<tr>
<td>TEMEM33</td>
<td>55161</td>
<td>transmembrane protein 33</td>
<td>2.13</td>
<td>chr4</td>
</tr>
<tr>
<td>TEMEM37</td>
<td>140738</td>
<td>transmembrane protein 37</td>
<td>3.40</td>
<td>chr2</td>
</tr>
<tr>
<td>TEMEM4</td>
<td>10330</td>
<td>transmembrane protein 4</td>
<td>2.06</td>
<td>chr12</td>
</tr>
<tr>
<td>TEMEM48</td>
<td>55706</td>
<td>transmembrane protein 48</td>
<td>2.46</td>
<td>chr1</td>
</tr>
<tr>
<td>TEMEM64</td>
<td>169200</td>
<td>transmembrane protein 64</td>
<td>2.64</td>
<td>chr6</td>
</tr>
<tr>
<td>TEMEP1</td>
<td>56937</td>
<td>transmembrane, prostate androgen induced RNA</td>
<td>3.98</td>
<td>chr20</td>
</tr>
<tr>
<td>TEMPR5S2</td>
<td>7113</td>
<td>transmembrane protease, serine 2</td>
<td>3.12</td>
<td>chr21</td>
</tr>
<tr>
<td>TNFRSF12A</td>
<td>51330</td>
<td>tumor necrosis factor receptor superfamily, member 12A</td>
<td>3.08</td>
<td>chr16</td>
</tr>
<tr>
<td>TNFSF11</td>
<td>8600</td>
<td>tumor necrosis factor ligand, superfamily, member 11</td>
<td>5.08</td>
<td>chr13</td>
</tr>
<tr>
<td>TNM3</td>
<td>7137</td>
<td>troponin I type 3 (cardiac)</td>
<td>2.03</td>
<td>chr19</td>
</tr>
<tr>
<td>TNP3</td>
<td>23534</td>
<td>transportin 3</td>
<td>2.11</td>
<td>chr7</td>
</tr>
<tr>
<td>TMOM7</td>
<td>201725 // 54543</td>
<td>translocase of outer mitochondrial membrane 7 homolog (yeast) // hypotyrosinase</td>
<td>2.15</td>
<td>chr7</td>
</tr>
<tr>
<td>TOMM70A</td>
<td>9868</td>
<td>translocase of outer mitochondrial membrane 70 homolog A (yeast)</td>
<td>2.90</td>
<td>chr3</td>
</tr>
<tr>
<td>TOP1MT</td>
<td>116447</td>
<td>topoisomerase (DNA) I, mitochondrial</td>
<td>2.31</td>
<td>chr2</td>
</tr>
<tr>
<td>TOPORS</td>
<td>10210</td>
<td>topoisomerase I binding, arginine/serine-rich</td>
<td>2.17</td>
<td>chr9</td>
</tr>
<tr>
<td>TOR3A</td>
<td>64222</td>
<td>transin family 3, member A</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>TP53R3K</td>
<td>112858</td>
<td>TP53 regulating kinase</td>
<td>4.09</td>
<td>chr20</td>
</tr>
<tr>
<td>TPARL</td>
<td>55858</td>
<td>TPA regulated locus</td>
<td>2.60</td>
<td>chr4</td>
</tr>
<tr>
<td>TPDS2</td>
<td>7163</td>
<td>tumor protein D52</td>
<td>7.84</td>
<td>chr8</td>
</tr>
<tr>
<td>TPST2</td>
<td>8459</td>
<td>tyrosylprotein sulfotransferase 2</td>
<td>4.76</td>
<td>chr22</td>
</tr>
<tr>
<td>TRAF3IP2</td>
<td>10758</td>
<td>TRAF3 interacting protein 2</td>
<td>3.82</td>
<td>chr6</td>
</tr>
<tr>
<td>TRAPCC5</td>
<td>126003</td>
<td>trafficking protein particle complex 5</td>
<td>2.27</td>
<td>chr19</td>
</tr>
<tr>
<td>TREP2</td>
<td>11219 // 55559</td>
<td>three prime repair exonuclease 2 // 26S proteasome-associated UCH intron excision</td>
<td>2.23</td>
<td>chrX</td>
</tr>
<tr>
<td>TRHDE</td>
<td>29953</td>
<td>thyrotropin-releasing hormone degrading enzyme</td>
<td>2.12</td>
<td>chr12</td>
</tr>
<tr>
<td>TRIM14</td>
<td>9830</td>
<td>tripartite motif-containing 14</td>
<td>9.94</td>
<td>chr9</td>
</tr>
<tr>
<td>TRIM22</td>
<td>10346</td>
<td>tripartite motif-containing 22</td>
<td>4.12</td>
<td>chr11</td>
</tr>
<tr>
<td>TRIM37</td>
<td>4591</td>
<td>tripartite motif-containing 37</td>
<td>2.28</td>
<td>chr17</td>
</tr>
<tr>
<td>TRIM59</td>
<td>286827</td>
<td>tripartite motif-containing 59</td>
<td>2.63</td>
<td>chr3</td>
</tr>
<tr>
<td>TRIM6</td>
<td>117854</td>
<td>tripartite motif-containing 6</td>
<td>4.48</td>
<td>chr11</td>
</tr>
<tr>
<td>TRIP10</td>
<td>9322</td>
<td>thyroid hormone receptor interactor 10</td>
<td>2.61</td>
<td>chr19</td>
</tr>
<tr>
<td>TSTA3</td>
<td>7264</td>
<td>tissue specific transplantation antigen P35B</td>
<td>2.39</td>
<td>chr8</td>
</tr>
<tr>
<td>TTC9</td>
<td>23508</td>
<td>tetrafractipeptide repeat domain 9</td>
<td>2.22</td>
<td>chr14</td>
</tr>
<tr>
<td>TTF2</td>
<td>8458</td>
<td>transcription termination factor, RNA polymerase II</td>
<td>2.70</td>
<td>chr1</td>
</tr>
<tr>
<td>TTPM</td>
<td>79669</td>
<td>TPA-induced transmembrane protein</td>
<td>2.20</td>
<td>chr3</td>
</tr>
<tr>
<td>TUBA1</td>
<td>7277</td>
<td>tubulin, alpha 1 (testis specific)</td>
<td>4.99</td>
<td>chr2</td>
</tr>
<tr>
<td>TUBB2</td>
<td>7280</td>
<td>tubulin, beta 2</td>
<td>3.04</td>
<td>chr6</td>
</tr>
</tbody>
</table>
Table S3 : Genes downregulated in NPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_down</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUBB2</td>
<td>347733</td>
<td>tubulin, beta 2 // tubulin, beta polypeptide paralog</td>
<td>2.66</td>
<td>chr6</td>
</tr>
<tr>
<td>TUBB3</td>
<td>10381</td>
<td>tubulin, beta 3</td>
<td>2.53</td>
<td>chr16</td>
</tr>
<tr>
<td>TUBB6</td>
<td>84617</td>
<td>tubulin, beta 6</td>
<td>2.92</td>
<td>chr18</td>
</tr>
<tr>
<td>TUBG1</td>
<td>7283</td>
<td>tubulin, gamma 1</td>
<td>2.11</td>
<td>chr7</td>
</tr>
<tr>
<td>TUSC2</td>
<td>11334</td>
<td>tumor suppressor candidate 2</td>
<td>2.21</td>
<td>chr3</td>
</tr>
<tr>
<td>TXN</td>
<td>7295</td>
<td>thoredoxin</td>
<td>2.18</td>
<td>chr17</td>
</tr>
<tr>
<td>TXNL2</td>
<td>10539</td>
<td>thoredoxin-like 2</td>
<td>2.43</td>
<td>chr6</td>
</tr>
<tr>
<td>U2AF2</td>
<td>11338</td>
<td>U2 (RNA2) small nuclear RNA auxiliary factor 2</td>
<td>2.65</td>
<td>chr19</td>
</tr>
<tr>
<td>UBE2D3</td>
<td>7323</td>
<td>ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog, yeast)</td>
<td>2.20</td>
<td>chr4</td>
</tr>
<tr>
<td>UBE2G1</td>
<td>7326</td>
<td>ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, yeast)</td>
<td>3.12</td>
<td>chr17</td>
</tr>
<tr>
<td>UBE2M</td>
<td>9040</td>
<td>ubiquitin-conjugating enzyme E2M (UBC12 homolog, yeast)</td>
<td>2.59</td>
<td>chr16</td>
</tr>
<tr>
<td>UBE2N</td>
<td>7334</td>
<td>ubiquitin-conjugating enzyme E2N (UBC13 homolog, yeast)</td>
<td>2.61</td>
<td>chr12</td>
</tr>
<tr>
<td>UBE2S</td>
<td>27338</td>
<td>ubiquitin-conjugating enzyme E2S</td>
<td>3.04</td>
<td>chr7</td>
</tr>
<tr>
<td>UBE3B</td>
<td>89910</td>
<td>ubiquitin protein ligase E3B</td>
<td>2.37</td>
<td>chr12</td>
</tr>
<tr>
<td>UBE4B</td>
<td>10277</td>
<td>ubiquilation factor E4B (UFD2 homolog, yeast)</td>
<td>2.30</td>
<td>chr1</td>
</tr>
<tr>
<td>UBOQ1N1</td>
<td>29979</td>
<td>ubiquitin 1</td>
<td>2.04</td>
<td>chr9</td>
</tr>
<tr>
<td>UCHL1</td>
<td>7345</td>
<td>ubiquitin carboxy-terminal esterase L1 (ubiquitin thiolesterase)</td>
<td>2.10</td>
<td>chr4</td>
</tr>
<tr>
<td>UCHL3</td>
<td>7347</td>
<td>ubiquitin carboxy-terminal esterase L3 (ubiquitin thiolesterase)</td>
<td>2.04</td>
<td>chr13</td>
</tr>
<tr>
<td>UCK2</td>
<td>7371</td>
<td>uridine-cytidine kinase 2</td>
<td>2.34</td>
<td>chr1</td>
</tr>
<tr>
<td>UGCGL2</td>
<td>55757</td>
<td>UDP-glucose ceramide glucosyltransferase-2</td>
<td>2.49</td>
<td>chr13</td>
</tr>
<tr>
<td>UGP2</td>
<td>7360</td>
<td>UDP-glucose pyrophosphorylase 2</td>
<td>4.36</td>
<td>chr2</td>
</tr>
<tr>
<td>UGT8</td>
<td>7368</td>
<td>UDP glycosyltransferase 8 (UDP-galactose ceramide galactosyltransferase)</td>
<td>7.99</td>
<td>chr4</td>
</tr>
<tr>
<td>UPI1</td>
<td>55559</td>
<td>26S proteasome-associated UCH interacting protein 1</td>
<td>2.13</td>
<td>chrX</td>
</tr>
<tr>
<td>UMP3</td>
<td>7372</td>
<td>uridine monophosphate synthetase (orotate phosphoribosyl transferase a)</td>
<td>2.27</td>
<td>chr3</td>
</tr>
<tr>
<td>UNG</td>
<td>7374</td>
<td>uracil-DNA glycosylase</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>UNG501</td>
<td>374882</td>
<td>MBC3205</td>
<td>2.05</td>
<td>chr19</td>
</tr>
<tr>
<td>UQR1</td>
<td>10975</td>
<td>ubiquinol-cytochrome c reductase, 6.4Da subunit</td>
<td>2.08</td>
<td>chr19</td>
</tr>
<tr>
<td>USP28</td>
<td>57646</td>
<td>ubiquitin specific peptidase 28</td>
<td>5.28</td>
<td>chr11</td>
</tr>
<tr>
<td>USP31</td>
<td>57478</td>
<td>ubiquitin specific peptidase 31</td>
<td>2.04</td>
<td>chr16</td>
</tr>
<tr>
<td>USP44</td>
<td>84101</td>
<td>ubiquitin specific peptidase 44</td>
<td>6.56</td>
<td>chr12</td>
</tr>
<tr>
<td>USP48</td>
<td>84196</td>
<td>ubiquitin specific peptidase 48</td>
<td>2.42</td>
<td>chr1</td>
</tr>
<tr>
<td>USP53</td>
<td>54532</td>
<td>ubiquitin specific peptidase 53</td>
<td>2.10</td>
<td>chr4</td>
</tr>
<tr>
<td>USP9X</td>
<td>8239</td>
<td>ubiquitin specific peptidase 9, X-linked (fat facets-like, Drosophila)</td>
<td>2.32</td>
<td>chrX</td>
</tr>
<tr>
<td>UTP11L</td>
<td>51118</td>
<td>UTP11L-like, U3 small nuclear ribonucleoprotein, (yeast)</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>UXS1</td>
<td>80146</td>
<td>UDP-glucuronate decarboxylase 1</td>
<td>3.30</td>
<td>chr2</td>
</tr>
<tr>
<td>VAMP8</td>
<td>8673</td>
<td>vesicle-associated membrane protein 8 (endobrevin)</td>
<td>3.21</td>
<td>chr2</td>
</tr>
<tr>
<td>VASP</td>
<td>7408</td>
<td>vasodilator-stimulated phosphoprotein</td>
<td>2.58</td>
<td>chr19</td>
</tr>
<tr>
<td>VDP</td>
<td>8615</td>
<td>Vesicle docking protein p115</td>
<td>4.00</td>
<td>chr4</td>
</tr>
<tr>
<td>VIL2</td>
<td>7430</td>
<td>villin 2 (ezrin)</td>
<td>3.36</td>
<td>chr6</td>
</tr>
<tr>
<td>VSNL1</td>
<td>7447</td>
<td>visinin-like 1</td>
<td>4.85</td>
<td>chr2</td>
</tr>
<tr>
<td>WBCS1R7</td>
<td>64409</td>
<td>Williams-Beuren syndrome chromosome region 17</td>
<td>2.10</td>
<td>chr7</td>
</tr>
<tr>
<td>WDF5Y1</td>
<td>57590</td>
<td>WD repeat and FYVE domain containing 1</td>
<td>2.23</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR1</td>
<td>9948</td>
<td>WD repeat domain 1</td>
<td>2.30</td>
<td>chr4</td>
</tr>
<tr>
<td>WDR12</td>
<td>55759</td>
<td>WD repeat domain 12</td>
<td>2.28</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR21A</td>
<td>26094</td>
<td>WD repeat domain 21A</td>
<td>2.62</td>
<td>chr14</td>
</tr>
<tr>
<td>WDR33</td>
<td>55339</td>
<td>WD repeat domain 33</td>
<td>2.02</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR39</td>
<td>9391</td>
<td>WD repeat domain 39</td>
<td>2.15</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR40B</td>
<td>139170</td>
<td>WD repeat domain 40B</td>
<td>3.17</td>
<td>chrX</td>
</tr>
<tr>
<td>WDR44</td>
<td>54521</td>
<td>WD repeat domain 44</td>
<td>2.79</td>
<td>chrX</td>
</tr>
<tr>
<td>WDR46</td>
<td>9277</td>
<td>WD repeat domain 46</td>
<td>2.00</td>
<td>chr6</td>
</tr>
<tr>
<td>WDR5</td>
<td>11091</td>
<td>WD repeat domain 5</td>
<td>2.19</td>
<td>chr9</td>
</tr>
<tr>
<td>WDR67</td>
<td>93594</td>
<td>WD repeat domain 67</td>
<td>2.27</td>
<td>chr8</td>
</tr>
<tr>
<td>WDR72</td>
<td>256764</td>
<td>WD repeat domain 72</td>
<td>4.96</td>
<td>chr15</td>
</tr>
<tr>
<td>WDR74</td>
<td>54663</td>
<td>WD repeat domain 74 // WD repeat domain 74</td>
<td>2.58</td>
<td>chr11</td>
</tr>
<tr>
<td>WDR77</td>
<td>79084</td>
<td>WD repeat domain 77</td>
<td>2.70</td>
<td>chr1</td>
</tr>
<tr>
<td>WGR8</td>
<td>49856</td>
<td>WD repeat domain 8</td>
<td>2.05</td>
<td>chr1</td>
</tr>
<tr>
<td>WDFC2</td>
<td>10406</td>
<td>WAP four-disulfide core domain 2</td>
<td>2.79</td>
<td>chr20</td>
</tr>
<tr>
<td>WIF1</td>
<td>11197</td>
<td>WNT inhibitory factor 1</td>
<td>10.39</td>
<td>chr12</td>
</tr>
<tr>
<td>WNK1</td>
<td>65125</td>
<td>WNK lysine deficient protein kinase 1 // WNK lysine deficient protein kinase</td>
<td>2.25</td>
<td>chr12</td>
</tr>
<tr>
<td>WWTR1</td>
<td>25937</td>
<td>WW domain containing transcription regulator 1</td>
<td>2.11</td>
<td>chr3</td>
</tr>
<tr>
<td>XPO5</td>
<td>57510</td>
<td>exportin 5</td>
<td>2.35</td>
<td>chr6</td>
</tr>
<tr>
<td>YIF1B</td>
<td>90522</td>
<td>Yip1 interacting factor homolog B (S. cerevisiae)</td>
<td>3.47</td>
<td>chr19</td>
</tr>
<tr>
<td>YTHDC2</td>
<td>64848</td>
<td>YTH domain containing 2</td>
<td>2.34</td>
<td>chr5</td>
</tr>
<tr>
<td>YTHDF3</td>
<td>253943</td>
<td>YTH domain family, member 3</td>
<td>2.03</td>
<td>chr8</td>
</tr>
<tr>
<td>YWHAB</td>
<td>7529</td>
<td>tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein</td>
<td>2.36</td>
<td>chr20</td>
</tr>
<tr>
<td>YWHAE</td>
<td>7531</td>
<td>tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein</td>
<td>2.22</td>
<td>chr7</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ZA20D2</td>
<td>7763</td>
<td>zinc finger, A20 domain containing 2</td>
<td>2.93</td>
<td>chr9</td>
</tr>
<tr>
<td>ZADH1</td>
<td>145482</td>
<td>zinc binding alcohol dehydrogenase, domain containing 1</td>
<td>2.13</td>
<td>chr14</td>
</tr>
<tr>
<td>ZBTB3</td>
<td>79842</td>
<td>zinc finger and BTB domain containing 3</td>
<td>5.03</td>
<td>chr11</td>
</tr>
<tr>
<td>ZBTB8OS</td>
<td>339487</td>
<td>zinc finger and BTB domain containing 8 opposite strand</td>
<td>2.03</td>
<td>chr1</td>
</tr>
<tr>
<td>ZC3HAV1</td>
<td>56829</td>
<td>zinc finger CCCH-type, antiviral 1</td>
<td>3.88</td>
<td>chr7</td>
</tr>
<tr>
<td>ZCSL2</td>
<td>285381</td>
<td>zinc finger, CSL-type containing 2</td>
<td>2.68</td>
<td>chr3</td>
</tr>
<tr>
<td>ZD2F10</td>
<td>93099</td>
<td>dermokine</td>
<td>3.52</td>
<td>chr19</td>
</tr>
<tr>
<td>ZDHHC22</td>
<td>283576</td>
<td>zinc finger, DHHC-type containing 22</td>
<td>2.67</td>
<td>chr14</td>
</tr>
<tr>
<td>ZDHHC23</td>
<td>254887</td>
<td>zinc finger, DHHC-type containing 23</td>
<td>5.17</td>
<td>chr3</td>
</tr>
<tr>
<td>ZFP42</td>
<td>132625</td>
<td>zinc finger protein 42</td>
<td>11.68</td>
<td>chr4</td>
</tr>
<tr>
<td>ZIC3</td>
<td>7547</td>
<td>Zic family member 3 heterotaxy 1 (odd-paired homolog, Drosophila)</td>
<td>4.06</td>
<td>chrX</td>
</tr>
<tr>
<td>ZIK1</td>
<td>284307</td>
<td>zinc finger protein interacting with K protein 1</td>
<td>2.17</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF101</td>
<td>94039</td>
<td>zinc finger protein 101</td>
<td>3.08</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF114</td>
<td>163071</td>
<td>zinc finger protein 114</td>
<td>2.49</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF134</td>
<td>7693</td>
<td>zinc finger protein 134 (clone pHZ-15)</td>
<td>2.26</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF138</td>
<td>7697</td>
<td>zinc finger protein 138</td>
<td>2.13</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF146</td>
<td>7705</td>
<td>zinc finger protein 146</td>
<td>2.08</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF165</td>
<td>7718</td>
<td>zinc finger protein 165</td>
<td>5.51</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF204</td>
<td>7754</td>
<td>zinc finger protein 204</td>
<td>2.57</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF206</td>
<td>84891</td>
<td>zinc finger protein 206</td>
<td>8.70</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF217</td>
<td>7764</td>
<td>zinc finger protein 217</td>
<td>2.05</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF239</td>
<td>8187</td>
<td>zinc finger protein 239</td>
<td>2.45</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF253</td>
<td>114977 /// 56248</td>
<td></td>
<td>hypothetical protein BC014148</td>
<td>2.15</td>
</tr>
<tr>
<td>ZNF259</td>
<td>8882</td>
<td>zinc finger protein 259</td>
<td>2.68</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF267</td>
<td>10308</td>
<td>zinc finger protein 267</td>
<td>2.46</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF281</td>
<td>23528</td>
<td>zinc finger protein 281</td>
<td>2.53</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF313</td>
<td>55905</td>
<td>zinc finger protein 313</td>
<td>2.10</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF342</td>
<td>162979</td>
<td>zinc finger protein 342</td>
<td>2.30</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF398</td>
<td>57541</td>
<td>zinc finger protein 398</td>
<td>4.29</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF483</td>
<td>158399</td>
<td>zinc finger protein 483</td>
<td>2.04</td>
<td>chr9</td>
</tr>
<tr>
<td>ZNF488</td>
<td>118738</td>
<td>zinc finger protein 488</td>
<td>2.04</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF581</td>
<td>51545</td>
<td>zinc finger protein 581</td>
<td>2.10</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF588</td>
<td>51427</td>
<td>zinc finger protein 588</td>
<td>2.31</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF589</td>
<td>51385</td>
<td>zinc finger protein 589</td>
<td>3.76</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF600</td>
<td>162966</td>
<td>zinc finger protein 600</td>
<td>2.61</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF614</td>
<td>80110</td>
<td>zinc finger protein 614</td>
<td>2.21</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF616</td>
<td>90317</td>
<td>zinc finger protein 616</td>
<td>2.10</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF649</td>
<td>65251</td>
<td>zinc finger protein 649</td>
<td>6.04</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF691</td>
<td>51058</td>
<td>zinc finger protein 691</td>
<td>2.19</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF90</td>
<td>7643</td>
<td>zinc finger protein 90 (HTF9)</td>
<td>2.04</td>
<td>chr19</td>
</tr>
<tr>
<td>ZRF1</td>
<td>27000</td>
<td>Zuotin related factor 1</td>
<td>2.10</td>
<td>chr7</td>
</tr>
<tr>
<td>ZSCAN2</td>
<td>54993</td>
<td>zinc finger and SCAN domain containing 2</td>
<td>2.83</td>
<td>chr15</td>
</tr>
<tr>
<td>ZSWIM3</td>
<td>140831</td>
<td>zinc finger, SWIM-type containing 3</td>
<td>2.40</td>
<td>chr20</td>
</tr>
<tr>
<td>ZYG11A</td>
<td>440590</td>
<td>zyg-11 homolog A (C. elegans)</td>
<td>2.93</td>
<td>chr1</td>
</tr>
<tr>
<td>ZYX</td>
<td>7791</td>
<td>zyxin</td>
<td>2.23</td>
<td>chr7</td>
</tr>
</tbody>
</table>

Table S3 : Genes downregulated in NPC compared to hES (Fold Change > 2; a < 0.05)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38961</td>
<td>23157</td>
<td>septin 6</td>
<td>2.09</td>
<td>chrX</td>
</tr>
<tr>
<td>39326</td>
<td>989</td>
<td>Septin 7</td>
<td>2.10</td>
<td>chr7</td>
</tr>
<tr>
<td>40787</td>
<td>55752</td>
<td>Septin 11</td>
<td>73.88</td>
<td>chr4</td>
</tr>
<tr>
<td>MICB</td>
<td>4276 / 4277</td>
<td>MHC class I polypeptide-related sequence A / MHC class I polypeptide-related sequence B</td>
<td>8.37</td>
<td>chr6</td>
</tr>
<tr>
<td>AADACL1</td>
<td>57552</td>
<td>arylacetamide deacetylase-like 1</td>
<td>4.26</td>
<td>chr3</td>
</tr>
<tr>
<td>ABHD2</td>
<td>11057</td>
<td>abhydrolase domain 2 containing</td>
<td>2.32</td>
<td>chr15</td>
</tr>
<tr>
<td>ABI1</td>
<td>10006</td>
<td>ABI-interactor 1</td>
<td>2.24</td>
<td>chr10</td>
</tr>
<tr>
<td>ABI3BP</td>
<td>25890</td>
<td>ABI gene family, member 3 (NESH) binding protein</td>
<td>5.82</td>
<td>chr3</td>
</tr>
<tr>
<td>ABILM3</td>
<td>229885</td>
<td>actin binding LIM protein family, member 3</td>
<td>2.00</td>
<td>chr5</td>
</tr>
<tr>
<td>ABR</td>
<td>29</td>
<td>active BCR-related gene</td>
<td>2.64</td>
<td>chr17</td>
</tr>
<tr>
<td>ACD3</td>
<td>64746</td>
<td>acyl-CoA binding domain containing 3</td>
<td>2.33</td>
<td>chr1</td>
</tr>
<tr>
<td>ACOX3</td>
<td>8310</td>
<td>acyl-CoA synthetase A oxidase 3, pristanoyl</td>
<td>6.12</td>
<td>chr4</td>
</tr>
<tr>
<td>ACP2</td>
<td>53</td>
<td>acid phosphatase 2, lysosomal</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>ACSL1</td>
<td>2180</td>
<td>acyl-CoA synthetase long-chain family member 1</td>
<td>4.65</td>
<td>chr4</td>
</tr>
<tr>
<td>ACSL4</td>
<td>2182</td>
<td>acyl-CoA synthetase long-chain family member 4</td>
<td>3.23</td>
<td>chrX</td>
</tr>
<tr>
<td>ACSL2</td>
<td>55902</td>
<td>acyl-CoA synthetase short-chain family member 2</td>
<td>2.59</td>
<td>chr20</td>
</tr>
<tr>
<td>ACTA2</td>
<td>59</td>
<td>actin, alpha 2, smooth muscle, aorta</td>
<td>100.38</td>
<td>chr10</td>
</tr>
<tr>
<td>ACTG2</td>
<td>72</td>
<td>actin, gamma 2, smooth muscle, enteric</td>
<td>92.67</td>
<td>chr2</td>
</tr>
<tr>
<td>ACTN1</td>
<td>87</td>
<td>actin, alpha 1</td>
<td>5.49</td>
<td>chr14</td>
</tr>
<tr>
<td>ACTN4</td>
<td>81</td>
<td>actin, alpha 4</td>
<td>3.50</td>
<td>chr19</td>
</tr>
<tr>
<td>ACTR10</td>
<td>55860</td>
<td>actin-related protein 10 homolog (S. cerevisiae)</td>
<td>2.52</td>
<td>chr14</td>
</tr>
<tr>
<td>ACTR1A</td>
<td>10121</td>
<td>ARP1 actin-related protein 1 homolog A, centractin alpha (yeast)</td>
<td>2.60</td>
<td>chr10</td>
</tr>
<tr>
<td>ACTR2</td>
<td>10097</td>
<td>ARP2 actin-related protein 2 homolog (yeast)</td>
<td>4.01</td>
<td>chr2</td>
</tr>
<tr>
<td>ACTR3</td>
<td>10096</td>
<td>ARP3 actin-related protein 3 homolog (yeast)</td>
<td>3.56</td>
<td>chr2</td>
</tr>
<tr>
<td>ACTR1</td>
<td>90</td>
<td>activin A receptor, type I</td>
<td>2.11</td>
<td>chr2</td>
</tr>
<tr>
<td>ADA</td>
<td>100</td>
<td>adenosine deaminase</td>
<td>2.90</td>
<td>chr20</td>
</tr>
<tr>
<td>ADAM10</td>
<td>102</td>
<td>ADAM metalloprotease domain 10</td>
<td>9.14</td>
<td>chr15</td>
</tr>
<tr>
<td>ADAM12</td>
<td>8038</td>
<td>ADAM metalloprotease domain 12 (meltrin alpha)</td>
<td>18.99</td>
<td>chr10</td>
</tr>
<tr>
<td>ADAM19</td>
<td>8728</td>
<td>ADAM metalloprotease domain 19 (meltrin beta)</td>
<td>17.94</td>
<td>chr5</td>
</tr>
<tr>
<td>ADAM23</td>
<td>8745</td>
<td>ADAM metalloprotease domain 23</td>
<td>3.67</td>
<td>chr2</td>
</tr>
<tr>
<td>ADAM9</td>
<td>8754</td>
<td>ADAM metalloprotease domain 9 (meltrin gamma)</td>
<td>18.84</td>
<td>chr8</td>
</tr>
<tr>
<td>ADAMTS1</td>
<td>9510</td>
<td>ADAM metalloprotease with thrombospondin type 1 motif 1</td>
<td>4.91</td>
<td>chr21</td>
</tr>
<tr>
<td>ADAMTS5</td>
<td>11096</td>
<td>ADAM metalloprotease with thrombospondin type 1 motif 5 (aggregcan-2)</td>
<td>9.73</td>
<td>(vide)</td>
</tr>
<tr>
<td>ADAMTS6</td>
<td>11174</td>
<td>ADAM metalloprotease with thrombospondin type 1 motif 6</td>
<td>23.20</td>
<td>chr5</td>
</tr>
<tr>
<td>ADARB1</td>
<td>104</td>
<td>adenosine deaminase, RNA-specific, B1 (RED1 homolog rat)</td>
<td>2.66</td>
<td>chr21</td>
</tr>
<tr>
<td>ADCY6</td>
<td>112</td>
<td>adenylyl cyclase 6</td>
<td>2.68</td>
<td>chr12</td>
</tr>
<tr>
<td>ADCY7</td>
<td>113</td>
<td>adenylyl cyclase 7</td>
<td>4.04</td>
<td>chr16</td>
</tr>
<tr>
<td>ADCY9</td>
<td>115</td>
<td>adenylyl cyclase 9</td>
<td>2.59</td>
<td>chr16</td>
</tr>
<tr>
<td>ADD1</td>
<td>118</td>
<td>adducin 1 (alpha)</td>
<td>6.50</td>
<td>chr4</td>
</tr>
<tr>
<td>ADK</td>
<td>132</td>
<td>adenosine kinase</td>
<td>4.23</td>
<td>chr10</td>
</tr>
<tr>
<td>ADM</td>
<td>133</td>
<td>adrenomedullin</td>
<td>2.37</td>
<td>chr11</td>
</tr>
<tr>
<td>AEBP1</td>
<td>165</td>
<td>AE binding protein 1</td>
<td>3.30</td>
<td>chr7</td>
</tr>
<tr>
<td>AER1B</td>
<td>285203</td>
<td>AER1B glycosyltransferase</td>
<td>2.05</td>
<td>chr3</td>
</tr>
<tr>
<td>AFAP</td>
<td>60312</td>
<td>actin filament associated protein</td>
<td>6.64</td>
<td>chr4</td>
</tr>
<tr>
<td>AFF3</td>
<td>3899</td>
<td>AF4-FMR2 family, member 3</td>
<td>17.41</td>
<td>chr2</td>
</tr>
<tr>
<td>AG1</td>
<td>440673</td>
<td>AG1 protein</td>
<td>2.73</td>
<td>chr1</td>
</tr>
<tr>
<td>AGA</td>
<td>175</td>
<td>aspartylglucosaminidase</td>
<td>3.03</td>
<td>chr4</td>
</tr>
<tr>
<td>AGPAT3</td>
<td>56894</td>
<td>1-acylglycerol-3-phosphate O-acyltransferase 3</td>
<td>18.83</td>
<td>chr21</td>
</tr>
<tr>
<td>AGTR1</td>
<td>185</td>
<td>angiotensin II receptor, type 1</td>
<td>6.52</td>
<td>chr3</td>
</tr>
<tr>
<td>AHI1</td>
<td>54806</td>
<td>Abelson helper integration site</td>
<td>2.70</td>
<td>chr6</td>
</tr>
<tr>
<td>AHNAK</td>
<td>79026</td>
<td>AHNK nucleoprotein (desmyokin)</td>
<td>16.67</td>
<td>chr11</td>
</tr>
<tr>
<td>AHR</td>
<td>196</td>
<td>aryl hydrocarbon receptor</td>
<td>8.35</td>
<td>chr7</td>
</tr>
<tr>
<td>AK1</td>
<td>203</td>
<td>adenylyl kinase 1</td>
<td>5.98</td>
<td>chr9</td>
</tr>
<tr>
<td>AK2</td>
<td>204</td>
<td>adenylyl kinase 2</td>
<td>5.50</td>
<td>chr1</td>
</tr>
<tr>
<td>AK5</td>
<td>26289</td>
<td>adenylyl kinase 5</td>
<td>4.34</td>
<td>chr1</td>
</tr>
<tr>
<td>AKAP12</td>
<td>9590</td>
<td>A kinase (PKA) anchor protein (gravin)</td>
<td>3.01</td>
<td>chr6</td>
</tr>
<tr>
<td>AKAP2</td>
<td>11217 /// 445815</td>
<td>A kinase (PKA) anchor protein 2 /// PALM2-AKAP2 protein</td>
<td>2.80</td>
<td>chr9</td>
</tr>
<tr>
<td>AKT1</td>
<td>207</td>
<td>v-akt murine thymoma viral oncogene homolog 1</td>
<td>3.57</td>
<td>chr14</td>
</tr>
<tr>
<td>AKT3</td>
<td>10000</td>
<td>V-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma)</td>
<td>6.86</td>
<td>chr1</td>
</tr>
<tr>
<td>ALCAM</td>
<td>214</td>
<td>activated leukocyte cell adhesion molecule</td>
<td>14.41</td>
<td>chr3</td>
</tr>
<tr>
<td>ALDH1L2</td>
<td>160428</td>
<td>aldehyde dehydrogenase 1 family, member L2</td>
<td>15.17</td>
<td>chr12</td>
</tr>
<tr>
<td>ALG14</td>
<td>199857</td>
<td>asparagine-linked glycosylation 14 homolog (yeast)</td>
<td>2.56</td>
<td>chr1</td>
</tr>
<tr>
<td>ALPK2</td>
<td>115701</td>
<td>alpha-kinase 2</td>
<td>13.60</td>
<td>chr18</td>
</tr>
<tr>
<td>ALS2</td>
<td>57679</td>
<td>amyotrophic lateral sclerosis 2 (juvenile)</td>
<td>2.48</td>
<td>chr2</td>
</tr>
<tr>
<td>ALS2CR19</td>
<td>117583</td>
<td>amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 19</td>
<td>2.17</td>
<td>chr1</td>
</tr>
<tr>
<td>ALS2CR3</td>
<td>65008</td>
<td>amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 3</td>
<td>4.36</td>
<td>chr2</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ALS2CR4</td>
<td>65062</td>
<td>amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 4</td>
<td>2.26</td>
<td>chr2</td>
</tr>
<tr>
<td>ALS2CR7</td>
<td>65061</td>
<td>amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 7</td>
<td>5.16</td>
<td>chr2</td>
</tr>
<tr>
<td>AMFR</td>
<td>267</td>
<td>autocrine motility factor receptor</td>
<td>3.63</td>
<td>chr16</td>
</tr>
<tr>
<td>AMG2</td>
<td>347902</td>
<td>adhesion molecule with Ig-like domain 2</td>
<td>60.78</td>
<td>chr12</td>
</tr>
<tr>
<td>AMOTL1</td>
<td>154810</td>
<td>angiominol like 1</td>
<td>3.56</td>
<td>chr11</td>
</tr>
<tr>
<td>AMOTL2</td>
<td>51421</td>
<td>angiominol like 2</td>
<td>4.97</td>
<td>chr3</td>
</tr>
<tr>
<td>AMPD2</td>
<td>271</td>
<td>adenosine monophosphate deaminase 2 (isoform L)</td>
<td>2.02</td>
<td>chr1</td>
</tr>
<tr>
<td>ANAPC13</td>
<td>258476</td>
<td>anaphase promoting complex subunit 13</td>
<td>2.48</td>
<td>chr3</td>
</tr>
<tr>
<td>ANGPTL2</td>
<td>23452</td>
<td>angiotensin-like 2</td>
<td>2.49</td>
<td>chr9</td>
</tr>
<tr>
<td>ANKH</td>
<td>56172</td>
<td>ankylolysis, progressive homolog (mouse)</td>
<td>2.33</td>
<td>chr5</td>
</tr>
<tr>
<td>ANKRA2</td>
<td>57763</td>
<td>ankryin repeat, family A (RFXANK-like), 2</td>
<td>2.58</td>
<td>chr5</td>
</tr>
<tr>
<td>ANKRD1</td>
<td>27063</td>
<td>ankryin repeat domain 1 (cardiac muscle)</td>
<td>9.51</td>
<td>chr10</td>
</tr>
<tr>
<td>ANKRD13</td>
<td>88455</td>
<td>ankryin repeat domain 13</td>
<td>10.10</td>
<td>chr12</td>
</tr>
<tr>
<td>ANKRD25</td>
<td>25959</td>
<td>ankryin repeat domain 25</td>
<td>2.08</td>
<td>chr19</td>
</tr>
<tr>
<td>ANKRD28</td>
<td>23243</td>
<td>ankryin repeat domain 28</td>
<td>6.26</td>
<td>chr3</td>
</tr>
<tr>
<td>ANKRD44</td>
<td>91526</td>
<td>ankryin repeat domain 44</td>
<td>4.98</td>
<td>chr2</td>
</tr>
<tr>
<td>ANTRX1</td>
<td>84168</td>
<td>antrax toxin receptor 1</td>
<td>4.37</td>
<td>chr2</td>
</tr>
<tr>
<td>ANTRX2</td>
<td>118429</td>
<td>Antrax toxin receptor 2</td>
<td>17.52</td>
<td>chr4</td>
</tr>
<tr>
<td>ANXA1</td>
<td>301</td>
<td>annexin A1</td>
<td>50.64</td>
<td>chr9</td>
</tr>
<tr>
<td>ANXA11</td>
<td>311</td>
<td>annexin A11</td>
<td>2.15</td>
<td>chr10</td>
</tr>
<tr>
<td>ANXA2</td>
<td>302</td>
<td>annexin A2</td>
<td>7.32</td>
<td>chr9</td>
</tr>
<tr>
<td>ANXA2P1</td>
<td>303</td>
<td>annexin A2 pseudogene 1</td>
<td>3.65</td>
<td>chr4</td>
</tr>
<tr>
<td>ANXA2P2</td>
<td>304</td>
<td>annexin A2 pseudogene 2</td>
<td>7.03</td>
<td>chr9</td>
</tr>
<tr>
<td>ANXA4</td>
<td>307</td>
<td>annexin A4</td>
<td>2.99</td>
<td>chr2</td>
</tr>
<tr>
<td>ANXA5</td>
<td>308</td>
<td>annexin A5</td>
<td>2.64</td>
<td>chr4</td>
</tr>
<tr>
<td>ANXA6</td>
<td>309</td>
<td>annexin A6</td>
<td>7.19</td>
<td>chr5</td>
</tr>
<tr>
<td>AOF1</td>
<td>221656</td>
<td>amin oxidase (flavin containing) domain 1</td>
<td>2.47</td>
<td>chr6</td>
</tr>
<tr>
<td>API1M1</td>
<td>8907</td>
<td>adaptor-related protein complex 1, mu 1 subunit</td>
<td>2.57</td>
<td>chr19</td>
</tr>
<tr>
<td>API1S1</td>
<td>1174</td>
<td>adaptor-related protein complex 1, sigma 1 subunit</td>
<td>2.71</td>
<td>chr7</td>
</tr>
<tr>
<td>API2M1</td>
<td>1173</td>
<td>adaptor-related protein complex 2, mu 1 subunit</td>
<td>2.55</td>
<td>chr3</td>
</tr>
<tr>
<td>API2S1</td>
<td>1175</td>
<td>adaptor-related protein complex 2, sigma 1 subunit</td>
<td>2.12</td>
<td>chr19</td>
</tr>
<tr>
<td>APB2</td>
<td>321</td>
<td>amyloid beta (A4) precursor protein-binding, family A, member 2 (X11-like)</td>
<td>2.11</td>
<td>chr15</td>
</tr>
<tr>
<td>APOBEC3C</td>
<td>27350</td>
<td>apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3C</td>
<td>3.18</td>
<td>chr22</td>
</tr>
<tr>
<td>APPBP2</td>
<td>10513</td>
<td>amyloid beta precursor protein (cytoplasmic tail) binding protein 2</td>
<td>5.39</td>
<td>chr17</td>
</tr>
<tr>
<td>ARAF</td>
<td>369</td>
<td>v-ral murine sarcoma 3611 viral oncogene homolog</td>
<td>2.20</td>
<td>chrX</td>
</tr>
<tr>
<td>ARF4</td>
<td>378</td>
<td>ADP-ribosylation factor 4</td>
<td>2.73</td>
<td>chr3</td>
</tr>
<tr>
<td>ARF4L</td>
<td>379</td>
<td>ADP-ribosylation factor 4- like</td>
<td>2.70</td>
<td>chr17</td>
</tr>
<tr>
<td>ARFGAP1</td>
<td>55738</td>
<td>ADP-ribosylation factor GTPase activating protein 1</td>
<td>2.63</td>
<td>chr20</td>
</tr>
<tr>
<td>ARFGAP3</td>
<td>26286</td>
<td>ADP-ribosylation factor GTPase activating protein 3</td>
<td>4.76</td>
<td>chr22</td>
</tr>
<tr>
<td>ARHGAP1</td>
<td>392</td>
<td>Rho GTPase activating protein 1</td>
<td>2.35</td>
<td>chr11</td>
</tr>
<tr>
<td>ARHGAP18</td>
<td>93663</td>
<td>Rho GTPase activating protein 18</td>
<td>4.52</td>
<td>chr6</td>
</tr>
<tr>
<td>ARHGAP23</td>
<td>57636</td>
<td>Rho GTPase activating protein 23</td>
<td>4.45</td>
<td>chr17</td>
</tr>
<tr>
<td>ARHGAP24</td>
<td>83478</td>
<td>Rho GTPase activating protein 24</td>
<td>10.45</td>
<td>chr4</td>
</tr>
<tr>
<td>ARHGAP29</td>
<td>9411</td>
<td>Rho GTPase activating protein 29</td>
<td>6.30</td>
<td>chr1</td>
</tr>
<tr>
<td>ARHGAP5</td>
<td>394</td>
<td>Rho GTPase activating protein 5</td>
<td>2.61</td>
<td>chr14</td>
</tr>
<tr>
<td>ARHGAP6</td>
<td>395</td>
<td>Rho GTPase activating protein 6</td>
<td>2.11</td>
<td>chrX</td>
</tr>
<tr>
<td>ARHGDA</td>
<td>396</td>
<td>Rho GDP dissociation inhibitor (GDI) alpha // Rho GDP dissociation inhibitor (GDI) beta</td>
<td>3.69</td>
<td>chr17_random</td>
</tr>
<tr>
<td>ARHDIB</td>
<td>397</td>
<td>Rho GDP dissociation inhibitor (GDI) beta</td>
<td>20.28</td>
<td>chr12</td>
</tr>
<tr>
<td>ARHGEF12</td>
<td>23365</td>
<td>Rho guanine nucleotide exchange factor (GEF) 12</td>
<td>3.21</td>
<td>chr11</td>
</tr>
<tr>
<td>ARHGEF17</td>
<td>9828</td>
<td>Rho guanine nucleotide exchange factor (GEF) 17</td>
<td>2.09</td>
<td>chr11</td>
</tr>
<tr>
<td>ARID5B</td>
<td>84159</td>
<td>AT rich interactive domain 5B (MRF1-like)</td>
<td>135.65</td>
<td>chr10</td>
</tr>
<tr>
<td>ARL1</td>
<td>400</td>
<td>ADP-ribosylation factor-like 1</td>
<td>2.71</td>
<td>chr12</td>
</tr>
<tr>
<td>ARL2BP</td>
<td>23568</td>
<td>ADP-ribosylation factor-like 2 binding protein</td>
<td>3.01</td>
<td>chr16</td>
</tr>
<tr>
<td>ARL6IP5</td>
<td>10550</td>
<td>ADP-ribosylation-like factor 6 interacting protein 5</td>
<td>6.20</td>
<td>chr3</td>
</tr>
<tr>
<td>ARL7</td>
<td>10123</td>
<td>ADP-ribosylation factor-like 7</td>
<td>4.22</td>
<td>chr2</td>
</tr>
<tr>
<td>ARMCX3</td>
<td>51566</td>
<td>armadillo repeat containing, X-linked 3</td>
<td>6.67</td>
<td>chrX</td>
</tr>
<tr>
<td>ARPC1B</td>
<td>10085</td>
<td>actin related protein 2/3 complex, subunit 1B, 41kDa</td>
<td>2.24</td>
<td>chr7</td>
</tr>
<tr>
<td>ARPC2</td>
<td>10109</td>
<td>actin related protein 2/3 complex, subunit 2, 34kDa</td>
<td>2.13</td>
<td>chr2</td>
</tr>
<tr>
<td>ARPC5</td>
<td>10092</td>
<td>actin related protein 2/3 complex, subunit 5, 16kDa</td>
<td>3.48</td>
<td>chr1</td>
</tr>
<tr>
<td>ARRD4C</td>
<td>91947</td>
<td>arrestin domain containing 4</td>
<td>7.86</td>
<td>chr15</td>
</tr>
<tr>
<td>ARSB</td>
<td>411</td>
<td>arylsulfatase B</td>
<td>3.20</td>
<td>chr5</td>
</tr>
<tr>
<td>ARSI</td>
<td>340075</td>
<td>arylsulfatase I</td>
<td>2.15</td>
<td>chr5</td>
</tr>
<tr>
<td>ARSJ</td>
<td>79642</td>
<td>arylsulfatase J</td>
<td>70.99</td>
<td>chr4</td>
</tr>
<tr>
<td>ARTS-1</td>
<td>51752</td>
<td>type 1 tumor necrosis factor receptor shedding aminopeptidase regulator</td>
<td>3.05</td>
<td>chr5</td>
</tr>
<tr>
<td>ASA1H</td>
<td>427</td>
<td>N-acylphosphoglycerol amidohydrolase (acid ceramidase) 1</td>
<td>2.03</td>
<td>chr8</td>
</tr>
<tr>
<td>ASAM</td>
<td>79827</td>
<td>Adipocyte-specific adhesion molecule</td>
<td>6.27</td>
<td>chr11</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASB8</td>
<td>10159</td>
<td>ankryin repeat and SOCS box-containing 8</td>
<td>4.22</td>
<td>chr12</td>
</tr>
<tr>
<td>ASPH</td>
<td>444</td>
<td>Aspartate beta-hydroxylase</td>
<td>7.54</td>
<td>chr8</td>
</tr>
<tr>
<td>ASXL1</td>
<td>171023</td>
<td>additional sex combs like 1 (Drosophila)</td>
<td>3.56</td>
<td>chr20</td>
</tr>
<tr>
<td>ATBF1</td>
<td>463</td>
<td>AT-binding transcription factor 1</td>
<td>4.23</td>
<td>chr16</td>
</tr>
<tr>
<td>ATF6</td>
<td>22926</td>
<td>Activating transcription factor 6</td>
<td>4.17</td>
<td>chr1</td>
</tr>
<tr>
<td>ATG4A</td>
<td>115201</td>
<td>ATG4 autophagy related 4 homolog A (S. cerevisiae)</td>
<td>3.34</td>
<td>chrX</td>
</tr>
<tr>
<td>ATG7</td>
<td>10533</td>
<td>ATG7 autophagy related 7 homolog (S. cerevisiae)</td>
<td>2.99</td>
<td>chr3</td>
</tr>
<tr>
<td>ATM</td>
<td>472</td>
<td>ataxia telangiectasia mutated (includes complementation groups A, C and D)</td>
<td>2.49</td>
<td>chr11</td>
</tr>
<tr>
<td>ATP10A</td>
<td>57184</td>
<td>ATPase, Class V, type 10A</td>
<td>2.95</td>
<td>chr15</td>
</tr>
<tr>
<td>ATP10D</td>
<td>57205</td>
<td>ATPase, Class V, type 10D</td>
<td>32.40</td>
<td>chr4</td>
</tr>
<tr>
<td>ATP11B</td>
<td>23200</td>
<td>ATPase, Class VI, type 11B</td>
<td>4.34</td>
<td>chr3</td>
</tr>
<tr>
<td>ATP13A</td>
<td>79572</td>
<td>ATPase type 13A</td>
<td>4.08</td>
<td>chr3</td>
</tr>
<tr>
<td>ATP2A2</td>
<td>488</td>
<td>ATPase, Ca++ transporting, cardiac muscle, slow twitch 2</td>
<td>2.04</td>
<td>chr12</td>
</tr>
<tr>
<td>ATP2B4</td>
<td>493</td>
<td>ATPase, Ca++ transporting, plasma membrane 4</td>
<td>11.50</td>
<td>chr1</td>
</tr>
<tr>
<td>ATP2C1</td>
<td>27032</td>
<td>ATPase, Ca++ transporting, type 2C, member 1</td>
<td>4.09</td>
<td>chr3</td>
</tr>
<tr>
<td>ATP5E</td>
<td>514</td>
<td>ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit</td>
<td>2.17</td>
<td>chr20</td>
</tr>
<tr>
<td>ATP6AP2</td>
<td>10159</td>
<td>ATPase, H+ transporting, lysosomal accessory protein 2</td>
<td>2.17</td>
<td>chrX</td>
</tr>
<tr>
<td>ATP6V0D1</td>
<td>9114</td>
<td>ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d isoform 1</td>
<td>2.09</td>
<td>chr16</td>
</tr>
<tr>
<td>ATP6V0E</td>
<td>8992</td>
<td>ATPase, H+ transporting, lysosomal 9kDa, V0 subunit e</td>
<td>3.70</td>
<td>chr5</td>
</tr>
<tr>
<td>ATP7A</td>
<td>538</td>
<td>ATPase, Cu++ transporting, alpha polypeptide (Menkes syndrome)</td>
<td>6.56</td>
<td>chrX</td>
</tr>
<tr>
<td>ATP8B1</td>
<td>5205</td>
<td>ATPase, Class I, type 8B, member 1</td>
<td>24.44</td>
<td>chr18</td>
</tr>
<tr>
<td>ATP9A</td>
<td>10079</td>
<td>ATPase, Class II, type 9A</td>
<td>3.17</td>
<td>chr20</td>
</tr>
<tr>
<td>ATXN1</td>
<td>6310</td>
<td>ataxin 1</td>
<td>10.66</td>
<td>chr6</td>
</tr>
<tr>
<td>AVO3</td>
<td>253260</td>
<td>TORC2-specific protein AVO3</td>
<td>2.26</td>
<td>chr5</td>
</tr>
<tr>
<td>AXL</td>
<td>558</td>
<td>AXL receptor tyrosine kinase</td>
<td>10.29</td>
<td>chr19</td>
</tr>
<tr>
<td>AZ2</td>
<td>64343</td>
<td>S-azacyclidine induced 2</td>
<td>3.19</td>
<td>chr3</td>
</tr>
<tr>
<td>BM</td>
<td>567</td>
<td>beta-2-microglobulin</td>
<td>7.86</td>
<td>chr15</td>
</tr>
<tr>
<td>B3GALT6</td>
<td>126792</td>
<td>UDP-Gal-betaGal beta 1.3-galactosyltransferase polypeptide 6</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>B3GTL</td>
<td>145173</td>
<td>beta 3-glycosyltransferase-like</td>
<td>3.13</td>
<td>chr13</td>
</tr>
<tr>
<td>B4GALT1</td>
<td>2683</td>
<td>UDP-Gal-betaGlcNAc beta 1.4- galactosyltransferase, polypeptide 1</td>
<td>2.38</td>
<td>chr9</td>
</tr>
<tr>
<td>B416L21.2.1</td>
<td>548645</td>
<td>DnaI-like protein</td>
<td>2.04</td>
<td>chr9</td>
</tr>
<tr>
<td>BACE1</td>
<td>23621</td>
<td>beta-site APP-cleaving enzyme 1</td>
<td>9.01</td>
<td>chr11</td>
</tr>
<tr>
<td>BACE2</td>
<td>25825</td>
<td>beta-site APP-cleaving enzyme 2</td>
<td>4.07</td>
<td>chr21</td>
</tr>
<tr>
<td>BACH1</td>
<td>571</td>
<td>BTB and CNC homology 1, basic leucine zipper transcription factor 1</td>
<td>4.61</td>
<td>chr21</td>
</tr>
<tr>
<td>BAG2</td>
<td>9532</td>
<td>BCL2-associated anihahogene 2</td>
<td>2.08</td>
<td>chr6</td>
</tr>
<tr>
<td>BAG3</td>
<td>9531</td>
<td>BCL2-associated anihahogene 3</td>
<td>4.88</td>
<td>chr10</td>
</tr>
<tr>
<td>BAZ1A</td>
<td>11177</td>
<td>bromodomain adjacent to zinc finger domain, 1A</td>
<td>2.35</td>
<td>chr15</td>
</tr>
<tr>
<td>BBX</td>
<td>56987</td>
<td>Bobby sox homolog (Drosophila)</td>
<td>2.15</td>
<td>chr3</td>
</tr>
<tr>
<td>BC002942</td>
<td>91289</td>
<td>hypothetical protein BC002942</td>
<td>4.19</td>
<td>chr22</td>
</tr>
<tr>
<td>BCAP29</td>
<td>55973</td>
<td>B-cell receptor-associated protein 29</td>
<td>3.69</td>
<td>chr7</td>
</tr>
<tr>
<td>BCAR3</td>
<td>8412</td>
<td>Breast cancer anti-estrogen resistance 3</td>
<td>5.25</td>
<td>chr1</td>
</tr>
<tr>
<td>BCAT1</td>
<td>586</td>
<td>branched chain mitochondrial transferase 1, cytosolic</td>
<td>2.15</td>
<td>chr12</td>
</tr>
<tr>
<td>BCL10</td>
<td>8915</td>
<td>B-cell CLL/lymphoma 10</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>BCL2L13</td>
<td>23786</td>
<td>BCL2-like 13 (apoptosis facilitator)</td>
<td>2.47</td>
<td>chr22</td>
</tr>
<tr>
<td>BCL2L2</td>
<td>599</td>
<td>BCL2-like 2</td>
<td>2.53</td>
<td>chr14</td>
</tr>
<tr>
<td>BCL3</td>
<td>602</td>
<td>B-cell CLL/lymphoma 3</td>
<td>3.22</td>
<td>chr19</td>
</tr>
<tr>
<td>BCL6</td>
<td>604</td>
<td>B-cell CLL/lymphoma 6 (zinc finger protein 51) // B-cell CLL/lymphoma 6 (zinc</td>
<td>4.77</td>
<td>chr3</td>
</tr>
<tr>
<td>BDKRB1</td>
<td>623</td>
<td>bradykinin receptor B1</td>
<td>4.87</td>
<td>chr14</td>
</tr>
<tr>
<td>BDKRB2</td>
<td>624</td>
<td>bradykinin receptor B2</td>
<td>2.23</td>
<td>chr14</td>
</tr>
<tr>
<td>BDNF</td>
<td>627</td>
<td>brain-derived neurotrophic factor</td>
<td>25.72</td>
<td>chr11</td>
</tr>
<tr>
<td>BET1L</td>
<td>51272</td>
<td>blocked early in transport 1 homolog (S. cerevisiae)-like</td>
<td>2.02</td>
<td>chr11</td>
</tr>
<tr>
<td>BGN</td>
<td>633</td>
<td>biglycan</td>
<td>23.88</td>
<td>chrX</td>
</tr>
<tr>
<td>BGN</td>
<td>10194 /// 633</td>
<td>biglycan // serologically defined colon cancer antigen 33</td>
<td>39.55</td>
<td>chrX</td>
</tr>
<tr>
<td>BHLH1B3</td>
<td>8553</td>
<td>basic helix-loop-helix domain containing, class B, 2</td>
<td>6.35</td>
<td>chr3</td>
</tr>
<tr>
<td>BHLH22</td>
<td>79365</td>
<td>basic helix-loop-helix domain containing, class B, 3</td>
<td>4.59</td>
<td>chr12</td>
</tr>
<tr>
<td>BIG</td>
<td>11164</td>
<td>BIC transcript</td>
<td>2.42</td>
<td>chr21</td>
</tr>
<tr>
<td>BID</td>
<td>637</td>
<td>BH3 interacting domain death agonist</td>
<td>2.33</td>
<td>chr22</td>
</tr>
<tr>
<td>BIRC2</td>
<td>329</td>
<td>baculoviral IAP repeat-containing 2</td>
<td>2.55</td>
<td>chr11</td>
</tr>
<tr>
<td>BIRC4</td>
<td>331</td>
<td>baculoviral IAP repeat-containing 4</td>
<td>2.01</td>
<td>chrX</td>
</tr>
<tr>
<td>BIVM</td>
<td>54841</td>
<td>basic, immunoglobulin-like variable motif containing</td>
<td>2.86</td>
<td>chr13</td>
</tr>
<tr>
<td>Bles03</td>
<td>83638</td>
<td>basophilic leukemia expressed protein BLES03</td>
<td>2.16</td>
<td>chr11</td>
</tr>
<tr>
<td>BLZF1</td>
<td>8548</td>
<td>basic leucine zipper nuclear factor 1 (JEM-1)</td>
<td>3.21</td>
<td>chr1</td>
</tr>
<tr>
<td>BMP1</td>
<td>649</td>
<td>bone morphogenetic protein 1</td>
<td>8.18</td>
<td>chr8</td>
</tr>
<tr>
<td>BMP2</td>
<td>659</td>
<td>bone morphogenetic protein receptor, type II (serine/threonine kinase)</td>
<td>11.78</td>
<td>chr2</td>
</tr>
<tr>
<td>BNC1</td>
<td>646</td>
<td>basonucin 1</td>
<td>8.76</td>
<td>chr15</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>BNP2</td>
<td>663</td>
<td>BCL2 adenovirus E1B 19kDa interacting protein 2</td>
<td>2.71</td>
<td>chr15</td>
</tr>
<tr>
<td>BNP3L</td>
<td>665</td>
<td>BCL2 adenovirus E1B 19kDa interacting protein 3-like // BCL2 adenovirus E1B</td>
<td>4.10</td>
<td>chr8</td>
</tr>
<tr>
<td>BPGM</td>
<td>669</td>
<td>2,3-bisphosphoglycerate mutase // 2,3-bisphosphoglycerate mutase</td>
<td>3.32</td>
<td>chr7</td>
</tr>
<tr>
<td>BPN1T1</td>
<td>10380</td>
<td>3(2), 5-bisphosphate nucleotidase 1</td>
<td>2.40</td>
<td>chr1</td>
</tr>
<tr>
<td>BRP44L</td>
<td>51660</td>
<td>brain protein 44-like</td>
<td>2.70</td>
<td>chr6</td>
</tr>
<tr>
<td>BTB6D</td>
<td>90135</td>
<td>BTB (POZ) domain containing 6</td>
<td>4.67</td>
<td>chr14</td>
</tr>
<tr>
<td>BTB7D</td>
<td>55727</td>
<td>BTB (POZ) domain containing 7</td>
<td>2.88</td>
<td>chr14</td>
</tr>
<tr>
<td>BTG2</td>
<td>7832</td>
<td>BTG family, member 2</td>
<td>3.36</td>
<td>chr1</td>
</tr>
<tr>
<td>BTN2A1</td>
<td>11120</td>
<td>butyrophilin, subfamily 2, member A1</td>
<td>2.04</td>
<td>chr6</td>
</tr>
<tr>
<td>BTN3A1</td>
<td>11119</td>
<td>butyrophilin, subfamily 3, member A1</td>
<td>2.23</td>
<td>chr6</td>
</tr>
<tr>
<td>BTN3A2</td>
<td>11118</td>
<td>butyrophilin, subfamily 3, member A2</td>
<td>3.77</td>
<td>chr6</td>
</tr>
<tr>
<td>BTN3A3</td>
<td>10384 // 11118</td>
<td>butyrophilin, subfamily 3, member A3 // butyrophilin, subfamily 3, member A2</td>
<td>5.21</td>
<td>chr6</td>
</tr>
<tr>
<td>BVES</td>
<td>11149</td>
<td>blood vessel epidermal substance</td>
<td>6.10</td>
<td>chr6</td>
</tr>
<tr>
<td>BZRP</td>
<td>706</td>
<td>benzodiazapine receptor (peripheral)</td>
<td>9.01</td>
<td>chr22</td>
</tr>
<tr>
<td>C1orf10</td>
<td>11067</td>
<td>chromosome 10 open reading frame 10</td>
<td>9.04</td>
<td>chr10</td>
</tr>
<tr>
<td>C1orf32</td>
<td>119032</td>
<td>chromosome 10 open reading frame 32</td>
<td>3.34</td>
<td>chr10</td>
</tr>
<tr>
<td>C1orf45</td>
<td>83841</td>
<td>chromosome 10 open reading frame 45</td>
<td>2.81</td>
<td>chr10</td>
</tr>
<tr>
<td>C1orf56</td>
<td>219654</td>
<td>chromosome 10 open reading frame 56</td>
<td>4.53</td>
<td>chr10</td>
</tr>
<tr>
<td>C1orf68</td>
<td>80007</td>
<td>chromosome 10 open reading frame 88</td>
<td>3.76</td>
<td>chr10</td>
</tr>
<tr>
<td>C1orf97</td>
<td>80013</td>
<td>chromosome 10 open reading frame 97</td>
<td>2.62</td>
<td>chr10</td>
</tr>
<tr>
<td>C1orf117</td>
<td>56672</td>
<td>chromosome 11 open reading frame 17</td>
<td>2.94</td>
<td>chr11</td>
</tr>
<tr>
<td>C1orf17 /// NUAK1</td>
<td>56672 // 81788</td>
<td>chromosome 11 open reading frame 17 // chromosome 11 open reading frame 17</td>
<td>2.23</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf24</td>
<td>53838</td>
<td>chromosome 11 open reading frame 24</td>
<td>2.57</td>
<td>chr11</td>
</tr>
<tr>
<td>C1orf41</td>
<td>25758</td>
<td>chromosome 11 open reading frame 41</td>
<td>3.95</td>
<td>chr11</td>
</tr>
<tr>
<td>C1orf69</td>
<td>7231</td>
<td>chromosome 11 open reading frame 9</td>
<td>3.13</td>
<td>chr11</td>
</tr>
<tr>
<td>C1orf91</td>
<td>52713</td>
<td>chromosome 13 open reading frame 1</td>
<td>2.52</td>
<td>chr13</td>
</tr>
<tr>
<td>C1orf122</td>
<td>51371</td>
<td>chromosome 13 open reading frame 12</td>
<td>4.45</td>
<td>chr13</td>
</tr>
<tr>
<td>C1orf125</td>
<td>25938</td>
<td>chromosome 14 open reading frame 125</td>
<td>2.98</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf139</td>
<td>79686</td>
<td>chromosome 14 open reading frame 139</td>
<td>16.45</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf149</td>
<td>112849</td>
<td>chromosome 14 open reading frame 149</td>
<td>4.64</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf24</td>
<td>283635</td>
<td>chromosome 14 open reading frame 24</td>
<td>4.17</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf28</td>
<td>122525</td>
<td>chromosome 14 open reading frame 28</td>
<td>4.52</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf34</td>
<td>55673</td>
<td>chromosome 14 open reading frame 34</td>
<td>2.07</td>
<td>chr17</td>
</tr>
<tr>
<td>C1orf37</td>
<td>145407</td>
<td>chromosome 14 open reading frame 37</td>
<td>2.65</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf43</td>
<td>91748</td>
<td>chromosome 14 open reading frame 43</td>
<td>2.47</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf44</td>
<td>145483</td>
<td>chromosome 14 open reading frame 44</td>
<td>2.01</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf45</td>
<td>80127</td>
<td>chromosome 14 open reading frame 45</td>
<td>6.28</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf78</td>
<td>113146</td>
<td>chromosome 14 open reading frame 78</td>
<td>8.90</td>
<td>chr14</td>
</tr>
<tr>
<td>C1orf92</td>
<td>9878</td>
<td>chromosome 14 open reading frame 92</td>
<td>2.32</td>
<td>chr4</td>
</tr>
<tr>
<td>C1orf21</td>
<td>283651</td>
<td>Chromosome 15 open reading frame 21</td>
<td>21.84</td>
<td>chr15</td>
</tr>
<tr>
<td>C1orf38</td>
<td>348110</td>
<td>Chromosome 15 open reading frame 38</td>
<td>2.46</td>
<td>chr15</td>
</tr>
<tr>
<td>C1orf30</td>
<td>79652</td>
<td>Chromosome 16 open reading frame 30</td>
<td>2.19</td>
<td>chr16</td>
</tr>
<tr>
<td>C1orf10</td>
<td>25941</td>
<td>Chromosome 18 open reading frame 10</td>
<td>2.08</td>
<td>chr18</td>
</tr>
<tr>
<td>C1orf44</td>
<td>92126</td>
<td>Chromosome 18 open reading frame 4</td>
<td>3.23</td>
<td>chr18</td>
</tr>
<tr>
<td>C1orf10</td>
<td>56005</td>
<td>Chromosome 19 open reading frame 10</td>
<td>4.24</td>
<td>chr19</td>
</tr>
<tr>
<td>C1orf19</td>
<td>56900</td>
<td>chromosome 1 open reading frame 19</td>
<td>2.93</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf139</td>
<td>79971</td>
<td>chromosome 1 open reading frame 139</td>
<td>26.40</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf44</td>
<td>26099</td>
<td>chromosome 1 open reading frame 144</td>
<td>8.89</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf22</td>
<td>80267</td>
<td>chromosome 1 open reading frame 22</td>
<td>6.25</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf24</td>
<td>116496</td>
<td>chromosome 1 open reading frame 24</td>
<td>3.10</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf53</td>
<td>388722</td>
<td>chromosome 1 open reading frame 53</td>
<td>2.25</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf54</td>
<td>79630</td>
<td>chromosome 1 open reading frame 54</td>
<td>2.49</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf71</td>
<td>163882</td>
<td>chromosome 1 open reading frame 71</td>
<td>3.06</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf78</td>
<td>55198</td>
<td>chromosome 1 open reading frame 78 // chromosome 1 open reading frame 78</td>
<td>2.33</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf85</td>
<td>112770</td>
<td>Chromosome 1 open reading frame 85</td>
<td>7.06</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf91</td>
<td>56063</td>
<td>chromosome 1 open reading frame 91</td>
<td>2.42</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf100</td>
<td>84969</td>
<td>chromosome 20 open reading frame 100</td>
<td>2.46</td>
<td>chr20</td>
</tr>
<tr>
<td>C1orf117</td>
<td>140710</td>
<td>chromosome 20 open reading frame 117</td>
<td>2.41</td>
<td>chr20</td>
</tr>
<tr>
<td>C1orf142</td>
<td>128486</td>
<td>chromosome 20 open reading frame 142</td>
<td>4.11</td>
<td>chr20</td>
</tr>
<tr>
<td>C1orf18</td>
<td>10616</td>
<td>chromosome 20 open reading frame 18</td>
<td>2.16</td>
<td>chr20</td>
</tr>
<tr>
<td>C1orf194</td>
<td>25943</td>
<td>chromosome 20 open reading frame 194</td>
<td>2.47</td>
<td>chr20</td>
</tr>
<tr>
<td>C1orf22</td>
<td>26090</td>
<td>chromosome 20 open reading frame 22</td>
<td>2.43</td>
<td>chr20</td>
</tr>
<tr>
<td>C1orf29</td>
<td>55317</td>
<td>chromosome 20 open reading frame 29</td>
<td>2.43</td>
<td>chr20</td>
</tr>
<tr>
<td>C1orf51</td>
<td>54065</td>
<td>chromosome 21 open reading frame 51</td>
<td>2.22</td>
<td>chr21</td>
</tr>
<tr>
<td>C1orf77</td>
<td>56911</td>
<td>chromosome 21 open reading frame 7</td>
<td>24.00</td>
<td>chr21</td>
</tr>
<tr>
<td>C1orf86</td>
<td>257103</td>
<td>Chromosome 21 open reading frame 86</td>
<td>2.11</td>
<td>chr21</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>C2orf10</td>
<td>91752</td>
<td>chromosome 2 open reading frame 10</td>
<td>4.29</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf17</td>
<td>79137</td>
<td>chromosome 2 open reading frame 17</td>
<td>3.82</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf18</td>
<td>54978</td>
<td>chromosome 2 open reading frame 18</td>
<td>3.27</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf27</td>
<td>29798</td>
<td>Chromosome 2 open reading frame 27</td>
<td>6.46</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf30</td>
<td>27248</td>
<td>chromosome 2 open reading frame 30</td>
<td>3.50</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf32</td>
<td>25927</td>
<td>chromosome 2 open reading frame 32</td>
<td>13.68</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf7</td>
<td>84279</td>
<td>chromosome 2 open reading frame 7</td>
<td>2.50</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf6</td>
<td>152137</td>
<td>chromosome 3 open reading frame 6</td>
<td>6.50</td>
<td>chr3</td>
</tr>
<tr>
<td>C5orf13</td>
<td>9315</td>
<td>chromosome 5 open reading frame 13</td>
<td>3.39</td>
<td>chr5</td>
</tr>
<tr>
<td>C5orf14</td>
<td>79770</td>
<td>chromosome 5 open reading frame 14</td>
<td>2.56</td>
<td>chr5</td>
</tr>
<tr>
<td>C5orf3</td>
<td>10827</td>
<td>chromosome 5 open reading frame 3</td>
<td>4.97</td>
<td>chr5</td>
</tr>
<tr>
<td>C6orf145</td>
<td>221749</td>
<td>chromosome 6 open reading frame 145</td>
<td>28.85</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf155</td>
<td>79940</td>
<td>Chromosome 6 open reading frame 155</td>
<td>31.16</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf188</td>
<td>254228</td>
<td>chromosome 6 open reading frame 188</td>
<td>2.10</td>
<td>chr6</td>
</tr>
<tr>
<td>C8orf48</td>
<td>50854</td>
<td>chromosome 6 open reading frame 48</td>
<td>2.22</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf62</td>
<td>81688</td>
<td>chromosome 6 open reading frame 62</td>
<td>2.02</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf85</td>
<td>221336</td>
<td>chromosome 6 open reading frame 65</td>
<td>4.70</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf69</td>
<td>222658</td>
<td>chromosome 6 open reading frame 69</td>
<td>8.87</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf72</td>
<td>116254</td>
<td>chromosome 6 open reading frame 72</td>
<td>2.34</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf89</td>
<td>221477</td>
<td>Chromosome 6 open reading frame 89</td>
<td>5.92</td>
<td>chr6</td>
</tr>
<tr>
<td>C7orf10</td>
<td>79783</td>
<td>chromosome 7 open reading frame 10</td>
<td>3.44</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf19</td>
<td>80228</td>
<td>chromosome 7 open reading frame 19</td>
<td>2.02</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf25</td>
<td>79020</td>
<td>chromosome 7 open reading frame 25</td>
<td>2.09</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf10</td>
<td>23196</td>
<td>chromosome 9 open reading frame 10</td>
<td>5.77</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf150</td>
<td>286343</td>
<td>chromosome 9 open reading frame 150</td>
<td>6.47</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf19</td>
<td>152007</td>
<td>chromosome 9 open reading frame 19</td>
<td>2.43</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf3</td>
<td>84909</td>
<td>chromosome 9 open reading frame 3</td>
<td>3.37</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf80</td>
<td>56493</td>
<td>Chromosome 9 open reading frame 80</td>
<td>2.67</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf88</td>
<td>64855</td>
<td>Chromosome 9 open reading frame 88</td>
<td>6.54</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf89</td>
<td>84270</td>
<td>chromosome 9 open reading frame 89</td>
<td>2.09</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf94</td>
<td>206938</td>
<td>chromosome 9 open reading frame 94</td>
<td>6.26</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf95</td>
<td>54981</td>
<td>chromosome 9 open reading frame 95</td>
<td>3.37</td>
<td>chr9</td>
</tr>
<tr>
<td>CA12</td>
<td>771</td>
<td>carbonic anhydrase XII</td>
<td>11.03</td>
<td>chr15</td>
</tr>
<tr>
<td>CAB39L</td>
<td>81617</td>
<td>calcium binding protein 39-like</td>
<td>2.08</td>
<td>chr13</td>
</tr>
<tr>
<td>CACNB3</td>
<td>784</td>
<td>calcium channel, voltage-dependent, beta 3 subunit</td>
<td>2.91</td>
<td>chr12</td>
</tr>
<tr>
<td>CALCOCO1</td>
<td>57658</td>
<td>calcium binding and coiled-coil domain 1</td>
<td>3.05</td>
<td>chr12</td>
</tr>
<tr>
<td>CALD1</td>
<td>800</td>
<td>caldesmon 1</td>
<td>19.09</td>
<td>chr7</td>
</tr>
<tr>
<td>CALU</td>
<td>813</td>
<td>calumenin</td>
<td>5.44</td>
<td>chr7</td>
</tr>
<tr>
<td>CAMK2D</td>
<td>817</td>
<td>Calcium/calmodulin-dependent protein kinase (CaM kinase) II delta</td>
<td>9.74</td>
<td>chr4</td>
</tr>
<tr>
<td>CAMK2N1</td>
<td>55450</td>
<td>calcium/calmodulin-dependent protein kinase II inhibitor 1</td>
<td>10.98</td>
<td>chr1</td>
</tr>
<tr>
<td>CAMTA2</td>
<td>23125</td>
<td>calmodulin binding transcription activator 2</td>
<td>3.19</td>
<td>chr17</td>
</tr>
<tr>
<td>CANT1</td>
<td>124583</td>
<td>calcium activated nucleotidase 1</td>
<td>2.11</td>
<td>chr17</td>
</tr>
<tr>
<td>CAP1</td>
<td>10487</td>
<td>CAP, adenylyl cyclase-associated protein 1 (yeast)</td>
<td>2.51</td>
<td>chr1</td>
</tr>
<tr>
<td>CAP2</td>
<td>10486</td>
<td>CAP, adenylyl cyclase-associated protein, 2 (yeast)</td>
<td>7.26</td>
<td>chr6</td>
</tr>
<tr>
<td>CAPN2</td>
<td>824</td>
<td>calpain 2, (mII) large subunit</td>
<td>13.95</td>
<td>chr1</td>
</tr>
<tr>
<td>CAPN7</td>
<td>23473</td>
<td>calpain 7</td>
<td>3.02</td>
<td>chr3</td>
</tr>
<tr>
<td>CAPNS1</td>
<td>826</td>
<td>calpain, small subunit 1 // calpain, small subunit 1</td>
<td>3.94</td>
<td>chr19</td>
</tr>
<tr>
<td>CART1</td>
<td>8092</td>
<td>cartilage paired-class homeoprotein 1</td>
<td>2.51</td>
<td>chr12</td>
</tr>
<tr>
<td>CASC4</td>
<td>113201</td>
<td>cancer susceptibility candidate 4</td>
<td>3.50</td>
<td>chr15</td>
</tr>
<tr>
<td>CASP4</td>
<td>837</td>
<td>caspase 4, apoptosis-related cyssteine peptidase</td>
<td>3.52</td>
<td>chr11</td>
</tr>
<tr>
<td>CASP7</td>
<td>840</td>
<td>caspase 7, apoptosis-related cyssteine peptidase</td>
<td>3.07</td>
<td>chr10</td>
</tr>
<tr>
<td>CASP8</td>
<td>841</td>
<td>caspase 8, apoptosis-related cyssteine peptidase</td>
<td>4.36</td>
<td>chr2</td>
</tr>
<tr>
<td>CAST</td>
<td>831</td>
<td>calpastatin</td>
<td>6.80</td>
<td>chr5</td>
</tr>
<tr>
<td>CAV1</td>
<td>857</td>
<td>cavedolin 1, cavedoline protein, 22kDa</td>
<td>27.31</td>
<td>chr7</td>
</tr>
<tr>
<td>CAV2</td>
<td>858</td>
<td>cavedolin 2</td>
<td>46.79</td>
<td>chr7</td>
</tr>
<tr>
<td>CBFB</td>
<td>865</td>
<td>core-binding factor, beta subunit</td>
<td>2.72</td>
<td>chr16</td>
</tr>
<tr>
<td>CBR3</td>
<td>874</td>
<td>carbonyl reductase 3</td>
<td>3.59</td>
<td>chr21</td>
</tr>
<tr>
<td>CBX4</td>
<td>8535</td>
<td>chromobox homolog 4 (Pc class homolog, Drosophila)</td>
<td>6.13</td>
<td>chr17</td>
</tr>
<tr>
<td>CBX6</td>
<td>23466</td>
<td>Chromobox homolog 6</td>
<td>3.65</td>
<td>chr22</td>
</tr>
<tr>
<td>CCB1E</td>
<td>147372</td>
<td>collagen and calcium binding EGF domains 1</td>
<td>2.79</td>
<td>chr18</td>
</tr>
<tr>
<td>CCDC6</td>
<td>8030</td>
<td>coiled-coil domain containing 6</td>
<td>2.23</td>
<td>chr10</td>
</tr>
<tr>
<td>CCDCC7</td>
<td>253635</td>
<td>Coiled-coil domain containing 7</td>
<td>2.67</td>
<td>chr2</td>
</tr>
<tr>
<td>CCND1</td>
<td>595</td>
<td>cyclin D1</td>
<td>6.46</td>
<td>chr11</td>
</tr>
<tr>
<td>CCND3</td>
<td>896</td>
<td>cyclin D3</td>
<td>2.20</td>
<td>chr6</td>
</tr>
<tr>
<td>CCMG2</td>
<td>901</td>
<td>Cyclin G2</td>
<td>2.03</td>
<td>chr4</td>
</tr>
<tr>
<td>CCPS1</td>
<td>9236</td>
<td>cell cycle progression 1</td>
<td>9.81</td>
<td>chr15</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CD109</td>
<td>135228</td>
<td>CD109 antigen (Gov platelet alloantigens)</td>
<td>10.06</td>
<td>chr6</td>
</tr>
<tr>
<td>CD151</td>
<td>977</td>
<td>CD151 antigen</td>
<td>6.14</td>
<td>chr11</td>
</tr>
<tr>
<td>CD164</td>
<td>8763</td>
<td>CD164 antigen, sialomucin</td>
<td>2.57</td>
<td>chr6</td>
</tr>
<tr>
<td>CD24</td>
<td>934</td>
<td>CD24 antigen (small cell lung carcinoma cluster 4 antigen)</td>
<td>2.83</td>
<td>chr5</td>
</tr>
<tr>
<td>CD24A</td>
<td>57124</td>
<td>CD24A antigen, endosomal</td>
<td>12.50</td>
<td>chr11</td>
</tr>
<tr>
<td>CD27A</td>
<td>28326</td>
<td>CD27A antigen</td>
<td>40.81</td>
<td>chr9</td>
</tr>
<tr>
<td>CD44</td>
<td>960</td>
<td>CD44 antigen (homing function and Indian blood group system)</td>
<td>111.41</td>
<td>chr11</td>
</tr>
<tr>
<td>CD47</td>
<td>961</td>
<td>CD47 antigen (Rh-related antigen, integrin-associated signal transducer)</td>
<td>10.25</td>
<td>chr3</td>
</tr>
<tr>
<td>CD58</td>
<td>965</td>
<td>CD58 antigen, (lymphocyte function-associated antigen 3)</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>CD59</td>
<td>966</td>
<td>CD59 antigen p18-20 (antigen identified by monoclonal antibodies 16.3AS, EJ1)</td>
<td>15.10</td>
<td>chr11</td>
</tr>
<tr>
<td>CD99</td>
<td>4267</td>
<td>CD99 antigen</td>
<td>13.84</td>
<td>chrX</td>
</tr>
<tr>
<td>CD99L2</td>
<td>83692</td>
<td>CD99 antigen-like 2</td>
<td>5.02</td>
<td>chrX</td>
</tr>
<tr>
<td>CD1A8</td>
<td>81533</td>
<td>T-cell immunomodulatory protein</td>
<td>3.36</td>
<td>chr16</td>
</tr>
<tr>
<td>CDC27</td>
<td>996</td>
<td>Cell division cycle 27</td>
<td>2.65</td>
<td>chr17</td>
</tr>
<tr>
<td>CDC2L6</td>
<td>23097</td>
<td>Cell division cycle 2-like 6 (CDK8-like)</td>
<td>3.15</td>
<td>chr6</td>
</tr>
<tr>
<td>CDC2C</td>
<td>986</td>
<td>Cell division cycle 42 (GTP binding protein, 25kDa)</td>
<td>2.39</td>
<td>chr1</td>
</tr>
<tr>
<td>CDC2GBP</td>
<td>8476</td>
<td>CDC2G binding protein kinase alpha (DMPK-like)</td>
<td>2.33</td>
<td>chr1</td>
</tr>
<tr>
<td>CDC2GEP3</td>
<td>10602</td>
<td>CDC2G effector protein (Rho GTPase binding) 3</td>
<td>40.24</td>
<td>chr2</td>
</tr>
<tr>
<td>CDC2GEP5</td>
<td>148170</td>
<td>CDC2G effector protein (Rho GTPase binding) 5</td>
<td>26.82</td>
<td>chr19</td>
</tr>
<tr>
<td>CDGAP1</td>
<td>57514</td>
<td>Cdc42 GTPase-activating protein</td>
<td>2.48</td>
<td>chr3</td>
</tr>
<tr>
<td>CDH10</td>
<td>1008</td>
<td>Cadherin 10, type 2 (T2-cadherin)</td>
<td>4.25</td>
<td>chr5</td>
</tr>
<tr>
<td>CDH11</td>
<td>1009</td>
<td>Cadherin 11, type 2, OB-cadherin (osteoblast)</td>
<td>30.34</td>
<td>chr16</td>
</tr>
<tr>
<td>CDH13</td>
<td>1012</td>
<td>Cadherin 13, H-cadherin (heart)</td>
<td>14.00</td>
<td>chr16</td>
</tr>
<tr>
<td>CDH2</td>
<td>1000</td>
<td>Cadherin 2, type 1, N-cadherin (neuronal)</td>
<td>6.83</td>
<td>chr18</td>
</tr>
<tr>
<td>CDH6</td>
<td>1004</td>
<td>Cadherin 6, type 2, K-cadherin (fetal kidney)</td>
<td>4.81</td>
<td>chr5</td>
</tr>
<tr>
<td>CDK6</td>
<td>1021</td>
<td>Cyclin-dependent kinase 6</td>
<td>24.64</td>
<td>chr7</td>
</tr>
<tr>
<td>CDKN1A</td>
<td>1026</td>
<td>Cyclin-dependent kinase inhibitor 1A (p21, Cip1)</td>
<td>55.11</td>
<td>chr6</td>
</tr>
<tr>
<td>CDKN2A</td>
<td>1029</td>
<td>Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)</td>
<td>22.27</td>
<td>chr9</td>
</tr>
<tr>
<td>CDKN2B</td>
<td>1030</td>
<td>Cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)</td>
<td>45.10</td>
<td>chr9</td>
</tr>
<tr>
<td>CDKN2C</td>
<td>1031</td>
<td>Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)</td>
<td>6.71</td>
<td>chr1</td>
</tr>
<tr>
<td>CEBPD</td>
<td>1052</td>
<td>CCAAT/enhancer binding protein (C/EBP), delta</td>
<td>5.63</td>
<td>chr8</td>
</tr>
<tr>
<td>CEACAM1</td>
<td>51148</td>
<td>Cerebral endothelial cell adhesion molecule 1</td>
<td>6.20</td>
<td>chr9</td>
</tr>
<tr>
<td>CENTB5</td>
<td>116983</td>
<td>Centaurin, beta 5</td>
<td>2.06</td>
<td>chr1</td>
</tr>
<tr>
<td>CES2</td>
<td>8824</td>
<td>Carboxylesterase 2 (intestine, liver)</td>
<td>2.29</td>
<td>chr16</td>
</tr>
<tr>
<td>CFH</td>
<td>3075</td>
<td>Complement factor H</td>
<td>6.49</td>
<td>chr1</td>
</tr>
<tr>
<td>CFH1</td>
<td>3075 // 3078</td>
<td>Complement factor H // complement factor H-related 1</td>
<td>10.31</td>
<td>chr1</td>
</tr>
<tr>
<td>CFL1</td>
<td>1072</td>
<td>Cofilin 1 (non-muscle)</td>
<td>2.23</td>
<td>chr1</td>
</tr>
<tr>
<td>CFL2</td>
<td>1073</td>
<td>Cofilin 2 (muscle)</td>
<td>13.08</td>
<td>chr14</td>
</tr>
<tr>
<td>CFLAR</td>
<td>8837</td>
<td>Caspase 8 and FADD-like apoptosis regulator</td>
<td>3.61</td>
<td>chr2</td>
</tr>
<tr>
<td>CGI-116</td>
<td>51019</td>
<td>CGI-116 protein</td>
<td>3.64</td>
<td>chr12</td>
</tr>
<tr>
<td>CHD2</td>
<td>1106</td>
<td>Chromodomain helicase DNA binding protein 2</td>
<td>2.17</td>
<td>chr15</td>
</tr>
<tr>
<td>CHD3</td>
<td>1107</td>
<td>Chromodomain helicase DNA binding protein 3</td>
<td>3.27</td>
<td>chr17</td>
</tr>
<tr>
<td>CHES1</td>
<td>1112</td>
<td>Checkpoint suppressor 1</td>
<td>2.07</td>
<td>chr14</td>
</tr>
<tr>
<td>CHD1</td>
<td>66005</td>
<td>Chitinase domain containing 1</td>
<td>3.05</td>
<td>chr11</td>
</tr>
<tr>
<td>CHM</td>
<td>1121</td>
<td>Choroideremia (Rab escort protein 1)</td>
<td>2.13</td>
<td>chrX</td>
</tr>
<tr>
<td>CHMP1B</td>
<td>57132</td>
<td>Chromatin modifying protein 1B</td>
<td>2.19</td>
<td>chr18</td>
</tr>
<tr>
<td>CHMP5</td>
<td>51510</td>
<td>Chromatin modifying protein 5</td>
<td>2.35</td>
<td>chr9</td>
</tr>
<tr>
<td>CHPF</td>
<td>79586</td>
<td>Chondrolin polymerizing factor</td>
<td>2.40</td>
<td>chr2</td>
</tr>
<tr>
<td>CHST3</td>
<td>9469</td>
<td>Carboxylate (chondroitin 6) sulfotransferase 3</td>
<td>3.32</td>
<td>chr10</td>
</tr>
<tr>
<td>CHURC1</td>
<td>91612</td>
<td>Churchill domain containing 1</td>
<td>2.50</td>
<td>chr1</td>
</tr>
<tr>
<td>CIB1</td>
<td>10519</td>
<td>Calcium and integrin binding 1 (calminy)</td>
<td>3.77</td>
<td>chr15</td>
</tr>
<tr>
<td>CIRBP</td>
<td>1153</td>
<td>Cold inducible RNA binding protein</td>
<td>2.41</td>
<td>chr19</td>
</tr>
<tr>
<td>CITED2</td>
<td>10370</td>
<td>Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain</td>
<td>3.77</td>
<td>chr6</td>
</tr>
<tr>
<td>CKAP4</td>
<td>10970</td>
<td>Cytoskeleton-associated protein 4</td>
<td>4.50</td>
<td>chr12</td>
</tr>
<tr>
<td>CKIP-1</td>
<td>51177</td>
<td>CK2 interacting protein 1; HOG024c protein</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>CLC1C1</td>
<td>23155</td>
<td>Chloride channel CLIC-like 1</td>
<td>2.05</td>
<td>chr1</td>
</tr>
<tr>
<td>CLCN5</td>
<td>1182</td>
<td>Chloride channel 3</td>
<td>2.07</td>
<td>chr4</td>
</tr>
<tr>
<td>CLDN1</td>
<td>9076</td>
<td>Claudin 1</td>
<td>10.12</td>
<td>chr3</td>
</tr>
<tr>
<td>CLIPR-59</td>
<td>25999</td>
<td>CLIP1-170-related protein</td>
<td>3.38</td>
<td>chr19</td>
</tr>
<tr>
<td>CLN5</td>
<td>1203</td>
<td>Cerdoid-lipocursinosis, neuronal 5</td>
<td>4.59</td>
<td>chr13</td>
</tr>
<tr>
<td>CLSTN2</td>
<td>64084</td>
<td>Calsyntenin 2</td>
<td>2.86</td>
<td>chr3</td>
</tr>
<tr>
<td>CLTB</td>
<td>1212</td>
<td>Clathrin, light polypeptide (Lcb) // clathrin, light polypeptide (Lcb)</td>
<td>2.22</td>
<td>chr5</td>
</tr>
<tr>
<td>CMKPK</td>
<td>51727</td>
<td>Cydylate kinase</td>
<td>8.32</td>
<td>chr1</td>
</tr>
<tr>
<td>CNH</td>
<td>10175</td>
<td>Cornichon homolog (Drosophila)</td>
<td>3.43</td>
<td>chr14</td>
</tr>
<tr>
<td>CNKSR3</td>
<td>154043</td>
<td>CNKSR family member 3</td>
<td>2.08</td>
<td>chr6</td>
</tr>
<tr>
<td>CNIN1</td>
<td>1264</td>
<td>Calponin 1, basic, smooth muscle</td>
<td>12.00</td>
<td>chr19</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number/Avadis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN2</td>
<td>1265</td>
<td>calponin 2</td>
<td>3.51</td>
<td>chr19</td>
</tr>
<tr>
<td>CNN3</td>
<td>1266</td>
<td>calponin 3, acidic</td>
<td>2.21</td>
<td>chr1</td>
</tr>
<tr>
<td>CNTNAP1</td>
<td>8506</td>
<td>contactin associated protein 1</td>
<td>3.78</td>
<td>chr17</td>
</tr>
<tr>
<td>COBL1</td>
<td>22837</td>
<td>COBL-like 1</td>
<td>3.42</td>
<td>chr2</td>
</tr>
<tr>
<td>COG1</td>
<td>9382</td>
<td>component of oligomeric golgi complex 1</td>
<td>2.27</td>
<td>chr17</td>
</tr>
<tr>
<td>COG5</td>
<td>10466</td>
<td>component of oligomeric golgi complex 5</td>
<td>3.88</td>
<td>chr7</td>
</tr>
<tr>
<td>CO66</td>
<td>57511</td>
<td>component of oligomeric golgi complex 6</td>
<td>4.62</td>
<td>chr13</td>
</tr>
<tr>
<td>COL1A1</td>
<td>1301</td>
<td>collagen, type XI, alpha 1</td>
<td>36.87</td>
<td>chr1</td>
</tr>
<tr>
<td>COL12A1</td>
<td>1303</td>
<td>collagen, type XII, alpha 1</td>
<td>118.63</td>
<td>chr6</td>
</tr>
<tr>
<td>COL13A1</td>
<td>1305</td>
<td>collagen, type XIII, alpha 1</td>
<td>8.13</td>
<td>chr10</td>
</tr>
<tr>
<td>COL1A1</td>
<td>1277</td>
<td>collagen, type I, alpha 1</td>
<td>99.56</td>
<td>chr17</td>
</tr>
<tr>
<td>COL1A2</td>
<td>1278</td>
<td>Collagen, type I, alpha 2</td>
<td>52.81</td>
<td>chr7</td>
</tr>
<tr>
<td>COL25A1</td>
<td>84570</td>
<td>collagen, type XV, alpha 1</td>
<td>2.08</td>
<td>chr4</td>
</tr>
<tr>
<td>COL3A1</td>
<td>1281</td>
<td>collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)</td>
<td>80.39</td>
<td>(vide)</td>
</tr>
<tr>
<td>COL4A1</td>
<td>1282</td>
<td>collagen, type IV, alpha 1</td>
<td>18.41</td>
<td>chr13</td>
</tr>
<tr>
<td>COL4A2</td>
<td>1284</td>
<td>collagen, type IV, alpha 2</td>
<td>21.01</td>
<td>chr13</td>
</tr>
<tr>
<td>COL4A5</td>
<td>1287</td>
<td>collagen, type IV, alpha 5 (Alport syndrome)</td>
<td>2.58</td>
<td>chrX</td>
</tr>
<tr>
<td>COL5A1</td>
<td>1289</td>
<td>collagen, type V, alpha 1</td>
<td>118.26</td>
<td>chr9</td>
</tr>
<tr>
<td>COL5A2</td>
<td>1290</td>
<td>collagen, type V, alpha 2</td>
<td>82.79</td>
<td>chr2</td>
</tr>
<tr>
<td>COL6A1</td>
<td>1291</td>
<td>collagen, type VI, alpha 1</td>
<td>3.20</td>
<td>chr21</td>
</tr>
<tr>
<td>COL6A2</td>
<td>1292</td>
<td>collagen, type VI, alpha 2</td>
<td>51.34</td>
<td>chr21</td>
</tr>
<tr>
<td>COL6A3</td>
<td>1293</td>
<td>collagen, type VI, alpha 3</td>
<td>82.16</td>
<td>chr2</td>
</tr>
<tr>
<td>COL8A1</td>
<td>1295</td>
<td>Collagen, type VIII, alpha 1</td>
<td>291.36</td>
<td>chr3</td>
</tr>
<tr>
<td>COL12C1</td>
<td>81035</td>
<td>collectin sub-family member 12 // collectin sub-family member 12</td>
<td>8.37</td>
<td>chr18</td>
</tr>
<tr>
<td>COMM03</td>
<td>23412</td>
<td>COMM domain containing 3</td>
<td>9.33</td>
<td>chr10</td>
</tr>
<tr>
<td>COMM08</td>
<td>54951</td>
<td>COMM domain containing 8</td>
<td>3.62</td>
<td>chr4</td>
</tr>
<tr>
<td>CMT</td>
<td>1312</td>
<td>catechol-O-methyltransferase</td>
<td>5.97</td>
<td>chr22</td>
</tr>
<tr>
<td>COPA</td>
<td>1314</td>
<td>coatomer protein complex, subunit alpha</td>
<td>2.51</td>
<td>chr1</td>
</tr>
<tr>
<td>COPB</td>
<td>1315</td>
<td>coatomer protein complex, subunit beta</td>
<td>3.08</td>
<td>chr11</td>
</tr>
<tr>
<td>COPB2</td>
<td>9276</td>
<td>coatomer protein complex, subunit beta 2 (beta prime)</td>
<td>2.27</td>
<td>chr3</td>
</tr>
<tr>
<td>COPE</td>
<td>11316</td>
<td>coatomer protein complex, subunit epsilon</td>
<td>2.19</td>
<td>chr19</td>
</tr>
<tr>
<td>COPG</td>
<td>22820</td>
<td>coatomer protein complex, subunit gamma</td>
<td>2.74</td>
<td>chr3</td>
</tr>
<tr>
<td>COPZ1</td>
<td>22818</td>
<td>coatomer protein complex, subunit zeta 1</td>
<td>2.20</td>
<td>chr12</td>
</tr>
<tr>
<td>COPZ2</td>
<td>51226</td>
<td>coatomer protein complex, subunit zeta 2</td>
<td>20.66</td>
<td>chr17</td>
</tr>
<tr>
<td>CORO1C</td>
<td>23603</td>
<td>coroerin, actin binding protein, 1C</td>
<td>7.82</td>
<td>chr12</td>
</tr>
<tr>
<td>COTL1</td>
<td>23406</td>
<td>coactosin-1ike-1 (Dicysteolinum)</td>
<td>2.66</td>
<td>chr16</td>
</tr>
<tr>
<td>CPA4</td>
<td>51200</td>
<td>carboxypeptidase A4</td>
<td>9.29</td>
<td>chr7</td>
</tr>
<tr>
<td>CPE</td>
<td>1363</td>
<td>carboxypeptidase E</td>
<td>5.86</td>
<td>chr4</td>
</tr>
<tr>
<td>CPEB2</td>
<td>132864</td>
<td>cytoplasmic polyadenylation element binding protein 2</td>
<td>8.67</td>
<td>chr4</td>
</tr>
<tr>
<td>CPEB4</td>
<td>80315</td>
<td>cytoplasmic polyadenylation element binding protein 4</td>
<td>2.96</td>
<td>chr5</td>
</tr>
<tr>
<td>CRAT</td>
<td>1384</td>
<td>carnitine acetyltransferase</td>
<td>3.90</td>
<td>chr9</td>
</tr>
<tr>
<td>CREB3</td>
<td>10488</td>
<td>cAMP responsive element binding protein 3</td>
<td>4.52</td>
<td>chr9</td>
</tr>
<tr>
<td>CREB3L1</td>
<td>90993</td>
<td>cAMP responsive element binding protein 3-like 1</td>
<td>13.03</td>
<td>chr11</td>
</tr>
<tr>
<td>CREB3L2</td>
<td>64764</td>
<td>cAMP responsive element binding protein 3-like 2</td>
<td>3.27</td>
<td>chr7</td>
</tr>
<tr>
<td>CREBS2</td>
<td>9586</td>
<td>cAMP responsive element binding protein 5</td>
<td>6.36</td>
<td>chr7</td>
</tr>
<tr>
<td>CRELD1</td>
<td>79987</td>
<td>cysteine-rich with EGF-like domains 1</td>
<td>2.88</td>
<td>chr3</td>
</tr>
<tr>
<td>CR1</td>
<td>23741</td>
<td>CREBBP/EP300 inhibitor 1 /// CREBBP/EP300 inhibitor 1</td>
<td>2.73</td>
<td>chr15</td>
</tr>
<tr>
<td>CRIM1</td>
<td>51232</td>
<td>cysteine rich transmembrane BMP regulator 1 (chordin-like)</td>
<td>22.12</td>
<td>chr2</td>
</tr>
<tr>
<td>CROT</td>
<td>54677</td>
<td>carnitine O-octanoyltransferase</td>
<td>2.82</td>
<td>chr7</td>
</tr>
<tr>
<td>CRTAP</td>
<td>10491</td>
<td>cartilage associated protein</td>
<td>3.03</td>
<td>chr3</td>
</tr>
<tr>
<td>CRYL1</td>
<td>51084</td>
<td>crystallin, lambda 1</td>
<td>2.12</td>
<td>chr13</td>
</tr>
<tr>
<td>CSAD</td>
<td>51380</td>
<td>cysteine sulfonic acid decarboxylase</td>
<td>2.96</td>
<td>chr12</td>
</tr>
<tr>
<td>CSGic-A</td>
<td>54480</td>
<td>chondroitin sulfate glucuronyltransferase</td>
<td>7.26</td>
<td>chr7</td>
</tr>
<tr>
<td>CSNK1D</td>
<td>1453</td>
<td>casein kinase 1, delta</td>
<td>2.07</td>
<td>chr17</td>
</tr>
<tr>
<td>CSNK1G1</td>
<td>53944</td>
<td>casein kinase 1, gamma 1</td>
<td>2.41</td>
<td>chr15</td>
</tr>
<tr>
<td>CSPG4</td>
<td>1464</td>
<td>Chondroitin sulfate proteoglycan 4 (melanoma-associated)</td>
<td>13.86</td>
<td>chr15</td>
</tr>
<tr>
<td>CSR1</td>
<td>1465</td>
<td>cysteine and glycine-rich protein 1</td>
<td>14.42</td>
<td>chr1</td>
</tr>
<tr>
<td>CSS3</td>
<td>337876</td>
<td>chondroitin sulfate synthase 3</td>
<td>24.41</td>
<td>chr5</td>
</tr>
<tr>
<td>CST3</td>
<td>1471</td>
<td>cystatin C (amyloid angioopathy and cerebral hemorrhage)</td>
<td>6.45</td>
<td>chr20</td>
</tr>
<tr>
<td>CTBS</td>
<td>1486</td>
<td>chitobiase, di-N-acetyl-</td>
<td>10.27</td>
<td>chr1</td>
</tr>
<tr>
<td>CTGF</td>
<td>1490</td>
<td>connective tissue growth factor</td>
<td>20.66</td>
<td>chr6</td>
</tr>
<tr>
<td>CTSB</td>
<td>1508</td>
<td>cathepsin B</td>
<td>17.12</td>
<td>chr8</td>
</tr>
<tr>
<td>CTSC</td>
<td>1075</td>
<td>cathepsin C</td>
<td>2.73</td>
<td>chr11</td>
</tr>
<tr>
<td>CTTN</td>
<td>2017</td>
<td>contactin</td>
<td>4.24</td>
<td>chr11</td>
</tr>
<tr>
<td>CTTNBP2NL</td>
<td>55917</td>
<td>CTTNBP2 N-terminal like</td>
<td>2.01</td>
<td>chr1</td>
</tr>
<tr>
<td>CUEDC2</td>
<td>79004</td>
<td>CUE domain containing 2</td>
<td>2.04</td>
<td>chr10</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CUL4B</td>
<td>8450</td>
<td>cullin 4B</td>
<td>2.80</td>
<td>chr10</td>
</tr>
<tr>
<td>CUL5</td>
<td>8065</td>
<td>cullin 5</td>
<td>2.16</td>
<td>chr11</td>
</tr>
<tr>
<td>CUL7</td>
<td>9820</td>
<td>cullin 7</td>
<td>3.91</td>
<td>chr6</td>
</tr>
<tr>
<td>CUTL1</td>
<td>1523</td>
<td>Cut-like 1, CCAAT displacement protein (Drosophila)</td>
<td>2.08</td>
<td>chr7</td>
</tr>
<tr>
<td>CXCL1</td>
<td>2919</td>
<td>chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)</td>
<td>3.08</td>
<td>chr4</td>
</tr>
<tr>
<td>CXCL12</td>
<td>6837</td>
<td>chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)</td>
<td>2.80</td>
<td>chr10</td>
</tr>
<tr>
<td>CXorf33</td>
<td>139322</td>
<td>chromosome X open reading frame 33</td>
<td>3.22</td>
<td>chrX</td>
</tr>
<tr>
<td>CXorf39</td>
<td>139321</td>
<td>chromosome X open reading frame 39</td>
<td>3.27</td>
<td>chrX</td>
</tr>
<tr>
<td>CXorf6</td>
<td>10046</td>
<td>chromosome X open reading frame 6</td>
<td>2.22</td>
<td>chrX</td>
</tr>
<tr>
<td>CXX1</td>
<td>8933</td>
<td>CAAX box 1</td>
<td>6.79</td>
<td>chrX</td>
</tr>
<tr>
<td>CYBSR1</td>
<td>51706</td>
<td>cytochrome b5 reductase 1</td>
<td>5.37</td>
<td>chr1</td>
</tr>
<tr>
<td>CYBSR3</td>
<td>1727</td>
<td>cytochrome b5 reductase 3</td>
<td>4.06</td>
<td>chr22</td>
</tr>
<tr>
<td>CYBASC3</td>
<td>220002</td>
<td>cytochrome b, ascorbate dependent 3</td>
<td>3.34</td>
<td>chr11</td>
</tr>
<tr>
<td>CYPBRD1</td>
<td>79901</td>
<td>cytochrome b reductase 1</td>
<td>31.09</td>
<td>chr2</td>
</tr>
<tr>
<td>CYLD</td>
<td>1540</td>
<td>cylindromatosis (turban tumor syndrome)</td>
<td>4.52</td>
<td>chr16</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>1545</td>
<td>cytochrome P450, family 1, subfamily B, polypeptide 1</td>
<td>8.47</td>
<td>chr2</td>
</tr>
<tr>
<td>CYP2U1</td>
<td>113612</td>
<td>cytochrome P450, family 2, subfamily U, polypeptide 1</td>
<td>3.83</td>
<td>chr1</td>
</tr>
<tr>
<td>CYP61</td>
<td>3491</td>
<td>cysteine-rich, angiogenic inducer, 61</td>
<td>11.63</td>
<td>chr1</td>
</tr>
<tr>
<td>DAAM2</td>
<td>23500</td>
<td>disheveled associated activator of morphogenesis 2</td>
<td>4.30</td>
<td>chr6</td>
</tr>
<tr>
<td>DAB2</td>
<td>1601</td>
<td>Disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila)</td>
<td>72.26</td>
<td>chr5</td>
</tr>
<tr>
<td>DAP</td>
<td>1611</td>
<td>death-associated protein</td>
<td>6.45</td>
<td>chr5</td>
</tr>
<tr>
<td>DAZAP2</td>
<td>9802</td>
<td>DAZ associated protein 2</td>
<td>4.86</td>
<td>chr12</td>
</tr>
<tr>
<td>DAZAP2</td>
<td>401029 // 9802</td>
<td>DAZ associated protein 2</td>
<td>similar to DAZ-associated protein 2 (Deleted in azoospermia-associated protein 2)</td>
<td>3.35</td>
</tr>
<tr>
<td>DBNL</td>
<td>26988</td>
<td>drebrin-like</td>
<td>2.02</td>
<td>chr7</td>
</tr>
<tr>
<td>DCBLD1</td>
<td>285761</td>
<td>discoidein, CUB and LCCL domain containing 1</td>
<td>6.28</td>
<td>chr6</td>
</tr>
<tr>
<td>DCBLD2</td>
<td>131566</td>
<td>discoidein, CUB and LCCL domain containing 2</td>
<td>5.97</td>
<td>chr3</td>
</tr>
<tr>
<td>DCTD</td>
<td>1635</td>
<td>dCMP deaminase</td>
<td>2.57</td>
<td>chr4</td>
</tr>
<tr>
<td>DCNT3</td>
<td>11258</td>
<td>dynactin 3 (p22)</td>
<td>4.54</td>
<td>chr9</td>
</tr>
<tr>
<td>DCUN1D4</td>
<td>23142</td>
<td>DCN1, dectin-like</td>
<td>5.80</td>
<td>chr4</td>
</tr>
<tr>
<td>DDAH1</td>
<td>23576</td>
<td>dimethylarginine dimethylaminohydrolase 1</td>
<td>3.91</td>
<td>chr1</td>
</tr>
<tr>
<td>DDEF1</td>
<td>50807</td>
<td>development and differentiation enhancing factor 1</td>
<td>5.49</td>
<td>chr8</td>
</tr>
<tr>
<td>DDEF2</td>
<td>8853</td>
<td>development and differentiation enhancing factor 2</td>
<td>5.62</td>
<td>chr2</td>
</tr>
<tr>
<td>DDHD2</td>
<td>23259</td>
<td>DDH1 domain containing 2</td>
<td>3.81</td>
<td>chr8</td>
</tr>
<tr>
<td>DDI3</td>
<td>1649</td>
<td>DNA-damage-inducible transcript 3</td>
<td>3.99</td>
<td>chr12</td>
</tr>
<tr>
<td>DDR2</td>
<td>4921</td>
<td>Discoidin domain receptor family, member 2</td>
<td>51.24</td>
<td>chr2</td>
</tr>
<tr>
<td>DECR1</td>
<td>1666</td>
<td>2,4-dienoyl CoA reductase 1, mitochondrial</td>
<td>2.43</td>
<td>chr8</td>
</tr>
<tr>
<td>DEGS1</td>
<td>8560</td>
<td>degenerative spermatocyte homolog 1, lipid desaturase (Drosophila)</td>
<td>2.49</td>
<td>chr1</td>
</tr>
<tr>
<td>DFNAS</td>
<td>1687</td>
<td>deafness, autosomal dominant 5</td>
<td>17.62</td>
<td>chr7</td>
</tr>
<tr>
<td>DGKA</td>
<td>1606</td>
<td>diacylglycerol kinase, alpha 80kDa</td>
<td>5.45</td>
<td>chr12</td>
</tr>
<tr>
<td>DHR1S</td>
<td>115817</td>
<td>dehydrogenase/reductase (SDR family) member 1</td>
<td>2.31</td>
<td>chr14</td>
</tr>
<tr>
<td>DIO2</td>
<td>1734</td>
<td>Deiodinase, iodothyronine, type II</td>
<td>14.77</td>
<td>chr14</td>
</tr>
<tr>
<td>DIP1B</td>
<td>55198</td>
<td>DIP13 beta</td>
<td>4.09</td>
<td>chr12</td>
</tr>
<tr>
<td>DJJ2E19.C1.1</td>
<td>440670 // 440670</td>
<td>hypothetical protein DJJ2E19.C1.1</td>
<td>similar to hypothetical protein FLJ20719</td>
<td>3.73</td>
</tr>
<tr>
<td>DJJ2E19.C1.1</td>
<td>401967 // 440670</td>
<td>hypothetical protein DJJ2E19.C1.1</td>
<td>similar to hypothetical protein FLJ20719</td>
<td>2.88</td>
</tr>
<tr>
<td>DKFPZ434B033</td>
<td>25851</td>
<td>DKFPZ434B033 protein</td>
<td>2.44</td>
<td>chr7</td>
</tr>
<tr>
<td>DKFPZ434C032</td>
<td>54762</td>
<td>hypothetical protein DKFPZ434C032</td>
<td>3.29</td>
<td>chr3</td>
</tr>
<tr>
<td>DKFPZ434F031</td>
<td>81757</td>
<td>hypothetical protein DKFPZ434F031</td>
<td>similar to hypothetical protein DKFPZ434F031</td>
<td>2.96</td>
</tr>
<tr>
<td>DKFPZ434K243</td>
<td>84216</td>
<td>hypothetical protein DKFPZ434K243</td>
<td>similar to hypothetical protein DKFPZ434K243</td>
<td>4.09</td>
</tr>
<tr>
<td>DKFPZ434L142</td>
<td>51313</td>
<td>hypothetical protein DKFPZ434L142</td>
<td>11.72</td>
<td>chr4</td>
</tr>
<tr>
<td>DKFPZ564D166</td>
<td>26115</td>
<td>putative ankyrin-repeat containing protein</td>
<td>3.49</td>
<td>chr17</td>
</tr>
<tr>
<td>DKFPZ564D172</td>
<td>83989</td>
<td>hypothetical protein DKFPZ564D172</td>
<td>3.35</td>
<td>chr5</td>
</tr>
<tr>
<td>DKFPZ564J012</td>
<td>25915</td>
<td>nuclear protein E3-3</td>
<td>2.15</td>
<td>chr3</td>
</tr>
<tr>
<td>DKFPZ564J086</td>
<td>25923</td>
<td>DKFPZ564J086 protein</td>
<td>3.99</td>
<td>chr11</td>
</tr>
<tr>
<td>DKFPZ564K142</td>
<td>84061</td>
<td>implantation-associated protein</td>
<td>2.46</td>
<td>chrX_random</td>
</tr>
<tr>
<td>DKFPZ566D097</td>
<td>25895</td>
<td>hepatocellular carcinoma-associated antigen HCA557a</td>
<td>3.18</td>
<td>chr12</td>
</tr>
<tr>
<td>DKFPZ566H212</td>
<td>25891</td>
<td>regeneration associated muscle protein</td>
<td>5.16</td>
<td>chr11</td>
</tr>
<tr>
<td>DKFPZ666K161</td>
<td>388857</td>
<td>Similar to BMP2 inducible kinase</td>
<td>3.12</td>
<td>chr2</td>
</tr>
<tr>
<td>DKFPZ671B107</td>
<td>91050</td>
<td>Hypothetical protein DKFPZ671B107</td>
<td>Similar to DKFPZ434L187 protein</td>
<td>2.03</td>
</tr>
<tr>
<td>DKFPZ671D112</td>
<td>84257</td>
<td>hypothetical protein DKFPZ671D112</td>
<td>2.33</td>
<td>chr8</td>
</tr>
<tr>
<td>DKK1</td>
<td>22943</td>
<td>dickkopf homolog 1 (Xenopus laevis)</td>
<td>17.54</td>
<td>chr10</td>
</tr>
<tr>
<td>DKK3</td>
<td>27122</td>
<td>dickkopf homolog 3 (Xenopus laevis)</td>
<td>19.69</td>
<td>chr11</td>
</tr>
<tr>
<td>DLC1</td>
<td>10395</td>
<td>deleted in liver cancer 1</td>
<td>69.90</td>
<td>chr8</td>
</tr>
<tr>
<td>DLG1</td>
<td>1739</td>
<td>discs, large homolog 1 (Drosophila)</td>
<td>3.05</td>
<td>chr3</td>
</tr>
<tr>
<td>DLM1</td>
<td>1745</td>
<td>distal-less homeo box 1</td>
<td>35.47</td>
<td>chr2</td>
</tr>
<tr>
<td>DLM2</td>
<td>1746</td>
<td>distal-less homeo box 2</td>
<td>25.71</td>
<td>chr2</td>
</tr>
<tr>
<td>DMN</td>
<td>23336</td>
<td>desmuslin</td>
<td>7.70</td>
<td>chr15</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>DNAJB12</td>
<td>54788</td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 12</td>
<td>2.60</td>
<td>chr10</td>
</tr>
<tr>
<td>DNAJB14</td>
<td>79982</td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 14</td>
<td>2.74</td>
<td>chr4</td>
</tr>
<tr>
<td>DNAJB4</td>
<td>11080</td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 4</td>
<td>7.82</td>
<td>chr1</td>
</tr>
<tr>
<td>DNAJB9</td>
<td>4189</td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 9</td>
<td>3.73</td>
<td>chr7</td>
</tr>
<tr>
<td>DNAJC1</td>
<td>64215</td>
<td>DnaJ (Hsp40) homolog, subfamily C, member 1</td>
<td>2.93</td>
<td>chr10</td>
</tr>
<tr>
<td>DNAJC13</td>
<td>23317</td>
<td>DnaJ (Hsp40) homolog, subfamily C, member 13</td>
<td>2.71</td>
<td>chr3</td>
</tr>
<tr>
<td>DNAJC3</td>
<td>5611</td>
<td>Hypothetical protein LOC144871</td>
<td>4.16</td>
<td>chr13</td>
</tr>
<tr>
<td>DNAJC6</td>
<td>9629</td>
<td>DnaJ (Hsp40) homolog, subfamily C, member 6</td>
<td>3.03</td>
<td>chr1</td>
</tr>
<tr>
<td>DNAPTP6</td>
<td>26010</td>
<td>DNA polymerase-transactivated protein 6</td>
<td>2.23</td>
<td>chr2</td>
</tr>
<tr>
<td>DNASE1L1</td>
<td>1774</td>
<td>Deoxyribonucleic acid-1-like 1</td>
<td>7.70</td>
<td>chrX</td>
</tr>
<tr>
<td>DNNC1</td>
<td>1783</td>
<td>dynnein, cytoplasmic, light intermediate polypeptide 2</td>
<td>2.08</td>
<td>chr16</td>
</tr>
<tr>
<td>DOC1</td>
<td>11259</td>
<td>downregulated in ovarian cancer 1</td>
<td>120.26</td>
<td>chr3</td>
</tr>
<tr>
<td>DOCK1</td>
<td>1793</td>
<td>dedicator of cytokinesis 1</td>
<td>4.20</td>
<td>chr10</td>
</tr>
<tr>
<td>DOCK10</td>
<td>55619</td>
<td>dedicator of cytokinesis 10</td>
<td>9.82</td>
<td>chr2</td>
</tr>
<tr>
<td>DOCK2</td>
<td>1794</td>
<td>Dedicator of cytokinesis 2</td>
<td>16.79</td>
<td>chr5</td>
</tr>
<tr>
<td>DOCK5</td>
<td>80005</td>
<td>dedicator of cytokinesis 5</td>
<td>3.84</td>
<td>chr8</td>
</tr>
<tr>
<td>DPP3</td>
<td>8110</td>
<td>D4, zinc and double PHD fingers, family 3</td>
<td>6.47</td>
<td>chr14</td>
</tr>
<tr>
<td>DPP8</td>
<td>54878</td>
<td>Dipeptidyl-peptidase 8</td>
<td>2.27</td>
<td>chr15</td>
</tr>
<tr>
<td>DPY19L1</td>
<td>23333</td>
<td>dpy-19-like 1 (C. elegans)</td>
<td>2.44</td>
<td>chr7</td>
</tr>
<tr>
<td>DPY19L4</td>
<td>286148</td>
<td>dpy-19-like 4 (C. elegans)</td>
<td>2.64</td>
<td>chr8</td>
</tr>
<tr>
<td>DPYD</td>
<td>1806</td>
<td>dihydroxytrimine dehydrogenase</td>
<td>33.29</td>
<td>chr1</td>
</tr>
<tr>
<td>DRAP1</td>
<td>10589</td>
<td>DR1-associated protein 1 (negative cofactor 2 alpha)</td>
<td>2.70</td>
<td>chr11</td>
</tr>
<tr>
<td>DSC3</td>
<td>1825</td>
<td>desmocollin 3</td>
<td>7.15</td>
<td>chr18</td>
</tr>
<tr>
<td>DSCR1</td>
<td>1827</td>
<td>Down syndrome critical region gene 1</td>
<td>68.24</td>
<td>chr21</td>
</tr>
<tr>
<td>DSP</td>
<td>1832</td>
<td>desmoplakin</td>
<td>3.83</td>
<td>chr6</td>
</tr>
<tr>
<td>DSTN</td>
<td>11034</td>
<td>Destin (actin depolymerizing factor)</td>
<td>2.81</td>
<td>chr20</td>
</tr>
<tr>
<td>DUSP1</td>
<td>1843</td>
<td>dual specificity phosphatase 1</td>
<td>9.65</td>
<td>chr5</td>
</tr>
<tr>
<td>DUSP10</td>
<td>11221</td>
<td>dual specificity phosphatase 10</td>
<td>3.51</td>
<td>chr1</td>
</tr>
<tr>
<td>DUSP14</td>
<td>11072</td>
<td>dual specificity phosphatase 14</td>
<td>2.33</td>
<td>chr17</td>
</tr>
<tr>
<td>DUSP18</td>
<td>150290</td>
<td>dual specificity phosphatase 18</td>
<td>2.04</td>
<td>chr22</td>
</tr>
<tr>
<td>DLV3</td>
<td>1857</td>
<td>disheveled, dsh homolog 3 (Drosophila)</td>
<td>3.21</td>
<td>chr3</td>
</tr>
<tr>
<td>DYM</td>
<td>54808</td>
<td>Dymeclin</td>
<td>2.10</td>
<td>chr18</td>
</tr>
<tr>
<td>D YR K4</td>
<td>8798</td>
<td>dual-specificity tyrosine-(Y)-phosphorylated regulated kinase 4</td>
<td>3.97</td>
<td>chr12</td>
</tr>
<tr>
<td>DYSF</td>
<td>8291</td>
<td>dystefin, limb girdle muscular dystrophy 2B (autosomal recessive)</td>
<td>2.48</td>
<td>chr2</td>
</tr>
<tr>
<td>DZIP1</td>
<td>22673</td>
<td>DAZ interacting protein 1</td>
<td>2.82</td>
<td>chr13</td>
</tr>
<tr>
<td>EBF</td>
<td>1879</td>
<td>Early B-cell factor</td>
<td>2.40</td>
<td>chr5</td>
</tr>
<tr>
<td>EB2</td>
<td>1890</td>
<td>Epstein-Barr virus induced gene 2 (lymphocyte-specific G protein-coupled receptor)</td>
<td>2.06</td>
<td>chr13</td>
</tr>
<tr>
<td>ECE1</td>
<td>1889</td>
<td>Endothelin converting enzyme 1</td>
<td>2.38</td>
<td>chr1</td>
</tr>
<tr>
<td>ECM1</td>
<td>1893</td>
<td>extracellular matrix protein 1</td>
<td>8.48</td>
<td>chr1</td>
</tr>
<tr>
<td>ECM2</td>
<td>1842</td>
<td>extracellular matrix protein 2, female organ and adipocyte specific</td>
<td>2.46</td>
<td>chr9</td>
</tr>
<tr>
<td>EDEM1</td>
<td>9695</td>
<td>ER degradation enhancer, mannosidase alpha-1</td>
<td>4.99</td>
<td>chr3</td>
</tr>
<tr>
<td>EDG2</td>
<td>1902</td>
<td>endothelial differentiation, lysophosphatic acid G-protein-coupled receptor, 2</td>
<td>13.99</td>
<td>chr9</td>
</tr>
<tr>
<td>EDG3</td>
<td>1903</td>
<td>endothelial differentiation, sphingolipid G-protein-coupled receptor, 3</td>
<td>5.42</td>
<td>chr9</td>
</tr>
<tr>
<td>EDIL3</td>
<td>10085</td>
<td>EGF-like repeats and decorin I-like domains 3</td>
<td>6.80</td>
<td>chr5</td>
</tr>
<tr>
<td>EDN1</td>
<td>1906</td>
<td>endothelin 1</td>
<td>3.78</td>
<td>chr6</td>
</tr>
<tr>
<td>EDNRA</td>
<td>1909</td>
<td>endothelin receptor type A</td>
<td>5.23</td>
<td>chr4</td>
</tr>
<tr>
<td>EEA1</td>
<td>8411</td>
<td>early endosome antigen 1, 16kDa</td>
<td>2.68</td>
<td>chr12</td>
</tr>
<tr>
<td>EEF1D</td>
<td>1936</td>
<td>Eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)</td>
<td>2.69</td>
<td>chr8</td>
</tr>
<tr>
<td>EFEMP1</td>
<td>2202</td>
<td>EGF-containing fibulin-like extracellular matrix protein 1</td>
<td>23.35</td>
<td>chr2</td>
</tr>
<tr>
<td>EFEMP2</td>
<td>30008</td>
<td>EGF-containing fibulin-like extracellular matrix protein 2</td>
<td>15.26</td>
<td>chr11</td>
</tr>
<tr>
<td>EFHA2</td>
<td>286097</td>
<td>EF-hand domain family, member A2</td>
<td>5.77</td>
<td>chr8</td>
</tr>
<tr>
<td>EGF5L</td>
<td>1955</td>
<td>EGF-like-domain, multiple 5</td>
<td>3.04</td>
<td>chr9</td>
</tr>
<tr>
<td>EGF6</td>
<td>1956</td>
<td>epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene)</td>
<td>15.05</td>
<td>chr7</td>
</tr>
<tr>
<td>EGR1</td>
<td>1958</td>
<td>Early growth response 1</td>
<td>3.24</td>
<td>chr5</td>
</tr>
<tr>
<td>EHD1</td>
<td>10938</td>
<td>EH-domain containing 1</td>
<td>4.00</td>
<td>chr11</td>
</tr>
<tr>
<td>EHD2</td>
<td>30846</td>
<td>EH-domain containing 2</td>
<td>24.04</td>
<td>chr1</td>
</tr>
<tr>
<td>EHD3</td>
<td>30845</td>
<td>EH-domain containing 3</td>
<td>4.30</td>
<td>chr2</td>
</tr>
<tr>
<td>EHD4</td>
<td>30844</td>
<td>EH-domain containing 4</td>
<td>3.75</td>
<td>chr15</td>
</tr>
<tr>
<td>EIF1</td>
<td>10209</td>
<td>Eukaryotic translation initiation factor 1</td>
<td>2.81</td>
<td>chr17</td>
</tr>
<tr>
<td>EIF2C2</td>
<td>27161</td>
<td>Eukaryotic translation initiation factor 2C, 2</td>
<td>6.05</td>
<td>chr15</td>
</tr>
<tr>
<td>EIF2S1</td>
<td>1965</td>
<td>eukaryotic translation initiation factor 2, subunit 1 alpha, 35kDa</td>
<td>4.40</td>
<td>chr14</td>
</tr>
<tr>
<td>EIF5A2</td>
<td>56648</td>
<td>eukaryotic translation initiation factor 5A2</td>
<td>4.68</td>
<td>chr3</td>
</tr>
<tr>
<td>ELF1</td>
<td>1997</td>
<td>ET4-like factor 1 (ets domain transcription factor)</td>
<td>2.32</td>
<td>chr13</td>
</tr>
<tr>
<td>ELF4</td>
<td>2000</td>
<td>ET4-like factor 4 (ets domain transcription factor)</td>
<td>12.20</td>
<td>chrX</td>
</tr>
<tr>
<td>ELK3</td>
<td>2004</td>
<td>ELK3, ETS-domain protein (SRF accessory protein 2)</td>
<td>10.83</td>
<td>chr12</td>
</tr>
<tr>
<td>ELL2</td>
<td>22936</td>
<td>elongation factor, RNA polymerase II, 2</td>
<td>4.14</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ELMOD2</td>
<td>255520</td>
<td>ELMO domain containing 2</td>
<td>2.78</td>
<td>chr4</td>
</tr>
<tr>
<td>ELOVL1</td>
<td>64834</td>
<td>elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)</td>
<td>5.70</td>
<td>chr1</td>
</tr>
<tr>
<td>ELOVL2</td>
<td>54898</td>
<td>elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)</td>
<td>2.14</td>
<td>chr6</td>
</tr>
<tr>
<td>ELTD1</td>
<td>64123</td>
<td>EGF, latrophilin and seven transmembrane domain containing 1</td>
<td>4.27</td>
<td>chr1</td>
</tr>
<tr>
<td>EMILIN1</td>
<td>11117</td>
<td>elastin microfibril interfacer 1</td>
<td>12.99</td>
<td>chr2</td>
</tr>
<tr>
<td>EMP1</td>
<td>2012</td>
<td>epithelial membrane protein 1</td>
<td>52.02</td>
<td>chr12</td>
</tr>
<tr>
<td>EMP3</td>
<td>2014</td>
<td>epithelial membrane protein 3</td>
<td>14.12</td>
<td>chr19</td>
</tr>
<tr>
<td>ENAH</td>
<td>55740</td>
<td>enabled homolog (Drosophila)</td>
<td>0.24</td>
<td>chr1</td>
</tr>
<tr>
<td>ENC1</td>
<td>8507</td>
<td>ectodermal-neural cortex (with BTB-like domain)</td>
<td>13.67</td>
<td>chr5</td>
</tr>
<tr>
<td>ENG</td>
<td>2022</td>
<td>endoglin (Osler-Rendu-Weber syndrome 1)</td>
<td>3.87</td>
<td>chr9</td>
</tr>
<tr>
<td>ENTPD4</td>
<td>9583</td>
<td>ectonucleoside triphosphate diphosphohydrolase 4</td>
<td>2.82</td>
<td>chr8</td>
</tr>
<tr>
<td>ENTPD5</td>
<td>957</td>
<td>Ectonucleoside triphosphate diphosphohydrolase 5</td>
<td>2.93</td>
<td>chr14</td>
</tr>
<tr>
<td>EPAS1</td>
<td>2034</td>
<td>endothelial PAS domain protein 1</td>
<td>51.27</td>
<td>chr2</td>
</tr>
<tr>
<td>EPRB41L1</td>
<td>2036</td>
<td>Erythrocyte membrane protein band 4.1-like 1</td>
<td>4.95</td>
<td>chr5</td>
</tr>
<tr>
<td>EPRB41L3</td>
<td>23136</td>
<td>Erythrocyte membrane protein band 4.1-like 3</td>
<td>6.18</td>
<td>chr18</td>
</tr>
<tr>
<td>EPHA2</td>
<td>1969</td>
<td>EPH receptor A2</td>
<td>4.81</td>
<td>chr1</td>
</tr>
<tr>
<td>EPHA5</td>
<td>2044</td>
<td>EPH receptor A5</td>
<td>6.44</td>
<td>chr4</td>
</tr>
<tr>
<td>EPHB2</td>
<td>2048</td>
<td>EPH receptor B2</td>
<td>4.62</td>
<td>chr1</td>
</tr>
<tr>
<td>EPM</td>
<td>2054</td>
<td>epimorphin</td>
<td>2.12</td>
<td>chr12</td>
</tr>
<tr>
<td>EPLIN</td>
<td>51474</td>
<td>epithelial protein lost in neoplasm beta</td>
<td>6.59</td>
<td>chr12</td>
</tr>
<tr>
<td>EPM2A1P1</td>
<td>9852</td>
<td>EPM2A (latrin) interacting protein 1</td>
<td>3.88</td>
<td>chr3</td>
</tr>
<tr>
<td>EPRS</td>
<td>2058</td>
<td>glutamyl-prolyl-tRNA synthetase</td>
<td>2.44</td>
<td>chr1</td>
</tr>
<tr>
<td>EPS15L1</td>
<td>58513</td>
<td>epidermal growth factor receptor pathway substrate 15-like 1</td>
<td>2.32</td>
<td>chr19</td>
</tr>
<tr>
<td>EPS8</td>
<td>2059</td>
<td>epidermal growth factor receptor pathway substrate 8</td>
<td>11.93</td>
<td>chr12</td>
</tr>
<tr>
<td>ERRB2IP</td>
<td>55914</td>
<td>erb2 interacting protein</td>
<td>4.29</td>
<td>chr5</td>
</tr>
<tr>
<td>ERO1L</td>
<td>30001</td>
<td>ERO1-like (S. cerevisiae)</td>
<td>2.78</td>
<td>chr14</td>
</tr>
<tr>
<td>ERRF1H</td>
<td>54206</td>
<td>ERBB receptor feedback inhibitor 1</td>
<td>3.50</td>
<td>chr1</td>
</tr>
<tr>
<td>ETH1</td>
<td>23474</td>
<td>ethylmalonic encephalopathy 1</td>
<td>3.35</td>
<td>chr19</td>
</tr>
<tr>
<td>ETS1</td>
<td>2113</td>
<td>v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>ETV5</td>
<td>2119</td>
<td>ets variant gene 5 (ets-related molecule)</td>
<td>2.34</td>
<td>chr3</td>
</tr>
<tr>
<td>ETV6</td>
<td>2120</td>
<td>ets variant gene 6 (TEL oncogene)</td>
<td>2.17</td>
<td>chr12</td>
</tr>
<tr>
<td>EVC</td>
<td>2121</td>
<td>Ellis van Creveld syndrome</td>
<td>3.60</td>
<td>chr4</td>
</tr>
<tr>
<td>EVI1</td>
<td>2122</td>
<td>ecotropic viral integration site 1</td>
<td>9.78</td>
<td>chr3</td>
</tr>
<tr>
<td>EVI5</td>
<td>7813</td>
<td>ecotropic viral integration site 5</td>
<td>8.09</td>
<td>chr1</td>
</tr>
<tr>
<td>EXT1</td>
<td>2131</td>
<td>Exostoses (multiple) 1</td>
<td>6.55</td>
<td>chr8</td>
</tr>
<tr>
<td>EXT2</td>
<td>2132</td>
<td>exostoses (multiple) 2</td>
<td>2.27</td>
<td>chr11</td>
</tr>
<tr>
<td>F20965</td>
<td>55957</td>
<td>protein F20965</td>
<td>3.09</td>
<td>chr19</td>
</tr>
<tr>
<td>F2R</td>
<td>2149</td>
<td>coagulation factor II (thrombin) receptor</td>
<td>7.70</td>
<td>chr5</td>
</tr>
<tr>
<td>F2RL2</td>
<td>2151</td>
<td>coagulation factor II (thrombin) receptor-like 2</td>
<td>79.14</td>
<td>chr5</td>
</tr>
<tr>
<td>FAM14A</td>
<td>83982</td>
<td>family with sequence similarity 14, member A</td>
<td>2.10</td>
<td>chr14</td>
</tr>
<tr>
<td>FAM18B</td>
<td>51030</td>
<td>family with sequence similarity 18, member B</td>
<td>3.53</td>
<td>chr16</td>
</tr>
<tr>
<td>FAM38A</td>
<td>9780</td>
<td>family with sequence similarity 38, member A</td>
<td>3.85</td>
<td>chr16</td>
</tr>
<tr>
<td>FAM43A</td>
<td>131583</td>
<td>family with sequence similarity 43, member A</td>
<td>2.78</td>
<td>chr3</td>
</tr>
<tr>
<td>FAM46A</td>
<td>55603</td>
<td>family with sequence similarity 46, member A</td>
<td>9.30</td>
<td>chr6</td>
</tr>
<tr>
<td>FAM54B</td>
<td>56181</td>
<td>family with sequence similarity 54, member B</td>
<td>2.01</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM55C</td>
<td>91775</td>
<td>family with sequence similarity 55, member C</td>
<td>7.99</td>
<td>chr3</td>
</tr>
<tr>
<td>FAM62B</td>
<td>57488</td>
<td>family with sequence similarity 62 (C2 domain containing) member B</td>
<td>2.04</td>
<td>chr7</td>
</tr>
<tr>
<td>FAM65A</td>
<td>79567</td>
<td>family with sequence similarity 65, member A</td>
<td>2.40</td>
<td>chr16</td>
</tr>
<tr>
<td>FAM73A</td>
<td>374986</td>
<td>family with sequence similarity 73, member A</td>
<td>3.98</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM79A</td>
<td>127262</td>
<td>family with sequence similarity 79, member A</td>
<td>2.26</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM89B</td>
<td>23625</td>
<td>family with sequence similarity 89, member B</td>
<td>3.96</td>
<td>chr11</td>
</tr>
<tr>
<td>FAM8A1</td>
<td>51439</td>
<td>family with sequence similarity 8, member A1</td>
<td>3.51</td>
<td>chr6</td>
</tr>
<tr>
<td>FAM91A1</td>
<td>157769</td>
<td>family with sequence similarity 91, member A1</td>
<td>2.12</td>
<td>chr8</td>
</tr>
<tr>
<td>FAP</td>
<td>2191</td>
<td>fibroblast activation protein, alpha</td>
<td>50.54</td>
<td>chr2</td>
</tr>
<tr>
<td>FAS</td>
<td>355</td>
<td>Fas (TNF receptor superfamily, member 6)</td>
<td>12.93</td>
<td>chr10</td>
</tr>
<tr>
<td>FAT4</td>
<td>79633</td>
<td>FAT tumor suppressor homolog 4 (Drosophila)</td>
<td>2.38</td>
<td>chr4</td>
</tr>
<tr>
<td>FBLM1</td>
<td>54751</td>
<td>fibrinogen binding fibrin monomer 1</td>
<td>3.76</td>
<td>chr1</td>
</tr>
<tr>
<td>FBLN1</td>
<td>2192</td>
<td>fibrinogen 1</td>
<td>2.80</td>
<td>chr22</td>
</tr>
<tr>
<td>FBLN2</td>
<td>2199</td>
<td>fibrinogen 2</td>
<td>5.51</td>
<td>chr3</td>
</tr>
<tr>
<td>FBLN5</td>
<td>10516</td>
<td>fibrinogen 5</td>
<td>4.89</td>
<td>chr14</td>
</tr>
<tr>
<td>FBN1</td>
<td>2200</td>
<td>fibrinogen 1 (Marfan syndrome)</td>
<td>181.73</td>
<td>chr15</td>
</tr>
<tr>
<td>FBN2</td>
<td>2201</td>
<td>fibrinogen 2 (congenital contractual arachnodactyly)</td>
<td>12.59</td>
<td>chr5</td>
</tr>
<tr>
<td>FBXL17</td>
<td>64839</td>
<td>F-box and leucine-rich repeat protein 17</td>
<td>4.70</td>
<td>chr5</td>
</tr>
<tr>
<td>FBXL2</td>
<td>25827</td>
<td>F-box and leucine-rich repeat protein 2</td>
<td>2.70</td>
<td>chr3</td>
</tr>
<tr>
<td>FBXL3</td>
<td>26224</td>
<td>F-box and leucine-rich repeat protein 3</td>
<td>3.82</td>
<td>chr13</td>
</tr>
<tr>
<td>FBXL5</td>
<td>26234</td>
<td>F-box and leucine-rich repeat protein 5</td>
<td>3.24</td>
<td>chr4</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBXO3</td>
<td>26273</td>
<td>F-box protein 3</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>FBXO32</td>
<td>114007</td>
<td>F-box protein 32</td>
<td>4.52</td>
<td>chr8</td>
</tr>
<tr>
<td>FBXO6</td>
<td>26270</td>
<td>F-box protein 6</td>
<td>2.71</td>
<td>chr1</td>
</tr>
<tr>
<td>FBXO8</td>
<td>26269</td>
<td>F-box protein 8</td>
<td>3.50</td>
<td>chr4</td>
</tr>
<tr>
<td>FGFR1</td>
<td>2717</td>
<td>Fc fragment of IgG, receptor, transporter, alpha</td>
<td>2.18</td>
<td>chr19</td>
</tr>
<tr>
<td>FGFR2D2</td>
<td>9873</td>
<td>FCH and double SH3 domains 2</td>
<td>5.48</td>
<td>chr11</td>
</tr>
<tr>
<td>FCMD</td>
<td>2218</td>
<td>Fukuyama type congenital muscular dystrophy (fukutin)</td>
<td>2.45</td>
<td>chr9</td>
</tr>
<tr>
<td>FERL1</td>
<td>26509</td>
<td>fer-1-like 3, myoferlin (C. elegans)</td>
<td>12.67</td>
<td>chr10</td>
</tr>
<tr>
<td>FGFl</td>
<td>2246</td>
<td>Ibrastib growth factor 1 (acidic)</td>
<td>4.58</td>
<td>chr5</td>
</tr>
<tr>
<td>FGFl5</td>
<td>2250</td>
<td>Ibrastib growth factor 5</td>
<td>2.61</td>
<td>chr4</td>
</tr>
<tr>
<td>FGFR1P2</td>
<td>26127</td>
<td>FGFR1 oncogene partner 2</td>
<td>4.33</td>
<td>chr12</td>
</tr>
<tr>
<td>FHL1</td>
<td>2273</td>
<td>four and a half LIM domains 1</td>
<td>4.26</td>
<td>chrX</td>
</tr>
<tr>
<td>FHL2</td>
<td>2274</td>
<td>four and a half LIM domains 2</td>
<td>6.90</td>
<td>chr2</td>
</tr>
<tr>
<td>FHL3</td>
<td>2275</td>
<td>four and a half LIM domains 3</td>
<td>2.28</td>
<td>chr1</td>
</tr>
<tr>
<td>FKBP14</td>
<td>55033</td>
<td>FK506 binding protein 14, 22 kDa</td>
<td>10.09</td>
<td>chr7</td>
</tr>
<tr>
<td>FKBP7</td>
<td>51661</td>
<td>FK506 binding protein 7</td>
<td>12.51</td>
<td>chr2</td>
</tr>
<tr>
<td>FKBP9</td>
<td>11328</td>
<td>FK506 binding protein 9, 63 kDa</td>
<td>11.51</td>
<td>chr7</td>
</tr>
<tr>
<td>FL1</td>
<td>2313</td>
<td>Friend leukemia virus integration 1</td>
<td>17.02</td>
<td>chr11</td>
</tr>
<tr>
<td>FL10256</td>
<td>55106</td>
<td>likely ortholog of mouse slarten 3</td>
<td>2.48</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ10357</td>
<td>55701</td>
<td>hypothetical protein FLJ10357</td>
<td>2.57</td>
<td>chr14</td>
</tr>
<tr>
<td>FLJ10808</td>
<td>55236</td>
<td>hypothetical protein FLJ10808</td>
<td>3.01</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ10980</td>
<td>56204</td>
<td>hypothetical protein FLJ10980</td>
<td>3.23</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ11151</td>
<td>55313</td>
<td>Hypothetical protein FLJ11151</td>
<td>3.59</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ11259</td>
<td>55332</td>
<td>hypothetical protein FLJ11259</td>
<td>7.14</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ11273</td>
<td>54664</td>
<td>hypothetical protein FLJ11273</td>
<td>2.96</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ12649</td>
<td>79649</td>
<td>hypothetical protein FLJ12649</td>
<td>2.23</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ12681</td>
<td>64788</td>
<td>hypothetical protein FLJ12681</td>
<td>3.33</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ13391</td>
<td>84141</td>
<td>hypothetical protein FLJ13391</td>
<td>7.47</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ13448</td>
<td>80219</td>
<td>hypothetical protein FLJ13448</td>
<td>2.20</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ13710</td>
<td>79875</td>
<td>hypothetical protein FLJ13710</td>
<td>5.47</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ13855</td>
<td>65264</td>
<td>hypothetical protein FLJ13855</td>
<td>2.93</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ13868</td>
<td>64755</td>
<td>hypothetical protein FLJ13868</td>
<td>2.43</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ14001</td>
<td>79730</td>
<td>Hypothetical protein FLJ14001</td>
<td>3.12</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ14054</td>
<td>79614</td>
<td>hypothetical protein FLJ14054</td>
<td>10.80</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ14213</td>
<td>79899</td>
<td>hypothetical protein FLJ14213</td>
<td>4.97</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ14525</td>
<td>84886</td>
<td>hypothetical protein FLJ14525</td>
<td>4.69</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ14640</td>
<td>84902</td>
<td>hypothetical protein FLJ14640</td>
<td>2.58</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ14800</td>
<td>84926</td>
<td>hypothetical protein FLJ14800</td>
<td>2.20</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ20054</td>
<td>54530</td>
<td>hypothetical protein FLJ20054</td>
<td>3.11</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ20186</td>
<td>54849</td>
<td>hypothetical protein FLJ20186</td>
<td>2.31</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ20254</td>
<td>54867</td>
<td>Hypothetical protein FLJ20254</td>
<td>3.45</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ20294</td>
<td>55626</td>
<td>Hypothetical protein FLJ20294</td>
<td>2.25</td>
<td>chr6</td>
</tr>
<tr>
<td>FLJ20298</td>
<td>54885</td>
<td>FLJ20298 protein</td>
<td>11.01</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ20481</td>
<td>54947</td>
<td>hypothetical protein FLJ20481</td>
<td>11.80</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ20507</td>
<td>55654</td>
<td>hypothetical protein FLJ20507</td>
<td>2.58</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ20719</td>
<td>440673 /// 55672</td>
<td>hypothetical protein FLJ20719 /// AG1 protein</td>
<td>2.76</td>
<td>chr1_random</td>
</tr>
<tr>
<td>FLJ20791</td>
<td>440670 /// 44067</td>
<td>hypothetical protein FLJ20719 /// hypothetical protein LOC200030 /// hypothetical protein MGC8902 /// AE01 mRNA</td>
<td>2.42</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ20792</td>
<td>70 /// 440673 /// hypothetical protein FLJ20719 /// hypothetical protein LOC200030 /// hypothetical protein MGC8902 /// AE01 mRNA</td>
<td>2.33</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>FLJ20920</td>
<td>80221</td>
<td>hypothetical protein FLJ20920</td>
<td>3.25</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ21075</td>
<td>80099</td>
<td>hypothetical protein FLJ21075</td>
<td>2.23</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ21127</td>
<td>79600</td>
<td>hypothetical protein FLJ21127</td>
<td>2.08</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ21159</td>
<td>79884</td>
<td>ASAP</td>
<td>2.55</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ21657</td>
<td>64417</td>
<td>hypothetical protein FLJ21657</td>
<td>2.99</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ21827</td>
<td>56912</td>
<td>hypothetical protein FLJ21827</td>
<td>2.35</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ21886</td>
<td>79974</td>
<td>hypothetical protein FLJ21886</td>
<td>20.43</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ22028</td>
<td>79912</td>
<td>hypothetical protein FLJ22028</td>
<td>3.38</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ2222</td>
<td>79701</td>
<td>hypothetical protein FLJ2222</td>
<td>2.66</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ22313</td>
<td>64224</td>
<td>hypothetical protein FLJ22313</td>
<td>2.21</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ22471</td>
<td>80212</td>
<td>limkain beta 2</td>
<td>18.90</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ22833</td>
<td>64859</td>
<td>hypothetical protein FLJ22833</td>
<td>29.06</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ22955</td>
<td>63932</td>
<td>hypothetical protein FLJ22955</td>
<td>2.02</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ23514</td>
<td>60494</td>
<td>hypothetical protein FLJ23514</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ23518</td>
<td>79780</td>
<td>hypothetical protein FLJ23518</td>
<td>2.51</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ23867</td>
<td>200058</td>
<td>hypothetical protein FLJ23867</td>
<td>2.65</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ30594</td>
<td>150622</td>
<td>hypothetical locus FLJ30594</td>
<td>3.70</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ30596</td>
<td>133686</td>
<td>hypothetical protein FLJ30596</td>
<td>2.77</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avasidis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>FLJ30851</td>
<td>375190</td>
<td>FLJ30851 protein</td>
<td>2.03</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ31033</td>
<td>91351</td>
<td>hypothetical protein FLJ31033</td>
<td>2.62</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ34236</td>
<td>283373</td>
<td>hypothetical protein FLJ34236</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ34922</td>
<td>91607</td>
<td>likely ortholog of mouse schlafem 8/9</td>
<td>3.11</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ36031</td>
<td>168455</td>
<td>Hypothetical protein FLJ36031</td>
<td>10.77</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ36748</td>
<td>134265</td>
<td>hypothetical protein FLJ36748</td>
<td>2.42</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ37562</td>
<td>134553</td>
<td>hypothetical protein FLJ37562</td>
<td>14.25</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ38101</td>
<td>255919</td>
<td>hypothetical protein FLJ38101</td>
<td>2.28</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ38725</td>
<td>144811</td>
<td>Hypothetical protein FLJ38725</td>
<td>7.54</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ39370</td>
<td>132720</td>
<td>hypothetical protein FLJ39370</td>
<td>6.14</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ39378</td>
<td>353116</td>
<td>hypothetical protein FLJ39378</td>
<td>3.15</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ39441</td>
<td>144108</td>
<td>hypothetical protein FLJ39441</td>
<td>2.18</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ42709</td>
<td>441094</td>
<td>hypothetical gene supported by AK124699</td>
<td>2.30</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ43339</td>
<td>388115</td>
<td>FLJ43339 protein</td>
<td>4.21</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ44635</td>
<td>392490</td>
<td>TPT1-like protein</td>
<td>2.26</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ45831</td>
<td>400576</td>
<td>FLJ45831 protein</td>
<td></td>
<td>4.50</td>
</tr>
<tr>
<td>FLJ90166</td>
<td>164284</td>
<td>hypothetical protein FLJ90166</td>
<td>7.80</td>
<td>chr20</td>
</tr>
<tr>
<td>FLNA</td>
<td>2316</td>
<td>filamin A, alpha (actin binding protein 280)</td>
<td>8.93</td>
<td>chrX</td>
</tr>
<tr>
<td>FLNB</td>
<td>2317</td>
<td>filamin B, beta (actin binding protein 278)</td>
<td>2.06</td>
<td>chr3</td>
</tr>
<tr>
<td>FLNC</td>
<td>2318</td>
<td>filamin C, gamma (actin binding protein 280)</td>
<td>9.72</td>
<td>chr7</td>
</tr>
<tr>
<td>FLYWCH1</td>
<td>84256</td>
<td>FLYWCH-type zinc finger 1</td>
<td>3.14</td>
<td>chr16</td>
</tr>
<tr>
<td>FMIN2</td>
<td>56776</td>
<td>formin 2</td>
<td>6.91</td>
<td>chr1</td>
</tr>
<tr>
<td>FN1</td>
<td>2335</td>
<td>fibronectin 1</td>
<td>178.10</td>
<td>chr2</td>
</tr>
<tr>
<td>FNDG3B</td>
<td>64778</td>
<td>fibronectin type III domain containing 3B</td>
<td>7.30</td>
<td>chr3</td>
</tr>
<tr>
<td>FOSL1</td>
<td>8061</td>
<td>FOS-like antigen 1</td>
<td>3.19</td>
<td>chr11</td>
</tr>
<tr>
<td>FOSL2</td>
<td>2355</td>
<td>FOS-like antigen 2</td>
<td>15.44</td>
<td>chr2</td>
</tr>
<tr>
<td>FOXC1</td>
<td>2296</td>
<td>forkhead box C1</td>
<td>8.78</td>
<td>chr6</td>
</tr>
<tr>
<td>FOXD1</td>
<td>2297</td>
<td>forkhead box D1</td>
<td>25.91</td>
<td>chr5</td>
</tr>
<tr>
<td>FOXF1</td>
<td>2294</td>
<td>forkhead box F1</td>
<td>8.38</td>
<td>chr16</td>
</tr>
<tr>
<td>FOXF2</td>
<td>2295</td>
<td>forkhead box F2</td>
<td>3.12</td>
<td>chr6</td>
</tr>
<tr>
<td>FOXJ2</td>
<td>55810</td>
<td>forkhead box J2</td>
<td>2.42</td>
<td>chr12</td>
</tr>
<tr>
<td>FOXK1</td>
<td>221937</td>
<td>Forkhead box K1</td>
<td>2.53</td>
<td>chr7</td>
</tr>
<tr>
<td>FOXL1</td>
<td>2300</td>
<td>Forkhead box L1</td>
<td>6.23</td>
<td>chr16</td>
</tr>
<tr>
<td>FOXP1</td>
<td>27086</td>
<td>Forkhead box P1</td>
<td>5.07</td>
<td>chr3</td>
</tr>
<tr>
<td>FREQ</td>
<td>23413</td>
<td>Frequerin homolog (Drosophila)</td>
<td>2.16</td>
<td>chr9</td>
</tr>
<tr>
<td>FRMD4A</td>
<td>55691</td>
<td>FERM domain containing 4A</td>
<td>6.77</td>
<td>chr10</td>
</tr>
<tr>
<td>FRMD6</td>
<td>122796</td>
<td>FERM domain containing 6</td>
<td>46.90</td>
<td>chr14</td>
</tr>
<tr>
<td>FRS2</td>
<td>10818</td>
<td>Fibroblast growth factor receptor substrate 2</td>
<td>2.35</td>
<td>chr12</td>
</tr>
<tr>
<td>FSTL1</td>
<td>11167</td>
<td>folllatin-like 1</td>
<td>4.78</td>
<td>chr3</td>
</tr>
<tr>
<td>FSTL3</td>
<td>10272</td>
<td>follistatin-like 3 (secreted glycoprotein)</td>
<td>6.37</td>
<td>chr19</td>
</tr>
<tr>
<td>FTH1</td>
<td>2495</td>
<td>ferritin, heavy polypeptide 1</td>
<td>2.38</td>
<td>chr11</td>
</tr>
<tr>
<td>FTL</td>
<td>2512</td>
<td>Ferritin, light polypeptide</td>
<td>2.50</td>
<td>chrX</td>
</tr>
<tr>
<td>FUT6</td>
<td>2528</td>
<td>Fucosyltransferase 6 (alpha,1,3) fucosyltransferase</td>
<td>2.79</td>
<td>chr16</td>
</tr>
<tr>
<td>FVT1</td>
<td>2531</td>
<td>Follicular lymphoma variant translocation 1</td>
<td>3.31</td>
<td>chr18</td>
</tr>
<tr>
<td>FXYD5</td>
<td>53827</td>
<td>FXYD domain containing ion transport regulator 5</td>
<td>3.33</td>
<td>chr19</td>
</tr>
<tr>
<td>FXYC1</td>
<td>79443</td>
<td>FYVE and coiled-coil domain containing 1</td>
<td>3.80</td>
<td>chr3</td>
</tr>
<tr>
<td>FYTD1</td>
<td>84248</td>
<td>forty-two-three domain containing 1</td>
<td>6.14</td>
<td>chr3</td>
</tr>
<tr>
<td>FZD1</td>
<td>8321</td>
<td>frizzled homolog 1 (Drosophila)</td>
<td>5.79</td>
<td>chr7</td>
</tr>
<tr>
<td>FZD2</td>
<td>2535</td>
<td>frizzled homolog 2 (Drosophila)</td>
<td>7.48</td>
<td>chr17</td>
</tr>
<tr>
<td>FZD6</td>
<td>8323</td>
<td>frizzled homolog 6 (Drosophila)</td>
<td>5.16</td>
<td>chr8</td>
</tr>
<tr>
<td>GABARP</td>
<td>11337</td>
<td>GABA(A) receptor-associated protein</td>
<td>2.04</td>
<td>chr7</td>
</tr>
<tr>
<td>GABRB1</td>
<td>2560</td>
<td>gamma-aminobutyric acid (GABA) A receptor, beta 1</td>
<td>2.41</td>
<td>chr4</td>
</tr>
<tr>
<td>GAD245A</td>
<td>1647</td>
<td>growth arrest and DNA damage-inducible, alpha</td>
<td>11.34</td>
<td>chr1</td>
</tr>
<tr>
<td>GAD245B</td>
<td>2460</td>
<td>growth arrest and DNA damage-inducible, beta</td>
<td>13.14</td>
<td>chr19</td>
</tr>
<tr>
<td>GALNACT-2</td>
<td>55454</td>
<td>chondroitin sulfate GaLaNCT-2</td>
<td>6.52</td>
<td>chr10</td>
</tr>
<tr>
<td>GALNT10</td>
<td>55568</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypente N-acetylgalactosaminyltransferase</td>
<td>21.41</td>
<td>chr5</td>
</tr>
<tr>
<td>GALNT2</td>
<td>2590</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase</td>
<td>6.45</td>
<td>chr2</td>
</tr>
<tr>
<td>GALNT4</td>
<td>8693</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase</td>
<td>3.36</td>
<td>chr12</td>
</tr>
<tr>
<td>GALNT5</td>
<td>11227</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase</td>
<td>6.70</td>
<td>chr2</td>
</tr>
<tr>
<td>GALNAB</td>
<td>23193</td>
<td>glucosidase, alpha: neutral AB</td>
<td>2.08</td>
<td>chr11</td>
</tr>
<tr>
<td>GAS2L1</td>
<td>10634</td>
<td>growth arrest-specific 2 like 1</td>
<td>3.98</td>
<td>chr22</td>
</tr>
<tr>
<td>GAS6</td>
<td>2621</td>
<td>growth arrest-specific 6</td>
<td>13.68</td>
<td>chr13</td>
</tr>
<tr>
<td>GATA2</td>
<td>2624</td>
<td>GATA binding protein 2</td>
<td>5.09</td>
<td>chr3</td>
</tr>
<tr>
<td>GATA6</td>
<td>2627</td>
<td>GATA binding protein 6</td>
<td>9.85</td>
<td>chr18</td>
</tr>
<tr>
<td>GBA</td>
<td>2629</td>
<td>Glucosidase, beta: acid (includes glucosyleraminidase)</td>
<td>4.52</td>
<td>chr1</td>
</tr>
<tr>
<td>GBA /// GBAP</td>
<td>2630</td>
<td>glucosidase, beta: acid (includes glucosyleraminidase) /// glucosidase, beta: acid</td>
<td>2.77</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>GB2</td>
<td>57704</td>
<td>Glucosidase, beta (bile acid) 2</td>
<td>3.15</td>
<td>chr9</td>
</tr>
<tr>
<td>GBE1</td>
<td>2632</td>
<td>glucan (1,4-alpha-), branching enzyme 1 (glycogen branching enzyme, Andersen's disease)</td>
<td>3.54</td>
<td>chr3</td>
</tr>
<tr>
<td>GBP1</td>
<td>2633</td>
<td>guanylate binding protein 1, interferon-inducible, 67kDa</td>
<td>28.18</td>
<td>chr1</td>
</tr>
<tr>
<td>GBP2</td>
<td>2634</td>
<td>guanylate binding protein 2, interferon-inducible // guanylate binding protein 2</td>
<td>3.60</td>
<td>chr1</td>
</tr>
<tr>
<td>GBP3</td>
<td>2635</td>
<td>guanylate binding protein 3</td>
<td>34.83</td>
<td>chr1</td>
</tr>
<tr>
<td>GDP15</td>
<td>9518</td>
<td>growth differentiation factor 15</td>
<td>17.75</td>
<td>chr19</td>
</tr>
<tr>
<td>GEM</td>
<td>2669</td>
<td>GTP binding protein overexpressed in skeletal muscle</td>
<td>4.65</td>
<td>chr8</td>
</tr>
<tr>
<td>GFPPT1</td>
<td>2673</td>
<td>glutamine-fructose-6-phosphate transaminase 1</td>
<td>2.82</td>
<td>chr2</td>
</tr>
<tr>
<td>GGH</td>
<td>8836</td>
<td>gamma-glutamyl hydrolase (conjugase, folypolygammaglutyl hydrolase)</td>
<td>2.13</td>
<td>chr8</td>
</tr>
<tr>
<td>GHR</td>
<td>2690</td>
<td>growth hormone receptor</td>
<td>2.30</td>
<td>chr5</td>
</tr>
<tr>
<td>GIT2</td>
<td>9815</td>
<td>G protein-coupled receptor kinase interactor 2</td>
<td>3.76</td>
<td>chr12</td>
</tr>
<tr>
<td>GLPR1</td>
<td>11010</td>
<td>Gli pathogenesis-related 1 (glioma)</td>
<td>110.49</td>
<td>chr12</td>
</tr>
<tr>
<td>GLS1</td>
<td>14879</td>
<td>GLIS family zinc finger 1</td>
<td>2.87</td>
<td>chr1</td>
</tr>
<tr>
<td>GLS3</td>
<td>169792</td>
<td>GLIS family zinc finger 3</td>
<td>11.17</td>
<td>chr9</td>
</tr>
<tr>
<td>GLRB</td>
<td>2743</td>
<td>glycine receptor, beta</td>
<td>3.68</td>
<td>chr4</td>
</tr>
<tr>
<td>GLRX</td>
<td>2745</td>
<td>glutaredoxin (thioltransferase)</td>
<td>2.97</td>
<td>chr14</td>
</tr>
<tr>
<td>GLRQ2</td>
<td>51022</td>
<td>glutaredoxin 2</td>
<td>3.23</td>
<td>chr1</td>
</tr>
<tr>
<td>GLS</td>
<td>2744</td>
<td>glutaminase</td>
<td>17.00</td>
<td>chr2</td>
</tr>
<tr>
<td>GLT6B1</td>
<td>55830</td>
<td>glycosyltransferase 8 domain containing 1</td>
<td>2.60</td>
<td>chr3</td>
</tr>
<tr>
<td>GLT6B2</td>
<td>83468</td>
<td>glycosyltransferase 8 domain containing 2</td>
<td>12.49</td>
<td>chr12</td>
</tr>
<tr>
<td>GLT5</td>
<td>51228</td>
<td>glycolipid transfer protein</td>
<td>2.84</td>
<td>chr12</td>
</tr>
<tr>
<td>GYBP</td>
<td>9731</td>
<td>glycine-, glutamate-, thienylcyclohexylperidine-binding protein</td>
<td>3.62</td>
<td>chr1</td>
</tr>
<tr>
<td>GNA11</td>
<td>2767</td>
<td>Guanine nucleotide binding protein (G protein), alpha 11 (Gq class)</td>
<td>2.96</td>
<td>chr19</td>
</tr>
<tr>
<td>GNA11L</td>
<td>2770</td>
<td>guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide</td>
<td>2.56</td>
<td>chr7</td>
</tr>
<tr>
<td>GNA12</td>
<td>2771</td>
<td>guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide</td>
<td>2.96</td>
<td>chr3</td>
</tr>
<tr>
<td>GNA1O</td>
<td>2775</td>
<td>guanine nucleotide binding protein (G protein), alpha activating activitly polypeptide</td>
<td>2.19</td>
<td>chr16</td>
</tr>
<tr>
<td>GNB1</td>
<td>2782</td>
<td>guanine nucleotide binding protein (G protein), beta polypeptide 1</td>
<td>3.97</td>
<td>chr1</td>
</tr>
<tr>
<td>GNB4</td>
<td>59345</td>
<td>guanine nucleotide binding protein (G protein), beta polypeptide 4</td>
<td>2.63</td>
<td>chr3</td>
</tr>
<tr>
<td>GNE</td>
<td>10020</td>
<td>glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase</td>
<td>2.37</td>
<td>chr9</td>
</tr>
<tr>
<td>GNG1</td>
<td>2791</td>
<td>guanine nucleotide binding protein (G protein), gamma 11</td>
<td>4.07</td>
<td>chr7</td>
</tr>
<tr>
<td>GNG12</td>
<td>55970</td>
<td>guanine nucleotide binding protein (G protein), gamma 12</td>
<td>28.04</td>
<td>chr1</td>
</tr>
<tr>
<td>GNPDA2</td>
<td>132789</td>
<td>glucosamine-6-phosphate deaminase 2</td>
<td>4.84</td>
<td>chr4</td>
</tr>
<tr>
<td>GNS</td>
<td>2799</td>
<td>glucosamine-N-acetyl-6-sulfatase (Sanfilippo disease IIID)</td>
<td>6.57</td>
<td>chr12</td>
</tr>
<tr>
<td>GOLCA1</td>
<td>2801</td>
<td>golgi aubatrinigen, golgin subfamily a, 2</td>
<td>2.99</td>
<td>chr9</td>
</tr>
<tr>
<td>GOLCA3</td>
<td>2802</td>
<td>golgi aubatrinigen, golgin subfamily a, 3</td>
<td>3.30</td>
<td>chr12</td>
</tr>
<tr>
<td>GOLCB1</td>
<td>2804</td>
<td>Golgi aubatrinigen, golgin subfamily b, macrogolgin (with transmembrane signal)</td>
<td>2.12</td>
<td>chr3</td>
</tr>
<tr>
<td>GOLPH4</td>
<td>27333</td>
<td>golgi phosphoprotein 4</td>
<td>3.03</td>
<td>chr3</td>
</tr>
<tr>
<td>GOLT1B</td>
<td>51026</td>
<td>golgi transport 1 homolog B (S. cerevisiae)</td>
<td>7.34</td>
<td>chr12</td>
</tr>
<tr>
<td>GOPC</td>
<td>57120</td>
<td>Golgi associated PDZ and coiled-coil motif containing</td>
<td>3.65</td>
<td>chr6</td>
</tr>
<tr>
<td>GOSR1</td>
<td>9527</td>
<td>golgi SNAP receptor complex member 1</td>
<td>2.31</td>
<td>chr17</td>
</tr>
<tr>
<td>GOSR2</td>
<td>9570</td>
<td>Golgi SNAP receptor complex member 2</td>
<td>2.39</td>
<td>chr17</td>
</tr>
<tr>
<td>GPC1</td>
<td>2817</td>
<td>glypican 1</td>
<td>5.86</td>
<td>chr2</td>
</tr>
<tr>
<td>GPR124</td>
<td>25960</td>
<td>G protein-coupled receptor 124</td>
<td>6.41</td>
<td>chr8</td>
</tr>
<tr>
<td>GPR126</td>
<td>57211</td>
<td>G protein-coupled receptor 126</td>
<td>3.17</td>
<td>chr6</td>
</tr>
<tr>
<td>GPR155</td>
<td>151556</td>
<td>G protein-coupled receptor 155</td>
<td>5.24</td>
<td>chr2</td>
</tr>
<tr>
<td>GPR161</td>
<td>23432</td>
<td>G protein-coupled receptor 161</td>
<td>3.67</td>
<td>chr1</td>
</tr>
<tr>
<td>GPRCA5A</td>
<td>9052</td>
<td>G protein-coupled receptor, family C, group 5, member A</td>
<td>17.86</td>
<td>chr12</td>
</tr>
<tr>
<td>GPM4</td>
<td>26086</td>
<td>G-protein signalling modulator 1 (AGS3-like, C. elegans)</td>
<td>5.25</td>
<td>chr9</td>
</tr>
<tr>
<td>GREM1</td>
<td>26585</td>
<td>gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)</td>
<td>400.20</td>
<td>chr15</td>
</tr>
<tr>
<td>GRK5</td>
<td>2869</td>
<td>G protein-coupled receptor kinase 5</td>
<td>5.38</td>
<td>chr10</td>
</tr>
<tr>
<td>GRN</td>
<td>2896</td>
<td>granulin</td>
<td>2.32</td>
<td>chr17</td>
</tr>
<tr>
<td>GSX3B</td>
<td>2932</td>
<td>Glycogen synthase kinase 3 beta</td>
<td>4.02</td>
<td>chr3</td>
</tr>
<tr>
<td>GSNS</td>
<td>2934</td>
<td>gelsolin (amyloidosis, Finnish type)</td>
<td>5.06</td>
<td>chr9</td>
</tr>
<tr>
<td>GSTK1</td>
<td>373156</td>
<td>glutathione S-transferase kappa 1</td>
<td>2.08</td>
<td>chr7</td>
</tr>
<tr>
<td>GSTM2</td>
<td>2946</td>
<td>glutathione S-transferase M2 (muscle)</td>
<td>2.11</td>
<td>chr1</td>
</tr>
<tr>
<td>GSTM3</td>
<td>2947</td>
<td>glutathione S-transferase M3 (brain)</td>
<td>21.84</td>
<td>chr1</td>
</tr>
<tr>
<td>GTF2H1</td>
<td>2965</td>
<td>general transcription factor IIH, polypeptide 1, 62kDa</td>
<td>2.29</td>
<td>chr11</td>
</tr>
<tr>
<td>GTPBP5</td>
<td>26164</td>
<td>GTP binding protein 5 (putative)</td>
<td>2.86</td>
<td>chr20</td>
</tr>
<tr>
<td>GUK1</td>
<td>2987</td>
<td>guanylate kinase 1 // guanylate kinase 1</td>
<td>2.41</td>
<td>chr1</td>
</tr>
<tr>
<td>H2AFY</td>
<td>9555</td>
<td>H2A histone family, member Y</td>
<td>3.70</td>
<td>chr5</td>
</tr>
<tr>
<td>H6PD</td>
<td>9563</td>
<td>hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase)</td>
<td>4.63</td>
<td>chr1</td>
</tr>
<tr>
<td>HABP4</td>
<td>22927</td>
<td>hyaluronan binding protein 4</td>
<td>2.84</td>
<td>chr9</td>
</tr>
<tr>
<td>HAPLN1</td>
<td>1404</td>
<td>Hyaluronan and proteoglycan link protein 1</td>
<td>5.76</td>
<td>chr5</td>
</tr>
<tr>
<td>HBEFG</td>
<td>1639</td>
<td>heparin-binding EGF-like growth factor</td>
<td>11.83</td>
<td>chr5</td>
</tr>
<tr>
<td>HBP1</td>
<td>26959</td>
<td>HMGB-box transcription factor 1</td>
<td>2.71</td>
<td>chr7</td>
</tr>
<tr>
<td>HFC2</td>
<td>29915</td>
<td>host cell factor C2</td>
<td>3.62</td>
<td>chr12</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; p < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC_up</th>
<th>Chromosome Number/Avadis</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDLBP</td>
<td>3069</td>
<td>high density lipoprotein binding protein (viginin)</td>
<td>3.06</td>
<td>chr2</td>
</tr>
<tr>
<td>HEC5</td>
<td>51696</td>
<td>headcase homolog (Drosophila)</td>
<td>2.68</td>
<td>chr6</td>
</tr>
<tr>
<td>HECTD2</td>
<td>143279</td>
<td>HECT domain containing 2</td>
<td>2.37</td>
<td>chr10</td>
</tr>
<tr>
<td>HECW2</td>
<td>57520</td>
<td>HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2</td>
<td>3.40</td>
<td>chr2</td>
</tr>
<tr>
<td>HEG1</td>
<td>57493</td>
<td>HEG homolog 1 (zebrafish)</td>
<td>25.65</td>
<td>chr3</td>
</tr>
<tr>
<td>HERC4</td>
<td>26091</td>
<td>hector domain and RLD 4</td>
<td>2.76</td>
<td>chr10</td>
</tr>
<tr>
<td>HERPUD1</td>
<td>9709</td>
<td>homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like d</td>
<td>9.52</td>
<td>chr16</td>
</tr>
<tr>
<td>HEXM1</td>
<td>10614</td>
<td>hexamethylene bis-acetamide inducible 1</td>
<td>2.19</td>
<td>chr17</td>
</tr>
<tr>
<td>HEY1</td>
<td>23482</td>
<td>hairy/enhancer-of-split related with YRPW motif 1</td>
<td>2.36</td>
<td>chr8</td>
</tr>
<tr>
<td>HIF1A</td>
<td>3091</td>
<td>hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)</td>
<td>2.04</td>
<td>chr14</td>
</tr>
<tr>
<td>HtP2K</td>
<td>28996</td>
<td>Homeodomain interacting protein kinase 2</td>
<td>3.01</td>
<td>chr7</td>
</tr>
<tr>
<td>HIST1H2BC</td>
<td>8347</td>
<td>histone 1, H2bc</td>
<td>2.42</td>
<td>chr6</td>
</tr>
<tr>
<td>HIST1H4H</td>
<td>8365</td>
<td>histone 1, H4h</td>
<td>2.57</td>
<td>chr6</td>
</tr>
<tr>
<td>HIVEP3</td>
<td>59269</td>
<td>Human immunodeficiency virus type I enhancer binding protein 3</td>
<td>2.40</td>
<td>chr1</td>
</tr>
<tr>
<td>HLA-B</td>
<td>3106</td>
<td>major histocompatibility complex, class I, B</td>
<td>2.92</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-C</td>
<td>3107</td>
<td>major histocompatibility complex, class I, C</td>
<td>2.61</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-E</td>
<td>3133</td>
<td>major histocompatibility complex, class I, E</td>
<td>5.94</td>
<td>chr6</td>
</tr>
<tr>
<td>HLX1</td>
<td>3142</td>
<td>H2O-like homeo box 1 (Drosophila)</td>
<td>2.35</td>
<td>chr1</td>
</tr>
<tr>
<td>HMCN1</td>
<td>83872</td>
<td>hemicentin 1</td>
<td>12.20</td>
<td>chr1</td>
</tr>
<tr>
<td>HNRPL1</td>
<td>92906</td>
<td>heterogeneous nuclear ribonucleoprotein L-like</td>
<td>2.32</td>
<td>chr2</td>
</tr>
<tr>
<td>HNRPL2L</td>
<td>221092</td>
<td>heterogeneous nuclear ribonucleoprotein L-like 2</td>
<td>2.01</td>
<td>chr11</td>
</tr>
<tr>
<td>HNT</td>
<td>50863</td>
<td>neurotomin</td>
<td>14.49</td>
<td>chr11</td>
</tr>
<tr>
<td>HOMER3</td>
<td>9454</td>
<td>homer homolog 3 (Drosophila)</td>
<td>2.37</td>
<td>chr19</td>
</tr>
<tr>
<td>HOM-TES-103</td>
<td>25900</td>
<td>HOM-TES-103 tumor antigen-like</td>
<td>2.52</td>
<td>chr12</td>
</tr>
<tr>
<td>Hook3</td>
<td>84376</td>
<td>Hook homolog 3 (Drosophila)</td>
<td>2.95</td>
<td>chr8</td>
</tr>
<tr>
<td>HOXB2</td>
<td>3212</td>
<td>homeo box B2</td>
<td>4.42</td>
<td>chr17</td>
</tr>
<tr>
<td>HOXB7</td>
<td>3217</td>
<td>homeo box B7</td>
<td>2.76</td>
<td>chr17</td>
</tr>
<tr>
<td>HIP1BP3</td>
<td>50809</td>
<td>heterochromatin protein 1, binding protein 3</td>
<td>2.30</td>
<td>chr1</td>
</tr>
<tr>
<td>HPCAL1</td>
<td>3241</td>
<td>hippocalin-i like 1</td>
<td>3.08</td>
<td>chr2</td>
</tr>
<tr>
<td>HRT1H</td>
<td>3269</td>
<td>histamine receptor H1</td>
<td>9.88</td>
<td>chr3</td>
</tr>
<tr>
<td>HRMT1L1</td>
<td>3275</td>
<td>HMT1 hnRNPN methyltransferase-like 1 (S. cerevisiae)</td>
<td>3.10</td>
<td>chr21</td>
</tr>
<tr>
<td>HSPA5</td>
<td>3309</td>
<td>heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)</td>
<td>5.63</td>
<td>chr9</td>
</tr>
<tr>
<td>HSPB1</td>
<td>3315</td>
<td>heat shock 27kDa protein 1</td>
<td>11.96</td>
<td>chr7</td>
</tr>
<tr>
<td>HSPB8</td>
<td>26353</td>
<td>heat shock 22kDa protein 8</td>
<td>9.67</td>
<td>chr12</td>
</tr>
<tr>
<td>HSPG2</td>
<td>3339</td>
<td>heparan sulfate proteoglycan 2 (perlecans)</td>
<td>4.94</td>
<td>chr1</td>
</tr>
<tr>
<td>HT008</td>
<td>55852</td>
<td>uncharacterized hypothalamus protein HT008</td>
<td>2.11</td>
<td>chr17</td>
</tr>
<tr>
<td>HTRA1</td>
<td>5654</td>
<td>Heat shock 60kDa protein 2</td>
<td>7.83</td>
<td>chr10</td>
</tr>
<tr>
<td>IBRDc1</td>
<td>154214</td>
<td>IBR domain containing 1</td>
<td>3.31</td>
<td>chr6</td>
</tr>
<tr>
<td>ICHTHYIN</td>
<td>348938</td>
<td>ichthyin protein</td>
<td>7.55</td>
<td>chr5</td>
</tr>
<tr>
<td>ICK</td>
<td>22858</td>
<td>intestinal cell (MAK-like) kinase</td>
<td>2.16</td>
<td>chr6</td>
</tr>
<tr>
<td>ID3</td>
<td>3399</td>
<td>inhibitor of DNA binding 3, dominant negative helix-loop-helix protein</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>IDH2</td>
<td>3418</td>
<td>isocitrate dehydrogenase 2 (NADP+)-, mitochondrial</td>
<td>2.20</td>
<td>chr15</td>
</tr>
<tr>
<td>IDS</td>
<td>3423</td>
<td>iduronate 2-sulfatase (Hunter syndrome)</td>
<td>6.12</td>
<td>chrX</td>
</tr>
<tr>
<td>IER3</td>
<td>8870</td>
<td>immediate early response 3</td>
<td>22.38</td>
<td>chr6</td>
</tr>
<tr>
<td>IER3P1</td>
<td>51124</td>
<td>immediate early response 3 interacting protein 1</td>
<td>2.60</td>
<td>chr18</td>
</tr>
<tr>
<td>IER5</td>
<td>51278</td>
<td>immediate early response 5</td>
<td>5.96</td>
<td>chr1</td>
</tr>
<tr>
<td>IER5L</td>
<td>389792</td>
<td>immediate early response 5-like</td>
<td>6.44</td>
<td>chr9</td>
</tr>
<tr>
<td>IF16</td>
<td>3428</td>
<td>interferon, gamma-inducible protein 16</td>
<td>36.68</td>
<td>chr1</td>
</tr>
<tr>
<td>IF22</td>
<td>3433</td>
<td>interferon-induced protein with tetratricopeptide repeats 2</td>
<td>2.94</td>
<td>chr10</td>
</tr>
<tr>
<td>IF33</td>
<td>3437</td>
<td>interferon-induced protein with tetratricopeptide repeats 3</td>
<td>3.61</td>
<td>chr10</td>
</tr>
<tr>
<td>IF5T4</td>
<td>24138</td>
<td>interferon-induced protein with tetratricopeptide repeats 5</td>
<td>4.05</td>
<td>chr10</td>
</tr>
<tr>
<td>IFNAR1</td>
<td>3454</td>
<td>interferon (alpha, beta and omega) receptor 1</td>
<td>4.25</td>
<td>chr21</td>
</tr>
<tr>
<td>IFNGR2</td>
<td>3460</td>
<td>interferon gamma receptor 2 (interferon gamma transducer) 1</td>
<td>2.13</td>
<td>chr21</td>
</tr>
<tr>
<td>IFT20</td>
<td>90410</td>
<td>intraflagellar transport protein IFT20</td>
<td>3.44</td>
<td>chr17</td>
</tr>
<tr>
<td>IGBP3</td>
<td>3486</td>
<td>insulin-like growth factor binding protein 3</td>
<td>28.09</td>
<td>chr7</td>
</tr>
<tr>
<td>IGBP4</td>
<td>3487</td>
<td>insulin-like growth factor binding protein 4</td>
<td>4.71</td>
<td>chr17</td>
</tr>
<tr>
<td>IGBP5</td>
<td>3488</td>
<td>insulin-like growth factor binding protein 5</td>
<td>142.96</td>
<td>chr2</td>
</tr>
<tr>
<td>IGBP6</td>
<td>3489</td>
<td>insulin-like growth factor binding protein 6</td>
<td>7.75</td>
<td>chr12</td>
</tr>
<tr>
<td>IGBP7</td>
<td>3490</td>
<td>insulin-like growth factor binding protein 7</td>
<td>343.83</td>
<td>chr4</td>
</tr>
<tr>
<td>IKBKE</td>
<td>9641</td>
<td>inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon</td>
<td>2.48</td>
<td>chr1</td>
</tr>
<tr>
<td>IKIP</td>
<td>121457</td>
<td>IKK interacting protein</td>
<td>18.59</td>
<td>chr12</td>
</tr>
<tr>
<td>IL10RB</td>
<td>3588</td>
<td>interleukin 10 receptor, beta</td>
<td>6.65</td>
<td>chr21</td>
</tr>
<tr>
<td>IL11</td>
<td>3589</td>
<td>interleukin 11</td>
<td>5.73</td>
<td>chr19</td>
</tr>
<tr>
<td>IL11RA</td>
<td>3590</td>
<td>interleukin 11 receptor, alpha</td>
<td>2.79</td>
<td>chr9</td>
</tr>
<tr>
<td>IL13RA1</td>
<td>3597</td>
<td>interleukin 13 receptor, alpha 1</td>
<td>11.07</td>
<td>chrX</td>
</tr>
<tr>
<td>IL15</td>
<td>3600</td>
<td>interleukin 15</td>
<td>3.11</td>
<td>chr4</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>IL1R1</td>
<td>3554</td>
<td>interleukin 1 receptor, type I</td>
<td>20.71</td>
<td>chr2</td>
</tr>
<tr>
<td>IL1RAP</td>
<td>3556</td>
<td>interleukin 1 receptor accessory protein</td>
<td>2.59</td>
<td>chr3</td>
</tr>
<tr>
<td>IL6</td>
<td>3569</td>
<td>interleukin 6 (interferon, beta 2)</td>
<td>3.36</td>
<td>chr7</td>
</tr>
<tr>
<td>IL6ST</td>
<td>3572</td>
<td>interleukin 6 signal transducer (gp130, oncostatin M receptor)</td>
<td>18.73</td>
<td>chr17</td>
</tr>
<tr>
<td>IL7R</td>
<td>3575</td>
<td>interleukin 7 receptor</td>
<td>9.35</td>
<td>chr5</td>
</tr>
<tr>
<td>ILB</td>
<td>3576</td>
<td>interleukin 8</td>
<td>14.71</td>
<td>chr4</td>
</tr>
<tr>
<td>ILK</td>
<td>3611</td>
<td>integrin-linked kinase</td>
<td>3.30</td>
<td>chr11</td>
</tr>
<tr>
<td>IMPD1</td>
<td>3614</td>
<td>inositol monophosphatase domain containing 1</td>
<td>4.88</td>
<td>chr8</td>
</tr>
<tr>
<td>ING4</td>
<td>51147</td>
<td>inhibitor of growth family, member 4</td>
<td>3.14</td>
<td>chr12</td>
</tr>
<tr>
<td>INHBA</td>
<td>3624</td>
<td>inhibin, beta A (activin A, activin AB polypeptide)</td>
<td>113.49</td>
<td>chr7</td>
</tr>
<tr>
<td>INPP1</td>
<td>3628</td>
<td>inositol polyphosphate-1-phoshpatase</td>
<td>4.14</td>
<td>chr2</td>
</tr>
<tr>
<td>INPP4B</td>
<td>8821</td>
<td>inositol polyphosphate-4-phoshpatase, type II, 105kDa</td>
<td>7.24</td>
<td>chr4</td>
</tr>
<tr>
<td>INPP5A</td>
<td>3632</td>
<td>inositol polyphosphate-5-phoshpatase, 40kDa</td>
<td>2.00</td>
<td>chr10</td>
</tr>
<tr>
<td>IPR</td>
<td>3652</td>
<td>intracisternal A particle-promoted polypeptide</td>
<td>4.28</td>
<td>chr1</td>
</tr>
<tr>
<td>IQWDI</td>
<td>55827</td>
<td>IQ motif and WD repeats 1</td>
<td>3.48</td>
<td>chr1</td>
</tr>
<tr>
<td>IRAK2</td>
<td>3656</td>
<td>interleukin-1 receptor-associated kinase 2</td>
<td>4.82</td>
<td>chr3</td>
</tr>
<tr>
<td>IRF2BP2</td>
<td>359948</td>
<td>interferon regulatory factor 2 binding protein 2</td>
<td>3.69</td>
<td>chr1</td>
</tr>
<tr>
<td>IRSF1G</td>
<td>10379</td>
<td>interferon-stimulated transcription factor 3, gamma 48kDa</td>
<td>2.21</td>
<td>chr14</td>
</tr>
<tr>
<td>ITCH</td>
<td>83737</td>
<td>Itchy homolog E3 ubiquitin protein ligase (mouse)</td>
<td>2.85</td>
<td>chr20</td>
</tr>
<tr>
<td>ITGA1</td>
<td>22801</td>
<td>integrin, alpha 11</td>
<td>12.78</td>
<td>chr15</td>
</tr>
<tr>
<td>ITGA2</td>
<td>3673</td>
<td>integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)</td>
<td>8.92</td>
<td>chr5</td>
</tr>
<tr>
<td>ITGA3</td>
<td>3675</td>
<td>integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 receptor)</td>
<td>6.45</td>
<td>chr17</td>
</tr>
<tr>
<td>ITGA4</td>
<td>3676</td>
<td>integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)</td>
<td>9.27</td>
<td>chr2</td>
</tr>
<tr>
<td>ITGA5</td>
<td>3678</td>
<td>integrin, alpha 5 (fibronectin receptor, alpha polypeptide)</td>
<td>14.20</td>
<td>chr12</td>
</tr>
<tr>
<td>ITGAV</td>
<td>3685</td>
<td>Integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51)</td>
<td>10.17</td>
<td>chr2</td>
</tr>
<tr>
<td>ITGB1</td>
<td>3688</td>
<td>integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes beta 1)</td>
<td>8.89</td>
<td>chr10</td>
</tr>
<tr>
<td>ITGB1P1</td>
<td>9270</td>
<td>integrin beta 1 binding protein 1</td>
<td>3.04</td>
<td>chr2</td>
</tr>
<tr>
<td>ITGB3</td>
<td>3690</td>
<td>integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)</td>
<td>3.21</td>
<td>chr17</td>
</tr>
<tr>
<td>ITM2B</td>
<td>9445</td>
<td>integral membrane protein 2B</td>
<td>2.02</td>
<td>chr13</td>
</tr>
<tr>
<td>ITPR2</td>
<td>3709</td>
<td>Family with sequence similarity 20, member C</td>
<td>2.21</td>
<td>chr12</td>
</tr>
<tr>
<td>JAK1</td>
<td>3716 /// 391045</td>
<td>Janus kinase 1 (a protein tyrosine kinase) // similar to Solute carrier family 2, Facilitated glucose transporter, member 3 (Glucose transporter type 3, brain)</td>
<td>9.31</td>
<td>chr1</td>
</tr>
<tr>
<td>JAK2</td>
<td>3716</td>
<td>Janus kinase 1 (a protein tyrosine kinase)</td>
<td>5.81</td>
<td>chr1</td>
</tr>
<tr>
<td>JAZF1</td>
<td>221895</td>
<td>juxtaposed with another zinc finger gene</td>
<td>2.18</td>
<td>chr7</td>
</tr>
<tr>
<td>JRK</td>
<td>8690</td>
<td>jerky homolog-like (mouse)</td>
<td>2.56</td>
<td>chr11</td>
</tr>
<tr>
<td>JUB</td>
<td>84862</td>
<td>jub, ajuba homolog (Xenopus laevis)</td>
<td>4.38</td>
<td>chr14</td>
</tr>
<tr>
<td>JUN</td>
<td>3725</td>
<td>v-jun sarcoma virus 17 oncogene homolog (avian)</td>
<td>5.16</td>
<td>chr1</td>
</tr>
<tr>
<td>JUND</td>
<td>3727</td>
<td>jun D proto-oncogene</td>
<td>2.01</td>
<td>chr19</td>
</tr>
<tr>
<td>KATNAL1</td>
<td>84056</td>
<td>katanin p60 subunit A-1 like</td>
<td>3.79</td>
<td>chr13</td>
</tr>
<tr>
<td>KBTB9B</td>
<td>114818</td>
<td>kelch repeat and BTB (POZ) domain containing 9</td>
<td>5.22</td>
<td>chr2</td>
</tr>
<tr>
<td>KCNG1</td>
<td>3755</td>
<td>potassium voltage-gated channel, subfamily G, member 1</td>
<td>3.92</td>
<td>chr20</td>
</tr>
<tr>
<td>KCNMA1</td>
<td>3778</td>
<td>potassium large conductance calcium-activated channel, subfamily M, alpha member 1</td>
<td>18.21</td>
<td>chr10</td>
</tr>
<tr>
<td>KCTD10</td>
<td>83982</td>
<td>potassium channel tetramerisation domain containing 10</td>
<td>3.83</td>
<td>chr12</td>
</tr>
<tr>
<td>KCTD11</td>
<td>147040</td>
<td>potassium channel tetramerisation domain containing 11</td>
<td>2.09</td>
<td>chr17</td>
</tr>
<tr>
<td>KCTD18</td>
<td>120535</td>
<td>potassium channel tetramerisation domain containing 18</td>
<td>4.78</td>
<td>chr2</td>
</tr>
<tr>
<td>KCTD9</td>
<td>54793</td>
<td>potassium channel tetramerisation domain containing 9</td>
<td>2.44</td>
<td>chr9</td>
</tr>
<tr>
<td>KDEL1R2</td>
<td>11014</td>
<td>KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2</td>
<td>4.73</td>
<td>chr7</td>
</tr>
<tr>
<td>KDEL1R3</td>
<td>11015</td>
<td>KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3</td>
<td>43.78</td>
<td>chr22</td>
</tr>
<tr>
<td>KIAA0063</td>
<td>9929</td>
<td>KIAA0063 gene product</td>
<td>2.75</td>
<td>chr22</td>
</tr>
<tr>
<td>KIAA0090</td>
<td>23065</td>
<td>KIAA0090 gene product</td>
<td>2.14</td>
<td>chr1</td>
</tr>
<tr>
<td>KIAA0143</td>
<td>23167</td>
<td>KIAA0143 protein</td>
<td>2.03</td>
<td>chr8</td>
</tr>
<tr>
<td>KIAA0247</td>
<td>9766</td>
<td>KIAA0247 protein</td>
<td>3.91</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA0256</td>
<td>9728</td>
<td>KIAA0256 gene product</td>
<td>2.42</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA0265</td>
<td>23008</td>
<td>KIAA0265 protein</td>
<td>2.95</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0268A</td>
<td>77 /// 375056 /// 4C219-reactive peptide /// AAP6077 /// similar to C219-reactive peptide</td>
<td>2.32</td>
<td>chr1_random</td>
<td></td>
</tr>
<tr>
<td>KIAA0310</td>
<td>9919</td>
<td>KIAA0310 protein</td>
<td>2.07</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA0323</td>
<td>23351</td>
<td>KIAA0323 protein</td>
<td>2.69</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA0372</td>
<td>9652</td>
<td>KIAA0372 protein</td>
<td>4.17</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA0427</td>
<td>9811</td>
<td>KIAA0427 protein</td>
<td>4.02</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA0470</td>
<td>9859</td>
<td>KIAA0470 protein</td>
<td>2.15</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA0527</td>
<td>26032</td>
<td>KIAA0527 protein</td>
<td>2.69</td>
<td>chr3</td>
</tr>
<tr>
<td>KIAA0543</td>
<td>23145</td>
<td>likely ortholog of mouse SCD-29 protein</td>
<td>2.03</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0652</td>
<td>9776</td>
<td>KIAA0652 gene product</td>
<td>3.19</td>
<td>chr11</td>
</tr>
<tr>
<td>KIAA0680</td>
<td>23223</td>
<td>KIAA0680 protein</td>
<td>4.25</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA0692</td>
<td>25141</td>
<td>KIAA0692 protein</td>
<td>2.19</td>
<td>chr12</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>KIAA0738</td>
<td>9747</td>
<td>KIAA0738 gene product</td>
<td>3.83</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0776</td>
<td>23376</td>
<td>KIAA0776</td>
<td>2.87</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA0802</td>
<td>23255</td>
<td>KIAA0802</td>
<td>2.25</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA0830</td>
<td>23052</td>
<td>KIAA0830 protein</td>
<td>20.43</td>
<td>chr11</td>
</tr>
<tr>
<td>KIAA0882</td>
<td>23158</td>
<td>KIAA0882 protein</td>
<td>28.31</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA0994</td>
<td>22982</td>
<td>KIAA0994</td>
<td>4.12</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA0992</td>
<td>23022</td>
<td>palladin</td>
<td>17.41</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1040</td>
<td>23041</td>
<td>KIAA1040 protein</td>
<td>2.63</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA1043</td>
<td>23331</td>
<td>KIAA1043 protein</td>
<td>2.12</td>
<td>chr22</td>
</tr>
<tr>
<td>KIAA1055</td>
<td>23102</td>
<td>KIAA1055 protein</td>
<td>2.42</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA1128</td>
<td>54462</td>
<td>KIAA1128</td>
<td>3.63</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1181</td>
<td>57222</td>
<td>endoplasmic reticulum-golgi intermediate compartment 32 kDa protein</td>
<td>6.03</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA1199</td>
<td>57214</td>
<td>KIAA1199</td>
<td>90.25</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA1404</td>
<td>57169</td>
<td>KIAA1404 protein</td>
<td>2.00</td>
<td>chr20</td>
</tr>
<tr>
<td>KIAA1432</td>
<td>57589</td>
<td>KIAA1432</td>
<td>4.51</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA1434</td>
<td>56261</td>
<td>hypothetical protein KIAA1434</td>
<td>2.23</td>
<td>chr20</td>
</tr>
<tr>
<td>KIAA1458</td>
<td>57606</td>
<td>KIAA1458 protein</td>
<td>2.67</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1462</td>
<td>57608</td>
<td>KIAA1462</td>
<td>4.78</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1539</td>
<td>80256</td>
<td>KIAA1539</td>
<td>4.18</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA1546</td>
<td>57667</td>
<td>KIAA1546 protein</td>
<td>4.97</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1600</td>
<td>57700</td>
<td>KIAA1600</td>
<td>4.24</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1632</td>
<td>57724</td>
<td>KIAA1632</td>
<td>3.06</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA1704</td>
<td>55425</td>
<td>KIAA1704</td>
<td>2.31</td>
<td>chr13</td>
</tr>
<tr>
<td>KIAA1715</td>
<td>80856</td>
<td>KIAA1715</td>
<td>5.84</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1729</td>
<td>85460</td>
<td>KIAA1729 protein</td>
<td>4.80</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1754</td>
<td>85450</td>
<td>KIAA1754</td>
<td>2.75</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1838</td>
<td>84498</td>
<td>KIAA1838</td>
<td>2.23</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1856</td>
<td>84629</td>
<td>KIAA1856 protein</td>
<td>2.95</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA1912</td>
<td>114800</td>
<td>KIAA1912 protein</td>
<td>6.59</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1913</td>
<td>114801</td>
<td>KIAA1913</td>
<td>2.60</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1949</td>
<td>170954</td>
<td>KIAA1949</td>
<td>7.66</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1961</td>
<td>96459</td>
<td>KIAA1961 gene</td>
<td>2.24</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA1971</td>
<td>123720</td>
<td>similar to junction-mediating and regulatory protein p300 JMY</td>
<td>2.72</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA1972</td>
<td>89970</td>
<td>KIAA1972 protein</td>
<td>2.26</td>
<td>chr16</td>
</tr>
<tr>
<td>KIF5B</td>
<td>3799</td>
<td>kinesin family member SB</td>
<td>3.38</td>
<td>chr10</td>
</tr>
<tr>
<td>KIFAP3</td>
<td>22920</td>
<td>kinesin-associated protein 3</td>
<td>4.57</td>
<td>chr1</td>
</tr>
<tr>
<td>KIRREL</td>
<td>55243</td>
<td>kir of IRRE like (Drosophila)</td>
<td>4.40</td>
<td>chr1</td>
</tr>
<tr>
<td>KITLG</td>
<td>4254</td>
<td>KIT ligand</td>
<td>12.81</td>
<td>chr12</td>
</tr>
<tr>
<td>KLF10</td>
<td>7071</td>
<td>Kruppel-like factor 10</td>
<td>2.88</td>
<td>chr8</td>
</tr>
<tr>
<td>KLF12</td>
<td>11278</td>
<td>Kruppel-like factor 12</td>
<td>3.71</td>
<td>chr13</td>
</tr>
<tr>
<td>KLF2</td>
<td>10365</td>
<td>Kruppel-like factor 2 (lung)</td>
<td>2.68</td>
<td>chr19</td>
</tr>
<tr>
<td>KLF3</td>
<td>51274</td>
<td>Kruppel-like factor 3 (basic)</td>
<td>2.07</td>
<td>chr4</td>
</tr>
<tr>
<td>KLF6</td>
<td>1316</td>
<td>Kruppel-like factor 6</td>
<td>6.00</td>
<td>chr10</td>
</tr>
<tr>
<td>KLF7</td>
<td>8609</td>
<td>Kruppel-like factor 7 (ubiquitous)</td>
<td>3.30</td>
<td>chr2</td>
</tr>
<tr>
<td>KLF9</td>
<td>667</td>
<td>Kruppel-like factor 9</td>
<td>11.19</td>
<td>chr9</td>
</tr>
<tr>
<td>KUHD5</td>
<td>57542</td>
<td>kelch domain containing 5</td>
<td>3.14</td>
<td>chr12</td>
</tr>
<tr>
<td>KLH120</td>
<td>27252</td>
<td>kelch-like 20 (Drosophila)</td>
<td>2.41</td>
<td>chr1</td>
</tr>
<tr>
<td>KLH5</td>
<td>51088</td>
<td>Kelch-like 5 (Drosophila)</td>
<td>6.51</td>
<td>chr4</td>
</tr>
<tr>
<td>KLH8</td>
<td>57563</td>
<td>kelch-like 8 (Drosophila)</td>
<td>2.32</td>
<td>chr4</td>
</tr>
<tr>
<td>KLH9</td>
<td>55958</td>
<td>kelch-like 9 (Drosophila)</td>
<td>3.53</td>
<td>chr9</td>
</tr>
<tr>
<td>KPN1A</td>
<td>3836</td>
<td>karyopherin alpha 1 (importin alpha 5)</td>
<td>3.03</td>
<td>chr3</td>
</tr>
<tr>
<td>KPNB1</td>
<td>3837</td>
<td>Karyopherin (importin) beta 1</td>
<td>2.47</td>
<td>chr17</td>
</tr>
<tr>
<td>KRT10</td>
<td>3858</td>
<td>keratin 10 (epidermolysis hyperkeratosis; keratosis palmaris et plantaris)</td>
<td>2.53</td>
<td>chr17</td>
</tr>
<tr>
<td>KRTAP2-1</td>
<td>81872</td>
<td>keratin associated protein 2-1</td>
<td>10.76</td>
<td>chr17_random</td>
</tr>
<tr>
<td>L3MBTL3</td>
<td>84456</td>
<td>l(3)mbt-like 3 (Drosophila)</td>
<td>2.26</td>
<td>chr6</td>
</tr>
<tr>
<td>LACTB</td>
<td>114294</td>
<td>lactamase, beta</td>
<td>2.37</td>
<td>chr15</td>
</tr>
<tr>
<td>LAM4</td>
<td>3910</td>
<td>laminin, alpha 4</td>
<td>8.96</td>
<td>chr6</td>
</tr>
<tr>
<td>LAMB1</td>
<td>3912</td>
<td>laminin, beta 1</td>
<td>3.05</td>
<td>chr7</td>
</tr>
<tr>
<td>LAMB2</td>
<td>3913</td>
<td>laminin, beta 2 (laminin S)</td>
<td>6.62</td>
<td>chr3</td>
</tr>
<tr>
<td>LAMC1</td>
<td>3915</td>
<td>laminin, gamma 1 (formerly LAMB2)</td>
<td>4.84</td>
<td>chr1</td>
</tr>
<tr>
<td>LAMP2</td>
<td>3920</td>
<td>lysosomal-associated membrane protein 2</td>
<td>6.02</td>
<td>chrX</td>
</tr>
<tr>
<td>LARP6</td>
<td>55323</td>
<td>La ribonucleoprotein domain family, member 6</td>
<td>7.55</td>
<td>chr15</td>
</tr>
<tr>
<td>LASP1</td>
<td>3927</td>
<td>LIM and SH3 protein 1</td>
<td>3.61</td>
<td>chr17</td>
</tr>
<tr>
<td>LATS2</td>
<td>26524</td>
<td>LATS, large tumor suppressor, homolog 2 (Drosophila)</td>
<td>2.71</td>
<td>chr13</td>
</tr>
<tr>
<td>LDL5</td>
<td>11155</td>
<td>LIM domain binding 3</td>
<td>14.73</td>
<td>chr10</td>
</tr>
<tr>
<td>LENG4</td>
<td>79143</td>
<td>leukocyte receptor cluster (LRC) member 4</td>
<td>2.11</td>
<td>chr19</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEPR</td>
<td>3953</td>
<td>Leptin receptor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEPR</td>
<td>3953 // 54741</td>
<td>Leptin receptor overlapping transcript</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEPR1</td>
<td>64175</td>
<td>Leucine prolino-enriched proteoglycan (lepream) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEPR2</td>
<td>10536</td>
<td>Lepream-like 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEPR4</td>
<td>54741</td>
<td>Leptin receptor overlapping transcript</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGALS1</td>
<td>3956</td>
<td>Lectin, galactoside-binding, soluble, 1 (galectin 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGALS3</td>
<td>3958 // 81625</td>
<td>Lectin, galactoside-binding, soluble, 3 (galectin 3) /// galectin-3 internal gene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGALS3BP</td>
<td>3959</td>
<td>Lectin, galactoside-binding, soluble, 3, binding protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGALS8</td>
<td>3964</td>
<td>Lectin, galactoside-binding, soluble, 8 (galectin 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGMN</td>
<td>5641</td>
<td>Legumin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGCHR</td>
<td>3973</td>
<td>Luteinizing hormone/choriogonadotropin receptor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHFPR</td>
<td>10186</td>
<td>Itpoma HMGIc fusion partner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHXB</td>
<td>431707</td>
<td>Lim homobox 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIF</td>
<td>3976</td>
<td>Leukemia inhibitory factor (cholinerger differentiation factor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIG4</td>
<td>3961</td>
<td>Lgase IV, DNA, ATP-dependent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIMS1</td>
<td>3987</td>
<td>Lim and senescent cell antigen-like domains 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIMS3</td>
<td>96626</td>
<td>Lim and senescent cell antigen-like domains 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIX1</td>
<td>128377</td>
<td>Lix1 homolog (mouse) like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMAN1</td>
<td>3996</td>
<td>Lectin, mannose-binding, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMBRD2</td>
<td>92255</td>
<td>Lmb1 domain containing 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMC1D1</td>
<td>29995</td>
<td>Lim and cysteine-rich domains 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMNA</td>
<td>4000</td>
<td>Lamin A/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMO7</td>
<td>4008</td>
<td>Lim domain 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMO1D1</td>
<td>25862</td>
<td>Loomdin 1 (smooth muscle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNPSEP</td>
<td>4012</td>
<td>Leucyl/cystinyl aminopeptidase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC126917</td>
<td>126917</td>
<td>Hypothetical protein LOC126917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC133308</td>
<td>133308</td>
<td>Hypothetical protein BCO09732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC134147</td>
<td>134147</td>
<td>Similar to mouse 2310016A09Rik gene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC143381</td>
<td>143381</td>
<td>Hypothetical protein LOC143381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC143903</td>
<td>143903</td>
<td>Laytin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC144363</td>
<td>144363</td>
<td>Hypothetical protein LOC144363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC144871</td>
<td>144871</td>
<td>Hypothetical protein LOC144871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC148898</td>
<td>148898</td>
<td>Hypothetical protein BCO07899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC149478</td>
<td>149478</td>
<td>Hypothetical protein LOC149478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC151914</td>
<td>151914</td>
<td>Similar to hepatocellular carcinoma-associated antigen HCA557b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC153222</td>
<td>153222</td>
<td>Adult retina protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC162073</td>
<td>162073</td>
<td>Hypothetical protein LOC162073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC168850</td>
<td>168850</td>
<td>Hypothetical protein LOC168850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC196463</td>
<td>196463</td>
<td>Hypothetical protein LOC196463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC200030</td>
<td>200030</td>
<td>Hypothetical protein LOC200030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC200030 // 400781</td>
<td>Hypothetical protein LOC200030 /// Hypothetical LOC400781</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC201895</td>
<td>201895</td>
<td>Hypothetical protein LOC201895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC203411</td>
<td>203411</td>
<td>Hypothetical protein LOC203411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC203427</td>
<td>203427</td>
<td>Similar to solute carrier family 25 , member 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC222070</td>
<td>222070</td>
<td>Hypothetical protein LOC222070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC253981</td>
<td>253981</td>
<td>Hypothetical protein LOC253981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC255763</td>
<td>255763</td>
<td>Hypothetical protein LOC255763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283130</td>
<td>283130</td>
<td>Hypothetical protein LOC283130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283219</td>
<td>283219</td>
<td>Hypothetical protein LOC283219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283464</td>
<td>283464</td>
<td>Hypothetical protein LOC283464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283480</td>
<td>283480</td>
<td>Hypothetical protein LOC283480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283508</td>
<td>283508</td>
<td>Hypothetical protein LOC283508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283537</td>
<td>283537</td>
<td>Hypothetical protein LOC283537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283677</td>
<td>283677</td>
<td>Hypothetical protein LOC283677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283687</td>
<td>283687</td>
<td>Hypothetical protein LOC283687</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283824</td>
<td>283824</td>
<td>Hypothetical protein LOC283824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC284454</td>
<td>284454</td>
<td>Hypothetical protein LOC284454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC285382</td>
<td>285382</td>
<td>Hypothetical gene supported by AK091454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC285431</td>
<td>285431</td>
<td>Hypothetical protein LOC285431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC285550</td>
<td>285550</td>
<td>Hypothetical protein LOC285550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC285831</td>
<td>285831</td>
<td>Hypothetical protein LOC285831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC286144</td>
<td>286144</td>
<td>Hypothetical protein LOC286144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC286167</td>
<td>286167</td>
<td>Hypothetical protein LOC286167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC286170</td>
<td>286170</td>
<td>Hypothetical protein LOC286170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC286437</td>
<td>286437</td>
<td>Hypothetical protein LOC286437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283620</td>
<td>283620</td>
<td>Hypothetical protein LOC283620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC283926</td>
<td>283926</td>
<td>Hypothetical protein LOC283926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC333620</td>
<td>333620</td>
<td>Hypothetical protein LOC333620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>LOC39005</td>
<td>39005</td>
<td>hypothetical protein LOC39005</td>
<td>2.68</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC340061</td>
<td>340061</td>
<td>hypothetical protein LOC340061</td>
<td>9.37</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC346887</td>
<td>346887</td>
<td>similar to solute carrier family 16 (monocarboxylic acid transporters), member 1</td>
<td>2.12</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC374395</td>
<td>374395</td>
<td>similar to RIKEN cDNA 1810059G22</td>
<td>2.00</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC387758</td>
<td>387758</td>
<td>similar to RIKEN cDNA 1110018M03</td>
<td>5.96</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC387882</td>
<td>387882</td>
<td>hypothetical protein</td>
<td>12.25</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC388114</td>
<td>388114</td>
<td>hypothetical LOC388114</td>
<td>2.51</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC388620</td>
<td>388620</td>
<td>similar to implantation-associated protein</td>
<td>3.92</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC389129</td>
<td>389129</td>
<td>similar to CG9996-PA</td>
<td>10.22</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC398432</td>
<td>389432</td>
<td>SAM domain containing 1</td>
<td>3.51</td>
<td>chr6</td>
</tr>
<tr>
<td>LOC399959</td>
<td>399959</td>
<td>hypothetical gene supported by BX647608</td>
<td>74.36</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC400843</td>
<td>400843</td>
<td>hypothetical LOC400843</td>
<td>4.40</td>
<td>chr20</td>
</tr>
<tr>
<td>LOC401093</td>
<td>401093</td>
<td>hypothetical LOC401093</td>
<td>4.14</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC401115</td>
<td>401115</td>
<td>hypothetical gene supported by BC038466; BC062790</td>
<td>2.14</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC401212</td>
<td>401212</td>
<td>hypothetical gene supported by BX640700</td>
<td>2.71</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC401394</td>
<td>401394</td>
<td>hypothetical LOC4014093</td>
<td>5.06</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC402560</td>
<td>402560</td>
<td>hypothetical LOC401384</td>
<td>9.69</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC404060</td>
<td>404060</td>
<td>SH3-domain GRB2-like pseudogene 3</td>
<td>3.94</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC405356</td>
<td>405356</td>
<td>hypothetical gene supported by AK098812</td>
<td>3.65</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC408085</td>
<td>408085</td>
<td>LOC408085</td>
<td>5.28</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC408866</td>
<td>408866</td>
<td>similar to lymphocyte-specific protein 1</td>
<td>8.46</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC409298</td>
<td>409298</td>
<td>hypothetical gene supported by AK096849</td>
<td>4.77</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC409995</td>
<td>409995</td>
<td>hypothetical gene supported by BC034933; BC068085</td>
<td>3.35</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC41022</td>
<td>41022</td>
<td>similar to RUN and FYVE-domain-containing 2; Run- and FYVE-domain containing protein</td>
<td>2.29</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC412117</td>
<td>412117</td>
<td>PNAS-13</td>
<td>2.18</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC41428</td>
<td>41428</td>
<td>Hypothetical gene supported by BX641014</td>
<td>2.73</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC41461</td>
<td>41461</td>
<td>hypothetical gene supported by BC030123</td>
<td>12.72</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC41762</td>
<td>41762</td>
<td>Similar to CG7467-PA /// Similar to CG7467-PA</td>
<td>2.16</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC492311</td>
<td>492311</td>
<td>similar to bovine IgA regulatory protein</td>
<td>2.31</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC493869</td>
<td>493869</td>
<td>similar to RIKEN cDNA 2310016C16</td>
<td>3.01</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC51315</td>
<td>51315</td>
<td>hypothetical protein LOC51315</td>
<td>3.50</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC51334</td>
<td>51334</td>
<td>mesenchymal stem cell protein DSC54</td>
<td>14.29</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC554202</td>
<td>554202</td>
<td>hypothetical LOC554202</td>
<td>2.23</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC590686</td>
<td>906869</td>
<td>LOC590686 protein</td>
<td>3.01</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC91137</td>
<td>91137</td>
<td>Hypothetical protein BC017169</td>
<td>9.30</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC92689</td>
<td>92689</td>
<td>hypothetical protein BC001986</td>
<td>39.06</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC93349</td>
<td>93349</td>
<td>hypothetical protein BC004921</td>
<td>9.80</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC96610</td>
<td>96610</td>
<td>Hypothetical protein similar to KIAA0187 gene product</td>
<td>3.16</td>
<td>chr9</td>
</tr>
<tr>
<td>LONPL</td>
<td>83752</td>
<td>Peroxisomal LON protease like</td>
<td>5.70</td>
<td>chr16</td>
</tr>
<tr>
<td>LOX</td>
<td>4015</td>
<td>lysyl oxidase</td>
<td>388.97</td>
<td>chr5</td>
</tr>
<tr>
<td>LOXL1</td>
<td>4016</td>
<td>lysyl oxidase-like 1</td>
<td>24.19</td>
<td>chr15</td>
</tr>
<tr>
<td>LOXL2</td>
<td>4017</td>
<td>lysyl oxidase-like 2</td>
<td>51.18</td>
<td>chr8</td>
</tr>
<tr>
<td>LOXL4</td>
<td>8417</td>
<td>lysyl oxidase-like 4</td>
<td>2.54</td>
<td>chr10</td>
</tr>
<tr>
<td>LPGAT1</td>
<td>9926</td>
<td>Lysophosphatidylglycerol acyltransferase 1</td>
<td>3.99</td>
<td>chr1</td>
</tr>
<tr>
<td>LPIN1</td>
<td>23175</td>
<td>Spin 1</td>
<td>4.92</td>
<td>chr2</td>
</tr>
<tr>
<td>LPIN2</td>
<td>9663</td>
<td>Spin 2</td>
<td>2.21</td>
<td>chr18</td>
</tr>
<tr>
<td>LLP</td>
<td>4026</td>
<td>LIM domain containing preferred translocation partner in lipoma</td>
<td>4.68</td>
<td>chr3</td>
</tr>
<tr>
<td>LRAP</td>
<td>64167</td>
<td>Leukocyte-derived arginine aminopeptidase</td>
<td>4.38</td>
<td>chr5</td>
</tr>
<tr>
<td>LRIG3</td>
<td>121227</td>
<td>leucine-rich repeats and immunoglobulin-like domains 3</td>
<td>3.72</td>
<td>chr12</td>
</tr>
<tr>
<td>LRP1</td>
<td>4035</td>
<td>low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)</td>
<td>4.26</td>
<td>chr12</td>
</tr>
<tr>
<td>LRP10</td>
<td>26020</td>
<td>low density lipoprotein receptor-related protein 10</td>
<td>15.41</td>
<td>chr14</td>
</tr>
<tr>
<td>LRP11</td>
<td>84918</td>
<td>low density lipoprotein receptor-related protein 11</td>
<td>3.70</td>
<td>chr11</td>
</tr>
<tr>
<td>LRP12</td>
<td>29967</td>
<td>low density lipoprotein-related protein 12</td>
<td>7.16</td>
<td>chr8</td>
</tr>
<tr>
<td>LRPPA1</td>
<td>4043</td>
<td>Low density lipoprotein receptor-related protein associated 1</td>
<td>3.03</td>
<td>chr4</td>
</tr>
<tr>
<td>LRPC15</td>
<td>131578</td>
<td>leucine rich repeat containing 15</td>
<td>2.69</td>
<td>chr3</td>
</tr>
<tr>
<td>LRPC17</td>
<td>10234</td>
<td>leucine rich repeat containing 17</td>
<td>40.11</td>
<td>chr7</td>
</tr>
<tr>
<td>LRPC35</td>
<td>219899</td>
<td>Leucine rich repeat containing 35</td>
<td>2.02</td>
<td>chr11</td>
</tr>
<tr>
<td>LRPC41</td>
<td>10489</td>
<td>leucine rich repeat containing 41</td>
<td>2.31</td>
<td>chr6</td>
</tr>
<tr>
<td>LRPC8C</td>
<td>84230</td>
<td>leucine rich repeat containing 8 family, member C</td>
<td>3.01</td>
<td>chr1</td>
</tr>
<tr>
<td>LRRFIP1</td>
<td>9208</td>
<td>leucine rich repeat (in FLII) interacting protein 1</td>
<td>2.48</td>
<td>chr2</td>
</tr>
<tr>
<td>LTBDH4</td>
<td>22949</td>
<td>leukotriene B4 12-hydroxydehydrogenase</td>
<td>2.20</td>
<td>chr9</td>
</tr>
<tr>
<td>LTBP1</td>
<td>4052</td>
<td>latent transforming growth factor beta binding protein 1</td>
<td>8.13</td>
<td>chr2</td>
</tr>
<tr>
<td>LTBP2</td>
<td>4053</td>
<td>latent transforming growth factor beta binding protein 2</td>
<td>13.08</td>
<td>chr4</td>
</tr>
<tr>
<td>LTBP3</td>
<td>4054</td>
<td>latent transforming growth factor beta binding protein 3</td>
<td>9.77</td>
<td>chr11</td>
</tr>
<tr>
<td>LXN</td>
<td>56925</td>
<td>latexin</td>
<td>4.64</td>
<td>chr3</td>
</tr>
<tr>
<td>LY96</td>
<td>23943</td>
<td>lymphocyte antigen 96</td>
<td>3.86</td>
<td>chr8</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LYPD1</td>
<td>116372</td>
<td>LYZ/PLAUR domain containing 1</td>
<td>7.27</td>
<td>chr2</td>
</tr>
<tr>
<td>LYPF3</td>
<td>23659</td>
<td>lysophospholipase 3 (lysosomal phospholipase A2)</td>
<td>2.15</td>
<td>chr16</td>
</tr>
<tr>
<td>LYSM3D</td>
<td>116068</td>
<td>LysM, putative peptidoglycan-binding, domain containing 3</td>
<td>2.57</td>
<td>chr5</td>
</tr>
<tr>
<td>LYST</td>
<td>1130</td>
<td>lysosomal trafficking regulator</td>
<td>6.29</td>
<td>chr1</td>
</tr>
<tr>
<td>LZFT1</td>
<td>54855</td>
<td>leucine zipper transcription factor-like 1</td>
<td>2.62</td>
<td>chr3</td>
</tr>
<tr>
<td>LZTR2</td>
<td>89866</td>
<td>leucine zipper transcription regulator 2</td>
<td>3.05</td>
<td>chr1</td>
</tr>
<tr>
<td>LZTS1</td>
<td>11178</td>
<td>leucine zipper, putative tumor suppressor 1</td>
<td>3.77</td>
<td>chr8</td>
</tr>
<tr>
<td>MADD5P1</td>
<td>10226</td>
<td>mannose-6-phosphate receptor binding protein 1</td>
<td>3.61</td>
<td>chr19</td>
</tr>
<tr>
<td>MAB21L2</td>
<td>10585</td>
<td>mab-21-like 2 (C. elegans)</td>
<td>45.95</td>
<td>chr4</td>
</tr>
<tr>
<td>MAFF</td>
<td>23764</td>
<td>v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)</td>
<td>13.02</td>
<td>chr22</td>
</tr>
<tr>
<td>MAGED1</td>
<td>9500</td>
<td>melanoma antigen family D, 1</td>
<td>2.62</td>
<td>chrX</td>
</tr>
<tr>
<td>MAGED2</td>
<td>10916</td>
<td>melanoma antigen family D, 2</td>
<td>2.62</td>
<td>chrX</td>
</tr>
<tr>
<td>MAGEH1</td>
<td>28986</td>
<td>melanoma antigen family H, 1</td>
<td>2.30</td>
<td>chrX</td>
</tr>
<tr>
<td>MALAT1</td>
<td>378938</td>
<td>metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA)</td>
<td>3.37</td>
<td>chr11</td>
</tr>
<tr>
<td>MAML2</td>
<td>84441</td>
<td>Mastermind-like 2 (Drosophila)</td>
<td>6.19</td>
<td>chr11</td>
</tr>
<tr>
<td>MAN1A1</td>
<td>4121</td>
<td>manniosidase, alpha, class 1A, member 1</td>
<td>4.54</td>
<td>chr6</td>
</tr>
<tr>
<td>MAN1A2</td>
<td>10905</td>
<td>manniosidase, alpha, class 1A, member 2</td>
<td>2.77</td>
<td>chr11</td>
</tr>
<tr>
<td>MAN1B1</td>
<td>11253</td>
<td>manniosidase, alpha, class 1B, member 1</td>
<td>2.03</td>
<td>chr9</td>
</tr>
<tr>
<td>MAN2B2</td>
<td>23324</td>
<td>manniosidase, alpha, class 2B, member 2</td>
<td>12.03</td>
<td>chr4</td>
</tr>
<tr>
<td>MANEA</td>
<td>79694</td>
<td>manniosidase, endo-alpha</td>
<td>2.28</td>
<td>chr6</td>
</tr>
<tr>
<td>MAP1A</td>
<td>4130</td>
<td>microtubule-associated protein 1A</td>
<td>16.47</td>
<td>chr15</td>
</tr>
<tr>
<td>MAP1B</td>
<td>4131</td>
<td>microtubule-associated protein 1B</td>
<td>6.41</td>
<td>chr5</td>
</tr>
<tr>
<td>MAP1L3CB</td>
<td>81631</td>
<td>microtubule-associated protein 1 light chain 3 beta</td>
<td>4.53</td>
<td>chr12</td>
</tr>
<tr>
<td>MAP3K5</td>
<td>4217</td>
<td>mitogen-activated protein kinase kinase kinase 5</td>
<td>2.25</td>
<td>chr6</td>
</tr>
<tr>
<td>MAP4</td>
<td>4134</td>
<td>microtubule-associated protein 4</td>
<td>5.40</td>
<td>chr3</td>
</tr>
<tr>
<td>MAP4K5</td>
<td>11183</td>
<td>mitogen-activated protein kinase kinase kinase 5</td>
<td>3.18</td>
<td>chr14</td>
</tr>
<tr>
<td>MAPK1</td>
<td>5594</td>
<td>mitogen-activated protein kinase 1</td>
<td>2.26</td>
<td>chr22</td>
</tr>
<tr>
<td>MAPKAP1</td>
<td>79109</td>
<td>mitogen-activated protein kinase associated protein 1</td>
<td>2.72</td>
<td>chr9</td>
</tr>
<tr>
<td>MAPKBP1</td>
<td>23005</td>
<td>mitogen-activated protein kinase binding protein 1</td>
<td>2.06</td>
<td>chr15</td>
</tr>
<tr>
<td>MARC4</td>
<td>57574</td>
<td>membrane-associated ring finger C3HC4 4</td>
<td>2.94</td>
<td>chr2</td>
</tr>
<tr>
<td>MARCKS</td>
<td>4082</td>
<td>Myristoylated alanine-rich protein kinase C substrate</td>
<td>3.23</td>
<td>chr6</td>
</tr>
<tr>
<td>MARVELD1</td>
<td>83742</td>
<td>MARVEL domain containing 1</td>
<td>3.21</td>
<td>chr10</td>
</tr>
<tr>
<td>MAST4</td>
<td>23227</td>
<td>microtubule associated serine/threonine kinase family member 4</td>
<td>3.48</td>
<td>chr5</td>
</tr>
<tr>
<td>MAT2A</td>
<td>4144</td>
<td>Methionine adenosyltransferase II, alpha</td>
<td>2.05</td>
<td>chr2</td>
</tr>
<tr>
<td>MAWB5P1</td>
<td>60481</td>
<td>MAWD binding protein</td>
<td>2.62</td>
<td>chr10</td>
</tr>
<tr>
<td>MAX</td>
<td>4149</td>
<td>MYC associated factor X</td>
<td>2.35</td>
<td>chr14</td>
</tr>
<tr>
<td>MB2</td>
<td>8932</td>
<td>methyl-CpG binding domain protein 2</td>
<td>30.82</td>
<td>chr18</td>
</tr>
<tr>
<td>MB5</td>
<td>55777</td>
<td>methyl-CpG binding domain protein 5</td>
<td>3.24</td>
<td>chr2</td>
</tr>
<tr>
<td>MBNL1</td>
<td>4154</td>
<td>muscelleblind-like (Drosophila)</td>
<td>22.48</td>
<td>chr3</td>
</tr>
<tr>
<td>MBNL2</td>
<td>10150</td>
<td>Muscelleblind-like 2 (Drosophila)</td>
<td>32.00</td>
<td>chr13</td>
</tr>
<tr>
<td>MBTPS1</td>
<td>8720</td>
<td>membrane-bound transcription factor peptidase, site 1</td>
<td>2.51</td>
<td>chr16</td>
</tr>
<tr>
<td>MCAM</td>
<td>4162</td>
<td>melanoma cell adhesion molecule</td>
<td>5.47</td>
<td>chr11</td>
</tr>
<tr>
<td>MCFD2</td>
<td>90411</td>
<td>multiple coagulation factor deficiency 2</td>
<td>2.98</td>
<td>chr2</td>
</tr>
<tr>
<td>MDFC</td>
<td>29969</td>
<td>MyoD family inhibitor domain containing / MyoD family inhibitor domain contain 1</td>
<td>5.53</td>
<td>chr7</td>
</tr>
<tr>
<td>MDM2</td>
<td>4193</td>
<td>Mdm2, transformed 3T3 cell double minute 2; p53 binding protein (mouse)</td>
<td>2.82</td>
<td>chr12</td>
</tr>
<tr>
<td>ME1</td>
<td>4199</td>
<td>Malc enzyme 1, NADP(+)-dependent, cytosolic</td>
<td>12.94</td>
<td>chr6</td>
</tr>
<tr>
<td>MED28</td>
<td>80306</td>
<td>mediator of RNA polymerase II transcription, subunit 28 homolog (yeast)</td>
<td>2.03</td>
<td>chr1</td>
</tr>
<tr>
<td>MED8</td>
<td>112950</td>
<td>mediator of RNA polymerase II transcription, subunit 8 homolog (yeast)</td>
<td>3.65</td>
<td>chr1</td>
</tr>
<tr>
<td>MEF2A</td>
<td>4205</td>
<td>MADS box transcription enhancer factor 2, polypeptide A (myocyte enhancer factor)</td>
<td>2.45</td>
<td>chr15</td>
</tr>
<tr>
<td>MEF2C</td>
<td>4208</td>
<td>MADS box transcription enhancer factor 2, polypeptide C (myocyte enhancer factor)</td>
<td>5.07</td>
<td>chr5</td>
</tr>
<tr>
<td>MEF2D</td>
<td>4209</td>
<td>MADS box transcription enhancer factor 2, polypeptide D (myocyte enhancer factor)</td>
<td>2.11</td>
<td>chr1</td>
</tr>
<tr>
<td>MEIS2</td>
<td>4212</td>
<td>Meis1, myeloid ecotropic viral integration site 1 homolog 2 (mouse)</td>
<td>21.69</td>
<td>chr15</td>
</tr>
<tr>
<td>MET</td>
<td>4233</td>
<td>met proto-oncogene (hepatocyte growth factor receptor)</td>
<td>6.83</td>
<td>chr7</td>
</tr>
<tr>
<td>MFAP5</td>
<td>8076</td>
<td>microfilibrar associated protein 5</td>
<td>13.66</td>
<td>chr12</td>
</tr>
<tr>
<td>MF22</td>
<td>4241</td>
<td>antigen p97 (melanoma associated) identified by monoclonal antibodies 133.2</td>
<td>3.08</td>
<td>chr3</td>
</tr>
<tr>
<td>MF22D1</td>
<td>64747</td>
<td>major facilitator superfamily domain containing 1</td>
<td>5.41</td>
<td>chr3</td>
</tr>
<tr>
<td>MGAT1</td>
<td>4245</td>
<td>mannoseyl (alpha-1,3-)glycoprotein beta-1,2-N-acetylglucosaminyltransferase</td>
<td>2.68</td>
<td>chr5</td>
</tr>
<tr>
<td>MGAT2</td>
<td>4247</td>
<td>mannoseyl (alpha-1,6-)glycoprotein beta-1,2-N-acetylglucosaminyltransferase</td>
<td>3.34</td>
<td>chr14</td>
</tr>
<tr>
<td>MGCl0580</td>
<td>84736</td>
<td>hypothetical protein MGC10580</td>
<td>4.33</td>
<td>chr11</td>
</tr>
<tr>
<td>MGCl0854</td>
<td>84260</td>
<td>trichopein</td>
<td>3.24</td>
<td>chr12</td>
</tr>
<tr>
<td>MGCl1324</td>
<td>84803</td>
<td>hypothetical protein MGC1324 // hypothetical protein MGC11324</td>
<td>2.89</td>
<td>chr4</td>
</tr>
<tr>
<td>MGCl14376</td>
<td>84981</td>
<td>hypothetical protein MGC14376</td>
<td>14.20</td>
<td>chr17</td>
</tr>
<tr>
<td>MGCl15429</td>
<td>84836</td>
<td>hypothetical protein MGC15429</td>
<td>2.72</td>
<td>chr3</td>
</tr>
<tr>
<td>MGCl15476</td>
<td>147906</td>
<td>thymus expressed gene 3-like</td>
<td>2.75</td>
<td>chr19</td>
</tr>
<tr>
<td>MGCl15523</td>
<td>124565</td>
<td>hypothetical protein MGC15523</td>
<td>3.26</td>
<td>chr17</td>
</tr>
<tr>
<td>MGCl16121</td>
<td>84848</td>
<td>hypothetical protein MGC16121</td>
<td>2.74</td>
<td>chrX</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>ENTREZ Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGFL gene</td>
<td>113791</td>
<td>HGF gene /// HGFL gene</td>
<td>3.20</td>
<td>chr22</td>
</tr>
<tr>
<td>similar to RIKEN cDNA 5730528L13 gene</td>
<td>91283</td>
<td>2.30</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC17943</td>
<td>90488</td>
<td>15.82</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>likely ortholog of mouse schlafen 5</td>
<td>162394</td>
<td>11.78</td>
<td>chr17</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC20235</td>
<td>113277</td>
<td>3.86</td>
<td>chr17</td>
<td></td>
</tr>
<tr>
<td>similar to AVL472</td>
<td>389336</td>
<td>8.56</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC24039</td>
<td>160518</td>
<td>2.79</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC26963</td>
<td>166929</td>
<td>4.90</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC2752</td>
<td>65996</td>
<td>2.23</td>
<td>chr19</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC3123</td>
<td>79089</td>
<td>2.23</td>
<td>chr17</td>
<td></td>
</tr>
<tr>
<td>Hypothetical protein MGC34646</td>
<td>157807</td>
<td>10.17</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC34830</td>
<td>120196</td>
<td>4.48</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC39900</td>
<td>286527</td>
<td>2.10</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC4677</td>
<td>112597</td>
<td>34.47</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC5370</td>
<td>84825</td>
<td>3.31</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC5508</td>
<td>79073</td>
<td>2.29</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>hypothetical protein MGC5618</td>
<td>79099</td>
<td>2.25</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>monoglyceride lipase /// monoglyceride lipase</td>
<td>11343</td>
<td>10.84</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>MCH class 1 polypeptide-related sequence A</td>
<td>4276</td>
<td>7.74</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>Microtubule associated monooxygenase, calponin and LIM domain containing 2</td>
<td>9645</td>
<td>127.34</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>MYC induced nuclear antigen</td>
<td>84864</td>
<td>2.01</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>MicroRNA 21</td>
<td>406991</td>
<td>7.85</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>microphthalmia-associated transcription factor</td>
<td>4286</td>
<td>4.29</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>makorin, ring finger protein, 2</td>
<td>23609</td>
<td>2.93</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); tropomyosin-related kinase A</td>
<td>10962</td>
<td>2.34</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); tropomyosin-related kinase A</td>
<td>4302</td>
<td>2.44</td>
<td>chr17</td>
<td></td>
</tr>
<tr>
<td>melanophilin</td>
<td>79083</td>
<td>8.12</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>ligand-dependent corepressor</td>
<td>84458</td>
<td>2.52</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>MLK interacting protein</td>
<td>21027</td>
<td>2.75</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>membrane metallo-endopeptidase (neutral endopeptidase, enkephalinase, CA)</td>
<td>4311</td>
<td>7.11</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>matrix metallopeptidase 1 (interstitial collagenase)</td>
<td>4312</td>
<td>114.26</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>matrix metallopeptidase 14 (membrane-inserted)</td>
<td>4323</td>
<td>2.53</td>
<td>chr14</td>
<td></td>
</tr>
<tr>
<td>matrix metallopeptidase 16 (membrane-inserted)</td>
<td>4325</td>
<td>3.45</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>matrix metallopeptidase 19</td>
<td>4327</td>
<td>2.74</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)</td>
<td>4313</td>
<td>20.82</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>meningioma (disrupted in balanced translocation)</td>
<td>4330</td>
<td>4.01</td>
<td>chr22</td>
<td></td>
</tr>
<tr>
<td>MOB1, Mps One Binder kinase activator-like 2A (yeast)</td>
<td>126308</td>
<td>6.42</td>
<td>chr19</td>
<td></td>
</tr>
<tr>
<td>Mlyodentum cofactor synthesis 2</td>
<td>4338</td>
<td>2.85</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>MondoA</td>
<td>22877</td>
<td>2.18</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>MOR family CW-type zinc finger 4</td>
<td>79710</td>
<td>12.70</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>motile sperm domain containing 1</td>
<td>56180</td>
<td>2.48</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>motile sperm domain containing 2</td>
<td>158747</td>
<td>2.23</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>monoclonal antibody, DBH-like 1</td>
<td>26002</td>
<td>6.96</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>metallophosphoesterase 1</td>
<td>65258</td>
<td>2.48</td>
<td>chr18</td>
<td></td>
</tr>
<tr>
<td>myelin protein zero-like 1</td>
<td>9019</td>
<td>3.30</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>muscle RAS oncogene homolog</td>
<td>22908</td>
<td>5.80</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>mannose receptor, C type 2</td>
<td>9902</td>
<td>8.50</td>
<td>chr17</td>
<td></td>
</tr>
<tr>
<td>myosin regulatory light chain MRCL3</td>
<td>10627</td>
<td>2.21</td>
<td>chr18</td>
<td></td>
</tr>
<tr>
<td>myosin regulatory light chain MRCL3 /// myosin regulatory light chain MRCL2</td>
<td>10391 /// 10627</td>
<td>2.50</td>
<td>chr18</td>
<td></td>
</tr>
<tr>
<td>myosin regulatory light chain MRCL2</td>
<td>103910</td>
<td>2.26</td>
<td>chr18</td>
<td></td>
</tr>
<tr>
<td>myosin regulatory light chain MRCL2</td>
<td>103910</td>
<td>2.26</td>
<td>chr18</td>
<td></td>
</tr>
<tr>
<td>mitochrondrial ribosomal protein L2</td>
<td>51069</td>
<td>2.94</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>Mitochrondrial ribosomal protein S22</td>
<td>56945</td>
<td>3.62</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>Murine retrovirus integration site 1 homolog</td>
<td>10335</td>
<td>3.75</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>Motesin</td>
<td>4478</td>
<td>4.80</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>methionine sulfoxide reductase B3</td>
<td>253827</td>
<td>138.84</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>msh homeobox homolog 1 (Drosophila)</td>
<td>4487</td>
<td>9.21</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>msh homeobox homolog 2 (Drosophila)</td>
<td>4488</td>
<td>3.44</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>metallothionein 2A</td>
<td>4502</td>
<td>3.32</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>membrane-type 1 matrix metalloproteinase cytoplasmic tail binding protein-1</td>
<td>55256</td>
<td>2.21</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>mitochrondrial carrier homolog 2 (C. elegans)</td>
<td>23788</td>
<td>4.26</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>Metadherin</td>
<td>92140</td>
<td>4.46</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>myotubularin related protein 6</td>
<td>9107</td>
<td>4.36</td>
<td>chr13</td>
<td></td>
</tr>
<tr>
<td>major vault protein</td>
<td>9961</td>
<td>18.90</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>MAX dimerization protein 1</td>
<td>4084</td>
<td>5.94</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>MAX dimerization protein 4</td>
<td>10608</td>
<td>2.28</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>MAX Interactor 1 /// MAX Interactor 1</td>
<td>4001</td>
<td>2.00</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>MXRA5</td>
<td>25878</td>
<td>matrix-remodelling associated 5</td>
<td>15.40</td>
<td>chrX</td>
</tr>
<tr>
<td>MXRA7</td>
<td>439921</td>
<td>matrix-remodelling associated 7</td>
<td>9.58</td>
<td>chr17</td>
</tr>
<tr>
<td>MXRA8</td>
<td>54587</td>
<td>matrix-remodelling associated 8</td>
<td>9.81</td>
<td>chr1_random</td>
</tr>
<tr>
<td>MYADM</td>
<td>91663</td>
<td>myeloid-associated differentiation marker</td>
<td>3.81</td>
<td>chr19</td>
</tr>
<tr>
<td>MYBL1</td>
<td>4603</td>
<td>v-myb myeloblastosis viral oncogene homolog (avian)-like 1</td>
<td>7.15</td>
<td>chr8</td>
</tr>
<tr>
<td>MYH9</td>
<td>4627</td>
<td>myosin, heavy polypeptide 9, non-muscle</td>
<td>6.41</td>
<td>chr22</td>
</tr>
<tr>
<td>MYL9</td>
<td>10398</td>
<td>myosin, light polypeptide 9, regulatory</td>
<td>21.07</td>
<td>chr20</td>
</tr>
<tr>
<td>MYLK</td>
<td>4638</td>
<td>myosin, light polypeptide kinase</td>
<td>19.76</td>
<td>chr3</td>
</tr>
<tr>
<td>MYO1C</td>
<td>4641</td>
<td>myosin IC</td>
<td>4.16</td>
<td>chr17</td>
</tr>
<tr>
<td>MYO5A</td>
<td>4644</td>
<td>myosin VA (heavy polypeptide 12, myoixin)</td>
<td>2.29</td>
<td>chr15</td>
</tr>
<tr>
<td>MYOCDC</td>
<td>93649</td>
<td>myocardin</td>
<td>25.49</td>
<td>chr17</td>
</tr>
<tr>
<td>NAGK</td>
<td>55577</td>
<td>N-acetylglucosamine kinase // N-acetylglucosamine kinase</td>
<td>2.55</td>
<td>chr2</td>
</tr>
<tr>
<td>NALP1</td>
<td>22861</td>
<td>NACHT, leucine rich repeat and PYD (pyrin domain) containing 1</td>
<td>7.16</td>
<td>chr17</td>
</tr>
<tr>
<td>NAP5</td>
<td>344148</td>
<td>Nck-associated protein 5</td>
<td>4.32</td>
<td>chr2</td>
</tr>
<tr>
<td>NAPA</td>
<td>8775</td>
<td>N-ethylmaleimide-sensitive factor attachment protein, alpha</td>
<td>3.08</td>
<td>chr19</td>
</tr>
<tr>
<td>NAV1</td>
<td>89796</td>
<td>neuron navigator 1</td>
<td>7.97</td>
<td>chr1</td>
</tr>
<tr>
<td>NAV3</td>
<td>89795</td>
<td>neuron navigator 3</td>
<td>13.42</td>
<td>chr12</td>
</tr>
<tr>
<td>NBEA</td>
<td>26960</td>
<td>neurobeachin</td>
<td>4.14</td>
<td>chr13</td>
</tr>
<tr>
<td>NBL1</td>
<td>4681</td>
<td>neuroblastoma, suppression of tumorigenicity 1</td>
<td>3.22</td>
<td>chr1</td>
</tr>
<tr>
<td>NBPB</td>
<td>641559</td>
<td>Neuroblastoma breakpoint family, member 20</td>
<td>6.97</td>
<td>chr1</td>
</tr>
<tr>
<td>NBR1</td>
<td>4077</td>
<td>neighbor of BRCA1 gene 1</td>
<td>2.15</td>
<td>chr17</td>
</tr>
<tr>
<td>NCBP2</td>
<td>22916</td>
<td>Nuclear cap binding protein subunit 2, 20kDa</td>
<td>2.14</td>
<td>chr3</td>
</tr>
<tr>
<td>NCOA3</td>
<td>8020</td>
<td>nuclear receptor coactivator 3</td>
<td>2.43</td>
<td>chr20</td>
</tr>
<tr>
<td>NCOA7</td>
<td>135112</td>
<td>nuclear receptor coactivator 7</td>
<td>7.07</td>
<td>chr6</td>
</tr>
<tr>
<td>NCSN</td>
<td>20385</td>
<td>nicastatin</td>
<td>2.37</td>
<td>chr1</td>
</tr>
<tr>
<td>NDEL1</td>
<td>81959</td>
<td>nuleo nuclear distribution gene E homolog like 1 (A. nidulans)</td>
<td>3.19</td>
<td>chr17</td>
</tr>
<tr>
<td>NDFP1</td>
<td>80762</td>
<td>Nedd4 family interacting protein 1</td>
<td>3.72</td>
<td>chr5</td>
</tr>
<tr>
<td>NDFP2</td>
<td>54402</td>
<td>Nedd4 family interacting protein 2</td>
<td>4.80</td>
<td>chr13</td>
</tr>
<tr>
<td>NDS2</td>
<td>10241</td>
<td>nuclear domain 10 protein</td>
<td>2.54</td>
<td>chr17</td>
</tr>
<tr>
<td>NDRG1</td>
<td>10397</td>
<td>N-myc downstream regulated gene 1</td>
<td>7.39</td>
<td>chr8</td>
</tr>
<tr>
<td>NDUF51</td>
<td>4719</td>
<td>NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase)</td>
<td>2.29</td>
<td>chr2</td>
</tr>
<tr>
<td>NECAP2</td>
<td>55707</td>
<td>NECA endocytosis associated 2</td>
<td>2.18</td>
<td>chr1</td>
</tr>
<tr>
<td>NEDD4</td>
<td>4734</td>
<td>neural precursor cell expressed, developmentally down-regulated 4</td>
<td>15.69</td>
<td>chr15</td>
</tr>
<tr>
<td>NEDD9</td>
<td>4739</td>
<td>neural precursor cell expressed, developmentally down-regulated 9</td>
<td>9.65</td>
<td>chr6</td>
</tr>
<tr>
<td>NEDRG1</td>
<td>257194</td>
<td>neuronal growth regulator 1</td>
<td>7.89</td>
<td>chr1</td>
</tr>
<tr>
<td>NEX6</td>
<td>10783</td>
<td>NIMA (never in mitosis gene a)-related kinase 6</td>
<td>6.67</td>
<td>chr9</td>
</tr>
<tr>
<td>NEX7</td>
<td>140609</td>
<td>NIMA (never in mitosis gene a)-related kinase 7</td>
<td>19.56</td>
<td>chr1</td>
</tr>
<tr>
<td>NEXN</td>
<td>91624</td>
<td>nexitin (F actin binding protein)</td>
<td>56.40</td>
<td>chr1</td>
</tr>
<tr>
<td>NF1</td>
<td>4763</td>
<td>Neurofibrin 1 (neurofibrinomatosis, von Recklinghausen disease, Watson disease)</td>
<td>2.22</td>
<td>chr17</td>
</tr>
<tr>
<td>NF2</td>
<td>4771</td>
<td>neurofibrin 2 (bilateral acoustic neuroma)</td>
<td>3.06</td>
<td>chr22</td>
</tr>
<tr>
<td>NFAT5</td>
<td>10275</td>
<td>nuclear factor of activated T-cells 5, toxicity-responsive</td>
<td>8.73</td>
<td>chr16</td>
</tr>
<tr>
<td>NFATC4</td>
<td>4776</td>
<td>nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4</td>
<td>2.27</td>
<td>chr14</td>
</tr>
<tr>
<td>NFEL2</td>
<td>4782</td>
<td>nuclear factor (erythroid-derived 2)-like 2</td>
<td>3.06</td>
<td>chr2</td>
</tr>
<tr>
<td>NFIC</td>
<td>4782</td>
<td>nuclear factor I/C (CCAAT-binding transcription factor)</td>
<td>4.04</td>
<td>chr19</td>
</tr>
<tr>
<td>NFKB1</td>
<td>4790</td>
<td>nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)</td>
<td>4.13</td>
<td>chr4</td>
</tr>
<tr>
<td>NFKB2</td>
<td>64353</td>
<td>nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta</td>
<td>5.86</td>
<td>chr3</td>
</tr>
<tr>
<td>NGFB</td>
<td>4803</td>
<td>nerve growth factor, beta polypeptide</td>
<td>2.34</td>
<td>chr1</td>
</tr>
<tr>
<td>ND1</td>
<td>4811</td>
<td>nidogen 1</td>
<td>6.56</td>
<td>chr1</td>
</tr>
<tr>
<td>ND2</td>
<td>22795</td>
<td>nidogen 2 (osteoidogen)</td>
<td>16.47</td>
<td>chr14</td>
</tr>
<tr>
<td>NIN</td>
<td>51199</td>
<td>ninein (GSK3B interacting protein)</td>
<td>5.22</td>
<td>chr14</td>
</tr>
<tr>
<td>NIPSNAP3A</td>
<td>25934</td>
<td>nipsnap homolog 3A (C. elegans) // nipsnap homolog 3A (C. elegans)</td>
<td>5.15</td>
<td>chr9</td>
</tr>
<tr>
<td>NKRAS1</td>
<td>28512</td>
<td>NFKB inhibitor interacting Ras-like 1</td>
<td>2.40</td>
<td>chr3</td>
</tr>
<tr>
<td>NKRAS2</td>
<td>28511</td>
<td>NFKB inhibitor interacting Ras-like 2</td>
<td>2.35</td>
<td>chr17</td>
</tr>
<tr>
<td>NKO3-1</td>
<td>4824</td>
<td>NK3 transcription factor related, locus 1 (Drosophila)</td>
<td>2.35</td>
<td>chr8</td>
</tr>
<tr>
<td>NMT2</td>
<td>8977</td>
<td>N-myristoyltransferase 2</td>
<td>5.09</td>
<td>chr10</td>
</tr>
<tr>
<td>NMTT</td>
<td>4837</td>
<td>nicotinamide N-methyltransferase</td>
<td>28.83</td>
<td>chr11</td>
</tr>
<tr>
<td>NNP4</td>
<td>23530</td>
<td>nicotinamide nucleotide transhydrogenase</td>
<td>3.92</td>
<td>chr5</td>
</tr>
<tr>
<td>NOD27</td>
<td>84166</td>
<td>nucleotide-binding oligomerization domains 27</td>
<td>2.94</td>
<td>chr16</td>
</tr>
<tr>
<td>NOL3</td>
<td>8996</td>
<td>nucleolar protein 3 (apoptosis repressor with CARD domain)</td>
<td>2.25</td>
<td>chr16</td>
</tr>
<tr>
<td>NOTCH2</td>
<td>4853</td>
<td>Notch homolog 2 (Drosophila)</td>
<td>3.29</td>
<td>chr1</td>
</tr>
<tr>
<td>NOTCH2NL</td>
<td>388677</td>
<td>Notch homolog 2 (Drosophila) N-terminal like</td>
<td>4.37</td>
<td>chr1</td>
</tr>
<tr>
<td>NOX4</td>
<td>50507</td>
<td>NADPH oxidase 4</td>
<td>10.24</td>
<td>chr11</td>
</tr>
<tr>
<td>NPIA3</td>
<td>57185</td>
<td>NIPA-like domain containing 3</td>
<td>9.52</td>
<td>chr1</td>
</tr>
<tr>
<td>NPS2</td>
<td>4862</td>
<td>neuronal PAS domain protein 2</td>
<td>3.09</td>
<td>chr2</td>
</tr>
<tr>
<td>NPH3</td>
<td>27031</td>
<td>nephropathesis 3 (adolescent)</td>
<td>4.45</td>
<td>chr3</td>
</tr>
<tr>
<td>NPR3</td>
<td>4883</td>
<td>natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)</td>
<td>4.56</td>
<td>chr5</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; \(a < 0.05\))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQO1</td>
<td>1728</td>
<td>NAD(P)H dehydrogenase, quinone 1</td>
<td>6.69</td>
<td>chr16</td>
</tr>
<tr>
<td>NR2F2</td>
<td>7026</td>
<td>nuclear receptor subfamily 2, group F, member 2</td>
<td>49.89</td>
<td>chr15</td>
</tr>
<tr>
<td>NR3C1</td>
<td>2908</td>
<td>nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)</td>
<td>7.55</td>
<td>chr5</td>
</tr>
<tr>
<td>NRP2</td>
<td>340371</td>
<td>nuclear receptor binding protein 2</td>
<td>3.83</td>
<td>chr8</td>
</tr>
<tr>
<td>NRP1</td>
<td>8204</td>
<td>nuclear receptor interacting protein 1</td>
<td>4.48</td>
<td>chr21</td>
</tr>
<tr>
<td>NRP3</td>
<td>56675</td>
<td>nuclear receptor interacting protein 3</td>
<td>3.46</td>
<td>chr11</td>
</tr>
<tr>
<td>NRP1</td>
<td>8829</td>
<td>neurophin 1</td>
<td>37.96</td>
<td>chr10</td>
</tr>
<tr>
<td>NRP2</td>
<td>8828</td>
<td>Neurophin 2</td>
<td>3.17</td>
<td>chr2</td>
</tr>
<tr>
<td>NRXN3</td>
<td>9369</td>
<td>neurophin 3</td>
<td>3.03</td>
<td>chr14</td>
</tr>
<tr>
<td>NSATP2</td>
<td>6593</td>
<td>HCV NS3-transactivated protein 2</td>
<td>2.89</td>
<td>chr5</td>
</tr>
<tr>
<td>NSATP13TP2</td>
<td>220323</td>
<td>NSATP13TP2 protein</td>
<td>5.13</td>
<td>chr11</td>
</tr>
<tr>
<td>NSF</td>
<td>4905</td>
<td>N-ethylmaleimide-sensitive factor</td>
<td>2.57</td>
<td>chr17</td>
</tr>
<tr>
<td>NTSE</td>
<td>4907</td>
<td>5'-nucleotidase, ecto (CD73)</td>
<td>83.19</td>
<td>chr6</td>
</tr>
<tr>
<td>NTF3</td>
<td>4908</td>
<td>neurotrophin 3</td>
<td>2.15</td>
<td>chr12</td>
</tr>
<tr>
<td>NTN4</td>
<td>59277</td>
<td>netrin 4</td>
<td>68.83</td>
<td>chr12</td>
</tr>
<tr>
<td>NUAK1</td>
<td>9691</td>
<td>NUAK family, SNF1-like kinase, 1</td>
<td>4.24</td>
<td>chr12</td>
</tr>
<tr>
<td>NUCB1</td>
<td>4924</td>
<td>nucleobindin 1</td>
<td>2.67</td>
<td>chr19</td>
</tr>
<tr>
<td>NUCB2</td>
<td>4925</td>
<td>nucleobindin 2</td>
<td>4.76</td>
<td>chr11</td>
</tr>
<tr>
<td>NUDT4</td>
<td>11163</td>
<td>Nudix (nucleoside diphosphate linked moiety X)-type motif 4 pseudogene 2</td>
<td>4.85</td>
<td>chr5</td>
</tr>
<tr>
<td>NUMB</td>
<td>8650</td>
<td>numb homolog (Drosophila)</td>
<td>2.52</td>
<td>chr14</td>
</tr>
<tr>
<td>OACT2</td>
<td>129642</td>
<td>O-acetyltransferase (membrane bound) domain containing 2</td>
<td>2.58</td>
<td>chr2</td>
</tr>
<tr>
<td>OACR</td>
<td>4952</td>
<td>oculocerebrorenal syndrome of Lowe</td>
<td>2.34</td>
<td>chrX</td>
</tr>
<tr>
<td>ODD2</td>
<td>57451</td>
<td>odz, odd Oz/ten-m homolog 2 (Drosophila)</td>
<td>8.53</td>
<td>chr5</td>
</tr>
<tr>
<td>OGFR1</td>
<td>79627</td>
<td>opioid growth factor receptor-1</td>
<td>2.63</td>
<td>chr6</td>
</tr>
<tr>
<td>OIP106</td>
<td>22906</td>
<td>OGT(O-Glc-NAC)-transferring-interacting protein 106 KDa</td>
<td>2.47</td>
<td>chr3</td>
</tr>
<tr>
<td>OLFM2A</td>
<td>169611</td>
<td>olfactomedin-like 2A</td>
<td>3.57</td>
<td>chr9</td>
</tr>
<tr>
<td>OPN1SW</td>
<td>611</td>
<td>Opin 1 (cone pigments), short-wave-sensitive (color blindness, tritan)</td>
<td>4.37</td>
<td>chr7</td>
</tr>
<tr>
<td>OPN3</td>
<td>23596</td>
<td>opsin 3 (encephalopsin, panopsin)</td>
<td>7.42</td>
<td>chr1</td>
</tr>
<tr>
<td>OPTN</td>
<td>10133</td>
<td>optineurin</td>
<td>12.62</td>
<td>chr10</td>
</tr>
<tr>
<td>ORM1L1</td>
<td>94101</td>
<td>ORM1-like 1 (S. cerevisiae)</td>
<td>2.79</td>
<td>chr2</td>
</tr>
<tr>
<td>OS9</td>
<td>10956</td>
<td>amplified in osteosarcoma</td>
<td>4.49</td>
<td>chr12</td>
</tr>
<tr>
<td>OSAP</td>
<td>84709</td>
<td>ovary-specific acidic protein</td>
<td>11.35</td>
<td>chr4</td>
</tr>
<tr>
<td>OSPBL5</td>
<td>114879</td>
<td>osteoblast binding protein-5</td>
<td>3.43</td>
<td>chr11</td>
</tr>
<tr>
<td>OSMR</td>
<td>9180</td>
<td>Oncostatin M receptor</td>
<td>49.48</td>
<td>chr5</td>
</tr>
<tr>
<td>OSTF1</td>
<td>26578</td>
<td>osteostatin stimulating factor 1</td>
<td>2.21</td>
<td>chr9</td>
</tr>
<tr>
<td>OXR1</td>
<td>55074</td>
<td>oxidation resistance 1</td>
<td>3.94</td>
<td>chr8</td>
</tr>
<tr>
<td>OXTR</td>
<td>5021</td>
<td>oxytocin receptor</td>
<td>94.66</td>
<td>chr3</td>
</tr>
<tr>
<td>P4HA1</td>
<td>5033</td>
<td>procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide</td>
<td>5.06</td>
<td>chr10</td>
</tr>
<tr>
<td>P4HA2</td>
<td>8974</td>
<td>procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide</td>
<td>21.34</td>
<td>chr5</td>
</tr>
<tr>
<td>P4HA3</td>
<td>283208</td>
<td>procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide</td>
<td>3.18</td>
<td>chr11</td>
</tr>
<tr>
<td>P4HB</td>
<td>5034</td>
<td>procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), beta polypeptide</td>
<td>3.93</td>
<td>chr17</td>
</tr>
<tr>
<td>PAG3</td>
<td>55690</td>
<td>phosphofructin acidic cluster sorting protein 1</td>
<td>2.20</td>
<td>chr11</td>
</tr>
<tr>
<td>PAEP</td>
<td>5047</td>
<td>progestagen-associated endometrial protein (placental protein 14, pregnancy-a</td>
<td>3.72</td>
<td>chr19</td>
</tr>
<tr>
<td>PAFAH1B1</td>
<td>5048</td>
<td>platelet-activating factor acylhydrolase, isoform lb, alpha subunit 45kDa</td>
<td>2.20</td>
<td>chr17</td>
</tr>
<tr>
<td>PAG1</td>
<td>55824</td>
<td>phosphoprotein associated with glycosphingolipid microdomains 1</td>
<td>6.63</td>
<td>chr8</td>
</tr>
<tr>
<td>PAK2</td>
<td>5062</td>
<td>p21 (CDKN1A)-activated kinase 2</td>
<td>2.34</td>
<td>chr3</td>
</tr>
<tr>
<td>PALM2</td>
<td>114299</td>
<td>paralentin 2</td>
<td>2.50</td>
<td>chr9</td>
</tr>
<tr>
<td>PALM2-4AKP2</td>
<td>445815</td>
<td>PALM2-4AKP2 protein</td>
<td>2.95</td>
<td>chr9</td>
</tr>
<tr>
<td>PAM</td>
<td>5066</td>
<td>peptidylglycine alpha-amidating monoxygenase</td>
<td>4.53</td>
<td>chr5</td>
</tr>
<tr>
<td>PANX1</td>
<td>21445</td>
<td>Pannexin 1</td>
<td>2.46</td>
<td>chr11</td>
</tr>
<tr>
<td>PAPPA</td>
<td>5069</td>
<td>pregnancy-associated plasma protein A, pappalysin 1</td>
<td>172.39</td>
<td>chr9</td>
</tr>
<tr>
<td>PAPPS2</td>
<td>9060</td>
<td>3'-phosphoadenosine 5'-phosphosulfate synthase 2</td>
<td>6.50</td>
<td>chr10</td>
</tr>
<tr>
<td>PARVA</td>
<td>55742</td>
<td>parvin, alpha</td>
<td>24.65</td>
<td>chr11</td>
</tr>
<tr>
<td>PBXIP1</td>
<td>57326</td>
<td>pre-B-cell leukemia transcription factor interacting protein 1</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>PCAF</td>
<td>8850</td>
<td>p300/CBP-associated factor</td>
<td>3.33</td>
<td>chr3</td>
</tr>
<tr>
<td>PCDH9</td>
<td>5101</td>
<td>protocadherin 9</td>
<td>7.10</td>
<td>chr13</td>
</tr>
<tr>
<td>PCDH8B10</td>
<td>56126</td>
<td>protocadherin beta 10</td>
<td>4.26</td>
<td>chr5</td>
</tr>
<tr>
<td>PCDHGC3</td>
<td>56126 // 56106</td>
<td>protocadherin gamma subfamily C, 3 /// protocadherin gamma subfamily C, 3 /// protocadherin gamma subfamily C, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCGF1</td>
<td>84759</td>
<td>polycystic group ring finger 1</td>
<td>2.08</td>
<td>chr2</td>
</tr>
<tr>
<td>PCGF4</td>
<td>648</td>
<td>polycystic group ring finger 4</td>
<td>3.20</td>
<td>chr10</td>
</tr>
<tr>
<td>PCGF5</td>
<td>84333</td>
<td>polycystic group ring finger 5</td>
<td>19.14</td>
<td>chr10</td>
</tr>
<tr>
<td>PCOLCE</td>
<td>5118</td>
<td>procollagen C-endopeptidase enhancer</td>
<td>7.16</td>
<td>chr7</td>
</tr>
<tr>
<td>PCSK7</td>
<td>9159</td>
<td>Proprotein convertase subtilisin/kexin type 7</td>
<td>10.70</td>
<td>chr11</td>
</tr>
<tr>
<td>PCTN2</td>
<td>5128</td>
<td>PCTAIRE protein kinase 2</td>
<td>3.01</td>
<td>chr12</td>
</tr>
<tr>
<td>PCYX1</td>
<td>51449</td>
<td>prenylcysteine oxidase 1</td>
<td>2.05</td>
<td>chr2</td>
</tr>
<tr>
<td>PCYT1A</td>
<td>5130</td>
<td>Phosphate cytidylyltransferase 1, choline, alpha</td>
<td>3.18</td>
<td>chr3</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCD4</td>
<td>27250</td>
<td>programmed cell death 4 (neoplastic transformation inhibitor)</td>
<td>3.33</td>
<td>chr10</td>
</tr>
<tr>
<td>PDCD6</td>
<td>10016 /// 57491</td>
<td>programmed cell death 6 / aryl-hydrocarbon receptor repressor</td>
<td>6.20</td>
<td>chr5</td>
</tr>
<tr>
<td>PDE1C</td>
<td>5137</td>
<td>phosphodiesterase 1C, calmodulin-dependent 70kDa</td>
<td>3.29</td>
<td>chr7</td>
</tr>
<tr>
<td>PDE4B</td>
<td>5142</td>
<td>phosphodiesterase 4B, cAMP-specific (phosphodiesterase E4 dunce homolog)</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>PDE4DIP</td>
<td>9659</td>
<td>phosphodiesterase 4D interacting protein (myogamelin)</td>
<td>5.79</td>
<td>chr1</td>
</tr>
<tr>
<td>PDE5A</td>
<td>8654</td>
<td>phosphodiesterase 5A, cGMP-specific</td>
<td>2.11</td>
<td>chr4</td>
</tr>
<tr>
<td>PDE7B</td>
<td>27175</td>
<td>phosphodiesterase 7B</td>
<td>2.68</td>
<td>chr6</td>
</tr>
<tr>
<td>PDE8A</td>
<td>5151</td>
<td>phosphodiesterase 8A</td>
<td>5.18</td>
<td>chr15</td>
</tr>
<tr>
<td>PDGFC</td>
<td>56034</td>
<td>platelet derived growth factor C</td>
<td>24.38</td>
<td>chr4</td>
</tr>
<tr>
<td>PDGFRB</td>
<td>5159</td>
<td>platelet-derived growth factor receptor, beta polypeptide</td>
<td>10.51</td>
<td>chr5</td>
</tr>
<tr>
<td>PDGFRIL</td>
<td>5157</td>
<td>platelet-derived growth factor receptor-like</td>
<td>5.77</td>
<td>chr8</td>
</tr>
<tr>
<td>PKD2</td>
<td>5164</td>
<td>pyruvate dehydrogenase kinase, isoenzyme 2</td>
<td>2.17</td>
<td>chr17</td>
</tr>
<tr>
<td>PDLIM2</td>
<td>64236</td>
<td>PDZ and LIM domain 2 (mystique)</td>
<td>2.68</td>
<td>chr8</td>
</tr>
<tr>
<td>PDLIM3</td>
<td>27295</td>
<td>PDZ and LIM domain 3</td>
<td>6.40</td>
<td>chr4</td>
</tr>
<tr>
<td>PDLIM4</td>
<td>8572</td>
<td>PDZ and LIM domain 4</td>
<td>5.04</td>
<td>chr5</td>
</tr>
<tr>
<td>PDLIM5</td>
<td>10611</td>
<td>PDZ and LIM domain 5</td>
<td>7.12</td>
<td>chr4</td>
</tr>
<tr>
<td>PDLIM7</td>
<td>9260</td>
<td>PDZ and LIM domain 7 (enigma)</td>
<td>7.68</td>
<td>chr5</td>
</tr>
<tr>
<td>PDZRN4</td>
<td>23024</td>
<td>PDZ domain containing RING finger 3</td>
<td>3.20</td>
<td>chr3</td>
</tr>
<tr>
<td>PEA15</td>
<td>8682</td>
<td>phosphoprotein enriched in astrocytes 15</td>
<td>8.19</td>
<td>chr1</td>
</tr>
<tr>
<td>PEAR1</td>
<td>375033</td>
<td>platelet endothelial aggregation receptor 1</td>
<td>9.29</td>
<td>chr1</td>
</tr>
<tr>
<td>PEX10</td>
<td>5192</td>
<td>Peroxisome biogenesis factor 10</td>
<td>3.21</td>
<td>chr1</td>
</tr>
<tr>
<td>PEX11B</td>
<td>8799</td>
<td>peroxisomal biogenesis factor 11B</td>
<td>2.81</td>
<td>chr1</td>
</tr>
<tr>
<td>PEX13</td>
<td>5194</td>
<td>peroxisome biogenesis factor 13</td>
<td>2.27</td>
<td>chr2</td>
</tr>
<tr>
<td>PGC5</td>
<td>10404</td>
<td>plasma glutamate carboxypeptidase</td>
<td>5.60</td>
<td>chr6</td>
</tr>
<tr>
<td>PGM3</td>
<td>5238</td>
<td>phosphoglucomutase 3</td>
<td>3.07</td>
<td>chr6</td>
</tr>
<tr>
<td>PGRMC2</td>
<td>10424</td>
<td>progesterone receptor membrane component 2</td>
<td>2.08</td>
<td>chr4</td>
</tr>
<tr>
<td>PHC2</td>
<td>1912</td>
<td>polyomiticolicite-2 (Drosophila)</td>
<td>8.60</td>
<td>chr1</td>
</tr>
<tr>
<td>PHC3</td>
<td>80012</td>
<td>polyomiticolicite-3 (Drosophila)</td>
<td>2.09</td>
<td>chr3</td>
</tr>
<tr>
<td>PHF20L1</td>
<td>5105</td>
<td>PHD finger protein 20-like 1</td>
<td>4.35</td>
<td>chr8</td>
</tr>
<tr>
<td>PHLDa1</td>
<td>22822</td>
<td>Pleckstrin homology-like domain, family A, member 1</td>
<td>3.23</td>
<td>chr12</td>
</tr>
<tr>
<td>PHLDa2</td>
<td>7262</td>
<td>pleckstrin homology-like domain, family A, member 2</td>
<td>15.10</td>
<td>chr11</td>
</tr>
<tr>
<td>PHLDa3</td>
<td>23612</td>
<td>pleckstrin homology-like domain, family A, member 3</td>
<td>4.83</td>
<td>chr1</td>
</tr>
<tr>
<td>PHLDb2</td>
<td>90102</td>
<td>pleckstrin homology-like domain, family B, member 2</td>
<td>14.96</td>
<td>chr3</td>
</tr>
<tr>
<td>PHTF2</td>
<td>57157</td>
<td>putative homeodomain transcription factor 2</td>
<td>2.69</td>
<td>chr7</td>
</tr>
<tr>
<td>PICALM</td>
<td>8301</td>
<td>phosphatidylinositol binding clathrin assembly protein</td>
<td>4.52</td>
<td>chr11</td>
</tr>
<tr>
<td>PGX9</td>
<td>54965</td>
<td>phosphatidylinositol glycan, class X</td>
<td>2.28</td>
<td>chr3</td>
</tr>
<tr>
<td>PIGK3C3</td>
<td>5289</td>
<td>Phosphoinositide-3-kinase, class 3</td>
<td>3.10</td>
<td>chr18</td>
</tr>
<tr>
<td>PIK4CB</td>
<td>5298</td>
<td>phosphatidylinositol 4-kinase, catalytic, beta polypeptide</td>
<td>3.53</td>
<td>chr1</td>
</tr>
<tr>
<td>PINK1</td>
<td>65018</td>
<td>PTEN induced putative kinase 1</td>
<td>2.72</td>
<td>chr1</td>
</tr>
<tr>
<td>PIP5K1C</td>
<td>23396</td>
<td>phosphatidylinositol-4-phosphate 5-kinase, type I, gamma</td>
<td>2.21</td>
<td>chr19</td>
</tr>
<tr>
<td>PITPNA</td>
<td>5306</td>
<td>phosphatidylinositol transfer protein, alpha</td>
<td>2.42</td>
<td>chr17</td>
</tr>
<tr>
<td>PIMR1</td>
<td>10531</td>
<td>pithylon metalloepitase 1</td>
<td>2.67</td>
<td>chr10</td>
</tr>
<tr>
<td>PKA2</td>
<td>9867</td>
<td>praj 2, RING-H2 motif containing</td>
<td>3.02</td>
<td>chr5</td>
</tr>
<tr>
<td>PKG2</td>
<td>5570</td>
<td>protein kinase (cAMP-dependent, calytic) inhibitor beta</td>
<td>2.33</td>
<td>chr6</td>
</tr>
<tr>
<td>PKG1</td>
<td>11142</td>
<td>protein kinase (cAMP-dependent, calytic) inhibitor gamma</td>
<td>2.08</td>
<td>chr20</td>
</tr>
<tr>
<td>PLAS2A4A</td>
<td>5321</td>
<td>phospholipase A2, group IVA (cytosolic, calcium-dependent)</td>
<td>3.38</td>
<td>chr1</td>
</tr>
<tr>
<td>PLAGL1</td>
<td>5325</td>
<td>pleiomorphic adenoma gene-like 1</td>
<td>17.03</td>
<td>chr6</td>
</tr>
<tr>
<td>PLAT</td>
<td>5327</td>
<td>plasminogen activator, tissue</td>
<td>23.22</td>
<td>chr8</td>
</tr>
<tr>
<td>PLA2</td>
<td>5328</td>
<td>plasminogen activator, urokinase</td>
<td>16.09</td>
<td>chr10</td>
</tr>
<tr>
<td>PLAIR</td>
<td>5329</td>
<td>plasminogen activator, urokinase receptor</td>
<td>18.67</td>
<td>chr19</td>
</tr>
<tr>
<td>PLOC1</td>
<td>23236</td>
<td>phospholipase C, beta 1 (phosphoinositide-specific)</td>
<td>2.42</td>
<td>chr20</td>
</tr>
<tr>
<td>PLOD1</td>
<td>5351</td>
<td>phospholipase D1, phosphatidylycholine-specific</td>
<td>4.36</td>
<td>chr3</td>
</tr>
<tr>
<td>PLOD2</td>
<td>5352</td>
<td>phospholipase D, 2-oxoglutarate 5-dioxxygenase 2</td>
<td>10.14</td>
<td>chr3</td>
</tr>
<tr>
<td>PLOD3</td>
<td>8985</td>
<td>phospholipase D, 2-oxoglutarate 5-dioxxygenase 3</td>
<td>3.27</td>
<td>chr7</td>
</tr>
<tr>
<td>PLOP2</td>
<td>5355</td>
<td>proteolipid protein 2 (colonie epithelium-enriched)</td>
<td>20.06</td>
<td>chrX</td>
</tr>
<tr>
<td>PLOSCR3</td>
<td>254865 /// 57048</td>
<td>phospholipid scramblase 3 /// hypothetical protein MGC40107</td>
<td>3.10</td>
<td>chr17</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PLSCR4</td>
<td>57088</td>
<td>phospholipid scramblase 4</td>
<td>2.86</td>
<td>chr3</td>
</tr>
<tr>
<td>PLXNA2</td>
<td>5362</td>
<td>plexin A2</td>
<td>2.19</td>
<td>chr1</td>
</tr>
<tr>
<td>PLXNA3</td>
<td>55558</td>
<td>plexin A3</td>
<td>2.83</td>
<td>chrX</td>
</tr>
<tr>
<td>PLXNB2</td>
<td>23654</td>
<td>plexin B2</td>
<td>3.30</td>
<td>chr22</td>
</tr>
<tr>
<td>PLXND1</td>
<td>23129</td>
<td>plexin D1</td>
<td>3.22</td>
<td>chr3</td>
</tr>
<tr>
<td>PME-1</td>
<td>51400</td>
<td>protein phosphatase methylesterase-1</td>
<td>3.23</td>
<td>chr11</td>
</tr>
<tr>
<td>PMM1</td>
<td>5372</td>
<td>phosphomannomutase-1</td>
<td>3.75</td>
<td>chr22</td>
</tr>
<tr>
<td>PMP22</td>
<td>5376</td>
<td>peripheral myelin protein 22</td>
<td>8.35</td>
<td>chr17</td>
</tr>
<tr>
<td>POFTU2</td>
<td>23275</td>
<td>protein O-fucosyltransferase 2</td>
<td>3.22</td>
<td>chr21</td>
</tr>
<tr>
<td>POLH</td>
<td>5429</td>
<td>Polymerase (DNA directed), eta</td>
<td>3.42</td>
<td>chr6</td>
</tr>
<tr>
<td>POLK</td>
<td>51426</td>
<td>polymerase (DNA directed) kappa</td>
<td>3.54</td>
<td>chr5</td>
</tr>
<tr>
<td>POLR3GL</td>
<td>84265</td>
<td>polymerase (RNA) III (DNA directed) polyprotein G (32kD) like</td>
<td>6.75</td>
<td>chr1</td>
</tr>
<tr>
<td>PON2</td>
<td>5445</td>
<td>Paraoxonase 2</td>
<td>2.47</td>
<td>chr7</td>
</tr>
<tr>
<td>POPDC3</td>
<td>64208</td>
<td>popeye domain containing 3</td>
<td>4.44</td>
<td>chr6</td>
</tr>
<tr>
<td>POR1MIN</td>
<td>114908</td>
<td>pro-nercisor receptor inducing membrane injury gene</td>
<td>2.81</td>
<td>chr11</td>
</tr>
<tr>
<td>POSTN</td>
<td>10631</td>
<td>peristin, osteoblast specific factor</td>
<td>132.94</td>
<td>chr13</td>
</tr>
<tr>
<td>PPAPDC1A</td>
<td>196051</td>
<td>phosphoacid phosphatase type 2 domain containing 1A</td>
<td>14.97</td>
<td>chr10</td>
</tr>
<tr>
<td>PPARA</td>
<td>5465</td>
<td>peroxisome proliferative activated receptor, alpha</td>
<td>2.14</td>
<td>chr22</td>
</tr>
<tr>
<td>PPARD</td>
<td>5467</td>
<td>peroxisome proliferative activated receptor, delta</td>
<td>2.94</td>
<td>chr6</td>
</tr>
<tr>
<td>PPARG</td>
<td>5468</td>
<td>Peroxisome proliferative activated receptor, gamma</td>
<td>2.00</td>
<td>chr3</td>
</tr>
<tr>
<td>PPIFBP1</td>
<td>8496</td>
<td>PTPRF interacting protein, binding protein 1 (Iprin beta 1)</td>
<td>5.22</td>
<td>chr12</td>
</tr>
<tr>
<td>PPGB</td>
<td>5476</td>
<td>protective protein for beta-galactosidase (galactosidosis)</td>
<td>2.61</td>
<td>chr20</td>
</tr>
<tr>
<td>PPIC</td>
<td>5480</td>
<td>peptidylprolyl isomerase C (cyclophilin C)</td>
<td>4.59</td>
<td>chr5</td>
</tr>
<tr>
<td>PPMLF</td>
<td>9647</td>
<td>protein phosphatase 1F (PP2C domain containing)</td>
<td>2.59</td>
<td>chr22</td>
</tr>
<tr>
<td>PPM1K</td>
<td>152926</td>
<td>protein phosphatase 1K (PP2C domain containing)</td>
<td>2.38</td>
<td>chr4</td>
</tr>
<tr>
<td>PPP1R12A</td>
<td>4659</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 12A</td>
<td>2.00</td>
<td>chr12</td>
</tr>
<tr>
<td>PPP1R12B</td>
<td>4660</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 12B</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>PPP1R15A</td>
<td>23645</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 15A</td>
<td>3.29</td>
<td>chr19</td>
</tr>
<tr>
<td>PPP1R2</td>
<td>5504</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 2</td>
<td>2.07</td>
<td>chr5</td>
</tr>
<tr>
<td>PPP1R3C</td>
<td>5507</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 3C</td>
<td>6.33</td>
<td>chr10</td>
</tr>
<tr>
<td>PPP3CB</td>
<td>5532</td>
<td>protein phosphatase 3 (formerly 2B), catalytic subunit, beta isofrom (calcineurin)</td>
<td>2.37</td>
<td>chr10</td>
</tr>
<tr>
<td>PPP3CC</td>
<td>5533</td>
<td>protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isofrom (calcineurin)</td>
<td>6.33</td>
<td>chr8</td>
</tr>
<tr>
<td>PRAF2</td>
<td>11230</td>
<td>PRA1 domain family, member 2</td>
<td>5.78</td>
<td>chrX</td>
</tr>
<tr>
<td>PRB1</td>
<td>440083</td>
<td>proline-rich protein BstNI subfamily 1 /// proline-rich protein BstNI subfamily 2</td>
<td>2.66</td>
<td>chr12</td>
</tr>
<tr>
<td>PROM16</td>
<td>69376</td>
<td>PR domain containing 16</td>
<td>2.61</td>
<td>chr1</td>
</tr>
<tr>
<td>PROM2</td>
<td>7799</td>
<td>PR domain containing 2, with ZNF domain</td>
<td>2.02</td>
<td>chr1</td>
</tr>
<tr>
<td>PRG1</td>
<td>5552</td>
<td>prolineglycan 1, secretory granule</td>
<td>268.53</td>
<td>chr10</td>
</tr>
<tr>
<td>PRICKE2</td>
<td>168336</td>
<td>prickle-like 2 (Drosophila)</td>
<td>5.66</td>
<td>chr3</td>
</tr>
<tr>
<td>PRKAA1</td>
<td>5562</td>
<td>protein kinase, AMP-activated, alpha 1 catalytic subunit</td>
<td>3.78</td>
<td>chr5</td>
</tr>
<tr>
<td>PRKACB</td>
<td>5567</td>
<td>protein kinase, CAMP-dependent, catalytic, beta</td>
<td>2.71</td>
<td>chr1</td>
</tr>
<tr>
<td>PRKAG1</td>
<td>5571</td>
<td>protein kinase, CAMP-activated, gamma 1 non-catalytic subunit</td>
<td>2.55</td>
<td>chr12</td>
</tr>
<tr>
<td>PRKAG2</td>
<td>51422</td>
<td>protein kinase, CAMP-activated, gamma 2 non-catalytic subunit</td>
<td>6.38</td>
<td>chr7</td>
</tr>
<tr>
<td>PRKAL1A</td>
<td>5573</td>
<td>protein kinase, CAMP-dependent, regulatory, type I, alpha (tissue specific exting)</td>
<td>2.27</td>
<td>chr17</td>
</tr>
<tr>
<td>PRKCDBP</td>
<td>112464</td>
<td>protein kinase C, delta binding protein</td>
<td>5.23</td>
<td>chr11</td>
</tr>
<tr>
<td>PRKCE</td>
<td>5581</td>
<td>protein kinase C, epsilon</td>
<td>4.13</td>
<td>chr2</td>
</tr>
<tr>
<td>PRKCSH</td>
<td>5589</td>
<td>protein kinase C substrate 80K-H</td>
<td>2.24</td>
<td>chr19</td>
</tr>
<tr>
<td>PRNP</td>
<td>5621</td>
<td>prion protein (p27-30) (Creutzfeld-Jakob disease, Gerstmann-Straussler-Scheinker)</td>
<td>8.86</td>
<td>chr20</td>
</tr>
<tr>
<td>PRO1O73</td>
<td>29005</td>
<td>PRO1O73 protein</td>
<td>3.57</td>
<td>chr11</td>
</tr>
<tr>
<td>PRO1855</td>
<td>55379</td>
<td>hypothetical protein PRO1855</td>
<td>2.19</td>
<td>chr17</td>
</tr>
<tr>
<td>PRPRG1</td>
<td>5638</td>
<td>proline rich Gla (G-carboxyglutamatic acid) 1</td>
<td>3.54</td>
<td>chrX</td>
</tr>
<tr>
<td>PRRX1</td>
<td>5396</td>
<td>paired related homeobox 1</td>
<td>119.70</td>
<td>chr1</td>
</tr>
<tr>
<td>PRSS12</td>
<td>8492</td>
<td>Protease, serine, 12 (neurotyspin, motopsin)</td>
<td>8.46</td>
<td>chr4</td>
</tr>
<tr>
<td>PRSS23</td>
<td>11098</td>
<td>protease, serine, 23</td>
<td>114.10</td>
<td>chr11</td>
</tr>
<tr>
<td>PSCD3</td>
<td>9265</td>
<td>pleckstrin homology, Sec7 and coiled-coil domains 3</td>
<td>2.71</td>
<td>chr7</td>
</tr>
<tr>
<td>PSD3</td>
<td>23362</td>
<td>pleckstrin and Sec7 domain containing 3</td>
<td>2.42</td>
<td>chr8</td>
</tr>
<tr>
<td>PSM2B</td>
<td>5690</td>
<td>proteasome (prosome, macropain) subunit, beta type, 2</td>
<td>2.58</td>
<td>chr1</td>
</tr>
<tr>
<td>PSM7</td>
<td>5685</td>
<td>Proteasome (prosome, macropain) subunit, beta type, 7</td>
<td>3.97</td>
<td>chr9</td>
</tr>
<tr>
<td>PSTP2P2</td>
<td>9050</td>
<td>proline-serine-threonine phosphatase interacting protein 2</td>
<td>3.08</td>
<td>chr18</td>
</tr>
<tr>
<td>PTEN</td>
<td>5728</td>
<td>Phosphatase and tensin homolog (mutated in multiple advanced cancers 1)</td>
<td>2.70</td>
<td>chr10</td>
</tr>
<tr>
<td>PTGER2</td>
<td>5732</td>
<td>prostaglandin E receptor 2 (subtype EP2), 53kDa</td>
<td>2.68</td>
<td>chr14</td>
</tr>
<tr>
<td>PTGER4</td>
<td>5734</td>
<td>prostaglandin E receptor 4 (subtype EP4)</td>
<td>4.84</td>
<td>chr5</td>
</tr>
<tr>
<td>PTGFR</td>
<td>5737</td>
<td>prostaglandin F receptor (FP)</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>PTGFRN</td>
<td>5738</td>
<td>prostaglandin F2 receptor negative regulator</td>
<td>3.47</td>
<td>chr1</td>
</tr>
<tr>
<td>PTGS2</td>
<td>5743</td>
<td>prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)</td>
<td>8.69</td>
<td>chr9</td>
</tr>
<tr>
<td>PTNLH</td>
<td>5744</td>
<td>parathyroid hormone-like hormone /// parathyroid hormone-like hormone</td>
<td>8.74</td>
<td>chr12</td>
</tr>
<tr>
<td>PTX9</td>
<td>5756</td>
<td>PTK9 protein tyrosine kinase 9</td>
<td>4.53</td>
<td>chr12</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTP4A1</td>
<td>7803</td>
<td>protein tyrosine phosphatase type IVA, member 1</td>
<td>3.48</td>
<td>chr6</td>
</tr>
<tr>
<td>PTP4A2</td>
<td>8073</td>
<td>protein tyrosine phosphatase type IVA, member 2</td>
<td>2.64</td>
<td>chr1</td>
</tr>
<tr>
<td>PTPLA</td>
<td>9200</td>
<td>protein tyrosine phosphatase-like (proline instead of catalytic arginine), member A</td>
<td>2.53</td>
<td>chr10</td>
</tr>
<tr>
<td>PTPN1</td>
<td>5781</td>
<td>protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1)</td>
<td>3.00</td>
<td>chr12</td>
</tr>
<tr>
<td>PTPN21</td>
<td>11099</td>
<td>Protein tyrosine phosphatase, non-receptor type 21</td>
<td>4.13</td>
<td>chr14</td>
</tr>
<tr>
<td>PTPN9</td>
<td>5780</td>
<td>protein tyrosine phosphatase, non-receptor type 9</td>
<td>2.21</td>
<td>chr15</td>
</tr>
<tr>
<td>PTPN51</td>
<td>140885</td>
<td>protein tyrosine phosphatase, non-receptor type substrate 1</td>
<td>2.90</td>
<td>chr20</td>
</tr>
<tr>
<td>RAB3B</td>
<td>5795</td>
<td>Protein tyrosine phosphatase, receptor type J</td>
<td>2.79</td>
<td>chr11</td>
</tr>
<tr>
<td>RAB3GAP1</td>
<td>5797</td>
<td>protein tyrosine phosphatase, receptor type, M</td>
<td>14.22</td>
<td>chr7</td>
</tr>
<tr>
<td>PTRF</td>
<td>284119</td>
<td>polymerase I and transcript release factor</td>
<td>22.23</td>
<td>chr17</td>
</tr>
<tr>
<td>PTX1</td>
<td>51280</td>
<td>PTX1 protein</td>
<td>2.21</td>
<td>chr12</td>
</tr>
<tr>
<td>PTX3</td>
<td>5806</td>
<td>pentraxin-related gene, rapidly induced by IL-1 beta</td>
<td>116.99</td>
<td>chr3</td>
</tr>
<tr>
<td>PURB</td>
<td>5814</td>
<td>purine-rich element binding protein B</td>
<td>2.34</td>
<td>chr7</td>
</tr>
<tr>
<td>PVR</td>
<td>5817</td>
<td>poliovirus receptor</td>
<td>3.52</td>
<td>chr19</td>
</tr>
<tr>
<td>PXDN</td>
<td>7837</td>
<td>peroxidasin homolog (Drosophila)</td>
<td>3.26</td>
<td>chr2</td>
</tr>
<tr>
<td>PXX</td>
<td>54899</td>
<td>PX domain containing serine/threonine kinase</td>
<td>5.67</td>
<td>chr3</td>
</tr>
<tr>
<td>PXN</td>
<td>5829</td>
<td>paxillin</td>
<td>2.21</td>
<td>chr12</td>
</tr>
<tr>
<td>PYCR1</td>
<td>5831</td>
<td>pyrroline-5-carboxylate reductase 1</td>
<td>2.10</td>
<td>chr17</td>
</tr>
<tr>
<td>PYGB</td>
<td>5834</td>
<td>phosphorylase, glycogen; brain</td>
<td>3.06</td>
<td>chr20</td>
</tr>
<tr>
<td>QIL1</td>
<td>125988</td>
<td>QIL1 protein</td>
<td>2.87</td>
<td>chr19</td>
</tr>
<tr>
<td>QKI</td>
<td>9444</td>
<td>quaking homolog, KH domain RNA binding (mouse)</td>
<td>2.04</td>
<td>chr6</td>
</tr>
<tr>
<td>QSCN6</td>
<td>5768</td>
<td>quiescin Q6</td>
<td>5.39</td>
<td>chr1</td>
</tr>
<tr>
<td>RAB11FIP2</td>
<td>22841</td>
<td>RAB11 family interacting protein 2 (class I)</td>
<td>2.07</td>
<td>chr10</td>
</tr>
<tr>
<td>RAB11FIP5</td>
<td>26056</td>
<td>RAB11 family interacting protein 5 (class I)</td>
<td>4.01</td>
<td>chr2</td>
</tr>
<tr>
<td>RAB12</td>
<td>201475</td>
<td>RAB12, member RAS oncogene family</td>
<td>6.19</td>
<td>chr18</td>
</tr>
<tr>
<td>RAB18</td>
<td>22931</td>
<td>RAB18, member RAS oncogene family</td>
<td>2.36</td>
<td>chr10</td>
</tr>
<tr>
<td>RAB2</td>
<td>5862</td>
<td>RAB2, member RAS oncogene family</td>
<td>2.97</td>
<td>chr8</td>
</tr>
<tr>
<td>RAB22A</td>
<td>57403</td>
<td>RAB22A, member RAS oncogene family</td>
<td>3.54</td>
<td>chr20</td>
</tr>
<tr>
<td>RAB23</td>
<td>51715</td>
<td>RAB23, member RAS oncogene family</td>
<td>4.32</td>
<td>chr6</td>
</tr>
<tr>
<td>RAB27A</td>
<td>5873</td>
<td>RAB27A, member RAS oncogene family</td>
<td>4.20</td>
<td>chr15</td>
</tr>
<tr>
<td>RAB27B</td>
<td>5874</td>
<td>RAB27B, member RAS oncogene family</td>
<td>9.99</td>
<td>chr18</td>
</tr>
<tr>
<td>RAB30</td>
<td>27314</td>
<td>RAB30, member RAS oncogene family</td>
<td>11.08</td>
<td>chr11</td>
</tr>
<tr>
<td>RAB31</td>
<td>11031</td>
<td>RAB31, member RAS oncogene family</td>
<td>4.87</td>
<td>chr18</td>
</tr>
<tr>
<td>RAB32</td>
<td>10981</td>
<td>RAB32, member RAS oncogene family</td>
<td>15.55</td>
<td>chr6</td>
</tr>
<tr>
<td>RAB33A</td>
<td>9063</td>
<td>RAB33A, member RAS oncogene family</td>
<td>2.53</td>
<td>chrX</td>
</tr>
<tr>
<td>RAB33B</td>
<td>5865</td>
<td>RAB33B, member RAS oncogene family</td>
<td>3.19</td>
<td>chr1</td>
</tr>
<tr>
<td>RAB35AP1</td>
<td>22930</td>
<td>RAB35GTPase activating protein subunit 1 (catalytic)</td>
<td>2.33</td>
<td>chr2</td>
</tr>
<tr>
<td>RAB40B</td>
<td>10966</td>
<td>RAB40B, member RAS oncogene family</td>
<td>6.49</td>
<td>chr17</td>
</tr>
<tr>
<td>RAB6A</td>
<td>5870</td>
<td>RAB6A, member RAS oncogene family</td>
<td>2.01</td>
<td>chr2</td>
</tr>
<tr>
<td>RAB6B2</td>
<td>23085</td>
<td>RAB6B interacting protein 2</td>
<td>2.73</td>
<td>chr12</td>
</tr>
<tr>
<td>RAB9B</td>
<td>51209</td>
<td>RAB9B, member RAS oncogene family</td>
<td>2.03</td>
<td>chrX</td>
</tr>
<tr>
<td>RABGEC1</td>
<td>27342</td>
<td>RAB guanine nucleotide exchange factor (GEF) 1</td>
<td>2.80</td>
<td>chr7</td>
</tr>
<tr>
<td>RAFTL1</td>
<td>23180</td>
<td>raft-linking protein</td>
<td>42.35</td>
<td>chr3</td>
</tr>
<tr>
<td>RAG2</td>
<td>5891</td>
<td>renal tumor antigen</td>
<td>7.59</td>
<td>chr14</td>
</tr>
<tr>
<td>RAL1</td>
<td>10743</td>
<td>retinoic acid induced 1</td>
<td>3.94</td>
<td>chr17</td>
</tr>
<tr>
<td>RAI14</td>
<td>26064</td>
<td>retinoic acid induced 14</td>
<td>3.36</td>
<td>chr5</td>
</tr>
<tr>
<td>RALB</td>
<td>5899</td>
<td>v-ras simian leukemia viral oncogene homolog B (ras related; GTP binding protein)</td>
<td>3.79</td>
<td>chr2</td>
</tr>
<tr>
<td>RaLP</td>
<td>399694</td>
<td>rai-like protein</td>
<td>3.49</td>
<td>chr15</td>
</tr>
<tr>
<td>RAP1A</td>
<td>5906</td>
<td>RAP1A, member of RAS oncogene family</td>
<td>2.74</td>
<td>chr1</td>
</tr>
<tr>
<td>RAP1GDS1</td>
<td>5910</td>
<td>RAP1, GTP-DGP dissociation stimulator 1</td>
<td>3.76</td>
<td>chr4</td>
</tr>
<tr>
<td>RAP2C</td>
<td>57826</td>
<td>RAP2C, member of RAS oncogene family</td>
<td>2.01</td>
<td>chrX</td>
</tr>
<tr>
<td>RAPH1</td>
<td>65059</td>
<td>Ras association (RasGDS/AF-6) and pleckstrin homology domains 1</td>
<td>5.11</td>
<td>chr2</td>
</tr>
<tr>
<td>RARB</td>
<td>5915</td>
<td>retinoic acid receptor, beta</td>
<td>9.28</td>
<td>chr3</td>
</tr>
<tr>
<td>RASA1</td>
<td>5921</td>
<td>RAS p21 protein activator (GTPase activating protein) 1</td>
<td>2.72</td>
<td>chr5</td>
</tr>
<tr>
<td>RASSF3</td>
<td>283349</td>
<td>Ras association (RasGDS/AF-6) domain family 3</td>
<td>3.54</td>
<td>chr14</td>
</tr>
<tr>
<td>RASSF4</td>
<td>83937</td>
<td>Ras association (RasGDS/AF-6) domain family 4</td>
<td>2.07</td>
<td>chr10</td>
</tr>
<tr>
<td>RASSF8</td>
<td>11228</td>
<td>Ras association (RasGDS/AF-6) domain family 8</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>RB1</td>
<td>5925</td>
<td>retinoblastoma 1 (including osteosarcoma)</td>
<td>2.97</td>
<td>chr13</td>
</tr>
<tr>
<td>RBL2</td>
<td>5934</td>
<td>retinoblastoma-like 2 (p130)</td>
<td>3.17</td>
<td>chr16</td>
</tr>
<tr>
<td>RBM18</td>
<td>92400</td>
<td>RNA binding motif protein 18</td>
<td>3.58</td>
<td>chr9</td>
</tr>
<tr>
<td>RBM24</td>
<td>221662</td>
<td>RNA binding motif protein 24</td>
<td>28.95</td>
<td>chr6</td>
</tr>
<tr>
<td>RBM9</td>
<td>23543</td>
<td>RNA binding motif protein 9</td>
<td>3.26</td>
<td>chr9</td>
</tr>
<tr>
<td>RBMS2</td>
<td>5939</td>
<td>RNA binding motif, single stranded interacting protein 2</td>
<td>3.74</td>
<td>chr12</td>
</tr>
<tr>
<td>RBMS3</td>
<td>27303</td>
<td>RNA binding motif, single stranded interacting protein</td>
<td>18.12</td>
<td>chr3</td>
</tr>
<tr>
<td>RCN1</td>
<td>5954</td>
<td>reticulocalbin 1, EF-hand calcium binding domain</td>
<td>2.85</td>
<td>chr11</td>
</tr>
<tr>
<td>RCN3</td>
<td>57333</td>
<td>reticulocalbin 3, EF-hand calcium binding domain</td>
<td>3.50</td>
<td>chr19</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number (Avadis)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>RECK</td>
<td>reversion-inducing-cysteine-rich protein with kazal motifs</td>
<td>7.09</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>RECOL</td>
<td>RecQ protein-1k (DNA helicase Q1-like)</td>
<td>3.08</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>REEP3</td>
<td>Receptor accessory protein 3</td>
<td>4.45</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>RELA</td>
<td>v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene product</td>
<td>2.84</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>REV3L</td>
<td>REV3-virus, catalytic subunit of DNA polymerase zeta (yeast)</td>
<td>2.41</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>REXO2</td>
<td>REX2, RNA exonuclease 2 homolog (S. cerevisiae)</td>
<td>2.08</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>RFX</td>
<td>riboflavin kinase</td>
<td>2.94</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>RGI1</td>
<td>ral guanine nucleotide dissociation stimulator-1</td>
<td>7.51</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>RGMB</td>
<td>RGM domain family, member B</td>
<td>5.25</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>RGNEF</td>
<td>Rho-guanine nucleotide exchange factor</td>
<td>3.79</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>RGS10</td>
<td>regulator of G-protein signalling 10</td>
<td>2.66</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>RGS20</td>
<td>regulator of G-protein signalling 20</td>
<td>2.53</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>RGS3</td>
<td>regulator of G-protein signalling 3</td>
<td>8.93</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>RGS4</td>
<td>regulator of G-protein signalling 4</td>
<td>133.83</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>RHBDL7</td>
<td>rhomboid, veinlet-like 7 (Drosophila)</td>
<td>2.65</td>
<td>chr7</td>
<td></td>
</tr>
<tr>
<td>ROHO</td>
<td>ras homolog gene family, member B</td>
<td>2.95</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>RHOBT1</td>
<td>Rho-related BTB domain containing 1</td>
<td>3.16</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>RHOBT3</td>
<td>Rho-related BTB domain containing 3</td>
<td>26.55</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>ROC</td>
<td>ras homolog gene family, member C</td>
<td>10.36</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>RHOG</td>
<td>ras homolog gene family, member G (rho G)</td>
<td>2.44</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>RHOJ</td>
<td>ras homolog gene family, member J</td>
<td>13.07</td>
<td>chr14</td>
<td></td>
</tr>
<tr>
<td>RHOQ</td>
<td>ras homolog gene family, member Q</td>
<td>2.45</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>RHOQ /// LOC2343 /// 284988</td>
<td>ras homolog gene family, member Q /// similar to ARHQ protein</td>
<td>3.10</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>RIG</td>
<td>regulated in glioma</td>
<td>4.17</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>RIN2</td>
<td>Ras and Rab interactor 2</td>
<td>37.07</td>
<td>chr20</td>
<td></td>
</tr>
<tr>
<td>RICK3</td>
<td>RIO kinase 3 (yeast) /// RIO kinase 3 (yeast)</td>
<td>2.29</td>
<td>chr18</td>
<td></td>
</tr>
<tr>
<td>RIPK1</td>
<td>receptor (TNFRSF)-interacting serine-threonine kinase 1</td>
<td>3.05</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>RIPX</td>
<td>nap2 interacting protein x</td>
<td>2.08</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>RIT1</td>
<td>Ras-like without CAAX 1</td>
<td>2.38</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>RNASE4</td>
<td>ribonuclease, RNase A family, 4</td>
<td>10.14</td>
<td>chr14</td>
<td></td>
</tr>
<tr>
<td>RND3</td>
<td>Rho family GTPase 3</td>
<td>7.69</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>RFN103</td>
<td>ring finger protein 10</td>
<td>3.75</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>RFN11</td>
<td>ring finger protein 11</td>
<td>2.28</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>RFN14</td>
<td>ring finger protein 14</td>
<td>3.12</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>RFN150</td>
<td>ring finger protein 150</td>
<td>2.03</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>RFN185</td>
<td>ring finger protein 185</td>
<td>2.60</td>
<td>chr22</td>
<td></td>
</tr>
<tr>
<td>RFN19</td>
<td>ring finger protein 19</td>
<td>3.02</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>RFN6</td>
<td>ring finger protein (C3H2C3 type)</td>
<td>3.18</td>
<td>chr13</td>
<td></td>
</tr>
<tr>
<td>RNH1</td>
<td>ribonuclease/angiogenin inhibitor 1</td>
<td>3.39</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>RNP2C</td>
<td>RNA-binding region (RNP1, RRM) containing 2</td>
<td>2.14</td>
<td>chr20</td>
<td></td>
</tr>
<tr>
<td>ROCK2</td>
<td>Rho-associated, coiled-coil containing protein kinase 2</td>
<td>2.65</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>RP11-343N15.3</td>
<td>Similar to Formin binding protein 2 (mGPAP2)</td>
<td>2.41</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>RP11-378J18.4</td>
<td>375056 C219-reactive peptide</td>
<td>2.95</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>RP2</td>
<td>retinilis pigmentosa 2 (X-linked recessive)</td>
<td>3.03</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>RPL23A7P7</td>
<td>ribosomal protein L23a pseudogene 7</td>
<td>3.44</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>RRFC1</td>
<td>arginine/proline rich coiled-coil 1</td>
<td>6.11</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>RPS23</td>
<td>ribosomal protein S23</td>
<td>4.98</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>RPS27L</td>
<td>ribosomal protein S27-like</td>
<td>4.27</td>
<td>chr15</td>
<td></td>
</tr>
<tr>
<td>RPS6K2A2</td>
<td>ribosomal protein S6 kinase, 90kDa, polypeptide 2</td>
<td>4.08</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>RPS6K5A3</td>
<td>ribosomal protein S6 kinase, 90kDa, polypeptide 3</td>
<td>3.21</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>RRA1D</td>
<td>Ras-associated with diabetes</td>
<td>2.65</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>RRAGB</td>
<td>Ras-related GTP binding B</td>
<td>2.23</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>RRAS</td>
<td>related RAS viral (r-ras) oncogene homolog</td>
<td>16.59</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>RRB1P1</td>
<td>ribosome binding protein 1 homolog 180kDa (dog)</td>
<td>2.01</td>
<td>chr20</td>
<td></td>
</tr>
<tr>
<td>RSL1D1</td>
<td>Ribosomal L1 domain containing 1</td>
<td>4.27</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>RSN</td>
<td>resin (Reed-Steinberg cell-expressed intermediate filament-associated protein)</td>
<td>5.88</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>RSNL2</td>
<td>resin-like 2</td>
<td>37.98</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>RSU1</td>
<td>Ras suppressor protein 1</td>
<td>2.56</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>RTN4</td>
<td>reticulin 4</td>
<td>2.24</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>RUNX1</td>
<td>runt-related transcription factor 1 (acute myeloid leukemia 1; arn1 oncogene)</td>
<td>37.16</td>
<td>chr21</td>
<td></td>
</tr>
<tr>
<td>RUNX2</td>
<td>runt-related transcription factor 2</td>
<td>10.68</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>RUSC2</td>
<td>RUN and SH3 domain containing 2</td>
<td>3.56</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>RXRB</td>
<td>retinoid X receptor, beta</td>
<td>2.65</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>S10A11</td>
<td>S100 calcium binding protein 11 (calcifactor)</td>
<td>11.04</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>S10A13</td>
<td>S100 calcium binding protein 13</td>
<td>2.75</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>S10A16</td>
<td>S100 calcium binding protein 16</td>
<td>14.87</td>
<td>chr1</td>
<td></td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SACS</td>
<td>26278</td>
<td>spastic atxia of Charlevoix-Saugenyai (sacsin)</td>
<td>2.33</td>
<td>chr13</td>
</tr>
<tr>
<td>SAMD4</td>
<td>23034</td>
<td>sterile alpha motif domain containing 4</td>
<td>5.95</td>
<td>chr14</td>
</tr>
<tr>
<td>SAMD9</td>
<td>54809</td>
<td>sterile alpha motif domain containing 9</td>
<td>6.51</td>
<td>chr7</td>
</tr>
<tr>
<td>SAR1B</td>
<td>51128</td>
<td>SAR1 gene homolog B (S. cerevisiae)</td>
<td>3.44</td>
<td>chr5</td>
</tr>
<tr>
<td>SAT</td>
<td>6303</td>
<td>Spermidine/spermine N1-acetyltransferase</td>
<td>6.26</td>
<td>chrX</td>
</tr>
<tr>
<td>SATB2</td>
<td>23314</td>
<td>SATB family member 2</td>
<td>2.94</td>
<td>chr2</td>
</tr>
<tr>
<td>SATL1</td>
<td>340562</td>
<td>Spermidine/spermine N1-acetyl transferase-like 1</td>
<td>4.19</td>
<td>chrX</td>
</tr>
<tr>
<td>SBDS</td>
<td>51119</td>
<td>Shwachman-Bodian-Diamond syndrome</td>
<td>3.63</td>
<td>chr7</td>
</tr>
<tr>
<td>SBDS://SBDSF</td>
<td>155570</td>
<td>Shwachman-Bodian-Diamond syndrome // Shwachman-Bodian-Diamond syndrome</td>
<td>3.87</td>
<td>chr7</td>
</tr>
<tr>
<td>SBLF</td>
<td>11307</td>
<td>stonel B-like factor</td>
<td>3.58</td>
<td>chr2</td>
</tr>
<tr>
<td>SCG6</td>
<td>10609</td>
<td>synaptopal complex protein SCG6</td>
<td>5.32</td>
<td>chr17</td>
</tr>
<tr>
<td>SCAP2</td>
<td>8935</td>
<td>src family associated phosphoprotein 2</td>
<td>2.24</td>
<td>chr7</td>
</tr>
<tr>
<td>SCARB2</td>
<td>950</td>
<td>scavenger receptor class B, member 2</td>
<td>3.11</td>
<td>chr4</td>
</tr>
<tr>
<td>SCARF2</td>
<td>91179</td>
<td>scavenger receptor class F, member 2</td>
<td>3.06</td>
<td>chr22</td>
</tr>
<tr>
<td>SCDS</td>
<td>79966</td>
<td>stearyl-CoA desaturase 5</td>
<td>23.07</td>
<td>chr4</td>
</tr>
<tr>
<td>SCD2</td>
<td>152579</td>
<td>sec1 family domain containing 2</td>
<td>2.52</td>
<td>chr4</td>
</tr>
<tr>
<td>SCD3</td>
<td>7857</td>
<td>secretogranin II (chromogranin C)</td>
<td>17.83</td>
<td>chr2</td>
</tr>
<tr>
<td>SCHIP1</td>
<td>29970</td>
<td>schwannomin interacting protein 1</td>
<td>2.68</td>
<td>chr3</td>
</tr>
<tr>
<td>SCM1L</td>
<td>6322</td>
<td>sex comb on midleg-1 (Drosophila)</td>
<td>4.91</td>
<td>chrX</td>
</tr>
<tr>
<td>SCN9A</td>
<td>6335</td>
<td>sodium channel, voltage-gated, type IX, alpha</td>
<td>2.32</td>
<td>chr2</td>
</tr>
<tr>
<td>SOC1</td>
<td>60592</td>
<td>short coiled-coil protein</td>
<td>2.51</td>
<td>chr4</td>
</tr>
<tr>
<td>SCRG1</td>
<td>11341</td>
<td>scrapie responsive protein 1</td>
<td>3.04</td>
<td>chr4</td>
</tr>
<tr>
<td>SCN3</td>
<td>79634</td>
<td>secemrin 3</td>
<td>2.23</td>
<td>chr2</td>
</tr>
<tr>
<td>SCUBE3</td>
<td>222663</td>
<td>signal peptide, CUB domain, EGF-like 3</td>
<td>12.44</td>
<td>chr6</td>
</tr>
<tr>
<td>SDC1</td>
<td>6382</td>
<td>syndecan 1</td>
<td>2.43</td>
<td>chr2</td>
</tr>
<tr>
<td>SDC2</td>
<td>6383</td>
<td>syndecan 2 (heparan sulfate proteoglycan 1, cell surface-associated, fibroglyc)</td>
<td>6.03</td>
<td>chr8</td>
</tr>
<tr>
<td>SDC3</td>
<td>9672</td>
<td>syndecan 3 (N-syndecan)</td>
<td>3.71</td>
<td>chr1</td>
</tr>
<tr>
<td>SDCAG33</td>
<td>10194</td>
<td>serologically defined colon cancer antigen 33</td>
<td>6.84</td>
<td>chr18</td>
</tr>
<tr>
<td>SDF4</td>
<td>51150</td>
<td>stromal cell derived factor 4</td>
<td>3.46</td>
<td>chr1</td>
</tr>
<tr>
<td>SDSL</td>
<td>113675</td>
<td>serine dehydratalse-like</td>
<td>2.61</td>
<td>chr12</td>
</tr>
<tr>
<td>SEC14L1</td>
<td>6397</td>
<td>SEC14-like 1 (S. cerevisiae)</td>
<td>2.54</td>
<td>chr17</td>
</tr>
<tr>
<td>SEC22L1</td>
<td>9554</td>
<td>SEC22 vesicle trafficking protein-like 1 (S. cerevisiae)</td>
<td>12.92</td>
<td>chr1</td>
</tr>
<tr>
<td>SEC23A</td>
<td>10484</td>
<td>Sec23 homolog A (S. cerevisiae)</td>
<td>5.11</td>
<td>chr14</td>
</tr>
<tr>
<td>SEC24A</td>
<td>10802</td>
<td>SEC24 related gene family, member A (S. cerevisiae)</td>
<td>2.31</td>
<td>chr5</td>
</tr>
<tr>
<td>SEC24D</td>
<td>9871</td>
<td>SEC24 related gene family, member D (S. cerevisiae)</td>
<td>5.55</td>
<td>chr4</td>
</tr>
<tr>
<td>SEC31L1</td>
<td>22872</td>
<td>SEC31-like 1 (S. cerevisiae)</td>
<td>3.56</td>
<td>chr4</td>
</tr>
<tr>
<td>SEC61A1</td>
<td>29227</td>
<td>Sec61 alpha 1 subunit (S. cerevisiae)</td>
<td>3.65</td>
<td>chr3</td>
</tr>
<tr>
<td>SEL1L</td>
<td>6400</td>
<td>sel-1 suppressor of lin-12-like (C. elegans)</td>
<td>8.09</td>
<td>chr14</td>
</tr>
<tr>
<td>SEM1</td>
<td>140606</td>
<td>seleneoprotein M</td>
<td>9.68</td>
<td>chr22</td>
</tr>
<tr>
<td>SELPLG</td>
<td>6404</td>
<td>selectin P ligand</td>
<td>2.08</td>
<td>chr12</td>
</tr>
<tr>
<td>SEM3G</td>
<td>10512</td>
<td>sema domain, immunoglobulin domain (lg), short basic domain, secreted. (sermet)</td>
<td>27.09</td>
<td>chr7</td>
</tr>
<tr>
<td>SEM4A</td>
<td>10505</td>
<td>sema domain, immunoglobulin domain (lg), transmembrane domain (TM) and chondrocyte (chondrocyte)</td>
<td>2.50</td>
<td>chr2</td>
</tr>
<tr>
<td>SEMASA</td>
<td>9037</td>
<td>sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM)</td>
<td>5.01</td>
<td>chr5</td>
</tr>
<tr>
<td>SEPT6</td>
<td>231575</td>
<td>SEPT6 // N-Pac-1</td>
<td>2.66</td>
<td>chrX</td>
</tr>
<tr>
<td>SERINC1</td>
<td>57515</td>
<td>serine incorporator 1</td>
<td>4.99</td>
<td>chr6</td>
</tr>
<tr>
<td>SERINC6</td>
<td>5269</td>
<td>serpin peptidase inhibitor, clade B (ovubamin), member 6</td>
<td>4.35</td>
<td>chr1</td>
</tr>
<tr>
<td>SERINPB7</td>
<td>8710</td>
<td>serpin peptidase inhibitor, clade B (ovubamin), member 7</td>
<td>14.00</td>
<td>chr18</td>
</tr>
<tr>
<td>SERINPB8</td>
<td>5271</td>
<td>serpin peptidase inhibitor, clade B (ovubamin), member 8</td>
<td>2.86</td>
<td>chr18</td>
</tr>
<tr>
<td>SERINE1</td>
<td>5054</td>
<td>serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1)</td>
<td>201.36</td>
<td>chr7</td>
</tr>
<tr>
<td>SERTAD1</td>
<td>29950</td>
<td>SERTA domain containing 1</td>
<td>2.14</td>
<td>chr19</td>
</tr>
<tr>
<td>SERTAD2</td>
<td>9792</td>
<td>SERTA domain containing 2</td>
<td>6.31</td>
<td>chr2</td>
</tr>
<tr>
<td>SEXTD1</td>
<td>91404</td>
<td>SEC14 and spectrin domains 1</td>
<td>2.06</td>
<td>chr2</td>
</tr>
<tr>
<td>SET7</td>
<td>80854</td>
<td>SET domain-containing protein 7</td>
<td>18.95</td>
<td>chr7</td>
</tr>
<tr>
<td>SEZ6L2</td>
<td>26470</td>
<td>seizure related 6 homolog (mouse)-like 2</td>
<td>2.28</td>
<td>chr16</td>
</tr>
<tr>
<td>SFRS11</td>
<td>9295</td>
<td>splicing factor, arginine/serine-rich 11</td>
<td>2.96</td>
<td>chr1</td>
</tr>
<tr>
<td>SFTD2</td>
<td>375035</td>
<td>SFT2 domain containing 2</td>
<td>2.44</td>
<td>chr1</td>
</tr>
<tr>
<td>SFX1N</td>
<td>94081</td>
<td>siderofexin 1</td>
<td>2.41</td>
<td>chr5</td>
</tr>
<tr>
<td>SFX3N</td>
<td>81855</td>
<td>siderofexin 3 /// siderofexin 3</td>
<td>7.99</td>
<td>chr10</td>
</tr>
<tr>
<td>SGCB</td>
<td>6443</td>
<td>sarcoglycan, beta (43kDa dystrophin-associated glycoprotein)</td>
<td>2.43</td>
<td>chr4</td>
</tr>
<tr>
<td>SGCDC</td>
<td>6444</td>
<td>Sarcoglycan, delta (55kDa dystrophin-associated glycoprotein)</td>
<td>2.03</td>
<td>chr5</td>
</tr>
<tr>
<td>SGIP1</td>
<td>84251</td>
<td>SH3-domain GRB2-like (endophilin) interacting protein 1</td>
<td>6.24</td>
<td>chr1</td>
</tr>
<tr>
<td>SGK</td>
<td>6446</td>
<td>serum/glucocorticoid regulated kinase</td>
<td>2.20</td>
<td>chr6</td>
</tr>
<tr>
<td>SGP1P1</td>
<td>81357</td>
<td>sphingosine-1-phosphate phosphatase 1</td>
<td>3.12</td>
<td>chr14</td>
</tr>
<tr>
<td>SGSH</td>
<td>6448</td>
<td>N-sulfoglycosamin sulfotransferase (sulfamidase)</td>
<td>2.81</td>
<td>chr17</td>
</tr>
<tr>
<td>SHBGBL</td>
<td>6451</td>
<td>SH3 domain binding glutamic acid-rich protein like</td>
<td>2.87</td>
<td>chrX</td>
</tr>
<tr>
<td>SHBGBL3</td>
<td>83442</td>
<td>SH3 domain binding glutamic acid-rich protein like 3 /// SH3 domain binding glutamic acid-rich protein like</td>
<td>8.11</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number (Avadis)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>SHGGL1</td>
<td>SH3-domain GRB2-like endophilin B1</td>
<td>3.88</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SH3KB1</td>
<td>SH3-domain kinase binding protein 1</td>
<td>2.83</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>SH3MD1</td>
<td>SH3 multiple domains 1</td>
<td>4.39</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>SH3MD2</td>
<td>SH3 multiple domains 2</td>
<td>5.41</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>SH3MD4</td>
<td>SH3 multiple domains 4</td>
<td>5.15</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>SH3RP2</td>
<td>SH3 domain containing ring finger 2</td>
<td>3.56</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>SHB</td>
<td>Src homology 2 domain containing adaptor protein B</td>
<td>2.10</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>SHC1</td>
<td>SHC (Src homology 2 domain containing) transforming protein 1</td>
<td>2.21</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SIDT2</td>
<td>SID1 transmembrane family, member 2</td>
<td>3.03</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>SIL1</td>
<td>SIL1 homolog, endoplasmic reticulum chaperone (S. cerevisiae)</td>
<td>7.07</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>SIRT2</td>
<td>siruin (silent mating type information regulation 2 homolog) 2 (S. cerevisiae)</td>
<td>2.87</td>
<td>chr19</td>
<td></td>
</tr>
<tr>
<td>SIX1</td>
<td>Sine oculis homeobox homolog 1 (Drosophila)</td>
<td>112.74</td>
<td>chr14</td>
<td></td>
</tr>
<tr>
<td>SLC10A3</td>
<td>solute carrier family 10 (sodium/bile acid cotransporter family), member 3</td>
<td>2.72</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>SLC12A2</td>
<td>solute carrier family 12 (sodium/potassium/chloride transporters), member 2</td>
<td>2.07</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>SLC12A4</td>
<td>solute carrier family 12 (potassium/chloride transporters), member 4</td>
<td>2.84</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>SLC16A4</td>
<td>solute carrier family 16 (monocarboxylic acid transporters), member 4</td>
<td>10.73</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SLC16A7</td>
<td>solute carrier family 16 (monocarboxylic acid transporters), member 7</td>
<td>4.54</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>SLC17A5</td>
<td>solute carrier family 17 (anion/sugar transporter), member 5</td>
<td>7.10</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>SLC18A2</td>
<td>solute carrier family 18 (vesicular monoamine), member 2</td>
<td>2.49</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>SLC1A4</td>
<td>solute carrier family 1 (glutamate-neutral amino acid transporter), member 4</td>
<td>23.28</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>SLC2A0A5</td>
<td>solute carrier family 20 (phosphate transporter), member 2</td>
<td>2.33</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>SLC22A18</td>
<td>solute carrier family 22 (organic cation transporter), member 18</td>
<td>4.89</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SLC22A4</td>
<td>solute carrier family 22 (organic cation transporter), member 4</td>
<td>2.24</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>SLC25A16</td>
<td>solute carrier family 25 (mitochondrial carrier; Graves disease autoantigen), member 1</td>
<td>4.55</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>SLC25A20</td>
<td>solute carrier family 25 (carnitine/acetyl carnitine translocase), member 20</td>
<td>2.63</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>SLC25A24</td>
<td>solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 24</td>
<td>2.07</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SLC25A32</td>
<td>solute carrier family 25, member 32 // solute carrier family 25, member 32</td>
<td>2.69</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>SLC26A2</td>
<td>solute carrier family 26 (sulfate transporter), member 2</td>
<td>2.04</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>SLC26A5</td>
<td>solute carrier family 26, member 5 (prestin), member 2</td>
<td>2.72</td>
<td>chr7</td>
<td></td>
</tr>
<tr>
<td>SLC2A10</td>
<td>solute carrier family 2 (facilitated glucose transporter), member 10 // solute carrier family 2 (facilitated glucose transporter), member 10</td>
<td>5.13</td>
<td>chr20</td>
<td></td>
</tr>
<tr>
<td>SLC3A05</td>
<td>solute carrier family 30 (zinc transporter), member 5</td>
<td>2.22</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>SLC3A07</td>
<td>solute carrier family 30 (zinc transporter), member 7</td>
<td>4.96</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SLC3A12</td>
<td>solute carrier family 31 (copper transporters), member 2</td>
<td>3.06</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>SLC3A35</td>
<td>solute carrier family 35 (UDP-N-acetylgalactosamine (UDP-GalNAc) transporter), member 4</td>
<td>2.31</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SLC3B2</td>
<td>solute carrier family 35, member B2</td>
<td>2.47</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>SLC3B3</td>
<td>solute carrier family 35, member B3</td>
<td>4.68</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>SLC3C1</td>
<td>solute carrier family 35, member C1</td>
<td>2.03</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>SLC3D1</td>
<td>solute carrier family 35 (UDP-glucuronic acid/UDP-N-acetylgalactosamine dual transporter), member 4</td>
<td>6.07</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SLC3E1</td>
<td>solute carrier family 35, member E1</td>
<td>3.25</td>
<td>chr19</td>
<td></td>
</tr>
<tr>
<td>SLC3F5</td>
<td>solute carrier family 35, member F5</td>
<td>4.00</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>SLC3A10</td>
<td>solute carrier family 39 (zinc transporter), member 10</td>
<td>2.23</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>SLC3A13</td>
<td>solute carrier family 39 (zinc transporter), member 13</td>
<td>2.82</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>SLC3A6</td>
<td>solute carrier family 39 (zinc transporter), member 6</td>
<td>2.72</td>
<td>chr18</td>
<td></td>
</tr>
<tr>
<td>SLC4A2</td>
<td>solute carrier family 41, member 2</td>
<td>2.05</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>SLC4A3</td>
<td>solute carrier family 41, member 3</td>
<td>2.02</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>SLC4A4</td>
<td>solute carrier family 4, sodium bicarbonate cotransporter, member 4</td>
<td>5.47</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>SLC7A1</td>
<td>solute carrier family 7, (cationic amino acid transporter, y+ system) member 11</td>
<td>3.15</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>SLC7A6</td>
<td>solute carrier family 7 (cationic amino acid transporter, y+ system), member 6</td>
<td>2.01</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>SLC8A1</td>
<td>solute carrier family 8 (sodium/calcium exchanger), member 1</td>
<td>21.76</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>SLT3</td>
<td>slit homolog 3 (Drosophila)</td>
<td>3.10</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>SLT3L2</td>
<td>slit-like 2 (Drosophila)</td>
<td>3.55</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>SMA3D</td>
<td>SMAD, mothers against DPP homolog 3 (Drosophila)</td>
<td>9.44</td>
<td>chr15</td>
<td></td>
</tr>
<tr>
<td>SMAP1L</td>
<td>stomatin membrane-associated protein 1-ike</td>
<td>4.65</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SMARCA2</td>
<td>SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 2</td>
<td>3.65</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>SMARCD3</td>
<td>SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily D, member 3</td>
<td>9.97</td>
<td>chr7</td>
<td></td>
</tr>
<tr>
<td>SMAPB</td>
<td>GM-11044 binding protein</td>
<td>2.39</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>SMCL5</td>
<td>SMC5 structural maintenance of chromosomes 5-like 1 (yeast)</td>
<td>2.42</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>SMILE</td>
<td>SMILE protein</td>
<td>2.59</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>SMPD1</td>
<td>sphingomyelin phosphodiesterase 1, acid lysosomal (acid sphingomyelinase)</td>
<td>3.77</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>SMPD3LA</td>
<td>sphingomyelin phosphodiesterase, acid-like 3A</td>
<td>5.13</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>SMURF2</td>
<td>SMAD specific E3 ubiquitin ligase 2</td>
<td>12.21</td>
<td>chr17</td>
<td></td>
</tr>
<tr>
<td>SMYD2</td>
<td>SET and MYND domain containing 2</td>
<td>2.18</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SNA1G</td>
<td>Sorting nexin associated golgi protein 1</td>
<td>2.44</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>SNA2</td>
<td>small homolog 2 (Drosophila)</td>
<td>52.09</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>SNF1LX</td>
<td>SNF1-like kinase // SNF1-like kinase</td>
<td>4.50</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>SNTB2</td>
<td>syntrophin, beta 2 (dystrophin-associated protein A1, 59kDa, basic component)</td>
<td>2.26</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC Up</td>
<td>Chromosome Number/Avadis</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>SNX13</td>
<td>23161</td>
<td>Sorting nexin 13</td>
<td>2.65</td>
<td>chr7</td>
</tr>
<tr>
<td>SNX14</td>
<td>57231</td>
<td>sorting nexin 14</td>
<td>2.58</td>
<td>chr6</td>
</tr>
<tr>
<td>SNX19</td>
<td>39979</td>
<td>sorting nexin 19</td>
<td>3.68</td>
<td>chr11</td>
</tr>
<tr>
<td>SNX3</td>
<td>8724</td>
<td>sorting nexin 3</td>
<td>3.05</td>
<td>chr6</td>
</tr>
<tr>
<td>SNX9</td>
<td>51429</td>
<td>sorting nexin 9</td>
<td>2.01</td>
<td>chr6</td>
</tr>
<tr>
<td>SOAT1</td>
<td>6846</td>
<td>sterol O-acyltransferase (acyl-Coenzyme A: cholesterol acyltransferase) 1</td>
<td>6.68</td>
<td>chr1</td>
</tr>
<tr>
<td>SOCS3</td>
<td>9021</td>
<td>suppressor of cytokine signaling 3</td>
<td>4.08</td>
<td>chr17</td>
</tr>
<tr>
<td>SOCS5</td>
<td>9655</td>
<td>suppressor of cytokine signaling 5</td>
<td>4.35</td>
<td>chr2</td>
</tr>
<tr>
<td>SQD3</td>
<td>6649</td>
<td>superoxide dismutase 3, extracellular</td>
<td>2.35</td>
<td>chr4</td>
</tr>
<tr>
<td>SORBS2</td>
<td>8470</td>
<td>sorbin and SH3 domain containing 2</td>
<td>4.04</td>
<td>chr4</td>
</tr>
<tr>
<td>SOX9</td>
<td>6662</td>
<td>SRY (sex determining region Y)-box 9 (campomelic dysplasia, autosomal sex-reversal)</td>
<td>2.60</td>
<td>chr17</td>
</tr>
<tr>
<td>SP100</td>
<td>6672</td>
<td>nuclear antigen Sp100</td>
<td>24.52</td>
<td>chr2</td>
</tr>
<tr>
<td>SP110</td>
<td>3431</td>
<td>SP110 nuclear body protein</td>
<td>2.20</td>
<td>chr2</td>
</tr>
<tr>
<td>SPAG9</td>
<td>9043</td>
<td>sperm associated antigen 9</td>
<td>2.10</td>
<td>chr17</td>
</tr>
<tr>
<td>SPARC</td>
<td>8678</td>
<td>secreted protein, acidic, cysteine-rich (osteonectin)</td>
<td>42.54</td>
<td>chr5</td>
</tr>
<tr>
<td>SPATA18</td>
<td>132671</td>
<td>spermatogenesis associated 18 homolog (rat)</td>
<td>7.26</td>
<td>chr4</td>
</tr>
<tr>
<td>SPATA20</td>
<td>68487</td>
<td>spermatogenesis associated 20</td>
<td>2.71</td>
<td>chr17</td>
</tr>
<tr>
<td>SPATS2</td>
<td>65244</td>
<td>spermatogenesis associated, serine-rich 2</td>
<td>3.85</td>
<td>chr12</td>
</tr>
<tr>
<td>SPCS3</td>
<td>60559</td>
<td>signal peptidase complex subunit 3 homolog (S. cerevisiae)</td>
<td>2.77</td>
<td>chr4</td>
</tr>
<tr>
<td>SPHK1</td>
<td>8877</td>
<td>sphingosine kinase 1</td>
<td>23.77</td>
<td>chr17</td>
</tr>
<tr>
<td>SPIRE1</td>
<td>56907</td>
<td>spine homolog 1 (Drosophila)</td>
<td>2.55</td>
<td>chr18</td>
</tr>
<tr>
<td>SPOCC1</td>
<td>90853</td>
<td>SPOC domain containing 1</td>
<td>39.33</td>
<td>chr1</td>
</tr>
<tr>
<td>SPOCK</td>
<td>6695</td>
<td>sparc/osteonectin, cvc and kazal-like domains proteoglycan (testican)</td>
<td>6.42</td>
<td>chr5</td>
</tr>
<tr>
<td>SPOP</td>
<td>8405</td>
<td>speckle-type POZ protein</td>
<td>2.45</td>
<td>chr17</td>
</tr>
<tr>
<td>SPSB1</td>
<td>80176</td>
<td>splA/ryanodine receptor domain and SOCS box containing 1</td>
<td>4.31</td>
<td>chr1</td>
</tr>
<tr>
<td>SPTAN1</td>
<td>6709</td>
<td>Sptanin, alpha, non-erythrocytic 1 (alpha-fodrin)</td>
<td>5.43</td>
<td>chr9</td>
</tr>
<tr>
<td>SPTBN1</td>
<td>6711</td>
<td>Sptanin, beta, non-erythrocytic 1</td>
<td>26.86</td>
<td>chr2</td>
</tr>
<tr>
<td>SQRDL</td>
<td>56472</td>
<td>sulfide quinone reductase-7 (yeast)</td>
<td>8.57</td>
<td>chr15</td>
</tr>
<tr>
<td>SQTST1</td>
<td>8878</td>
<td>sequestosome 1</td>
<td>3.18</td>
<td>chr5</td>
</tr>
<tr>
<td>SRA1</td>
<td>10011</td>
<td>steroid receptor RNA activator 1</td>
<td>2.05</td>
<td>chr5</td>
</tr>
<tr>
<td>SRGAP1</td>
<td>57522</td>
<td>SLIT-ROBO Rho GTPase activating protein 1</td>
<td>3.81</td>
<td>chr12</td>
</tr>
<tr>
<td>SRGAP2</td>
<td>23380</td>
<td>SLIT-ROBO Rho GTPase activating protein 2</td>
<td>3.23</td>
<td>chr1</td>
</tr>
<tr>
<td>SRPR</td>
<td>6734</td>
<td>signal recognition particle receptor ('docking protein')</td>
<td>5.02</td>
<td>chr11</td>
</tr>
<tr>
<td>SRPRB</td>
<td>58477</td>
<td>signal recognition particle receptor, B subunit</td>
<td>2.52</td>
<td>chr3</td>
</tr>
<tr>
<td>SRPX</td>
<td>8406</td>
<td>sushi-repeat-containing protein, X-linked</td>
<td>7.97</td>
<td>chrX</td>
</tr>
<tr>
<td>SRPX2</td>
<td>27286</td>
<td>sushi-repeat-containing protein, X-linked 2</td>
<td>18.18</td>
<td>chrX</td>
</tr>
<tr>
<td>SRR</td>
<td>63826</td>
<td>serine racemase</td>
<td>3.70</td>
<td>chr17</td>
</tr>
<tr>
<td>SRXN1</td>
<td>140809</td>
<td>sulfiredoxin 1 homolog (S. cerevisiae)</td>
<td>2.09</td>
<td>chr20</td>
</tr>
<tr>
<td>SSFA2</td>
<td>6744</td>
<td>sperm specific antigen 2</td>
<td>29.01</td>
<td>chr2</td>
</tr>
<tr>
<td>SSH1</td>
<td>54434</td>
<td>slangshot homolog 1 (Drosophila)</td>
<td>7.13</td>
<td>chr12</td>
</tr>
<tr>
<td>SSPN</td>
<td>8082</td>
<td>sarcospan (Kras oncogene-associated gene)</td>
<td>16.19</td>
<td>chr12</td>
</tr>
<tr>
<td>SSR1</td>
<td>6745</td>
<td>Signal sequence receptor, alpha (translocase-associated protein alpha)</td>
<td>3.33</td>
<td>chr6</td>
</tr>
<tr>
<td>SSR2</td>
<td>6746</td>
<td>signal sequence receptor, beta (translocase-associated protein beta)</td>
<td>2.83</td>
<td>chr1</td>
</tr>
<tr>
<td>SSR3</td>
<td>6747</td>
<td>signal sequence receptor, gamma (translocase-associated protein gamma)</td>
<td>7.07</td>
<td>chr3</td>
</tr>
<tr>
<td>ST3GAL1</td>
<td>6482</td>
<td>ST3 beta-galactoside alpha-2,3-sialyltransferase 1</td>
<td>5.49</td>
<td>chr8</td>
</tr>
<tr>
<td>ST3GAL3</td>
<td>6487</td>
<td>ST3 beta-galactoside alpha-2,3-sialyltransferase 3</td>
<td>2.44</td>
<td>chr1</td>
</tr>
<tr>
<td>ST3GAL5</td>
<td>8869</td>
<td>ST3 beta-galactoside alpha-2,3-sialyltransferase 5</td>
<td>15.77</td>
<td>chr2</td>
</tr>
<tr>
<td>ST5</td>
<td>6764</td>
<td>suppression of tumorigenicity 5</td>
<td>2.16</td>
<td>chr11</td>
</tr>
<tr>
<td>ST7</td>
<td>7982</td>
<td>suppression of tumorigenicity 7</td>
<td>2.02</td>
<td>chr7</td>
</tr>
<tr>
<td>STAM2</td>
<td>10254</td>
<td>signal transducing adaptor molecule (SH3 domain and ITAM motif) 2</td>
<td>3.87</td>
<td>chr2</td>
</tr>
<tr>
<td>STAR13</td>
<td>90627</td>
<td>START domain containing 13</td>
<td>7.46</td>
<td>chr13</td>
</tr>
<tr>
<td>STAT1</td>
<td>6772</td>
<td>signal transducer and activator of transcription 1, 91kDa</td>
<td>2.12</td>
<td>(vide)</td>
</tr>
<tr>
<td>STAT2</td>
<td>6773</td>
<td>signal transducer and activator of transcription 2, 113kDa</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>STAT3</td>
<td>6774</td>
<td>signal transducer and activator of transcription 3 (acute-phase response factor)</td>
<td>2.17</td>
<td>chr17</td>
</tr>
<tr>
<td>STAT6</td>
<td>6778</td>
<td>signal transducer and activator of transcription 6, interleukin-4 induced</td>
<td>2.49</td>
<td>chr12</td>
</tr>
<tr>
<td>STC2</td>
<td>8614</td>
<td>stanniocalcin 2</td>
<td>6.38</td>
<td>chr5</td>
</tr>
<tr>
<td>STCH</td>
<td>6782</td>
<td>stress 70 protein chaperone, microsome-associated, 60kDa</td>
<td>2.70</td>
<td>chr21</td>
</tr>
<tr>
<td>STK10</td>
<td>6793</td>
<td>serine/threonine kinase 10</td>
<td>2.21</td>
<td>chr5</td>
</tr>
<tr>
<td>STK17A</td>
<td>9263</td>
<td>Serine/threonine kinase 17a (apoptosis-inducing)</td>
<td>6.55</td>
<td>chr7</td>
</tr>
<tr>
<td>STK17B</td>
<td>9262</td>
<td>Basic leucine zipper and W2 domains 1</td>
<td>13.41</td>
<td>chr2</td>
</tr>
<tr>
<td>STK32B</td>
<td>55351</td>
<td>serine/threonine kinase 32B</td>
<td>4.59</td>
<td>chr4</td>
</tr>
<tr>
<td>STML1</td>
<td>9399</td>
<td>stromatin (EPB72)-like 1</td>
<td>3.40</td>
<td>chr15</td>
</tr>
<tr>
<td>STS</td>
<td>412</td>
<td>steroid sulfatase (microsomal), arylsulfatase C, isozyme S</td>
<td>2.37</td>
<td>chrX</td>
</tr>
<tr>
<td>STS-1</td>
<td>84959</td>
<td>Cbl-interacting protein Sts-1</td>
<td>13.09</td>
<td>chr11</td>
</tr>
<tr>
<td>STX12</td>
<td>23673</td>
<td>syntaxin 12</td>
<td>8.02</td>
<td>chr1</td>
</tr>
<tr>
<td>STX5A</td>
<td>6811</td>
<td>syntaxin 5A</td>
<td>2.81</td>
<td>chr11</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>STXB1</td>
<td>syntaxin binding protein 1</td>
<td>2.79</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>SULF1</td>
<td>sulfatase 1</td>
<td>89.16</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>SUMF1</td>
<td>sulfatase modifying factor 1</td>
<td>2.32</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>SUPT6H</td>
<td>suppressor of Ty 6 homolog (S. cerevisiae)</td>
<td>2.27</td>
<td>chr17</td>
<td></td>
</tr>
<tr>
<td>SURF4</td>
<td>surfet 4</td>
<td>2.15</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>SUSD1</td>
<td>susho domain containing 1</td>
<td>2.64</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>SYBL1</td>
<td>synaptopodulin-1-like 1</td>
<td>2.90</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>SYDE1</td>
<td>synapse defective 1, Rho GTPase, homolog 1 (C. elegans)</td>
<td>2.18</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>SYNE1</td>
<td>spectrin repeat containing, nuclear envelope 1</td>
<td>14.30</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>SYNJ1</td>
<td>synaptotagmin 1</td>
<td>2.29</td>
<td>chr21</td>
<td></td>
</tr>
<tr>
<td>SYNJ2</td>
<td>synaptotagmin 2</td>
<td>7.52</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>SYNPO</td>
<td>synaptotropin</td>
<td>25.03</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>SYNPO2</td>
<td>synaptotagmin 2</td>
<td>32.72</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>SYTL2</td>
<td>synaptotagmin-like 2</td>
<td>5.76</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>SYTL4</td>
<td>Synaptotagmin-like 4 (granulinophilin)</td>
<td>3.38</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>TACC1</td>
<td>transforming, acidic coiled-coil containing protein 1</td>
<td>6.32</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>TAF13</td>
<td>TAF13 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 6</td>
<td>2.18</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>TAGLN</td>
<td>transgelin</td>
<td>25.80</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>TAGLN2</td>
<td>transgelin 2</td>
<td>6.46</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>TANC</td>
<td>TPR domain, ankryin-repeat and coiled-coil-containing</td>
<td>9.37</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>TANK</td>
<td>TRAF family member-associated NFKB activator</td>
<td>4.16</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>TAPBP</td>
<td>TAP binding protein (tapasin)</td>
<td>2.27</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>TAX1BP3</td>
<td>TAx1 (human T-cell leukemia virus type I) binding protein 3</td>
<td>3.35</td>
<td>chr17</td>
<td></td>
</tr>
<tr>
<td>TBC1D10B</td>
<td>TBC1 domain family, member 10B</td>
<td>2.05</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>TBC1D12</td>
<td>TBC1 domain family, member 12</td>
<td>4.02</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>TBC1D19</td>
<td>TBC1 domain family, member 19</td>
<td>2.57</td>
<td>chr4</td>
<td></td>
</tr>
<tr>
<td>TBC1D2</td>
<td>TBC1 domain family, member 2</td>
<td>3.50</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>TBC1D20</td>
<td>TBC1 domain family, member 20</td>
<td>2.22</td>
<td>chr20</td>
<td></td>
</tr>
<tr>
<td>TBL1X</td>
<td>transducin (beta)-like 1-1X-linked</td>
<td>2.04</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>TBL2</td>
<td>transducin (beta)-like 2</td>
<td>2.31</td>
<td>chr7</td>
<td></td>
</tr>
<tr>
<td>TBX2</td>
<td>T-box 2</td>
<td>3.54</td>
<td>chr17</td>
<td></td>
</tr>
<tr>
<td>TBX3</td>
<td>T-box 3</td>
<td>5.02</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>TCEA3</td>
<td>transcription elongation factor A (SII), 3</td>
<td>5.15</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>TCEAL3</td>
<td>transcription elongation factor A (SII)-like 1</td>
<td>2.94</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>TCEB1</td>
<td>transcription elongation factor A (SII)-like 3</td>
<td>3.89</td>
<td>chrX</td>
<td></td>
</tr>
<tr>
<td>TCEB1</td>
<td>transcription elongation factor (SII), poly peptide 1 (15kDa, elongin C)</td>
<td>2.02</td>
<td>chr8</td>
<td></td>
</tr>
<tr>
<td>TCF8</td>
<td>transcription factor 8 (represses interleukin 2 expression)</td>
<td>15.59</td>
<td>chr10</td>
<td></td>
</tr>
<tr>
<td>TCGR1</td>
<td>T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 protein a isoform 1</td>
<td>2.21</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>TCP11L1</td>
<td>I-complex 11 (mouse) like 1</td>
<td>3.21</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>TCTA</td>
<td>T-cell leukemia translocation altered gene</td>
<td>2.52</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>TCTE1L</td>
<td>I-complex-associated-tests-expressed 1-1</td>
<td>4.95</td>
<td>chr20</td>
<td></td>
</tr>
<tr>
<td>TCTE3</td>
<td>I-complex-associated-tests-expressed 3</td>
<td>2.17</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>TDE1</td>
<td>tumor differentially expressed 1</td>
<td>3.61</td>
<td>chr20</td>
<td></td>
</tr>
<tr>
<td>TEAD1</td>
<td>TEA domain family member 1 (SV40 transcriptional enhancer factor)</td>
<td>2.79</td>
<td>chr11</td>
<td></td>
</tr>
<tr>
<td>TERF2</td>
<td>telomeric repeat binding factor 2</td>
<td>2.51</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>TERF2SP</td>
<td>telomeric repeat binding factor 2, interacting protein</td>
<td>3.89</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>TES</td>
<td>testis derived transcript (3 LIM domains)</td>
<td>4.38</td>
<td>chr7</td>
<td></td>
</tr>
<tr>
<td>TESK1</td>
<td>testis-specific kinase 1</td>
<td>2.11</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>TEX261</td>
<td>testis expressed sequence 261</td>
<td>3.48</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>TFAP2A</td>
<td>transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha)</td>
<td>16.14</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>TFG</td>
<td>TRK-fused gene</td>
<td>2.05</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>TPI</td>
<td>tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor)</td>
<td>3.89</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>TGBF1</td>
<td>transforming growth factor, beta 1 (Camurati-Engelmann disease)</td>
<td>2.33</td>
<td>chr19</td>
<td></td>
</tr>
<tr>
<td>TGBF11</td>
<td>transforming growth factor beta 1 induced transcript 1</td>
<td>32.03</td>
<td>chr16</td>
<td></td>
</tr>
<tr>
<td>TGBF2</td>
<td>transforming growth factor, beta 2</td>
<td>86.91</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>TGBF2</td>
<td>transforming growth factor, beta 2</td>
<td>86.91</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>TGBF2</td>
<td>transforming growth factor, beta 2</td>
<td>86.91</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>TGBF2</td>
<td>transforming growth factor, beta 2</td>
<td>112.99</td>
<td>chr5</td>
<td></td>
</tr>
<tr>
<td>TGBR1</td>
<td>Transforming growth factor, beta receptor 1 (activin A receptor type II-like kinase)</td>
<td>2.27</td>
<td>chr9</td>
<td></td>
</tr>
<tr>
<td>TGBR2</td>
<td>transforming growth factor, beta receptor 1 (70/80kDa)</td>
<td>11.19</td>
<td>chr3</td>
<td></td>
</tr>
<tr>
<td>TGM2</td>
<td>transglutaminase 2 (C poly peptide, protein-glutamine-gamma-glutamyltransferase)</td>
<td>24.74</td>
<td>chr20</td>
<td></td>
</tr>
<tr>
<td>TGOLN2</td>
<td>trans-golgi network protein 2</td>
<td>4.37</td>
<td>chr2</td>
<td></td>
</tr>
<tr>
<td>THBD</td>
<td>thrombomodulin</td>
<td>6.10</td>
<td>chr20</td>
<td></td>
</tr>
<tr>
<td>THBS1</td>
<td>thrombospandin 1</td>
<td>76.57</td>
<td>chr15</td>
<td></td>
</tr>
<tr>
<td>THBS2</td>
<td>thrombospandin 2</td>
<td>22.66</td>
<td>chr6</td>
<td></td>
</tr>
<tr>
<td>THBS3</td>
<td>thrombospandin 3</td>
<td>4.99</td>
<td>chr1</td>
<td></td>
</tr>
<tr>
<td>THRAP2</td>
<td>Thyroid hormone receptor associated protein 2</td>
<td>7.06</td>
<td>chr12</td>
<td></td>
</tr>
<tr>
<td>THSD4</td>
<td>Thrombospandin, type I, domain containing 4</td>
<td>4.83</td>
<td>chr15</td>
<td></td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>TICAM2</td>
<td>353376</td>
<td>toll-like receptor adaptor molecule 2</td>
<td>6.89</td>
<td>chr5</td>
</tr>
<tr>
<td>TIFA</td>
<td>92610</td>
<td>TRAF-interacting protein with a forkhead-associated domain</td>
<td>5.27</td>
<td>chr4</td>
</tr>
<tr>
<td>TIMM17A</td>
<td>10440</td>
<td>translocase of inner mitochondrial membrane 17 homolog A (yeast)</td>
<td>2.14</td>
<td>chr1</td>
</tr>
<tr>
<td>TIMP1</td>
<td>7076</td>
<td>TIMP metalloproteinase inhibitor 1</td>
<td>6.65</td>
<td>chrX</td>
</tr>
<tr>
<td>TIMP2</td>
<td>7077</td>
<td>TIMP metalloproteinase inhibitor 2</td>
<td>1.40</td>
<td>chr17</td>
</tr>
<tr>
<td>TIMP3</td>
<td>7078</td>
<td>TIMP metalloproteinase inhibitor 3 (Gonsy fundus dystrophy, pseudoinflammatory)</td>
<td>52.32</td>
<td>chr22</td>
</tr>
<tr>
<td>TIPARP</td>
<td>25976</td>
<td>TGD2-inducible poly(ADP-ribose) polymerase</td>
<td>10.37</td>
<td>chr3</td>
</tr>
<tr>
<td>TIPRL</td>
<td>261726</td>
<td>TIP41, TOR signaling pathway regulator-like (S. cerevisiae)</td>
<td>3.33</td>
<td>chr1</td>
</tr>
<tr>
<td>TK2</td>
<td>7084</td>
<td>thymidine kinase 2, mitochondrial</td>
<td>5.02</td>
<td>chr16</td>
</tr>
<tr>
<td>TLOC1</td>
<td>7095</td>
<td>translation protein 1</td>
<td>3.35</td>
<td>chr3</td>
</tr>
<tr>
<td>TLR4</td>
<td>7099</td>
<td>toll-like receptor 4 /// toll-like receptor 4</td>
<td>4.58</td>
<td>chr9</td>
</tr>
<tr>
<td>TM2D1</td>
<td>83941</td>
<td>TM2 domain containing 1</td>
<td>3.12</td>
<td>chr1</td>
</tr>
<tr>
<td>TM4SF1</td>
<td>4071</td>
<td>transmembrane 4 L six family member 1</td>
<td>48.84</td>
<td>chr3</td>
</tr>
<tr>
<td>TMTSF1</td>
<td>7107</td>
<td>transmembrane 7 superfamily member 1 (upregulated in kidney)</td>
<td>2.27</td>
<td>chr1</td>
</tr>
<tr>
<td>TMNSF1</td>
<td>10548</td>
<td>transmembrane 9 superfamily member 1</td>
<td>2.73</td>
<td>chr14</td>
</tr>
<tr>
<td>TMBIM1</td>
<td>64114</td>
<td>transmembrane BAX inhibitor motif containing 1</td>
<td>2.78</td>
<td>chr2</td>
</tr>
<tr>
<td>TMCO1</td>
<td>54489</td>
<td>transmembrane and coiled-coil domains 1</td>
<td>2.37</td>
<td>chr1</td>
</tr>
<tr>
<td>TMCO3</td>
<td>55002</td>
<td>transmembrane and coiled-coil domains 3</td>
<td>4.78</td>
<td>chr13</td>
</tr>
<tr>
<td>TME3D3</td>
<td>23423</td>
<td>transmembrane emp24 protein transport domain containing 3</td>
<td>2.28</td>
<td>chr15</td>
</tr>
<tr>
<td>TME3D4</td>
<td>222068</td>
<td>transmembrane emp24 protein transport domain containing 4</td>
<td>2.57</td>
<td>chr7</td>
</tr>
<tr>
<td>TME3D5</td>
<td>50999</td>
<td>transmembrane emp24 protein transport domain containing 5</td>
<td>2.16</td>
<td>chr1</td>
</tr>
<tr>
<td>TME7D</td>
<td>51014</td>
<td>transmembrane emp24 protein transport domain containing 7</td>
<td>2.44</td>
<td>chr5</td>
</tr>
<tr>
<td>TMEM14A</td>
<td>28978</td>
<td>transmembrane protein 14A</td>
<td>2.43</td>
<td>chr6</td>
</tr>
<tr>
<td>TMEM16D</td>
<td>121601</td>
<td>transmembrane protein 16D</td>
<td>2.46</td>
<td>chr12</td>
</tr>
<tr>
<td>TMEM16F</td>
<td>196527</td>
<td>transmembrane protein 16F</td>
<td>2.61</td>
<td>chr12</td>
</tr>
<tr>
<td>TMEM71</td>
<td>200728</td>
<td>transmembrane 17</td>
<td>2.04</td>
<td>chr2</td>
</tr>
<tr>
<td>TMEM30A</td>
<td>55754</td>
<td>transmembrane protein 30A</td>
<td>7.85</td>
<td>chr6</td>
</tr>
<tr>
<td>TME4M3</td>
<td>79188</td>
<td>transmembrane protein 43</td>
<td>2.80</td>
<td>chr3</td>
</tr>
<tr>
<td>TME4M4A</td>
<td>55076</td>
<td>transmembrane protein 45A</td>
<td>2.67</td>
<td>chr3</td>
</tr>
<tr>
<td>TME4M4B</td>
<td>83604</td>
<td>transmembrane protein 47</td>
<td>2.45</td>
<td>chrX</td>
</tr>
<tr>
<td>TME4M49</td>
<td>81671</td>
<td>transmembrane protein 49</td>
<td>4.57</td>
<td>chr17</td>
</tr>
<tr>
<td>TME5M</td>
<td>10329</td>
<td>transmembrane protein 5</td>
<td>4.10</td>
<td>chr12</td>
</tr>
<tr>
<td>TME5M50B</td>
<td>757</td>
<td>transmembrane protein 50B</td>
<td>4.91</td>
<td>chr21</td>
</tr>
<tr>
<td>TME5M55A</td>
<td>55529</td>
<td>transmembrane protein 55A</td>
<td>2.21</td>
<td>chr8</td>
</tr>
<tr>
<td>TME6M6</td>
<td>157378</td>
<td>transmembrane protein 65</td>
<td>3.26</td>
<td>chr8</td>
</tr>
<tr>
<td>TME6M7</td>
<td>138050</td>
<td>transmembrane protein 76</td>
<td>10.31</td>
<td>chr8</td>
</tr>
<tr>
<td>TME6M7B</td>
<td>84910</td>
<td>Transmembrane protein 87B</td>
<td>4.46</td>
<td>chr2</td>
</tr>
<tr>
<td>TME6M8B</td>
<td>56674</td>
<td>TMEM6 domain family, member B</td>
<td>2.23</td>
<td>chr11</td>
</tr>
<tr>
<td>TF1F</td>
<td>7110</td>
<td>TATA element modulatory factor 1</td>
<td>2.82</td>
<td>chr3</td>
</tr>
<tr>
<td>TMD3</td>
<td>29766</td>
<td>tropomodulin 3 (ubiquitous)</td>
<td>3.17</td>
<td>chr15</td>
</tr>
<tr>
<td>TMSB10</td>
<td>9168</td>
<td>thymosin, beta 10</td>
<td>2.57</td>
<td>chr2</td>
</tr>
<tr>
<td>TNC</td>
<td>3371</td>
<td>tenascin C (hexabrachion)</td>
<td>56.43</td>
<td>chr9</td>
</tr>
<tr>
<td>TncRNA</td>
<td>283131</td>
<td>trophoblast-derived noncoding RNA</td>
<td>16.78</td>
<td>chr11</td>
</tr>
<tr>
<td>TNFAF1P1</td>
<td>7126</td>
<td>tumor necrosis factor, alpha-induced protein 1 (endothelial)</td>
<td>7.01</td>
<td>chr17</td>
</tr>
<tr>
<td>TNFAF3P3</td>
<td>7128</td>
<td>tumor necrosis factor, alpha-induced protein 3</td>
<td>6.10</td>
<td>chr6</td>
</tr>
<tr>
<td>TNFAF5P6</td>
<td>7130</td>
<td>tumor necrosis factor, alpha-induced protein 6</td>
<td>2.49</td>
<td>chr2</td>
</tr>
<tr>
<td>TNFRSF10B</td>
<td>8795</td>
<td>tumor necrosis factor receptor superfamily, member 10b</td>
<td>4.42</td>
<td>chr8</td>
</tr>
<tr>
<td>TNFRSF10D</td>
<td>8793</td>
<td>tumor necrosis factor receptor superfamily, member 10d, decay with truncated</td>
<td>17.91</td>
<td>chr8</td>
</tr>
<tr>
<td>TNFRSF1A</td>
<td>7132</td>
<td>tumor necrosis factor receptor superfamily, member 1A</td>
<td>6.21</td>
<td>chr12</td>
</tr>
<tr>
<td>TNFSF4</td>
<td>7292</td>
<td>tumor necrosis factor (ligand) superfamily, member 4 (tax-transcriptionally active)</td>
<td>8.61</td>
<td>chr1</td>
</tr>
<tr>
<td>TNP1</td>
<td>10318</td>
<td>TNFAIP3 interacting protein 1</td>
<td>2.96</td>
<td>chr5</td>
</tr>
<tr>
<td>TNS1</td>
<td>7145</td>
<td>tensin 1 /// tensin 1</td>
<td>72.39</td>
<td>chr2</td>
</tr>
<tr>
<td>TNS2</td>
<td>64759</td>
<td>Tensin 3</td>
<td>4.74</td>
<td>chr7</td>
</tr>
<tr>
<td>TOR1AIP2</td>
<td>163590</td>
<td>Torsin A interacting protein 2</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>TPS3N1P1</td>
<td>94241</td>
<td>tumor protein p53 inducible nuclear protein 1</td>
<td>2.62</td>
<td>chr8</td>
</tr>
<tr>
<td>TPS3N1P2</td>
<td>58476</td>
<td>tumor protein p53 inducible nuclear protein 2</td>
<td>2.64</td>
<td>chr20</td>
</tr>
<tr>
<td>TPCN1</td>
<td>53373</td>
<td>two pore segment channel 1</td>
<td>2.75</td>
<td>chr12</td>
</tr>
<tr>
<td>TPM1</td>
<td>7168</td>
<td>Tropomysin 1 (alpha)</td>
<td>7.72</td>
<td>chr15</td>
</tr>
<tr>
<td>TPM2</td>
<td>7169</td>
<td>tropomysin 2 (beta)</td>
<td>7.37</td>
<td>chr9</td>
</tr>
<tr>
<td>TPM3</td>
<td>7171</td>
<td>tropomysin 3 /// tropomysin 4</td>
<td>4.37</td>
<td>chr3</td>
</tr>
<tr>
<td>TPM4</td>
<td>7171</td>
<td>tropomysin 4</td>
<td>6.47</td>
<td>chr3</td>
</tr>
<tr>
<td>TPS1T</td>
<td>8460</td>
<td>tyrosylprotein sulfotransferase 1</td>
<td>3.35</td>
<td>chr7</td>
</tr>
<tr>
<td>TRA1</td>
<td>7184</td>
<td>tumor rejection antigen (gp96) 1</td>
<td>2.05</td>
<td>(vide)</td>
</tr>
<tr>
<td>TRADD</td>
<td>8717</td>
<td>TNFRSF1A-associated via death domain</td>
<td>4.41</td>
<td>chr16</td>
</tr>
<tr>
<td>TRAF3</td>
<td>7187</td>
<td>TNF receptor-associated factor 3</td>
<td>3.00</td>
<td>chr14</td>
</tr>
<tr>
<td>TRAM1</td>
<td>25471</td>
<td>translocation associated membrane protein 1</td>
<td>2.74</td>
<td>chr8</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAM2</td>
<td>9697</td>
<td>translocation associated membrane protein 2</td>
<td>13.77</td>
<td>chr6</td>
</tr>
<tr>
<td>TRAPP1C1</td>
<td>58485</td>
<td>trafficking protein particle complex 1</td>
<td>3.18</td>
<td>chr17</td>
</tr>
<tr>
<td>TRAPP3C3</td>
<td>27095</td>
<td>trafficking protein particle complex 3</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>TRHDE</td>
<td>29953</td>
<td>thyrotropin-releasing hormone degrading enzyme</td>
<td>10.58</td>
<td>chr12</td>
</tr>
<tr>
<td>TRIB3</td>
<td>57761</td>
<td>tribbles homolog 3 (Drosophila)</td>
<td>5.27</td>
<td>chr20</td>
</tr>
<tr>
<td>TRIM16</td>
<td>10626 /// 147188</td>
<td>tripartite motif-containing 16 // similar to tripartite motif-containing 16; estrogen-responsive</td>
<td>6.36</td>
<td>chr17</td>
</tr>
<tr>
<td>TRIM22</td>
<td>10346</td>
<td>tripartite motif-containing 22</td>
<td>5.53</td>
<td>chr11</td>
</tr>
<tr>
<td>TRIM34</td>
<td>443572 /// 53840</td>
<td>tripartite motif-containing 34 // tripartite motif-containing 6 and tripartite motif-containing 5 // tripartite motif-containing 22</td>
<td>3.06</td>
<td>chr11</td>
</tr>
<tr>
<td>TRIM44</td>
<td>54765</td>
<td>tripartite motif-containing 44</td>
<td>2.29</td>
<td>chr11</td>
</tr>
<tr>
<td>TRIM5</td>
<td>85863</td>
<td>tripartite motif-containing 5</td>
<td>2.89</td>
<td>chr11</td>
</tr>
<tr>
<td>TRIM50B</td>
<td>37593</td>
<td>tripartite motif-containing 50B</td>
<td>2.24</td>
<td>chr7</td>
</tr>
<tr>
<td>TRIM56</td>
<td>81844</td>
<td>tripartite motif-containing 56</td>
<td>2.32</td>
<td>chr7</td>
</tr>
<tr>
<td>TRIM58</td>
<td>25893</td>
<td>tripartite motif-containing 58</td>
<td>4.25</td>
<td>chr1</td>
</tr>
<tr>
<td>TRIM62</td>
<td>55223</td>
<td>tripartite motif-containing 62</td>
<td>2.54</td>
<td>chr1</td>
</tr>
<tr>
<td>TRIM8</td>
<td>81603</td>
<td>tripartite motif-containing 8</td>
<td>3.71</td>
<td>chr10</td>
</tr>
<tr>
<td>TRIO</td>
<td>7204</td>
<td>triple functional domain (PTPRF interacting)</td>
<td>3.18</td>
<td>chr5</td>
</tr>
<tr>
<td>TRIOBP</td>
<td>11078</td>
<td>TRIO and F-actin binding protein</td>
<td>2.09</td>
<td>chr22</td>
</tr>
<tr>
<td>TRIP11</td>
<td>9321</td>
<td>thyroid hormone receptor intracellular 11</td>
<td>2.29</td>
<td>chr14</td>
</tr>
<tr>
<td>TRPC4</td>
<td>7223</td>
<td>transient receptor potential cation channel, subfamily C, member 4</td>
<td>3.31</td>
<td>chr13</td>
</tr>
<tr>
<td>TRPS1</td>
<td>7227</td>
<td>trichorhinophalangeal syndrome I</td>
<td>4.44</td>
<td>chr8</td>
</tr>
<tr>
<td>TSC2D2</td>
<td>9819</td>
<td>TSC2D2 domain, family member 2</td>
<td>2.33</td>
<td>chr3</td>
</tr>
<tr>
<td>TSPAN10</td>
<td>83882</td>
<td>tetraspanin 10</td>
<td>2.35</td>
<td>chr17</td>
</tr>
<tr>
<td>TSPAN31</td>
<td>6302</td>
<td>tetraspanin 31</td>
<td>2.16</td>
<td>chr12</td>
</tr>
<tr>
<td>TSPAN5</td>
<td>10098</td>
<td>tetraspanin 5 // tetraspanin 5</td>
<td>4.10</td>
<td>chr4</td>
</tr>
<tr>
<td>TTC3</td>
<td>7267</td>
<td>tetratricopeptide repeat domain 3</td>
<td>26.78</td>
<td>chr21</td>
</tr>
<tr>
<td>TTC8</td>
<td>123016</td>
<td>tetratricopeptide repeat domain 8</td>
<td>2.88</td>
<td>chr14</td>
</tr>
<tr>
<td>TTVH2</td>
<td>94015</td>
<td>tetrahydrolipid 2 (Drosophila)</td>
<td>2.18</td>
<td>chr17</td>
</tr>
<tr>
<td>TTVH3</td>
<td>80727</td>
<td>tetrahydrolipid 3 (Drosophila)</td>
<td>2.65</td>
<td>chr7</td>
</tr>
<tr>
<td>TUBA3</td>
<td>7846</td>
<td>tubulin, alpha 3</td>
<td>2.00</td>
<td>chr12</td>
</tr>
<tr>
<td>TUF1T1</td>
<td>7286</td>
<td>tufelin 1</td>
<td>4.04</td>
<td>chr1</td>
</tr>
<tr>
<td>TULP3</td>
<td>7289</td>
<td>tubby like protein 3</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>TWIST1</td>
<td>7291</td>
<td>twist homolog 1 (acrocephalosyndactyly 3; Saethre-Chotzen syndrome) (Drosophila)</td>
<td>10.64</td>
<td>chr7</td>
</tr>
<tr>
<td>TWSG1</td>
<td>57045</td>
<td>twisted gastrulation homolog 1 (Drosophila)</td>
<td>3.64</td>
<td>chr18</td>
</tr>
<tr>
<td>TXNDC10</td>
<td>54495</td>
<td>thioredoxin domain containing 10</td>
<td>3.71</td>
<td>chr18</td>
</tr>
<tr>
<td>TXNDC11</td>
<td>51061</td>
<td>thioredoxin domain containing 11</td>
<td>3.94</td>
<td>chr16</td>
</tr>
<tr>
<td>TXNDC13</td>
<td>56255</td>
<td>thioredoxin domain containing 13</td>
<td>2.65</td>
<td>chr20</td>
</tr>
<tr>
<td>TXNIP</td>
<td>10628</td>
<td>thioredoxin interacting protein</td>
<td>11.94</td>
<td>chr1</td>
</tr>
<tr>
<td>TXNRD1</td>
<td>7296</td>
<td>thioredoxin reductase 1</td>
<td>3.06</td>
<td>chr12</td>
</tr>
<tr>
<td>TXNRD3</td>
<td>114112</td>
<td>thioredoxin reductase 3</td>
<td>2.06</td>
<td>chr3</td>
</tr>
<tr>
<td>UACA</td>
<td>55075</td>
<td>uveal autoantigen with coiled-coil domains and arkyrin repeats</td>
<td>5.87</td>
<td>chr15</td>
</tr>
<tr>
<td>UAP1</td>
<td>6675</td>
<td>UDP-N-acetylglucosamine pyrophosphorylase 1</td>
<td>5.83</td>
<td>chr1</td>
</tr>
<tr>
<td>UBE2B</td>
<td>7320</td>
<td>ubiquitin-conjugating enzyme E2B (RAD6 homolog)</td>
<td>2.59</td>
<td>chr5</td>
</tr>
<tr>
<td>UBE2H</td>
<td>7328</td>
<td>Ubiquitin-conjugating enzyme E2H (UBC8 homolog, yeast)</td>
<td>4.72</td>
<td>chr7</td>
</tr>
<tr>
<td>UBE2J1</td>
<td>51465</td>
<td>ubiquitin-conjugating enzyme E2, J1 (UBC6 homolog, yeast)</td>
<td>10.53</td>
<td>chr6</td>
</tr>
<tr>
<td>UBE2Q2</td>
<td>92912</td>
<td>ubiquitin-conjugating enzyme E2Q (putative) 2</td>
<td>2.76</td>
<td>chr15</td>
</tr>
<tr>
<td>UBE2W</td>
<td>55284</td>
<td>ubiquitin-conjugating enzyme E2W (putative)</td>
<td>2.32</td>
<td>chr8</td>
</tr>
<tr>
<td>UBL3</td>
<td>5412</td>
<td>ubiquitin-like 3</td>
<td>2.60</td>
<td>chr13</td>
</tr>
<tr>
<td>UBXD1</td>
<td>80700</td>
<td>UBX domain containing 1</td>
<td>3.08</td>
<td>chr19</td>
</tr>
<tr>
<td>UEV3</td>
<td>55293</td>
<td>Ubiquitin-conjugating enzyme E2-like</td>
<td>6.82</td>
<td>chr11</td>
</tr>
<tr>
<td>UFM1</td>
<td>51569</td>
<td>ubiquitin-fold modifier 1</td>
<td>3.62</td>
<td>chr13</td>
</tr>
<tr>
<td>UGGCG</td>
<td>7357</td>
<td>UDP-glucose ceramide glucosyltransferase</td>
<td>4.24</td>
<td>chr9</td>
</tr>
<tr>
<td>UGGCG1</td>
<td>56886</td>
<td>UDP-glucose ceramide glucosyltransferase-1-like</td>
<td>2.14</td>
<td>chr2</td>
</tr>
<tr>
<td>UGGCG2</td>
<td>55757</td>
<td>UDP-glucose ceramide glucosyltransferase-2-like</td>
<td>4.64</td>
<td>chr13</td>
</tr>
<tr>
<td>UHMK1</td>
<td>127933</td>
<td>U2AF homology motif (UHM) kinase 1</td>
<td>6.04</td>
<td>chr1</td>
</tr>
<tr>
<td>ULBP2</td>
<td>80328</td>
<td>UL16 binding protein 2</td>
<td>24.08</td>
<td>chr6</td>
</tr>
<tr>
<td>JLUK2</td>
<td>9706</td>
<td>unc-51-like kinase 2 (C. elegans)</td>
<td>2.16</td>
<td>chr17</td>
</tr>
<tr>
<td>UNCG4B</td>
<td>25777</td>
<td>unc-84 homolog B (C. elegans)</td>
<td>2.72</td>
<td>chr22</td>
</tr>
<tr>
<td>UNQ1912</td>
<td>345757</td>
<td>HGG_RE408</td>
<td>5.13</td>
<td>chr5</td>
</tr>
<tr>
<td>URB</td>
<td>151887</td>
<td>steroid sensitive gene 1</td>
<td>147.43</td>
<td>chr3</td>
</tr>
<tr>
<td>UROS</td>
<td>7390</td>
<td>uroporphyrinogen III synthase (congenital erythropoietic porphyria)</td>
<td>2.02</td>
<td>chr10</td>
</tr>
<tr>
<td>USP15</td>
<td>9958</td>
<td>ubiquitin specific peptidase 15</td>
<td>2.63</td>
<td>chr12</td>
</tr>
<tr>
<td>USP3</td>
<td>9960</td>
<td>ubiquitin specific peptidase 3</td>
<td>8.33</td>
<td>chr15</td>
</tr>
<tr>
<td>USP30</td>
<td>84749</td>
<td>Ubiquitin specific peptidase 30</td>
<td>2.13</td>
<td>chr12</td>
</tr>
<tr>
<td>USP38</td>
<td>84640</td>
<td>ubiquitin specific peptidase 38</td>
<td>2.19</td>
<td>chr4</td>
</tr>
<tr>
<td>USP40</td>
<td>55230</td>
<td>ubiquitin specific peptidase 40</td>
<td>2.38</td>
<td>chr8</td>
</tr>
<tr>
<td>USP47</td>
<td>55031</td>
<td>ubiquitin specific peptidase 47</td>
<td>2.44</td>
<td>chr11</td>
</tr>
</tbody>
</table>
Table S4: Genes overexpressed in MPC compared to hES (Fold Change > 2; a < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC up</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP53</td>
<td>54532</td>
<td>ubiquitin specific peptidase 53</td>
<td>3.74</td>
<td>chr4</td>
</tr>
<tr>
<td>VAMP3</td>
<td>9341</td>
<td>vesicle-associated membrane protein 3 (cellubrevin) /// vesicle-associated mem protein 3</td>
<td>3.14</td>
<td>chr1</td>
</tr>
<tr>
<td>VAMP4</td>
<td>8674</td>
<td>vesicle-associated membrane protein 4</td>
<td>2.99</td>
<td>chr1</td>
</tr>
<tr>
<td>VCA1M</td>
<td>7412</td>
<td>vascular cell adhesion molecule 1</td>
<td>18.34</td>
<td>chr1</td>
</tr>
<tr>
<td>VCP/P1</td>
<td>80124</td>
<td>Valosin containing protein (p97)</td>
<td>2.83</td>
<td>chr8</td>
</tr>
<tr>
<td>VDR</td>
<td>7421</td>
<td>vitamin D (1,25-dihydroxy vitamin D3) receptor</td>
<td>3.61</td>
<td>chr11</td>
</tr>
<tr>
<td>VEGF</td>
<td>7422</td>
<td>vascular endothelial growth factor</td>
<td>3.89</td>
<td>chr6</td>
</tr>
<tr>
<td>VEGFC</td>
<td>7424</td>
<td>vascular endothelial growth factor C</td>
<td>28.06</td>
<td>chr4</td>
</tr>
<tr>
<td>VEPH1</td>
<td>79674</td>
<td>ventricular zone expressed PH domain homolog 1 (zebrafish)</td>
<td>16.65</td>
<td>chr3</td>
</tr>
<tr>
<td>VGNCL1</td>
<td>259232</td>
<td>Voltage gated channel like 1</td>
<td>6.11</td>
<td>chr13</td>
</tr>
<tr>
<td>VGL-3</td>
<td>389136</td>
<td>vestigial-like 3</td>
<td>26.25</td>
<td>chr3</td>
</tr>
<tr>
<td>VIM</td>
<td>7431</td>
<td>vimentin</td>
<td>4.65</td>
<td>chr10</td>
</tr>
<tr>
<td>VPS13B</td>
<td>157680</td>
<td>vacuolar protein sorting 13B (yeast)</td>
<td>2.03</td>
<td>chr8</td>
</tr>
<tr>
<td>VPS13C</td>
<td>54832</td>
<td>Vacular protein sorting 13C (yeast)</td>
<td>2.20</td>
<td>chr15</td>
</tr>
<tr>
<td>VPS24</td>
<td>51652</td>
<td>vacuolar protein sorting 24 (yeast)</td>
<td>5.78</td>
<td>chr2</td>
</tr>
<tr>
<td>WARS</td>
<td>7453</td>
<td>tryptophyl-RNA synthetase</td>
<td>2.30</td>
<td>chr14</td>
</tr>
<tr>
<td>WASP/P1</td>
<td>7456</td>
<td>Wiskott-Aldrich syndrome protein interacting protein</td>
<td>12.00</td>
<td>chr2</td>
</tr>
<tr>
<td>WB5P5</td>
<td>51186</td>
<td>WW domain binding protein 5</td>
<td>2.61</td>
<td>chrX</td>
</tr>
<tr>
<td>WDR1</td>
<td>9948</td>
<td>WD repeat domain 1</td>
<td>2.33</td>
<td>chr4</td>
</tr>
<tr>
<td>WDR13</td>
<td>64743</td>
<td>WD repeat domain 13</td>
<td>3.13</td>
<td>chrX</td>
</tr>
<tr>
<td>WDR26</td>
<td>80232</td>
<td>WD repeat domain 26</td>
<td>3.10</td>
<td>chr1</td>
</tr>
<tr>
<td>WDR32</td>
<td>79269</td>
<td>WD repeat domain 32</td>
<td>3.48</td>
<td>chr9</td>
</tr>
<tr>
<td>WDR41</td>
<td>55255</td>
<td>WD repeat domain 41</td>
<td>3.20</td>
<td>chr5</td>
</tr>
<tr>
<td>WDR47</td>
<td>22911</td>
<td>WD repeat domain 47</td>
<td>4.32</td>
<td>chr1</td>
</tr>
<tr>
<td>WDR5B</td>
<td>54554</td>
<td>WD repeat domain 5B</td>
<td>2.58</td>
<td>chr3</td>
</tr>
<tr>
<td>WDR68</td>
<td>10238</td>
<td>WD repeat domain 68</td>
<td>3.46</td>
<td>chr17</td>
</tr>
<tr>
<td>WHDC1L2</td>
<td>440253</td>
<td>WAS protein homology region 2 domain containing 1-1</td>
<td>2.46</td>
<td>chr15</td>
</tr>
<tr>
<td>WIG1</td>
<td>64393</td>
<td>p53 target zinc finger protein</td>
<td>14.99</td>
<td>chr3</td>
</tr>
<tr>
<td>WIPPI4H</td>
<td>55062</td>
<td>WD40 repeat protein interacting with phospholipidoses of 49kDa</td>
<td>9.13</td>
<td>chr17</td>
</tr>
<tr>
<td>WNT11B</td>
<td>81029</td>
<td>wingless-like MMTV integration site family, member 5B /// wingless-type MMTV C</td>
<td>11.48</td>
<td>chr12</td>
</tr>
<tr>
<td>WSBI</td>
<td>55884</td>
<td>WD repeat and SOCS box-containing 2</td>
<td>2.97</td>
<td>chr12</td>
</tr>
<tr>
<td>WWTR1</td>
<td>25937</td>
<td>WW domain containing transcription regulator 1</td>
<td>6.13</td>
<td>chr3</td>
</tr>
<tr>
<td>XPA</td>
<td>7507</td>
<td>xeroderma pigmentosum, complementation group A</td>
<td>2.26</td>
<td>chr9</td>
</tr>
<tr>
<td>XRN1</td>
<td>54464</td>
<td>5’-3’ exoribonuclease 1</td>
<td>2.40</td>
<td>chr3</td>
</tr>
<tr>
<td>Y1F1A</td>
<td>10897</td>
<td>Yip1 interacting factor homolog A (S. cerevisiae)</td>
<td>2.35</td>
<td>chr11</td>
</tr>
<tr>
<td>YIPF3</td>
<td>25844</td>
<td>Yip1 domain family, member 3</td>
<td>2.44</td>
<td>chr6</td>
</tr>
<tr>
<td>YIPF4</td>
<td>84272</td>
<td>Yip1 domain family, member 4</td>
<td>3.37</td>
<td>chr2</td>
</tr>
<tr>
<td>YIPF5</td>
<td>81555</td>
<td>Yip1 domain family, member 5</td>
<td>8.82</td>
<td>chr5</td>
</tr>
<tr>
<td>YKT6</td>
<td>10652</td>
<td>SNARE protein Ykt6</td>
<td>2.31</td>
<td>chr7</td>
</tr>
<tr>
<td>YME1L1</td>
<td>10730</td>
<td>YME1-1 like 1 (S. cerevisiae)</td>
<td>2.11</td>
<td>chr10</td>
</tr>
<tr>
<td>YPEL2</td>
<td>388403</td>
<td>yippee-like 2 (Drosophila)</td>
<td>3.21</td>
<td>chr17</td>
</tr>
<tr>
<td>YPEL5</td>
<td>51646</td>
<td>yippee-like 5 (Drosophila)</td>
<td>5.35</td>
<td>chr2</td>
</tr>
<tr>
<td>YSG2</td>
<td>54414</td>
<td>Ysg2 homolog (mouse) /// Ysg2 homolog (mouse)</td>
<td>6.08</td>
<td>chr11</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>7534</td>
<td>Tyrosine 3-monooxynegase/tryptophan 5-monooxynegase activation protein, alpha</td>
<td>2.63</td>
<td>chr8</td>
</tr>
<tr>
<td>ZADH2</td>
<td>284273</td>
<td>zinc binding alcohol dehydrogenase, domain containing 2</td>
<td>9.43</td>
<td>chr18</td>
</tr>
<tr>
<td>ZAK</td>
<td>51776</td>
<td>sterile alpha motif and leucine zipper containing kinase AZK</td>
<td>24.60</td>
<td>chr2</td>
</tr>
<tr>
<td>ZBTB1</td>
<td>22890</td>
<td>zinc finger and BTB domain containing 1</td>
<td>3.05</td>
<td>chr14</td>
</tr>
<tr>
<td>ZBTB20</td>
<td>26137</td>
<td>zinc finger and BTB domain containing 20</td>
<td>4.00</td>
<td>chr3</td>
</tr>
<tr>
<td>ZBTB38</td>
<td>253461</td>
<td>zinc finger and BTB domain containing 38</td>
<td>4.45</td>
<td>chr3</td>
</tr>
<tr>
<td>ZBTB4</td>
<td>57659</td>
<td>zinc finger and BTB domain containing 4</td>
<td>3.29</td>
<td>chr17</td>
</tr>
<tr>
<td>ZBTB41</td>
<td>360023</td>
<td>zinc finger and BTB domain containing 41</td>
<td>4.03</td>
<td>chr11</td>
</tr>
<tr>
<td>ZC3H7A1A</td>
<td>9877</td>
<td>zinc finger CCCH-type containing 11A</td>
<td>8.18</td>
<td>chr1</td>
</tr>
<tr>
<td>ZC3H7A</td>
<td>29066</td>
<td>zinc finger CCCH-type containing 7A</td>
<td>2.09</td>
<td>chr16</td>
</tr>
<tr>
<td>ZCSL2</td>
<td>285381</td>
<td>zinc finger, CSL-type containing 2</td>
<td>3.05</td>
<td>chr3</td>
</tr>
<tr>
<td>ZDHHC24</td>
<td>254359</td>
<td>zinc finger, DHHC-type containing 24</td>
<td>2.06</td>
<td>chr19</td>
</tr>
<tr>
<td>ZDHHC29</td>
<td>51114</td>
<td>Zinc finger, DHHC-type containing 9</td>
<td>2.07</td>
<td>chrX</td>
</tr>
<tr>
<td>ZFHX1B</td>
<td>9839</td>
<td>zinc finger homeobox 1b</td>
<td>7.83</td>
<td>chr2</td>
</tr>
<tr>
<td>ZFHX4</td>
<td>79776</td>
<td>zinc finger homeodomain 4</td>
<td>3.04</td>
<td>chr8</td>
</tr>
<tr>
<td>ZFP91</td>
<td>80829</td>
<td>zinc finger protein 91 homolog (mouse)</td>
<td>2.38</td>
<td>chr11</td>
</tr>
<tr>
<td>ZFPL1</td>
<td>7542</td>
<td>zinc finger protein-like 1</td>
<td>4.15</td>
<td>chr11</td>
</tr>
<tr>
<td>ZFPM2</td>
<td>23414</td>
<td>zinc finger protein, multitype 2</td>
<td>7.09</td>
<td>chr8</td>
</tr>
<tr>
<td>ZHX1</td>
<td>11244</td>
<td>zinc fingers and homeoboxes 1</td>
<td>5.41</td>
<td>chr8</td>
</tr>
<tr>
<td>ZHX3</td>
<td>23051</td>
<td>zinc fingers and homeoboxes 3</td>
<td>2.66</td>
<td>chr20</td>
</tr>
<tr>
<td>ZKSCAN1</td>
<td>7586</td>
<td>zinc finger with KRAB and SCAN domains 1</td>
<td>5.07</td>
<td>chr7</td>
</tr>
<tr>
<td>ZMYM6</td>
<td>9204</td>
<td>zinc finger, MYM-type 6</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>ZMYND11</td>
<td>10771</td>
<td>zinc finger, MYND domain containing 11</td>
<td>2.49</td>
<td>chr10</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ZNF148</td>
<td>7707</td>
<td>Zinc finger protein 148 (pHz-52)</td>
<td>3.84</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF185</td>
<td>7739</td>
<td>zinc finger protein 185 (LIM domain)</td>
<td>4.14</td>
<td>chrX</td>
</tr>
<tr>
<td>ZNF226</td>
<td>7769</td>
<td>zinc finger protein 226</td>
<td>4.59</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF236</td>
<td>7776</td>
<td>zinc finger protein 236</td>
<td>2.07</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF25</td>
<td>219749</td>
<td>zinc finger protein 25 (KOX 19)</td>
<td>9.71</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF275</td>
<td>10838</td>
<td>zinc finger protein 275</td>
<td>2.60</td>
<td>chrX</td>
</tr>
<tr>
<td>ZNF294</td>
<td>26046</td>
<td>zinc finger protein 294</td>
<td>2.01</td>
<td>chr21</td>
</tr>
<tr>
<td>ZNF343</td>
<td>79175</td>
<td>zinc finger protein 343</td>
<td>2.26</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF365</td>
<td>22891</td>
<td>zinc finger protein 365</td>
<td>2.90</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF410</td>
<td>57862</td>
<td>zinc finger protein 410</td>
<td>2.65</td>
<td>chr14</td>
</tr>
<tr>
<td>ZNF436</td>
<td>80818</td>
<td>zinc finger protein 436</td>
<td>4.14</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF469</td>
<td>84627</td>
<td>zinc finger protein 469</td>
<td>7.92</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF503</td>
<td>84858</td>
<td>zinc finger protein 503</td>
<td>8.48</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF516</td>
<td>9658</td>
<td>zinc finger protein 516</td>
<td>2.00</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF537</td>
<td>57616</td>
<td>zinc finger protein 537</td>
<td>4.81</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF548</td>
<td>147694</td>
<td>zinc finger protein 548</td>
<td>3.71</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF575</td>
<td>284346</td>
<td>zinc finger protein 575</td>
<td>2.66</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF599</td>
<td>148103</td>
<td>zinc finger protein 599</td>
<td>2.09</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF650</td>
<td>130507</td>
<td>zinc finger protein 650</td>
<td>2.13</td>
<td>chr2</td>
</tr>
<tr>
<td>ZNF654</td>
<td>55279</td>
<td>Zinc finger protein 654</td>
<td>2.78</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF70</td>
<td>7621</td>
<td>Zinc finger protein 70 (Cos17)</td>
<td>5.07</td>
<td>chr22</td>
</tr>
<tr>
<td>ZNF703</td>
<td>80139</td>
<td>zinc finger protein 703</td>
<td>12.46</td>
<td>chr8</td>
</tr>
<tr>
<td>ZNF710</td>
<td>374655</td>
<td>Zinc finger protein 710</td>
<td>8.07</td>
<td>chr15</td>
</tr>
<tr>
<td>ZNHT1</td>
<td>10467</td>
<td>zinc finger, HIT type 1</td>
<td>2.48</td>
<td>chr7</td>
</tr>
<tr>
<td>ZSWIM6</td>
<td>57688</td>
<td>zinc finger, SWIM-type containing 6</td>
<td>3.36</td>
<td>chr5</td>
</tr>
<tr>
<td>ZYX</td>
<td>7791</td>
<td>Zyxin</td>
<td>5.69</td>
<td>chr7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wingless-type MMTV integration site family, member 5A /// wingless-type MMTV integration site family, member 5A</td>
<td>37.13</td>
<td>chr2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>syncoolin, intermediate filament 1 /// syncoolin, intermediate filament 1</td>
<td>9.57</td>
<td>chr3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protein kinase C, alpha</td>
<td>6.99</td>
<td>chr5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Similar to mitochondrial carrier triple repeat 1</td>
<td>6.41</td>
<td>chr5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fucosyltransferase 1 (galactoside 2-alpha-L-fucosyltransferase, H blood group) /// Fucosyltransferase 1 (galactoside 2-alpha-L-fucosyltransferase, H blood group)</td>
<td>4.06</td>
<td>chrY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sterol carrier protein 2 /// sterol carrier protein 2</td>
<td>2.44</td>
<td>(vide)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transmembrane protein with EGF-like and two follistatin-like domains 2 /// transmembrane protein with EGF-like and two follistatin-like domains 2</td>
<td>2.30</td>
<td>chr4</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; p < 0.05).

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC down</th>
<th>Chromosome Number/Avadis</th>
</tr>
</thead>
<tbody>
<tr>
<td>37316</td>
<td>92935</td>
<td>methionine-IRNA synthetase 2 (mitochondrial)</td>
<td>2.93</td>
<td>chr2</td>
</tr>
<tr>
<td>37865</td>
<td>55964</td>
<td>septin 3</td>
<td>4.36</td>
<td>chr22</td>
</tr>
<tr>
<td>58961</td>
<td>23157</td>
<td>septin 6</td>
<td>2.72</td>
<td>chrX</td>
</tr>
<tr>
<td>AACS</td>
<td>65985</td>
<td>acetoacetyl-CoA synthetase</td>
<td>2.48</td>
<td>chr12</td>
</tr>
<tr>
<td>AAMP</td>
<td>14</td>
<td>angio-associated, migratory cell protein</td>
<td>3.76</td>
<td>chr2</td>
</tr>
<tr>
<td>AARS</td>
<td>16</td>
<td>stanyl-IRNA synthetase</td>
<td>2.10</td>
<td>chr16</td>
</tr>
<tr>
<td>AARSL</td>
<td>57005</td>
<td>stanyl-IRNA synthetase ike</td>
<td>2.64</td>
<td>chr6</td>
</tr>
<tr>
<td>AASDH</td>
<td>132949</td>
<td>2-amino adipic 6-semialdehyde dehydrogenase</td>
<td>2.21</td>
<td>chr4</td>
</tr>
<tr>
<td>AASS</td>
<td>10157</td>
<td>aminoadipate-semialdehyde synthase</td>
<td>49.82</td>
<td>chr7</td>
</tr>
<tr>
<td>AATF</td>
<td>26574</td>
<td>apoptosis antagonizing transcription factor</td>
<td>2.30</td>
<td>chr17</td>
</tr>
<tr>
<td>ABCB6</td>
<td>10058</td>
<td>ATP-binding cassette, sub-family B (MDR/TAP), mem 6</td>
<td>2.71</td>
<td>chr2</td>
</tr>
<tr>
<td>ABCB7</td>
<td>22</td>
<td>ATP-binding cassette, sub-family B (MDR/TAP), mem 7</td>
<td>4.48</td>
<td>chrX</td>
</tr>
<tr>
<td>ABCC5</td>
<td>10057</td>
<td>ATP-binding cassette, sub-family C (CFTR/MRP), mem 5</td>
<td>2.18</td>
<td>chr3</td>
</tr>
<tr>
<td>ABCD4</td>
<td>5826</td>
<td>ATP-binding cassette, sub-family D (ALD), mem 4</td>
<td>3.01</td>
<td>chr14</td>
</tr>
<tr>
<td>ABCF1</td>
<td>23</td>
<td>ATP-binding cassette, sub-family F (GCN20), mem 1 // ATP-binding cassette</td>
<td>2.00</td>
<td>chr6</td>
</tr>
<tr>
<td>ABCG2</td>
<td>9429</td>
<td>ATP-binding cassette, sub-family G (WHITE), mem 2</td>
<td>2.81</td>
<td>chr4</td>
</tr>
<tr>
<td>ABHD11</td>
<td>83451</td>
<td>abhydrolase domain containing 11</td>
<td>2.24</td>
<td>chr7</td>
</tr>
<tr>
<td>ABHD5</td>
<td>51099</td>
<td>abhydrolase domain containing 5</td>
<td>2.25</td>
<td>chr3</td>
</tr>
<tr>
<td>ABHD9</td>
<td>79852</td>
<td>abhydrolase domain containing 9</td>
<td>8.16</td>
<td>chr19</td>
</tr>
<tr>
<td>ABLIM1</td>
<td>3983</td>
<td>actin binding LM protein 1</td>
<td>2.41</td>
<td>chr10</td>
</tr>
<tr>
<td>ABT1</td>
<td>29775</td>
<td>activator of basal transcription 1</td>
<td>2.77</td>
<td>chr6</td>
</tr>
<tr>
<td>ACAA2</td>
<td>10449</td>
<td>acetyl-Coenzyme A acetyltransferase 2 (mitochondrial 3-oxoacyl-Coenzyme A thiolase)</td>
<td>3.35</td>
<td>chr18</td>
</tr>
<tr>
<td>ACACA</td>
<td>31</td>
<td>acetyl-Coenzyme A carboxylase alpha</td>
<td>2.97</td>
<td>chr17</td>
</tr>
<tr>
<td>ACACB</td>
<td>32</td>
<td>acetyl-Coenzyme A carboxylase beta</td>
<td>5.86</td>
<td>chr12</td>
</tr>
<tr>
<td>ACAD8</td>
<td>27034</td>
<td>acyl-Coenzyme A dehydrogenase family, mem 8</td>
<td>3.81</td>
<td>chr11</td>
</tr>
<tr>
<td>ACADSB</td>
<td>36</td>
<td>acyl-Coenzyme A dehydrogenase, short/branch chain</td>
<td>2.51</td>
<td>chr10</td>
</tr>
<tr>
<td>ACAT2</td>
<td>39</td>
<td>acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl Coenzyme A thiolase)</td>
<td>5.22</td>
<td>chr6</td>
</tr>
<tr>
<td>ACIN1</td>
<td>22985</td>
<td>Apoptotic chromatin condensation inducer 1</td>
<td>3.16</td>
<td>chr14</td>
</tr>
<tr>
<td>ACOT7</td>
<td>11332</td>
<td>acyl-CoA thioesterase 7</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>ACOT8</td>
<td>10005</td>
<td>Acyl-CoA thioesterase 8</td>
<td>2.29</td>
<td>chr20</td>
</tr>
<tr>
<td>ACP1</td>
<td>52</td>
<td>acid phosphatase 1, soluble</td>
<td>2.44</td>
<td>chr2</td>
</tr>
<tr>
<td>ACP6</td>
<td>51205</td>
<td>Acid phosphatase 6, lysophosphatidic</td>
<td>2.60</td>
<td>chr1</td>
</tr>
<tr>
<td>ACP2L2</td>
<td>92370</td>
<td>acid phosphatase-like 2</td>
<td>3.91</td>
<td>chr3</td>
</tr>
<tr>
<td>ACTA1</td>
<td>58</td>
<td>actin, alpha 1, skeletal muscle</td>
<td>5.03</td>
<td>chr1</td>
</tr>
<tr>
<td>ACTN3</td>
<td>89</td>
<td>actinin, alpha 3</td>
<td>4.03</td>
<td>chr11</td>
</tr>
<tr>
<td>ACTR3B</td>
<td>57180</td>
<td>ARPS actin-related protein 3 homolog B (yeast)</td>
<td>4.29</td>
<td>chr7</td>
</tr>
<tr>
<td>ACTR5</td>
<td>79913</td>
<td>ARPS actin-related protein 5 homolog (yeast)</td>
<td>4.14</td>
<td>chr20</td>
</tr>
<tr>
<td>ACVR2B</td>
<td>93</td>
<td>activin A receptor, type II</td>
<td>19.71</td>
<td>chr3</td>
</tr>
<tr>
<td>ACY1</td>
<td>95</td>
<td>aminoacylase 1</td>
<td>2.85</td>
<td>chr3</td>
</tr>
<tr>
<td>ACYP1</td>
<td>97</td>
<td>acylphosphatase 1, erythrocyte (common) type</td>
<td>2.22</td>
<td>chr14</td>
</tr>
<tr>
<td>AD031</td>
<td>83935</td>
<td>AD031 protein</td>
<td>2.20</td>
<td>chr11</td>
</tr>
<tr>
<td>ADAMTS19</td>
<td>171019</td>
<td>ADAM metalloproteinlase with thrombospondin 1 motif 1, 19</td>
<td>6.19</td>
<td>chr5</td>
</tr>
<tr>
<td>ADAMTS8</td>
<td>11095</td>
<td>ADAM metalloproteinlase with thrombospondin 1 motif 1, 8</td>
<td>9.00</td>
<td>chr11</td>
</tr>
<tr>
<td>ADCK1</td>
<td>57143</td>
<td>SarF domain containing kinase 1</td>
<td>2.21</td>
<td>chr14</td>
</tr>
<tr>
<td>ADCY1</td>
<td>107</td>
<td>adenylyl cyclase 1 (brain)</td>
<td>6.53</td>
<td>chr7</td>
</tr>
<tr>
<td>ADCY2</td>
<td>108</td>
<td>adenylyl cyclase 2 (brain)</td>
<td>45.84</td>
<td>chr5</td>
</tr>
<tr>
<td>ADCY7</td>
<td>113</td>
<td>adenylyl cyclase 7</td>
<td>2.39</td>
<td>chr16</td>
</tr>
<tr>
<td>ADD2</td>
<td>119</td>
<td>adducin 2 (beta)</td>
<td>35.17</td>
<td>chr2</td>
</tr>
<tr>
<td>ADFP</td>
<td>123</td>
<td>adipose differentiation-related protein</td>
<td>2.01</td>
<td>chr9</td>
</tr>
<tr>
<td>ADNP</td>
<td>23394</td>
<td>Activity-dependent neuroprotector</td>
<td>6.89</td>
<td>chr20</td>
</tr>
<tr>
<td>ADPN</td>
<td>80339</td>
<td>adiponutrin</td>
<td>2.91</td>
<td>chr22</td>
</tr>
<tr>
<td>ADRAD2A</td>
<td>150</td>
<td>adrennergic, alpha-2A-, receptor // adrennergic, alpha-2A-, receptor</td>
<td>3.18</td>
<td>chr10</td>
</tr>
<tr>
<td>ADRBK2</td>
<td>157</td>
<td>adrennergic, beta, receptor kinase 2</td>
<td>17.21</td>
<td>chr22</td>
</tr>
<tr>
<td>ADSL</td>
<td>158</td>
<td>adenylosuccinate lyase</td>
<td>3.47</td>
<td>chr22</td>
</tr>
<tr>
<td>AFI1</td>
<td>4299</td>
<td>AF4-FMR2 family, member 1</td>
<td>3.80</td>
<td>chr4</td>
</tr>
<tr>
<td>AFG3L1</td>
<td>172</td>
<td>AFG3 ATPase family gene 3-like 1 (yeast)</td>
<td>3.66</td>
<td>chr16</td>
</tr>
<tr>
<td>AFG3L2</td>
<td>10939</td>
<td>AFG3 ATPase family gene 3-like 2 (yeast)</td>
<td>4.72</td>
<td>chr18</td>
</tr>
<tr>
<td>AGPAT4</td>
<td>56895</td>
<td>1'-acylglycerol-3-phosphate O-acetyltransferase 4 (lysophosphatic acid acyltransfer)</td>
<td>2.37</td>
<td>chr6</td>
</tr>
<tr>
<td>AGPAT5</td>
<td>55326</td>
<td>1'-acylglycerol-3-phosphate O-acetyltransferase 5 (lysophosphatic acid acyltransfer)</td>
<td>5.10</td>
<td>chr8</td>
</tr>
<tr>
<td>AGTPBP1</td>
<td>23287</td>
<td>ATP-GTP binding protein 1</td>
<td>5.09</td>
<td>chr9</td>
</tr>
<tr>
<td>AGTRAP</td>
<td>57085</td>
<td>angiotensin II receptor-associated protein</td>
<td>3.41</td>
<td>chr1</td>
</tr>
<tr>
<td>AHYQ</td>
<td>191</td>
<td>S-adenosylhomocysteine hydrolase</td>
<td>3.12</td>
<td>chr20</td>
</tr>
<tr>
<td>AHSK1</td>
<td>10598</td>
<td>AHA1, activator of heat shock 90kDa protein ATPase homolog 1 (yeast)</td>
<td>2.20</td>
<td>chr14</td>
</tr>
<tr>
<td>AM1</td>
<td>202</td>
<td>absent in melanoma 1</td>
<td>7.08</td>
<td>chr6</td>
</tr>
<tr>
<td>AM1L</td>
<td>55057</td>
<td>absent in melanoma 1-ike</td>
<td>4.73</td>
<td>chr1</td>
</tr>
<tr>
<td>AK2</td>
<td>204</td>
<td>adenylyl kinase 2</td>
<td>2.17</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK3L1</td>
<td>Adenylyl kinase 3-like 1</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK3L1</td>
<td>Adenylyl kinase 3-like 2</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKAP1</td>
<td>A kinase (PRKA) anchor protein 1</td>
<td>chr17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKAP10</td>
<td>A kinase (PRKA) anchor protein 10</td>
<td>chr17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKAP11</td>
<td>A kinase (PRKA) anchor protein 11</td>
<td>chr17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKAP13</td>
<td>A kinase (PRKA) anchor protein 13</td>
<td>chr15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKAP7</td>
<td>A kinase (PRKA) anchor protein 7</td>
<td>chr6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKAP8</td>
<td>A kinase (PRKA) anchor protein 8</td>
<td>chr9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKRI1A</td>
<td>Aldo-keto reductase family 1, member A1 (aldehyde reductase)</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDH1A1</td>
<td>Aldehyde dehydrogenase 16 family, member A1</td>
<td>chr19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDH3A2</td>
<td>Aldehyde dehydrogenase 3 family, member A2</td>
<td>chr17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDH6A1</td>
<td>Aldehyde dehydrogenase 6 family, member A1</td>
<td>chr14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDH7A1</td>
<td>Aldehyde dehydrogenase 7 family, member A1</td>
<td>chr5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDOC</td>
<td>Aldolase C, fructose-bisphosphate</td>
<td>chr17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALG6</td>
<td>Asparagine-linked glycosylation 6 homolog (yeast, alpha-1,3-galactosyltransferase)</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALG8</td>
<td>Asparagine-linked glycosylation 8 homolog (yeast, alpha-1,3-galactosyltransferase)</td>
<td>chr11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALMS1</td>
<td>Aßarchromosome 1</td>
<td>chr2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPL</td>
<td>Alkaline phosphatase, liver/bone/kidney</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALS2CR13</td>
<td>Amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 13</td>
<td>chr2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALS2CR19</td>
<td>Amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 19</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD1</td>
<td>Adenosine monophosphate deaminase</td>
<td>chr6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPH</td>
<td>Amphiphysin (Stiff-Man syndrome with breast cancer 188KaDa autoantigen)</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMT</td>
<td>Aminomethyltransferase (glycine cleavage system protein T)</td>
<td>chr3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAPC1</td>
<td>Anaphase promoting complex subunit 1</td>
<td>chr2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAPC10</td>
<td>Anaphase promoting complex subunit 10</td>
<td>chr4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAPC4</td>
<td>Anaphase promoting complex subunit 4</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAPC7</td>
<td>Anaphase promoting complex subunit 7</td>
<td>chr12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGEL2</td>
<td>Angel homolog 2 (Drosophila)</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANK3</td>
<td>Ankyrin 3, node of Ranvier (ankyrin G)</td>
<td>chr10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKH1D1</td>
<td>Ankyrin repeat and KH domain containing 1</td>
<td>chr5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKH1D4</td>
<td>Ankyrin repeat and KH domain containing 1</td>
<td>chr5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKR10</td>
<td>Ankyrin repeat domain 10</td>
<td>chr14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKR16</td>
<td>Ankyrin repeat domain 16</td>
<td>chr10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKR27</td>
<td>Ankyrin repeat domain 27 (VPS9 domain)</td>
<td>chr19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKR32D2</td>
<td>Ankyrin repeat domain 32</td>
<td>chr5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKR35</td>
<td>Ankyrin repeat domain 35</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKR39</td>
<td>Ankyrin repeat domain 39</td>
<td>chr2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKR41</td>
<td>Ankyrin repeat domain 41</td>
<td>chr19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKR55</td>
<td>Ankyrin repeat domain 5</td>
<td>chr20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKR9</td>
<td>Ankyrin repeat domain 9</td>
<td>chr14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKS1</td>
<td>Ankyrin repeat and sterile alpha motif domain containing 1</td>
<td>chr6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANP3A2</td>
<td>Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A</td>
<td>chr15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANP3E2</td>
<td>Acidic (leucine-rich) nuclear phosphoprotein 32 family, member E</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOF2</td>
<td>Amin oxidase (flavin containing) domain 2</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1G2</td>
<td>Adaptor-related protein complex 1, gamma 2 subunit</td>
<td>chr3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1M2</td>
<td>Adaptor-related protein complex 1, mu 2 subunit</td>
<td>chr19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1S2</td>
<td>Adaptor-related protein complex 1, sigma 2 subunit</td>
<td>chrX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APS14</td>
<td>Adaptor-related protein complex 4, sigma 1 subunit</td>
<td>chr6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APEH</td>
<td>Apelin</td>
<td>chr3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APEX1</td>
<td>APEX nuclease (multifunctional DNA repair enzyme)</td>
<td>chr14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>API5</td>
<td>Apoptosis inhibitor 5</td>
<td>chr11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>API1TD1</td>
<td>Apoptosis-inducing, TAF9-like domain 1</td>
<td>chr1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOC1</td>
<td>Apolipoprotein C-I</td>
<td>chr17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOE</td>
<td>Apolipoprotein E</td>
<td>chr19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPBP1</td>
<td>Amyloid beta precursor protein binding protein 1</td>
<td>chr16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPR1</td>
<td>Androgen-induced proliferation inhibitor</td>
<td>chr13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPRT</td>
<td>Adenosine phosphosulfotransferase</td>
<td>chr16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APTX</td>
<td>Apoptin</td>
<td>chr9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AQR</td>
<td>Aquarius homolog (mouse)</td>
<td>chr15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGF1</td>
<td>ADP-riboseylation factor guanine nucleotide-exchange factor 1 (brefeldin A-inhibitable)</td>
<td>chr8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARG2</td>
<td>Arginase, type II</td>
<td>chr14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGG9</td>
<td>Arginase</td>
<td>chr12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARHGAP1A</td>
<td>Rho GTPase activating protein 11A</td>
<td>chr15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARHGAP1B</td>
<td>Rho GTPase activating protein 12</td>
<td>chr10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARHGAP19</td>
<td>Rho GTPase activating protein 19</td>
<td>chr10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARHGAP26</td>
<td>Rho GTPase activating protein 26</td>
<td>chr5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARHGAP28</td>
<td>Rho GTPase activating protein 28</td>
<td>chr18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARHGAP5</td>
<td>Rho GTPase activating protein 5</td>
<td>chr14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Chr</td>
<td>Gene Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ARHGAP6</td>
<td>Rho GTPase activating protein 6</td>
<td>chr22</td>
<td>PRS-ARHGAP6 fusion</td>
<td>27.11</td>
</tr>
<tr>
<td>ARHGEF10</td>
<td>Rho guanine nucleotide exchange factor (GEF) 10</td>
<td>chr8</td>
<td>ARHGEF19</td>
<td>Rho guanine nucleotide exchange factor (GEF) 19</td>
</tr>
<tr>
<td>ARHGEF5</td>
<td>Rho guanine nucleotide exchange factor (GEF) 5</td>
<td>chr7</td>
<td>ARHGEF7</td>
<td>Rho guanine nucleotide exchange factor (GEF) 7</td>
</tr>
<tr>
<td>ARID1A</td>
<td>AT rich interactive domain 1A (SWI- like)</td>
<td>chr1</td>
<td>ARID1B</td>
<td>AT rich interactive domain 1B (SWI1-like)</td>
</tr>
<tr>
<td>ARID2</td>
<td>AT rich interactive domain 2 (ARID, RFX-like)</td>
<td>chr12</td>
<td>ARID3A</td>
<td>AT rich interactive domain 3A (BRIGHT- like)</td>
</tr>
<tr>
<td>ARID3B</td>
<td>AT rich interactive domain 3B (BRIGHT- like)</td>
<td>chr19</td>
<td>ARH2</td>
<td>ariade homolog 2 (Drosophila)</td>
</tr>
<tr>
<td>ARL2</td>
<td>ADP-ribosylation factor-like 2</td>
<td>chr11</td>
<td>ARL4</td>
<td>ADP-ribosylation factor-like 4</td>
</tr>
<tr>
<td>ARL6IP</td>
<td>ADP-ribosylation factor-like 6 interacting protein</td>
<td>chr16</td>
<td>ARL6IP2</td>
<td>ADP-ribosylation factor-like 6 interacting protein 2</td>
</tr>
<tr>
<td>ARL8</td>
<td>ADP-ribosylation factor-like 8</td>
<td>chr10</td>
<td>ARMC6</td>
<td>armadillo repeat containing 6</td>
</tr>
<tr>
<td>ARMC8</td>
<td>armadillo repeat containing 8</td>
<td>chr3</td>
<td>ARS2</td>
<td>aspartate resistance protein ARS2</td>
</tr>
<tr>
<td>ASC2</td>
<td>ATG/AT-Substrate Chk2-Interacting Zn2+ -finger protein</td>
<td>chr16</td>
<td>ASF1A</td>
<td>ASF1 anti-silencing function 1 homolog A (S. cerevisiae)</td>
</tr>
<tr>
<td>ASK</td>
<td>activator of S phase kinase</td>
<td>chr7</td>
<td>ASMTL</td>
<td>acetylserotonin O-methyltransferase-like</td>
</tr>
<tr>
<td>ASPM</td>
<td>asp (abnormal spindle)-like, microcephaly associated (Drosophila)</td>
<td>chr1</td>
<td>ASRG1</td>
<td>asparaginase like 1</td>
</tr>
<tr>
<td>ASTN2</td>
<td>astrotactin 2</td>
<td>chr9</td>
<td>ASXL1</td>
<td>additional sex combs like 2 (Drosophila)</td>
</tr>
<tr>
<td>ATAD2</td>
<td>ATPase family, AAA domain containing 2</td>
<td>chr8</td>
<td>ATAD3B</td>
<td>ATPase family, AAA domain containing 3B</td>
</tr>
<tr>
<td>ATCA1</td>
<td>ataxia, cerebellar, Cayman type (catayxin)</td>
<td>chr19</td>
<td>ATF7IP2</td>
<td>activating transcription factor 7 interacting protein 2</td>
</tr>
<tr>
<td>ATG10</td>
<td>ATG10 autophagy related 10 homolog (S. cerevisiae)</td>
<td>chr5</td>
<td>ATG4D</td>
<td>ATG4 autophagy related 4 homolog D (S. cerevisiae)</td>
</tr>
<tr>
<td>ATIC</td>
<td>S-aminomimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase</td>
<td>chr2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP11A</td>
<td>ATPase, Class VI, type 11A</td>
<td>chr13</td>
<td>ATP1A2</td>
<td>ATPase, Na+K+ transporting, alpha 2 (+) polypeptide</td>
</tr>
<tr>
<td>ATP1B3</td>
<td>ATPase, Na+K+ transporting, beta 3 polypeptide</td>
<td>chr3</td>
<td>ATP2A1</td>
<td>ATPase, Ca++ transporting, cardiac muscle, fast twitch 1</td>
</tr>
<tr>
<td>ATP5G1</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit 9)</td>
<td>chr17</td>
<td>ATP5G2</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit 9)</td>
</tr>
<tr>
<td>ATP5G3</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit 9)</td>
<td>chr2</td>
<td>ATP5H</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit d</td>
</tr>
<tr>
<td>ATP5I</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit e</td>
<td>chr17</td>
<td>ATP5O</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit f</td>
</tr>
<tr>
<td>ATP5S</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit s (factor B)</td>
<td>chr16</td>
<td>ATP6V0A1</td>
<td>ATPase, H+ transporting, lysosomal accessory protein 1</td>
</tr>
<tr>
<td>ATP6V0A2</td>
<td>ATPase, H+ transporting, lysosomal V0 subunit a isoform 2</td>
<td>chr12</td>
<td>ATP6V0E2L</td>
<td>ATPase, H+ transporting V0 subunit E isoform 2-like (rat)</td>
</tr>
<tr>
<td>ATP8A1</td>
<td>ATPase, aminophospholipid transporter (APLT), Class I, type 8A, member 1</td>
<td>chr4</td>
<td>ATPF1</td>
<td>ATP synthase mitochondrial F1 complex assembly factor 1</td>
</tr>
<tr>
<td>ATPBP1</td>
<td>ATP synthase mitochondrial F1 complex assembly factor 1</td>
<td>chr1</td>
<td>ATPBDB1</td>
<td>ATP binding domain 1 family, member B</td>
</tr>
<tr>
<td>ATPBDC1</td>
<td>ATP binding domain 1 family, member C</td>
<td>chr12</td>
<td>ATRNL1</td>
<td>atractin-like 1</td>
</tr>
<tr>
<td>ATRX</td>
<td>Alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog, S. c)</td>
<td>chrX</td>
<td>ATXN3</td>
<td>ataxin 3</td>
</tr>
<tr>
<td>ATXNL1</td>
<td>ataxin 7-like 1</td>
<td>chr7</td>
<td>AUH</td>
<td>AU RNA binding protein/eNci-Coenzymes A hydrotase</td>
</tr>
<tr>
<td>AURKAI1P</td>
<td>aurora kinase A interacting protein 1</td>
<td>chr1_random</td>
<td>AURKB</td>
<td>aurora kinase B</td>
</tr>
<tr>
<td>AUTS2</td>
<td>autism susceptibility candidate 2</td>
<td>chr7</td>
<td>AXIN2</td>
<td>axin 2 (conductin, axil)</td>
</tr>
<tr>
<td>AZ1</td>
<td>S-acetylcyline induced 1</td>
<td>chr17</td>
<td>AZIN1</td>
<td>Antizyme inhibitor 1</td>
</tr>
<tr>
<td>B3GAT1</td>
<td>beta-1,3-glucuronosyltransferase 1 (glucuronosyltransferase P)</td>
<td>chr11</td>
<td>B3GNT1</td>
<td>UDP-GlcNAc:betaGal beta-1,3-N-acetylglicosaminytransferase 1</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3GNT7</td>
<td>UDP-GlcNac:betaGal beta 1,3-N-acetylgalactosaminyltransferase 7</td>
<td>11.65</td>
<td>chr2</td>
</tr>
<tr>
<td>B4GALT5</td>
<td>UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5</td>
<td>5.41</td>
<td>chr20</td>
</tr>
<tr>
<td>B4GALT6</td>
<td>UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 6</td>
<td>2.35</td>
<td>chr18</td>
</tr>
<tr>
<td>BACE1</td>
<td>beta-site APP-cleaving enzyme 1</td>
<td>2.00</td>
<td>chr11</td>
</tr>
<tr>
<td>BAG1</td>
<td>BCL2-associated athanogene // BCL2-associated anathogene</td>
<td>3.13</td>
<td>chr9</td>
</tr>
<tr>
<td>BAH1D1</td>
<td>B-cell CLL/lymphoma 11A (zinc finger protein)</td>
<td>2.36</td>
<td>chr15</td>
</tr>
<tr>
<td>BAPI2L1</td>
<td>BAF1-associated protein 2-like 1</td>
<td>2.78</td>
<td>chr7</td>
</tr>
<tr>
<td>BANF1</td>
<td>inhibitor to autointegration factor 1</td>
<td>2.18</td>
<td>chr11</td>
</tr>
<tr>
<td>BANP</td>
<td>B-cell CLL/lymphoma 11B (zinc finger protein)</td>
<td>2.28</td>
<td>chr16</td>
</tr>
<tr>
<td>BARD1</td>
<td>B-cell CLL/lymphoma 11A (zinc finger protein)</td>
<td>6.00</td>
<td>chr2</td>
</tr>
<tr>
<td>BAT2D1</td>
<td>BAT2 domain containing 1</td>
<td>3.61</td>
<td>chr1</td>
</tr>
<tr>
<td>BAT3</td>
<td>HLA-B associated transcript 3</td>
<td>2.33</td>
<td>chr6</td>
</tr>
<tr>
<td>BAT4</td>
<td>HLA-B associated transcript 4</td>
<td>2.78</td>
<td>chr6</td>
</tr>
<tr>
<td>BAX</td>
<td>BCL2-associated X protein</td>
<td>2.18</td>
<td>chr19</td>
</tr>
<tr>
<td>BC036928</td>
<td>hypothetical protein BC036928</td>
<td>2.68</td>
<td>chr7</td>
</tr>
<tr>
<td>BCCIP</td>
<td>BRC2a2 and CDKN1A interacting protein</td>
<td>2.95</td>
<td>chr10</td>
</tr>
<tr>
<td>BCDN3</td>
<td>brc3, bidd-acting 3, homolog (Drosophila)</td>
<td>2.60</td>
<td>chr7</td>
</tr>
<tr>
<td>BCKDHB</td>
<td>branched chain keto acid dehydrogenase E1, beta polypeptide (maple syrup urine)</td>
<td>3.86</td>
<td>chr6</td>
</tr>
<tr>
<td>BCL11A</td>
<td>B-cell CLL/lymphoma 11A (zinc finger protein)</td>
<td>6.43</td>
<td>chr2</td>
</tr>
<tr>
<td>BCL11B</td>
<td>B-cell CLL/lymphoma 11B (zinc finger protein)</td>
<td>5.29</td>
<td>chr14</td>
</tr>
<tr>
<td>BCL2L11</td>
<td>BCL2-like 11 (apoptosis facilitator)</td>
<td>9.23</td>
<td>chr2</td>
</tr>
<tr>
<td>BCL2L12</td>
<td>BCL2-like 12 (proline rich)</td>
<td>5.13</td>
<td>chr19</td>
</tr>
<tr>
<td>BCOR</td>
<td>BCL6 co-repressor</td>
<td>8.07</td>
<td>chrX</td>
</tr>
<tr>
<td>BCR</td>
<td>breakpoint cluster region</td>
<td>2.97</td>
<td>chr22</td>
</tr>
<tr>
<td>BDH</td>
<td>3-hydroxybutyrate dehydrogenase (heart, mitochondrial) // 3-hydroxybutyrate dehydrogenase 1</td>
<td>2.33</td>
<td>chr3</td>
</tr>
<tr>
<td>BDPR1</td>
<td>B double prime 1, subunit of RNA polymerase III transcription initiation factor III</td>
<td>2.47</td>
<td>chr5</td>
</tr>
<tr>
<td>BEX1</td>
<td>brain expressed, X-linked 1</td>
<td>3.78</td>
<td>chrX</td>
</tr>
<tr>
<td>BEX2</td>
<td>brain expressed X-linked 2 // brain expressed X-linked 2</td>
<td>16.92</td>
<td>chrX</td>
</tr>
<tr>
<td>BHLNB9</td>
<td>basic helix-loop-helix domain containing, class B, 9</td>
<td>4.92</td>
<td>chrX</td>
</tr>
<tr>
<td>BICD1</td>
<td>bicaudal D homolog 1 (Drosophila)</td>
<td>6.67</td>
<td>chr12</td>
</tr>
<tr>
<td>BIRC5</td>
<td>baculoviral IAP repeat-containing 5 (survivin)</td>
<td>7.65</td>
<td>chr17</td>
</tr>
<tr>
<td>BIRC6</td>
<td>Splicing factor, arginine/serine-rich 12</td>
<td>2.37</td>
<td>chr2</td>
</tr>
<tr>
<td>BLM</td>
<td>Bloom syndrome</td>
<td>13.61</td>
<td>chr15</td>
</tr>
<tr>
<td>BLMH</td>
<td>bleomycin hydrolase</td>
<td>3.27</td>
<td>chr17</td>
</tr>
<tr>
<td>BM039</td>
<td>uncharacterized bone marrow protein BM039</td>
<td>6.19</td>
<td>chr16</td>
</tr>
<tr>
<td>BMR2K</td>
<td>BMP2 inducible kinase</td>
<td>2.08</td>
<td>chr4</td>
</tr>
<tr>
<td>BMP7</td>
<td>Bone morphogenetic protein 7 (osteogenetic protein 1)</td>
<td>4.44</td>
<td>chr20</td>
</tr>
<tr>
<td>BMP9RA1</td>
<td>bone morphogenetic protein receptor, type IA</td>
<td>3.07</td>
<td>chr10</td>
</tr>
<tr>
<td>BMIS1L</td>
<td>BMS1-like, ribosome assembly protein (yeast)</td>
<td>2.81</td>
<td>chr10</td>
</tr>
<tr>
<td>BNC2</td>
<td>Basonucin 2</td>
<td>3.38</td>
<td>chr9</td>
</tr>
<tr>
<td>BOL1A1</td>
<td>boI-like 1 (E. coli)</td>
<td>2.19</td>
<td>chr1</td>
</tr>
<tr>
<td>BOL1A2</td>
<td>boI-like 2 (E. coli)</td>
<td>2.82</td>
<td>chr16</td>
</tr>
<tr>
<td>BOL1A3</td>
<td>boI-like 3 (E. coli)</td>
<td>2.14</td>
<td>chr2</td>
</tr>
<tr>
<td>BOP1</td>
<td>block of proliferation 1</td>
<td>2.36</td>
<td>chr8</td>
</tr>
<tr>
<td>BRAF</td>
<td>v-raf murine sarcoma viral oncogene homolog B1</td>
<td>2.24</td>
<td>chr7</td>
</tr>
<tr>
<td>BRCA1</td>
<td>breast cancer 1, early onset</td>
<td>6.06</td>
<td>chr17</td>
</tr>
<tr>
<td>BRCA2</td>
<td>breast cancer 2, early onset</td>
<td>2.96</td>
<td>chr13</td>
</tr>
<tr>
<td>BRD3</td>
<td>Bromodomain containing 3</td>
<td>2.72</td>
<td>chr9</td>
</tr>
<tr>
<td>BRD4</td>
<td>Bromodomain containing 4</td>
<td>2.19</td>
<td>chr19</td>
</tr>
<tr>
<td>BRD7</td>
<td>bromodomain containing 7</td>
<td>4.60</td>
<td>chr3</td>
</tr>
<tr>
<td>BRD8</td>
<td>bromodomain containing 8</td>
<td>2.69</td>
<td>chr5</td>
</tr>
<tr>
<td>BRN1N</td>
<td>barren homolog (Drosophila)</td>
<td>6.89</td>
<td>chr2</td>
</tr>
<tr>
<td>BRUNOL5</td>
<td>bruno-like 5, RNA binding protein (Drosophila)</td>
<td>6.41</td>
<td>chr19</td>
</tr>
<tr>
<td>BRW0D1</td>
<td>bromodomain and WD repeat domain containing 1</td>
<td>4.38</td>
<td>chr21</td>
</tr>
<tr>
<td>BRW0D3</td>
<td>bromodomain and WD repeat domain containing 3</td>
<td>4.52</td>
<td>chrX</td>
</tr>
<tr>
<td>BSCCL2</td>
<td>Bernardelli-Seip congenital lipodystrophy 2 (seipin) // heterogeneous nuclear (\alpha)-satellite repeat</td>
<td>4.85</td>
<td>chr11</td>
</tr>
<tr>
<td>BSSPY</td>
<td>B-box and SPRY domain containing</td>
<td>2.63</td>
<td>chr9</td>
</tr>
<tr>
<td>BST2</td>
<td>bone marrow stromal cell antigen 2</td>
<td>13.21</td>
<td>chr19</td>
</tr>
<tr>
<td>BTBD15</td>
<td>BTB (POZ) domain containing 13</td>
<td>7.74</td>
<td>chr11</td>
</tr>
<tr>
<td>BTBD2</td>
<td>22903 BTB (POZ) domain containing 3</td>
<td>2.36</td>
<td>chr20</td>
</tr>
<tr>
<td>BTBD4</td>
<td>140685 BTB (POZ) domain containing 4</td>
<td>2.62</td>
<td>chr20</td>
</tr>
<tr>
<td>BTBD7</td>
<td>BTB (POZ) domain containing 7</td>
<td>2.75</td>
<td>chr14</td>
</tr>
<tr>
<td>BTF3L4</td>
<td>Basic transcription factor 3-like 4</td>
<td>2.27</td>
<td>chr1</td>
</tr>
<tr>
<td>BUB1</td>
<td>BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)</td>
<td>18.20</td>
<td>chr2</td>
</tr>
<tr>
<td>BUB1B</td>
<td>BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast)</td>
<td>15.91</td>
<td>chr15</td>
</tr>
<tr>
<td>BUB3</td>
<td>BUB3 budding uninhibited by benzimidazoles 3 homolog (yeast)</td>
<td>2.87</td>
<td>chr10</td>
</tr>
<tr>
<td>BUD1C1</td>
<td>BUD1C1 domain containing 1</td>
<td>2.29</td>
<td>chr6</td>
</tr>
</tbody>
</table>
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

<p>| Table 55: Genes downregulated in MPC compared to hES (Fold Change > 2; (p < 0.05)) |
|------------------------------|--------|--------|
| BXDC2 | 55299 | chr5 |
| BYSL | 705 | chr6 |
| C10orf119 | 79892 | chr10 |
| C10orf13 | 143282 | chr10 |
| C10orf137 | 26098 | chr10 |
| C10orf22 | 84890 | chr10 |
| C10orf35 | 219738 | chr10 |
| C10orf47 | 254427 | chr10 |
| C10orf59 | 55328 | chr10 |
| C10orf7 | 8872 | chr10 |
| C10orf77 | 79847 | chr10 |
| C10orf78 | 119392 | chr10 |
| C10orf82 | 143379 | chr10 |
| C10orf86 | 54780 | chr10 |
| C10orf95 | 54808 // 79946 | chr10 |
| C11orf1 | 64776 | chr11 |
| C11orf2 | 738 | chr11 |
| C11orf31 | 280636 | chr11 |
| C11orf32 | 442871 | chr11 |
| C12orf10 | 60314 | chr12 |
| C13orf10 | 64062 | chr13 |
| C13orf23 | 80209 | chr13 |
| C13orf25 | 407975 | chr13 |
| C13orf3 | 221150 | chr13 |
| C13orf7 | 79596 | chr13 |
| C14orf1 | 11161 | chr14 |
| C14orf104 | 55172 | chr14 |
| C14orf106 | 55329 | chr14 |
| C14orf109 | 28175 | chr14 |
| C14orf115 | 55237 | chr14 |
| C14orf120 | 25983 | chr14 |
| C14orf122 | 51016 | chr14 |
| C14orf130 | 55148 | chr14 |
| C14orf135 | 64430 | chr14 |
| C14orf143 | 90141 | chr14 |
| C14orf145 | 145508 | chr14 |
| C14orf150 | 112840 | chr14 |
| C14orf156 | 81892 | chr14 |
| C14orf159 | 80017 | chr14 |
| C14orf169 | 79697 | chr14 |
| C14orf94 | 54930 | chr14 |
| C15orf120 | 80119 | chr15 |
| C15orf23 | 90417 | chr15 |
| C16orf33 | 79622 | chr16 |
| C16orf34 | 90861 | chr16 |
| C16orf5 | 29965 | chr16 |
| C16orf51 | 25880 | chr16 |
| C16orf53 | 79447 | chr16 |
| C17orf25 | 51031 | chr16 |
| C17orf32 | 147007 | chr17 |
| C17orf39 | 79018 | chr17 |
| C17orf41 | 79915 | chr17 |
| C17orf63 | 55731 | chr17 |
| C18orf18 | 147525 | chr18 |
| C18orf19 | 125228 | chr18 |
| C18orf22 | 79863 | chr18 |
| C18orf37 | 125476 | chr18 |
| C18orf54 | 162681 | chr18 |
| C18orf55 | 29090 | chr18 |
| C18orf9 | 79959 | chr18 |
| C19orf32 | 92840 | chr19 |
| C19orf33 | 64073 | chr19 |
| C19orf7 | 23211 | chr19 |
| C19orf71 | 56913 | chr19 |
| C11orf104 | 284618 | chr1 |
| C11orf106 | 55765 | chr1 |
| C11orf108 | 79647 | chr1 |</p>
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Chromosome</th>
<th>Open Reading Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1orf12</td>
<td>Chromosome 1 open reading frame 112</td>
<td>chr1</td>
<td>55732</td>
</tr>
<tr>
<td>C1orf14</td>
<td>Chromosome 1 open reading frame 114</td>
<td>chr1</td>
<td>57921</td>
</tr>
<tr>
<td>C1orf15</td>
<td>Chromosome 1 open reading frame 115</td>
<td>chr1</td>
<td>79762</td>
</tr>
<tr>
<td>C1orf121</td>
<td>Chromosome 1 open reading frame 121</td>
<td>chr1</td>
<td>51029</td>
</tr>
<tr>
<td>C1orf128</td>
<td>Chromosome 1 open reading frame 128</td>
<td>chr1</td>
<td>57095</td>
</tr>
<tr>
<td>C1orf135</td>
<td>Chromosome 1 open reading frame 135</td>
<td>chr1</td>
<td>79000</td>
</tr>
<tr>
<td>C1orf156</td>
<td>Chromosome 1 open reading frame 156</td>
<td>chr1</td>
<td>92342</td>
</tr>
<tr>
<td>C1orf163</td>
<td>Chromosome 1 open reading frame 163</td>
<td>chr1</td>
<td>65260</td>
</tr>
<tr>
<td>C1orf164</td>
<td>Chromosome 1 open reading frame 164</td>
<td>chr1</td>
<td>55182</td>
</tr>
<tr>
<td>C1orf165</td>
<td>Chromosome 1 open reading frame 165</td>
<td>chr1</td>
<td>79656</td>
</tr>
<tr>
<td>C1orf171</td>
<td>Chromosome 1 open reading frame 171</td>
<td>chr1</td>
<td>127253</td>
</tr>
<tr>
<td>C1orf172</td>
<td>Chromosome 1 open reading frame 172</td>
<td>chr1</td>
<td>126695</td>
</tr>
<tr>
<td>C1orf187</td>
<td>Chromosome 1 open reading frame 187</td>
<td>chr1</td>
<td>374946</td>
</tr>
<tr>
<td>C1orf192</td>
<td>Chromosome 1 open reading frame 192</td>
<td>chr1</td>
<td>257177</td>
</tr>
<tr>
<td>C1orf31</td>
<td>Chromosome 1 open reading frame 31</td>
<td>chr1</td>
<td>388753</td>
</tr>
<tr>
<td>C1orf37</td>
<td>Chromosome 1 open reading frame 37</td>
<td>chr1</td>
<td>92703</td>
</tr>
<tr>
<td>C1orf43</td>
<td>Chromosome 1 open reading frame 43</td>
<td>chr1</td>
<td>25912</td>
</tr>
<tr>
<td>C1orf48</td>
<td>Chromosome 1 open reading frame 48</td>
<td>chr1</td>
<td>25836</td>
</tr>
<tr>
<td>C1orf57</td>
<td>Chromosome 1 open reading frame 57</td>
<td>chr1</td>
<td>84284</td>
</tr>
<tr>
<td>C1orf59</td>
<td>Chromosome 1 open reading frame 59</td>
<td>chr1</td>
<td>113802</td>
</tr>
<tr>
<td>C1orf67</td>
<td>Chromosome 1 open reading frame 67</td>
<td>chr1</td>
<td>200095</td>
</tr>
<tr>
<td>C1orf69</td>
<td>Chromosome 1 open reading frame 69</td>
<td>chr1</td>
<td>200205</td>
</tr>
<tr>
<td>C1orf77</td>
<td>Chromosome 1 open reading frame 77</td>
<td>chr1</td>
<td>26097</td>
</tr>
<tr>
<td>C1orf79</td>
<td>Chromosome 1 open reading frame 79</td>
<td>chr1</td>
<td>85028</td>
</tr>
<tr>
<td>C1orf83</td>
<td>Chromosome 1 open reading frame 83</td>
<td>chr1</td>
<td>127281</td>
</tr>
<tr>
<td>C1orf87</td>
<td>Chromosome 1 open reading frame 87</td>
<td>chr1</td>
<td>84791</td>
</tr>
<tr>
<td>C1orf11</td>
<td>Chromosome 20 open reading frame 11</td>
<td>chr20</td>
<td>54994</td>
</tr>
<tr>
<td>C1orf118</td>
<td>Chromosome 20 open reading frame 118</td>
<td>chr20</td>
<td>140711</td>
</tr>
<tr>
<td>C1orf119</td>
<td>Similar to embryonic poly(A) binding protein</td>
<td>chr20</td>
<td>80336</td>
</tr>
<tr>
<td>C1orf12</td>
<td>Chromosome 20 open reading frame 12</td>
<td>chr20</td>
<td>55184</td>
</tr>
<tr>
<td>C1orf129</td>
<td>Chromosome 20 open reading frame 129</td>
<td>chr20</td>
<td>81610</td>
</tr>
<tr>
<td>C1orf14</td>
<td>Chromosome 20 open reading frame 14</td>
<td>chr20</td>
<td>24148</td>
</tr>
<tr>
<td>C1orf160</td>
<td>Chromosome 20 open reading frame 160</td>
<td>chr20</td>
<td>140706</td>
</tr>
<tr>
<td>C1orf172</td>
<td>Chromosome 20 open reading frame 172</td>
<td>chr20</td>
<td>79980</td>
</tr>
<tr>
<td>C1orf177</td>
<td>Chromosome 20 open reading frame 177</td>
<td>chr20</td>
<td>63939</td>
</tr>
<tr>
<td>C1orf19</td>
<td>Chromosome 20 open reading frame 19</td>
<td>chr20</td>
<td>55857</td>
</tr>
<tr>
<td>C1orf33</td>
<td>Chromosome 20 open reading frame 33</td>
<td>chr20</td>
<td>55861</td>
</tr>
<tr>
<td>C1orf39</td>
<td>Chromosome 20 open reading frame 39</td>
<td>chr20</td>
<td>79953</td>
</tr>
<tr>
<td>C1orf42</td>
<td>Chromosome 20 open reading frame 42</td>
<td>chr20</td>
<td>55612</td>
</tr>
<tr>
<td>C1orf6</td>
<td>Chromosome 20 open reading frame 6</td>
<td>chr20</td>
<td>51575</td>
</tr>
<tr>
<td>C1orf7</td>
<td>Chromosome 20 open reading frame 7</td>
<td>chr20</td>
<td>79133</td>
</tr>
<tr>
<td>C1orf72</td>
<td>Chromosome 20 open reading frame 72</td>
<td>chr20</td>
<td>92687</td>
</tr>
<tr>
<td>C1orf74</td>
<td>Chromosome 20 open reading frame 74</td>
<td>chr20</td>
<td>57186</td>
</tr>
<tr>
<td>C1orf94</td>
<td>Chromosome 20 open reading frame 94</td>
<td>chr20</td>
<td>128710</td>
</tr>
<tr>
<td>C1orf18</td>
<td>Chromosome 21 open reading frame 18</td>
<td>chr21</td>
<td>54093</td>
</tr>
<tr>
<td>C1orf33</td>
<td>Chromosome 21 open reading frame 33</td>
<td>chr21</td>
<td>8209</td>
</tr>
<tr>
<td>C1orf45</td>
<td>Chromosome 21 open reading frame 45</td>
<td>chr21</td>
<td>54069</td>
</tr>
<tr>
<td>C1orf57</td>
<td>Chromosome 21 open reading frame 57</td>
<td>chr21</td>
<td>54059</td>
</tr>
<tr>
<td>C1orf58</td>
<td>Chromosome 21 open reading frame 58</td>
<td>chr21</td>
<td>54058</td>
</tr>
<tr>
<td>C1orf59</td>
<td>Chromosome 21 open reading frame 59</td>
<td>chr21</td>
<td>56683</td>
</tr>
<tr>
<td>C1orf66</td>
<td>Chromosome 21 open reading frame 66</td>
<td>chr21</td>
<td>94104</td>
</tr>
<tr>
<td>C2orf16</td>
<td>Chromosome 22 open reading frame 16</td>
<td>chr22</td>
<td>400916</td>
</tr>
<tr>
<td>C2orf18</td>
<td>Chromosome 22 open reading frame 18</td>
<td>chr22</td>
<td>79019</td>
</tr>
<tr>
<td>C2orf3</td>
<td>Chromosome 22 open reading frame 3</td>
<td>chr22</td>
<td>25807</td>
</tr>
<tr>
<td>C3orf2</td>
<td>C2orf protein</td>
<td>chr12</td>
<td>10436</td>
</tr>
<tr>
<td>C2orf31</td>
<td>Chromosome 2 open reading frame 31</td>
<td>chr2</td>
<td>81561</td>
</tr>
<tr>
<td>C2orf34</td>
<td>Chromosome 2 open reading frame 34</td>
<td>chr2</td>
<td>79823</td>
</tr>
<tr>
<td>C3orf3</td>
<td>Putative protein similar to nessy (Drosophila)</td>
<td>chr12</td>
<td>10162</td>
</tr>
<tr>
<td>C3orf14</td>
<td>Chromosome 3 open reading frame 14</td>
<td>chr3</td>
<td>57415</td>
</tr>
<tr>
<td>C3orf17</td>
<td>Chromosome 3 open reading frame 17</td>
<td>chr3</td>
<td>25871</td>
</tr>
<tr>
<td>C4orf14</td>
<td>Chromosome 4 open reading frame 14</td>
<td>chr4</td>
<td>84273</td>
</tr>
<tr>
<td>C4orf15</td>
<td>Chromosome 4 open reading frame 15</td>
<td>chr4</td>
<td>79441</td>
</tr>
<tr>
<td>C6orf108</td>
<td>Chromosome 6 open reading frame 108</td>
<td>chr6</td>
<td>10591</td>
</tr>
<tr>
<td>C6orf111</td>
<td>Chromosome 6 open reading frame 111</td>
<td>chr6</td>
<td>25957</td>
</tr>
<tr>
<td>C6orf115</td>
<td>Chromosome 6 open reading frame 115</td>
<td>chr6</td>
<td>58527</td>
</tr>
<tr>
<td>C6orf117</td>
<td>Chromosome 6 open reading frame 117</td>
<td>chr6</td>
<td>112609</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; p < 0.05).

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6orf130</td>
<td>Chromosome 6 open reading frame 130</td>
<td>4.71</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf136</td>
<td>Chromosome 6 open reading frame 136</td>
<td>2.49</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf139</td>
<td>Chromosome 6 open reading frame 139</td>
<td>2.48</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf149</td>
<td>Chromosome 6 open reading frame 149</td>
<td>2.52</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf157</td>
<td>Chromosome 6 open reading frame 157</td>
<td>3.55</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf166</td>
<td>Chromosome 6 open reading frame 166</td>
<td>2.31</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf168</td>
<td>Chromosome 6 open reading frame 168</td>
<td>3.31</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf173</td>
<td>Chromosome 6 open reading frame 173</td>
<td>5.96</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf189</td>
<td>Chromosome 6 open reading frame 189</td>
<td>2.26</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf192</td>
<td>Chromosome 6 open reading frame 192</td>
<td>7.62</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf210</td>
<td>Chromosome 6 open reading frame 210</td>
<td>2.06</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf211</td>
<td>Chromosome 6 open reading frame 211</td>
<td>2.17</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf49</td>
<td>Chromosome 6 open reading frame 49</td>
<td>5.50</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf60</td>
<td>Chromosome 6 open reading frame 60</td>
<td>5.09</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf66</td>
<td>Chromosome 6 open reading frame 66</td>
<td>3.13</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf75</td>
<td>Chromosome 6 open reading frame 75</td>
<td>2.13</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf84</td>
<td>Chromosome 6 open reading frame 84</td>
<td>2.02</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf85</td>
<td>Chromosome 6 open reading frame 85</td>
<td>8.52</td>
<td>chr6</td>
</tr>
<tr>
<td>C7orf10</td>
<td>Chromosome 6 open reading frame 93</td>
<td>2.84</td>
<td>chr6</td>
</tr>
<tr>
<td>C7orf16</td>
<td>Chromosome 7 open reading frame 16</td>
<td>2.27</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf20</td>
<td>Chromosome 7 open reading frame 20</td>
<td>3.90</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf24</td>
<td>Chromosome 7 open reading frame 24</td>
<td>3.93</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf27</td>
<td>Chromosome 7 open reading frame 27</td>
<td>2.49</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf29</td>
<td>Chromosome 7 open reading frame 29</td>
<td>2.59</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf30</td>
<td>Chromosome 7 open reading frame 30</td>
<td>3.05</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf36</td>
<td>Chromosome 7 open reading frame 36</td>
<td>2.27</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf38</td>
<td>Chromosome 8 open reading frame 38</td>
<td>3.39</td>
<td>chr8</td>
</tr>
<tr>
<td>C7orf40</td>
<td>Chromosome 8 open reading frame 40</td>
<td>2.20</td>
<td>chr8</td>
</tr>
<tr>
<td>C7orf41</td>
<td>Chromosome 8 open reading frame 41</td>
<td>2.49</td>
<td>chr8</td>
</tr>
<tr>
<td>C7orf42</td>
<td>Chromosome 8 open reading frame 42</td>
<td>8.19</td>
<td>chr8</td>
</tr>
<tr>
<td>C7orf52</td>
<td>Chromosome 8 open reading frame 52</td>
<td>2.42</td>
<td>chr8</td>
</tr>
<tr>
<td>C8orf100</td>
<td>Chromosome 9 open reading frame 100</td>
<td>2.01</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf112</td>
<td>Chromosome 9 open reading frame 112</td>
<td>2.30</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf114</td>
<td>Chromosome 9 open reading frame 114</td>
<td>3.41</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf123</td>
<td>Chromosome 9 open reading frame 123</td>
<td>3.74</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf125</td>
<td>Chromosome 9 open reading frame 125</td>
<td>2.01</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf126</td>
<td>Chromosome 9 open reading frame 126</td>
<td>2.53</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf140</td>
<td>Chromosome 9 open reading frame 140</td>
<td>6.65</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf142</td>
<td>Chromosome 9 open reading frame 42</td>
<td>2.23</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf45</td>
<td>Chromosome 9 open reading frame 45</td>
<td>11.84</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf58</td>
<td>Chromosome 9 open reading frame 58</td>
<td>26.18</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf64</td>
<td>Chromosome 9 open reading frame 64</td>
<td>6.54</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf72</td>
<td>Chromosome 9 open reading frame 72</td>
<td>3.91</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf76</td>
<td>Chromosome 9 open reading frame 76</td>
<td>5.34</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf77</td>
<td>Chromosome 9 open reading frame 77</td>
<td>2.76</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf80</td>
<td>Chromosome 9 open reading frame 80</td>
<td>2.65</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf81</td>
<td>Chromosome 9 open reading frame 81</td>
<td>3.46</td>
<td>chr9</td>
</tr>
<tr>
<td>C8orf86</td>
<td>Chromosome 9 open reading frame 86</td>
<td>3.03</td>
<td>chr9</td>
</tr>
<tr>
<td>CA11</td>
<td>Carbonic anhydrase XI</td>
<td>4.10</td>
<td>chr19</td>
</tr>
<tr>
<td>CA14</td>
<td>Carbonic anhydrase XIV</td>
<td>12.91</td>
<td>chr1</td>
</tr>
<tr>
<td>CA2</td>
<td>Carbonic anhydrase II</td>
<td>12.39</td>
<td>chr8</td>
</tr>
<tr>
<td>CAS5L</td>
<td>Carbonic anhydrase VB-like</td>
<td>2.40</td>
<td>chrX</td>
</tr>
<tr>
<td>CABC1</td>
<td>Chaperone, ABC1 activity of bc1 complex like (S. pombe)</td>
<td>5.20</td>
<td>chr1</td>
</tr>
<tr>
<td>CABP7</td>
<td>Calcium binding protein 7</td>
<td>2.52</td>
<td>chr22</td>
</tr>
<tr>
<td>CASYR</td>
<td>Calcium binding tyrosine-(Y)-phosphorylation regulated (fibrousheatin 2)</td>
<td>2.11</td>
<td>chr18</td>
</tr>
<tr>
<td>CACHD1</td>
<td>Calcium channel containing 1</td>
<td>11.98</td>
<td>chr1</td>
</tr>
<tr>
<td>CACNA1D</td>
<td>Calcium channel, voltage-dependent, L type, alpha 10 subunit</td>
<td>2.58</td>
<td>chr3</td>
</tr>
<tr>
<td>CACNA2D2</td>
<td>Calcium channel, voltage-dependent, alpha 2/delta subunit 2</td>
<td>7.30</td>
<td>chr3</td>
</tr>
<tr>
<td>CACYBP</td>
<td>Calcyclin binding protein</td>
<td>3.81</td>
<td>chr1</td>
</tr>
<tr>
<td>CAD</td>
<td>Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotate</td>
<td>3.64</td>
<td>chr2</td>
</tr>
<tr>
<td>CADPS</td>
<td>Ca2+-dependent secretion activator</td>
<td>4.52</td>
<td>chr3</td>
</tr>
<tr>
<td>CADPS2</td>
<td>Ca2+-dependent activator protein for secretion 2</td>
<td>11.67</td>
<td>chr7</td>
</tr>
<tr>
<td>CALB1</td>
<td>Calbindin 1, 28kDa</td>
<td>17.68</td>
<td>chr8</td>
</tr>
<tr>
<td>CALCA</td>
<td>Calcitonin/calcitonin-related polypeptide, alpha</td>
<td>2.42</td>
<td>chr11</td>
</tr>
<tr>
<td>CALM3</td>
<td>Calmodulin 3 (phosphorylase kinase, delta)</td>
<td>3.81</td>
<td>chr19</td>
</tr>
<tr>
<td>CALML4</td>
<td>Calmodulin-ike 4</td>
<td>2.05</td>
<td>chr15</td>
</tr>
<tr>
<td>CALN1</td>
<td>Calneuron 1</td>
<td>4.17</td>
<td>chr7</td>
</tr>
</tbody>
</table>
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMK2G</td>
<td>Calcium/calcium-dependent protein kinase (CaM kinase) II gamma</td>
<td>4.18</td>
<td>chr10</td>
</tr>
<tr>
<td>CAMKIV</td>
<td>CaM kinase-like vesicle-associated</td>
<td>5.11</td>
<td>chr3</td>
</tr>
<tr>
<td>CAMTA1</td>
<td>calmodulin binding transcription activator 1</td>
<td>2.05</td>
<td>chr1</td>
</tr>
<tr>
<td>CANKP</td>
<td>cancer-associated nucleoprotein</td>
<td>3.53</td>
<td>chr11</td>
</tr>
<tr>
<td>CARD11</td>
<td>caspase recruitment domain family, member 11</td>
<td>3.96</td>
<td>chr7</td>
</tr>
<tr>
<td>CARHSP1</td>
<td>calcium regulated heat stable protein 1, 24kDa</td>
<td>4.08</td>
<td>chr16</td>
</tr>
<tr>
<td>CARKL</td>
<td>carbohydrate kinase-like</td>
<td>2.23</td>
<td>chr17</td>
</tr>
<tr>
<td>CARMI1</td>
<td>activator-associated arginine methyltransferase 1</td>
<td>2.25</td>
<td>chr19</td>
</tr>
<tr>
<td>CASC3</td>
<td>cancer susceptibility candidate 3</td>
<td>2.91</td>
<td>chr17</td>
</tr>
<tr>
<td>CASC5</td>
<td>cancer susceptibility candidate 5</td>
<td>3.74</td>
<td>chr15</td>
</tr>
<tr>
<td>CASP3</td>
<td>caspase 3, apoptosis-related cysteine peptidase</td>
<td>2.04</td>
<td>chr4</td>
</tr>
<tr>
<td>CASP8AP2</td>
<td>CASP8 associated protein 2</td>
<td>2.49</td>
<td>chr6</td>
</tr>
<tr>
<td>CASP9</td>
<td>caspase 9, apoptosis-related cysteine peptidase</td>
<td>4.78</td>
<td>chr1</td>
</tr>
<tr>
<td>CASQ1</td>
<td>Calsequestrin 1 (fast-twitch, skeletal muscle)</td>
<td>4.79</td>
<td>chr1</td>
</tr>
<tr>
<td>CAST1</td>
<td>CAZ-associated structural protein</td>
<td>3.19</td>
<td>chr3</td>
</tr>
<tr>
<td>CBFA2T2</td>
<td>core-binding factor, runt domain, alpha subunit 2; translocated to, 2</td>
<td>2.83</td>
<td>chr20</td>
</tr>
<tr>
<td>CBL</td>
<td>Cas-Br-M (murine) ecotropic retroviral transforming sequence</td>
<td>2.93</td>
<td>chr11</td>
</tr>
<tr>
<td>CBLL1</td>
<td>Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1</td>
<td>2.18</td>
<td>chr7</td>
</tr>
<tr>
<td>CBR1</td>
<td>carbonyl reductase 1</td>
<td>3.41</td>
<td>chr21</td>
</tr>
<tr>
<td>CBR4</td>
<td>carbonic reductase 4</td>
<td>4.76</td>
<td>chr4</td>
</tr>
<tr>
<td>CBS</td>
<td>cystathionine-beta-synthase</td>
<td>7.01</td>
<td>chr21</td>
</tr>
<tr>
<td>CBX1</td>
<td>chromobox homolog 1 (HP1 beta homolog Drosophila)</td>
<td>2.34</td>
<td>chr17</td>
</tr>
<tr>
<td>CBX2</td>
<td>chromobox homolog 2 (Pc class homolog, Drosophila)</td>
<td>17.18</td>
<td>chr17</td>
</tr>
<tr>
<td>CBX3</td>
<td>Chromobox homolog 3 (HP1 gamma homolog, Drosophila)</td>
<td>3.04</td>
<td>chr7</td>
</tr>
<tr>
<td>CBX5</td>
<td>Chromobox homolog 5 (HP1 alpha homolog, Drosophila)</td>
<td>2.76</td>
<td>chr12</td>
</tr>
<tr>
<td>CCAR1</td>
<td>Cell division cycle and apoptosis regulator 1</td>
<td>3.12</td>
<td>chr10</td>
</tr>
<tr>
<td>CCBL1</td>
<td>cysteine conjugate-beta lyase; cytoplasmic glutamine transaminase K, kynurenine aminotransferase</td>
<td>2.98</td>
<td>chr9</td>
</tr>
<tr>
<td>CCDC12</td>
<td>coiled-coil domain containing 12</td>
<td>2.41</td>
<td>chr3</td>
</tr>
<tr>
<td>CCDC14</td>
<td>coiled-coil domain containing 14</td>
<td>2.16</td>
<td>chr3</td>
</tr>
<tr>
<td>CCDC18</td>
<td>coiled-coil domain containing 18</td>
<td>3.97</td>
<td>chr1</td>
</tr>
<tr>
<td>CCDC21</td>
<td>coiled-coil domain containing 21</td>
<td>3.56</td>
<td>chr1</td>
</tr>
<tr>
<td>CCDC23</td>
<td>coiled-coil domain containing 23</td>
<td>2.38</td>
<td>chr1</td>
</tr>
<tr>
<td>CCDC25</td>
<td>coiled-coil domain containing 25</td>
<td>2.02</td>
<td>chr8</td>
</tr>
<tr>
<td>CCDC4</td>
<td>coiled-coil domain containing 4</td>
<td>103.58</td>
<td>chr4</td>
</tr>
<tr>
<td>CCDC5</td>
<td>coiled-coil domain containing 5 (spindle associated)</td>
<td>5.49</td>
<td>chr18</td>
</tr>
<tr>
<td>CCHCR1</td>
<td>coiled-coil alpha-helical rod protein 1</td>
<td>2.42</td>
<td>chr6</td>
</tr>
<tr>
<td>CCNA1</td>
<td>cyclin A1</td>
<td>2.01</td>
<td>chr13</td>
</tr>
<tr>
<td>CCNA2</td>
<td>cyclin A2</td>
<td>13.97</td>
<td>chr4</td>
</tr>
<tr>
<td>CCNB1</td>
<td>cyclin B1</td>
<td>6.04</td>
<td>chr5</td>
</tr>
<tr>
<td>CCNB1P1</td>
<td>cyclin B1 interacting protein 1</td>
<td>3.68</td>
<td>chr1</td>
</tr>
<tr>
<td>CCNB2</td>
<td>cyclin B2</td>
<td>7.90</td>
<td>chr15</td>
</tr>
<tr>
<td>CCNE1</td>
<td>cyclin E1</td>
<td>7.20</td>
<td>chr19</td>
</tr>
<tr>
<td>CCNF</td>
<td>cyclin F</td>
<td>6.53</td>
<td>chr16</td>
</tr>
<tr>
<td>CNJ</td>
<td>cyclin J</td>
<td>3.81</td>
<td>chr10</td>
</tr>
<tr>
<td>CCNL1</td>
<td>cyclin L1</td>
<td>2.35</td>
<td>chr3</td>
</tr>
<tr>
<td>CNT2</td>
<td>cyclin T2</td>
<td>2.51</td>
<td>chr2</td>
</tr>
<tr>
<td>CCT2</td>
<td>clathrin-associated protein containing TCP1, subunit 2 (beta)</td>
<td>4.11</td>
<td>chr12</td>
</tr>
<tr>
<td>CCT3</td>
<td>clathrin-associated protein containing TCP1, subunit 3 (gamma)</td>
<td>2.53</td>
<td>chr1</td>
</tr>
<tr>
<td>CCT5</td>
<td>clathrin-associated protein containing TCP1, subunit 5 (epsilon)</td>
<td>2.39</td>
<td>chr5</td>
</tr>
<tr>
<td>CD2D</td>
<td>clathrin-associated protein</td>
<td>10.93</td>
<td>chr3</td>
</tr>
<tr>
<td>CD24</td>
<td>clathrin-associated protein (small cell lung carcinoma cluster 4 antigen)</td>
<td>48.71</td>
<td>chr5</td>
</tr>
<tr>
<td>CD2AP</td>
<td>CD2-associated protein</td>
<td>2.58</td>
<td>chr6</td>
</tr>
<tr>
<td>CD3EAP</td>
<td>CD3E antigen, epsilon polypeptide associated protein</td>
<td>2.16</td>
<td>chr19</td>
</tr>
<tr>
<td>CD9</td>
<td>CD9 antigen (p24)</td>
<td>6.23</td>
<td>chr12</td>
</tr>
<tr>
<td>CDC14B</td>
<td>CDC14 cell division cycle 14 homolog B (S. cerevisiae)</td>
<td>3.44</td>
<td>chr9</td>
</tr>
<tr>
<td>CDC2</td>
<td>cell division cycle 2, G1 to S and G2 to M</td>
<td>8.61</td>
<td>chr10</td>
</tr>
<tr>
<td>CDC20</td>
<td>CDC20 cell division cycle 20 homolog (S. cerevisiae)</td>
<td>13.22</td>
<td>chr1</td>
</tr>
<tr>
<td>CDC25A</td>
<td>cell division cycle 25A</td>
<td>14.93</td>
<td>chr3</td>
</tr>
<tr>
<td>CDC25C</td>
<td>cell division cycle 25C</td>
<td>9.86</td>
<td>chr5</td>
</tr>
<tr>
<td>CDC26</td>
<td>cell division cycle 26</td>
<td>2.09</td>
<td>chr7</td>
</tr>
<tr>
<td>CDC2L5</td>
<td>cell division cycle 2-like 5 (cholinesterase-related cell division controller)</td>
<td>2.44</td>
<td>chr7</td>
</tr>
<tr>
<td>CDC2L6</td>
<td>cell division cycle 2-like 6 (CDK8-like)</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>CDC45L</td>
<td>CDC45 cell division cycle 45-like (S. cerevisiae)</td>
<td>4.29</td>
<td>chr22</td>
</tr>
<tr>
<td>CDC6</td>
<td>CDC6 cell division cycle 6 homolog (S. cerevisiae)</td>
<td>8.11</td>
<td>chr17</td>
</tr>
<tr>
<td>CDC7</td>
<td>CDC7 cell division cycle 7 (S. cerevisiae)</td>
<td>24.79</td>
<td>chr1</td>
</tr>
<tr>
<td>CDCA1</td>
<td>cell division cycle associated 1</td>
<td>4.89</td>
<td>chr1</td>
</tr>
<tr>
<td>CDCA2</td>
<td>cell division cycle associated 2</td>
<td>6.46</td>
<td>chr8</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(α < 0.05 \))

<table>
<thead>
<tr>
<th>Rank</th>
<th>Gene Symbol</th>
<th>Description</th>
<th>LogFC</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CDC43</td>
<td>cell division cycle associated 3</td>
<td>3.75</td>
<td>chr12</td>
</tr>
<tr>
<td>2</td>
<td>CDC44</td>
<td>cell division cycle associated 4</td>
<td>2.82</td>
<td>chr14</td>
</tr>
<tr>
<td>3</td>
<td>CDC45</td>
<td>cell division cycle associated 5</td>
<td>10.54</td>
<td>chr11</td>
</tr>
<tr>
<td>4</td>
<td>CDC7</td>
<td>cell division cycle associated 7</td>
<td>5.84</td>
<td>chr2</td>
</tr>
<tr>
<td>5</td>
<td>CDC7L</td>
<td>cell division cycle associated 7-ike</td>
<td>10.10</td>
<td>chr7</td>
</tr>
<tr>
<td>6</td>
<td>CDC8</td>
<td>cell division cycle associated 8</td>
<td>6.49</td>
<td>chr1</td>
</tr>
<tr>
<td>7</td>
<td>CDH1</td>
<td>cadherin 1, type 1, E-cadherin (epithelial)</td>
<td>422.37</td>
<td>chr16</td>
</tr>
<tr>
<td>8</td>
<td>CDH3</td>
<td>cadherin 3, type 1, P-cadherin (placental)</td>
<td>27.30</td>
<td>chr16</td>
</tr>
<tr>
<td>9</td>
<td>CDK3</td>
<td>cyclin-dependent kinase 3</td>
<td>2.70</td>
<td>chr17</td>
</tr>
<tr>
<td>10</td>
<td>CDK5R1</td>
<td>cyclin-dependent kinase 5, regulatory subunit 1 (p35)</td>
<td>4.05</td>
<td>chr17</td>
</tr>
<tr>
<td>11</td>
<td>CDK5RAP1</td>
<td>CDK5 regulatory subunit associated protein 1</td>
<td>3.53</td>
<td>chr20</td>
</tr>
<tr>
<td>12</td>
<td>CDK5RAP2</td>
<td>CDK5 regulatory subunit associated protein 2</td>
<td>2.10</td>
<td>chr9</td>
</tr>
<tr>
<td>13</td>
<td>CDK6</td>
<td>cyclin-dependent kinase 6</td>
<td>2.03</td>
<td>chr7</td>
</tr>
<tr>
<td>14</td>
<td>CDKN1C</td>
<td>cyclin-dependent kinase inhibitor 1C (p57, Kip2)</td>
<td>2.83</td>
<td>chr11</td>
</tr>
<tr>
<td>15</td>
<td>CDKN3</td>
<td>cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phosphatase)</td>
<td>6.24</td>
<td>chr14</td>
</tr>
<tr>
<td>16</td>
<td>CDH1A</td>
<td>cadherin 1, type 1, E-cadherin (epithelial)</td>
<td>7.08</td>
<td>chr5</td>
</tr>
<tr>
<td>17</td>
<td>CDON</td>
<td>Cdon homolog (mouse)</td>
<td>6.95</td>
<td>chr11</td>
</tr>
<tr>
<td>18</td>
<td>CDPS1</td>
<td>CDP-diacetylglycerol synthase (phosphatidate cytidylyltransferase) 1</td>
<td>11.28</td>
<td>chr4</td>
</tr>
<tr>
<td>19</td>
<td>CDPS2</td>
<td>CDP-diacetylglycerol synthase (phosphatidate cytidylyltransferase) 2</td>
<td>5.30</td>
<td>chr20</td>
</tr>
<tr>
<td>20</td>
<td>CDT1</td>
<td>DNA replication factor</td>
<td>7.21</td>
<td>chr16</td>
</tr>
<tr>
<td>21</td>
<td>CDYL</td>
<td>chromodomain protein, Y-like</td>
<td>3.06</td>
<td>chr6</td>
</tr>
<tr>
<td>22</td>
<td>CEBPZ</td>
<td>CCAAT/enhancer binding protein zeta</td>
<td>5.61</td>
<td>chr2</td>
</tr>
<tr>
<td>23</td>
<td>CECR1</td>
<td>cat eye syndrome chromosome region, candidate 1</td>
<td>11.82</td>
<td>chr22</td>
</tr>
<tr>
<td>24</td>
<td>CECR2</td>
<td>cat eye syndrome chromosome region, candidate 2</td>
<td>12.73</td>
<td>chr22</td>
</tr>
<tr>
<td>25</td>
<td>CECR5</td>
<td>cat eye syndrome chromosome region, candidate 5</td>
<td>7.64</td>
<td>chr22</td>
</tr>
<tr>
<td>26</td>
<td>CELSR1</td>
<td>cadherin, EGF LAG seven-pass G-type receptor 1 (flamingo homolog, Drosophila)</td>
<td>3.01</td>
<td>chr22</td>
</tr>
<tr>
<td>27</td>
<td>CELSR2</td>
<td>cadherin, EGF LAG seven-pass G-type receptor 2 (flamingo homolog, Drosophila)</td>
<td>3.19</td>
<td>chr19</td>
</tr>
<tr>
<td>28</td>
<td>CELSR3</td>
<td>cadherin, EGF LAG seven-pass G-type receptor 3 (flamingo homolog, Drosophila)</td>
<td>3.93</td>
<td>chr9</td>
</tr>
<tr>
<td>29</td>
<td>CENPA</td>
<td>centromere protein A, 17kDa</td>
<td>4.72</td>
<td>chr2</td>
</tr>
<tr>
<td>30</td>
<td>CENPE</td>
<td>centromere protein E, 312kDa</td>
<td>5.80</td>
<td>chr4</td>
</tr>
<tr>
<td>31</td>
<td>CENPF</td>
<td>centromere protein F, 350/400ka (mitosin)</td>
<td>8.67</td>
<td>chr1</td>
</tr>
<tr>
<td>32</td>
<td>CENPH</td>
<td>centromere protein H</td>
<td>10.07</td>
<td>chr5</td>
</tr>
<tr>
<td>33</td>
<td>CENPJ</td>
<td>centromere protein J</td>
<td>4.55</td>
<td>chr13</td>
</tr>
<tr>
<td>34</td>
<td>CENTB1</td>
<td>centaurin, beta 1</td>
<td>2.28</td>
<td>chr17</td>
</tr>
<tr>
<td>35</td>
<td>CENTD1</td>
<td>centaurin, delta 1</td>
<td>10.10</td>
<td>chr4</td>
</tr>
<tr>
<td>36</td>
<td>CENTG2</td>
<td>centaurin, gamma 2</td>
<td>2.77</td>
<td>chr2</td>
</tr>
<tr>
<td>37</td>
<td>Cep52</td>
<td>WAA0812 protein</td>
<td>3.56</td>
<td>chr15</td>
</tr>
<tr>
<td>38</td>
<td>Cep192</td>
<td>centromosomal protein 192 kDa</td>
<td>2.21</td>
<td>chr18</td>
</tr>
<tr>
<td>39</td>
<td>CEP4</td>
<td>centromosomal protein 4</td>
<td>2.67</td>
<td>chr4</td>
</tr>
<tr>
<td>40</td>
<td>CEP6B</td>
<td>centromosomal protein 68kDa</td>
<td>2.49</td>
<td>chr2</td>
</tr>
<tr>
<td>41</td>
<td>Cep70</td>
<td>p10-binding protein</td>
<td>2.51</td>
<td>chr3</td>
</tr>
<tr>
<td>42</td>
<td>Cep72</td>
<td>centromosomal protein 72 kDa</td>
<td>4.69</td>
<td>chr5</td>
</tr>
<tr>
<td>43</td>
<td>CETN3</td>
<td>centrin, EF-hand protein, 3 (CDC31 homolog, yeast)</td>
<td>2.85</td>
<td>chr5</td>
</tr>
<tr>
<td>44</td>
<td>CFC1</td>
<td>cripto, FRL-1, cryptic family 1</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>45</td>
<td>CFDP1</td>
<td>craniofacial development protein 1</td>
<td>2.40</td>
<td>chr16</td>
</tr>
<tr>
<td>46</td>
<td>CGI-99</td>
<td>CGI-99 protein</td>
<td>2.88</td>
<td>chr20</td>
</tr>
<tr>
<td>47</td>
<td>CGI-115</td>
<td>CGI-115 protein</td>
<td>2.97</td>
<td>chr1</td>
</tr>
<tr>
<td>48</td>
<td>CGI-121</td>
<td>CGI-121 protein</td>
<td>2.11</td>
<td>chr2</td>
</tr>
<tr>
<td>49</td>
<td>CGI-14</td>
<td>CGI-14 protein</td>
<td>2.25</td>
<td>chr16</td>
</tr>
<tr>
<td>50</td>
<td>CGI-37</td>
<td>comparative gene identification transcript 37</td>
<td>2.02</td>
<td>chr16</td>
</tr>
<tr>
<td>51</td>
<td>CGI-69</td>
<td>CGI-69 protein</td>
<td>2.61</td>
<td>chr17</td>
</tr>
<tr>
<td>52</td>
<td>CGN</td>
<td>singulin</td>
<td>11.26</td>
<td>chr1</td>
</tr>
<tr>
<td>53</td>
<td>CGNL1</td>
<td>singulin-like 1</td>
<td>37.79</td>
<td>chr15</td>
</tr>
<tr>
<td>54</td>
<td>CHAF1A</td>
<td>chromatin assembly factor 1, subunit A (p150)</td>
<td>6.90</td>
<td>chr19</td>
</tr>
<tr>
<td>55</td>
<td>CHAF1B</td>
<td>chromatin assembly factor 1, subunit B (p60)</td>
<td>3.03</td>
<td>chr21</td>
</tr>
<tr>
<td>56</td>
<td>CHCHD1</td>
<td>coiled-coil-hex-coiled-coil-hex domain containing 1</td>
<td>2.72</td>
<td>chr10</td>
</tr>
<tr>
<td>57</td>
<td>CHCHD3</td>
<td>coiled-coil-hex-coiled-coil-hex domain containing 3</td>
<td>2.32</td>
<td>chr1</td>
</tr>
<tr>
<td>58</td>
<td>CHCHD4</td>
<td>coiled-coil-hex-coiled-coil-hex domain containing 1</td>
<td>2.78</td>
<td>chr3</td>
</tr>
<tr>
<td>59</td>
<td>CHCHD5</td>
<td>coiled-coil-hex-coiled-coil-hex domain containing 8</td>
<td>2.15</td>
<td>chr1</td>
</tr>
<tr>
<td>60</td>
<td>CHD1</td>
<td>chromodomain helicase DNA binding protein 1</td>
<td>2.65</td>
<td>chr5</td>
</tr>
<tr>
<td>61</td>
<td>CHD1L</td>
<td>chromodomain helicase DNA binding protein 1-ike</td>
<td>3.07</td>
<td>chr1</td>
</tr>
<tr>
<td>62</td>
<td>CHD4</td>
<td>chromodomain helicase DNA binding protein 4</td>
<td>2.28</td>
<td>chr12</td>
</tr>
<tr>
<td>63</td>
<td>CHD7</td>
<td>chromodomain helicase DNA binding protein 7</td>
<td>5.99</td>
<td>chr8</td>
</tr>
<tr>
<td>64</td>
<td>CHD8</td>
<td>chromodomain helicase DNA binding protein 8</td>
<td>2.29</td>
<td>chr14</td>
</tr>
<tr>
<td>65</td>
<td>CHERK</td>
<td>cyclin-dependent kinase 7</td>
<td>2.70</td>
<td>chr17</td>
</tr>
<tr>
<td>66</td>
<td>CHERK1</td>
<td>CHK1 checkpoint homolog (S. pombe)</td>
<td>5.62</td>
<td>chr11</td>
</tr>
<tr>
<td>67</td>
<td>CHERK2</td>
<td>CHK2 checkpoint homolog (S. pombe)</td>
<td>14.75</td>
<td>chr22</td>
</tr>
<tr>
<td>68</td>
<td>CHERP</td>
<td>calcium homeostasis endoplasmic reticulum protein</td>
<td>2.65</td>
<td>chr19</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHES1</td>
<td>checkpoint suppressor 1</td>
<td>2.72</td>
<td>chr14</td>
</tr>
<tr>
<td>CHGB</td>
<td>choline kinase B (secretogranin 1)</td>
<td>5.86</td>
<td>chr20</td>
</tr>
<tr>
<td>CHKA</td>
<td>choline kinase alpha</td>
<td>4.38</td>
<td>chr11</td>
</tr>
<tr>
<td>CHKB</td>
<td>choline kinase beta</td>
<td>1120 (1375)</td>
<td>chr22</td>
</tr>
<tr>
<td>CHMIL</td>
<td>choline deaminase-like (Rab escort protein 2)</td>
<td>2.28</td>
<td>chr1</td>
</tr>
<tr>
<td>CHNI1</td>
<td>chimerin (chimaerin) 1</td>
<td>4.05</td>
<td>chr2</td>
</tr>
<tr>
<td>CHST10</td>
<td>carbohydrate sulfotransferase 10</td>
<td>2.21</td>
<td>chr2</td>
</tr>
<tr>
<td>CHST11</td>
<td>carbohydrate sulfotransferase 11</td>
<td>2.35</td>
<td>chr12</td>
</tr>
<tr>
<td>CHST4</td>
<td>carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 4</td>
<td>9.16</td>
<td>chr16</td>
</tr>
<tr>
<td>CHST6</td>
<td>carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 6</td>
<td>2.06</td>
<td>chr16</td>
</tr>
<tr>
<td>CHST7</td>
<td>carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7</td>
<td>2.02</td>
<td>chrX</td>
</tr>
<tr>
<td>CHST9</td>
<td>carbohydrate (N-acetylglucosamine 4-O) sulfotransferase 9</td>
<td>7.97</td>
<td>chr16</td>
</tr>
<tr>
<td>GHTF18</td>
<td>CTF18, chromosome transmission fidelity factor 18 homolog (S. cerevisiae)</td>
<td>5.24</td>
<td>chr16</td>
</tr>
<tr>
<td>GIAPIN1</td>
<td>cytokine induced apoptosis inhibitor 1</td>
<td>2.29</td>
<td>chr18</td>
</tr>
<tr>
<td>GJB2</td>
<td>calcium and integrin binding family member 2</td>
<td>5.80</td>
<td>chr15</td>
</tr>
<tr>
<td>GRIH1A</td>
<td>circin, autosomal recessive 1A (circin)</td>
<td>3.32</td>
<td>chr16</td>
</tr>
<tr>
<td>GIT</td>
<td>citron (rho-interacting, serine/threonine kinase 21)</td>
<td>2.43</td>
<td>chr12</td>
</tr>
<tr>
<td>CKAP5</td>
<td>cytoskeleton associated protein 5</td>
<td>2.36</td>
<td>chr11</td>
</tr>
<tr>
<td>CKB</td>
<td>creatine kinase, brain</td>
<td>1152</td>
<td>chr14</td>
</tr>
<tr>
<td>KFLF5F4</td>
<td>chemokine-like factor superfamily 4</td>
<td>3.42</td>
<td>chr16</td>
</tr>
<tr>
<td>KLF5F8</td>
<td>chemokine-like factor superfamily 8</td>
<td>4.48</td>
<td>chr3</td>
</tr>
<tr>
<td>CKMT1B</td>
<td>creatine kinase, mitochondrial 1B</td>
<td>1159 (54856)</td>
<td>chr15</td>
</tr>
<tr>
<td>KGS1B</td>
<td>CDC28 protein kinase regulatory subunit 1B</td>
<td>8.07</td>
<td>chr1</td>
</tr>
<tr>
<td>KGS2</td>
<td>CDC28 protein kinase regulatory subunit 2</td>
<td>4.93</td>
<td>chr9</td>
</tr>
<tr>
<td>CLASP1</td>
<td>Cytoskeletal linker associated protein 1</td>
<td>3.05</td>
<td>chr2</td>
</tr>
<tr>
<td>CLC4</td>
<td>chloride channel 4</td>
<td>1183</td>
<td>chrX</td>
</tr>
<tr>
<td>CLDN10</td>
<td>claudin 10</td>
<td>9071</td>
<td>chr13</td>
</tr>
<tr>
<td>CLDN23</td>
<td>claudin 23</td>
<td>137075</td>
<td>chr8</td>
</tr>
<tr>
<td>CLDN3</td>
<td>claudin 3</td>
<td>1365</td>
<td>chr7</td>
</tr>
<tr>
<td>CLDN6</td>
<td>claudin 6</td>
<td>9074</td>
<td>chr1</td>
</tr>
<tr>
<td>CLDN7</td>
<td>claudin 7</td>
<td>1367</td>
<td>chr17</td>
</tr>
<tr>
<td>CLGN</td>
<td>calmin</td>
<td>1047</td>
<td>chr4</td>
</tr>
<tr>
<td>CLK2</td>
<td>CDC-like kinase 2</td>
<td>1196</td>
<td>chr1</td>
</tr>
<tr>
<td>CLN6</td>
<td>CCAAT-lipofuscinosis, neuronal 6, late infantile, variant</td>
<td>5.4982</td>
<td>chr15</td>
</tr>
<tr>
<td>CLNS1A</td>
<td>chloride channel, nucleotide-sensitive, 1A (chromosome 3 open reading frame)</td>
<td>1207 (56650)</td>
<td>chr11</td>
</tr>
<tr>
<td>CLPX</td>
<td>CIPX caseinolysin peptidase X homolog (E. coli)</td>
<td>10845</td>
<td>chr15</td>
</tr>
<tr>
<td>CLTC</td>
<td>Cthrin, heavy polypeptide (Hc)</td>
<td>1213</td>
<td>chr7</td>
</tr>
<tr>
<td>CLYBL</td>
<td>citrate lyase beta-like</td>
<td>171425</td>
<td>chr13</td>
</tr>
<tr>
<td>CMA5</td>
<td>cytidine monophosphate N-acetylneuraminic acid synthetase</td>
<td>55907</td>
<td>chr12</td>
</tr>
<tr>
<td>CNAP1</td>
<td>chromosome condensation-related SMC-associated protein 1</td>
<td>9918</td>
<td>chr12</td>
</tr>
<tr>
<td>CNDP2</td>
<td>CNDP diphedratide 2 (metallopeptidase M20 family)</td>
<td>55748</td>
<td>chr18</td>
</tr>
<tr>
<td>CNH4</td>
<td>cornichon homolog 4 (Drosophila)</td>
<td>29097</td>
<td>chr1</td>
</tr>
<tr>
<td>CNH5</td>
<td>Connexin enhancer of kinase suppressor of Ras 2</td>
<td>22866</td>
<td>chrX</td>
</tr>
<tr>
<td>CNM2</td>
<td>cyclin M2</td>
<td>54805</td>
<td>chr10</td>
</tr>
<tr>
<td>CNM3</td>
<td>cyclin M3</td>
<td>26505</td>
<td>chr2</td>
</tr>
<tr>
<td>CNOT1</td>
<td>CCNA-CCNB transcription complex, subunit 1</td>
<td>23019</td>
<td>chr16</td>
</tr>
<tr>
<td>CNOT10</td>
<td>CCNA-CCNB transcription complex, subunit 10</td>
<td>25904</td>
<td>chr16</td>
</tr>
<tr>
<td>CNOT2</td>
<td>CCNA-CCNB transcription complex, subunit 2</td>
<td>4848</td>
<td>chr12</td>
</tr>
<tr>
<td>CNOT7</td>
<td>CCNA-CCNB transcription complex, subunit 7</td>
<td>29883</td>
<td>chr1</td>
</tr>
<tr>
<td>CNTANP2</td>
<td>contactin associated protein-like 2</td>
<td>26047</td>
<td>chr7</td>
</tr>
<tr>
<td>CNTANP3</td>
<td>contactin associated protein-like 3</td>
<td>389734 (79937)</td>
<td>chr7, random</td>
</tr>
<tr>
<td>CNTANP3</td>
<td>contactin associated protein-like 3</td>
<td>389734 (79937)</td>
<td>chr9, random</td>
</tr>
<tr>
<td>COBL</td>
<td>coronin homolog (mouse)</td>
<td>23242</td>
<td>chr7</td>
</tr>
<tr>
<td>COCH</td>
<td>coagulation factor C homolog, cochlino (Limulus polyphemus)</td>
<td>1690</td>
<td>chr14</td>
</tr>
<tr>
<td>COIL</td>
<td>collicin</td>
<td>8161</td>
<td>chr14</td>
</tr>
<tr>
<td>COL4A3BP</td>
<td>collagen, type IV, alpha 3 (Goodpasture antigen) binding protein</td>
<td>10087</td>
<td>chr5</td>
</tr>
<tr>
<td>COL5A1</td>
<td>collagen, type IX, alpha 1</td>
<td>1297</td>
<td>chr6</td>
</tr>
<tr>
<td>COL5A3</td>
<td>collagen, type IX, alpha 3</td>
<td>1299</td>
<td>chr16</td>
</tr>
<tr>
<td>COMM4D</td>
<td>COMM domain containing 4</td>
<td>54939</td>
<td>chr15</td>
</tr>
<tr>
<td>COMM5D</td>
<td>COMM domain containing 5</td>
<td>28991</td>
<td>chr8</td>
</tr>
<tr>
<td>COMT2D1</td>
<td>catechol-O-methyltransferase domain containing 1</td>
<td>118881</td>
<td>chr10</td>
</tr>
<tr>
<td>COPG2</td>
<td>Coatomer protein complex, subunit gamma 2</td>
<td>26958</td>
<td>chr7</td>
</tr>
<tr>
<td>COPS3</td>
<td>COPS9 constitutive photomorphogenic homolog subunit 3 (Arabidopsis)</td>
<td>8533</td>
<td>chr17</td>
</tr>
<tr>
<td>COQ2</td>
<td>oenzyyme Q2 homolog, prenyltransferase (yeast)</td>
<td>27235</td>
<td>chr4</td>
</tr>
<tr>
<td>COQ3</td>
<td>oenzyyme Q3 homolog, methyltransferase (yeast)</td>
<td>51805</td>
<td>chr6</td>
</tr>
<tr>
<td>COQ7</td>
<td>oenzyyme Q7 homolog, ubiquinone (yeast)</td>
<td>10229</td>
<td>chr16</td>
</tr>
<tr>
<td>COR2A</td>
<td>CTH01, actin binding protein, 2A</td>
<td>7464</td>
<td>chr9</td>
</tr>
<tr>
<td>COX15</td>
<td>COX15 homolog, cytochrome c oxidase assembly protein (yeast)</td>
<td>1355</td>
<td>chr10</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene</th>
<th>Log2 Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYBS</td>
<td>3.80</td>
<td>chr18</td>
</tr>
<tr>
<td>CYBS61</td>
<td>7.06</td>
<td>chr17</td>
</tr>
<tr>
<td>CYBSR2</td>
<td>9.26</td>
<td>chr11</td>
</tr>
<tr>
<td>CYC1</td>
<td>2.14</td>
<td>chr8</td>
</tr>
<tr>
<td>CYP26A1</td>
<td>61.72</td>
<td>chr10</td>
</tr>
<tr>
<td>CYP2B7P1</td>
<td>2.66</td>
<td>chr19</td>
</tr>
<tr>
<td>CYP2S1</td>
<td>9.85</td>
<td>chr19</td>
</tr>
<tr>
<td>CYP4X1</td>
<td>3.88</td>
<td>chr1</td>
</tr>
<tr>
<td>CYP51A1</td>
<td>2.10</td>
<td>chr9</td>
</tr>
<tr>
<td>CYRY1</td>
<td>21.13</td>
<td>chr21</td>
</tr>
<tr>
<td>D21S2O5SE</td>
<td>3.02</td>
<td>chr21</td>
</tr>
<tr>
<td>D4S234E</td>
<td>6.78</td>
<td>chr4</td>
</tr>
<tr>
<td>DAB1</td>
<td>11.13</td>
<td>chr1</td>
</tr>
<tr>
<td>DAB1</td>
<td>3.40</td>
<td>chr1</td>
</tr>
<tr>
<td>DAG1</td>
<td>2.11</td>
<td>chr3</td>
</tr>
<tr>
<td>DAPK1</td>
<td>17.36</td>
<td>chr9</td>
</tr>
<tr>
<td>DARS</td>
<td>3.10</td>
<td>chr2</td>
</tr>
<tr>
<td>DATF1</td>
<td>6.74</td>
<td>chr20</td>
</tr>
<tr>
<td>DAZAP1</td>
<td>3.34</td>
<td>chr19</td>
</tr>
<tr>
<td>DBC1</td>
<td>25.86</td>
<td>chr9</td>
</tr>
<tr>
<td>DBI</td>
<td>2.46</td>
<td>chr2</td>
</tr>
<tr>
<td>DCAMKL1</td>
<td>16.27</td>
<td>chr13</td>
</tr>
<tr>
<td>DCC1</td>
<td>16.88</td>
<td>chr8</td>
</tr>
<tr>
<td>DCI</td>
<td>3.26</td>
<td>chr16</td>
</tr>
<tr>
<td>DCLRE1A</td>
<td>2.90</td>
<td>chr10</td>
</tr>
<tr>
<td>DCLRE1C</td>
<td>3.15</td>
<td>chr10</td>
</tr>
<tr>
<td>DCPR2</td>
<td>7.68</td>
<td>chr5</td>
</tr>
<tr>
<td>DCPS</td>
<td>3.49</td>
<td>chr11</td>
</tr>
<tr>
<td>DCUN1D2</td>
<td>2.02</td>
<td>chr13</td>
</tr>
<tr>
<td>DCUN1D4</td>
<td>2.30</td>
<td>chr4</td>
</tr>
<tr>
<td>DCX</td>
<td>2.81</td>
<td>chrX</td>
</tr>
<tr>
<td>DDEF1L1</td>
<td>2.15</td>
<td>chr1</td>
</tr>
<tr>
<td>DDIT4</td>
<td>3.04</td>
<td>chr10</td>
</tr>
<tr>
<td>DDT</td>
<td>6.00</td>
<td>chr22</td>
</tr>
<tr>
<td>DDX11</td>
<td>4.99</td>
<td>chr12</td>
</tr>
<tr>
<td>DDX17</td>
<td>3.06</td>
<td>chr22</td>
</tr>
<tr>
<td>DDX18</td>
<td>2.79</td>
<td>chr2</td>
</tr>
<tr>
<td>DDX20</td>
<td>3.12</td>
<td>chr1</td>
</tr>
<tr>
<td>DDX21</td>
<td>2.16</td>
<td>chr10</td>
</tr>
<tr>
<td>DDX25</td>
<td>37.88</td>
<td>chr11</td>
</tr>
<tr>
<td>DDX27</td>
<td>3.41</td>
<td>chr20</td>
</tr>
<tr>
<td>DDX28</td>
<td>3.81</td>
<td>chr16</td>
</tr>
<tr>
<td>DDX31</td>
<td>2.67</td>
<td>chr9</td>
</tr>
<tr>
<td>DDX39</td>
<td>4.18</td>
<td>chr19</td>
</tr>
<tr>
<td>DDX3X</td>
<td>3.08</td>
<td>chrX</td>
</tr>
<tr>
<td>DDX3Y</td>
<td>2.21</td>
<td>chrY</td>
</tr>
<tr>
<td>DDX46</td>
<td>2.70</td>
<td>chr5</td>
</tr>
<tr>
<td>DDX48</td>
<td>3.19</td>
<td>chr17</td>
</tr>
<tr>
<td>DDX54</td>
<td>2.39</td>
<td>chr12</td>
</tr>
<tr>
<td>DDX55</td>
<td>2.69</td>
<td>chr12</td>
</tr>
<tr>
<td>DDX6</td>
<td>5.03</td>
<td>chr11</td>
</tr>
<tr>
<td>DEDD2</td>
<td>2.03</td>
<td>chr19</td>
</tr>
<tr>
<td>DEK</td>
<td>2.45</td>
<td>chr6</td>
</tr>
<tr>
<td>DELGEF</td>
<td>2.28</td>
<td>chr11</td>
</tr>
<tr>
<td>DENN2DC</td>
<td>3.33</td>
<td>chr1</td>
</tr>
<tr>
<td>DENR</td>
<td>2.37</td>
<td>chr12</td>
</tr>
<tr>
<td>DEPC1</td>
<td>3.85</td>
<td>chr9</td>
</tr>
<tr>
<td>DEPC1B</td>
<td>18.80</td>
<td>chr5</td>
</tr>
<tr>
<td>DEPC5</td>
<td>2.02</td>
<td>chr22</td>
</tr>
<tr>
<td>DFFA</td>
<td>2.52</td>
<td>chr1</td>
</tr>
<tr>
<td>DFFB</td>
<td>2.21</td>
<td>chr11</td>
</tr>
<tr>
<td>DGKZ</td>
<td>2.17</td>
<td>chr11</td>
</tr>
<tr>
<td>DHR24</td>
<td>6.02</td>
<td>chr1</td>
</tr>
<tr>
<td>DHR7</td>
<td>2.82</td>
<td>chr11</td>
</tr>
<tr>
<td>DHRF</td>
<td>7.16</td>
<td>chr4</td>
</tr>
<tr>
<td>DHODH</td>
<td>3.06</td>
<td>chr16</td>
</tr>
<tr>
<td>DHHTK1</td>
<td>4.50</td>
<td>chr10</td>
</tr>
</tbody>
</table>
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Table S5: Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHHX15</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 15</td>
<td>3.06</td>
<td>chr4</td>
</tr>
<tr>
<td>DHHX30</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 30</td>
<td>2.09</td>
<td>chr3</td>
</tr>
<tr>
<td>DHHX33</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 33</td>
<td>4.52</td>
<td>chr17</td>
</tr>
<tr>
<td>DHHX35</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 35</td>
<td>4.73</td>
<td>chr20</td>
</tr>
<tr>
<td>DHHX36</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 36</td>
<td>3.14</td>
<td>chr16</td>
</tr>
<tr>
<td>DHHX37</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 37</td>
<td>2.74</td>
<td>chr12</td>
</tr>
<tr>
<td>DHHX9</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 9</td>
<td>5.17</td>
<td>chr1</td>
</tr>
<tr>
<td>DIAH4</td>
<td>diaphanous homolog 2 (Drosophila)</td>
<td>5.64</td>
<td>chrX</td>
</tr>
<tr>
<td>DKC1</td>
<td>dyskeratosis congenita 1, dyskerin</td>
<td>4.97</td>
<td>chrX</td>
</tr>
<tr>
<td>DKFZp434K1</td>
<td>hypothetical protein DKFZp434K1815</td>
<td>2.01</td>
<td>chr7</td>
</tr>
<tr>
<td>DKFZp434P6</td>
<td>hypothetical protein DKFZp434P055</td>
<td>4.60</td>
<td>chr2</td>
</tr>
<tr>
<td>DKFZp547E0</td>
<td>hypothetical gene LOC283846</td>
<td>7.44</td>
<td>chr16</td>
</tr>
<tr>
<td>DKFZp564J1</td>
<td>hypothetical protein DKFZp564J102 protein</td>
<td>6.02</td>
<td>chr4</td>
</tr>
<tr>
<td>DKFZp564J5</td>
<td>hypothetical protein DKFZp564J157 protein</td>
<td>2.14</td>
<td>chr12</td>
</tr>
<tr>
<td>DKFZp586A0</td>
<td>hypothetical protein DKFZp586A522 protein</td>
<td>11.85</td>
<td>chr12</td>
</tr>
<tr>
<td>DKFZp586I4</td>
<td>hypothetical protein DKFZp586I420</td>
<td>20.32</td>
<td>chr7</td>
</tr>
<tr>
<td>DKFZp761M1</td>
<td>hypothetical protein DKFZp761M1511</td>
<td>2.83</td>
<td>chr5</td>
</tr>
<tr>
<td>DKFZp761P0</td>
<td>hypothetical protein DKFZp761P0423</td>
<td>4.43</td>
<td>chr13</td>
</tr>
<tr>
<td>DKFZp762E1</td>
<td>hypothetical protein DKFZp762E1312</td>
<td>6.88</td>
<td>chr2</td>
</tr>
<tr>
<td>DKFZp762H1</td>
<td>hypothetical protein DKFZp762H185</td>
<td>2.09</td>
<td>chr17</td>
</tr>
<tr>
<td>DKFZp762I3</td>
<td>hypothetical protein DKFZp762I337</td>
<td>2.87</td>
<td>chr7</td>
</tr>
<tr>
<td>DKFZp779O1</td>
<td>hypothetical protein DKFZp779O175</td>
<td>2.87</td>
<td>chr19</td>
</tr>
<tr>
<td>DLAT</td>
<td>dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase complex)</td>
<td>3.28</td>
<td>chr11</td>
</tr>
<tr>
<td>DLD</td>
<td>Dihydrolipoamide dehydrogenase (E3 component of pyruvate dehydrogenase complex)</td>
<td>2.65</td>
<td>chr7</td>
</tr>
<tr>
<td>DLEU1</td>
<td>deleted in lymphocytic leukemia 1</td>
<td>2.07</td>
<td>chr13</td>
</tr>
<tr>
<td>DLG3</td>
<td>discs, large homolog 3 (neuroendocrine-dig, Drosophila)</td>
<td>5.20</td>
<td>chrX</td>
</tr>
<tr>
<td>DLG7</td>
<td>discs, large homolog 7 (Drosophila)</td>
<td>11.38</td>
<td>chr14</td>
</tr>
<tr>
<td>DLL1</td>
<td>delta-like 1 (Drosophila)</td>
<td>2.48</td>
<td>chr6</td>
</tr>
<tr>
<td>DN1B4</td>
<td>similar to DN1B4</td>
<td>3.17</td>
<td>chr11</td>
</tr>
<tr>
<td>DMAP1</td>
<td>DNA methyltransferase 1 associated protein 1</td>
<td>2.59</td>
<td>chr1</td>
</tr>
<tr>
<td>DMXL1</td>
<td>Dmx-like 1</td>
<td>2.08</td>
<td>chr5</td>
</tr>
<tr>
<td>DNA2L</td>
<td>DNA2 DNA replication helicase 2-like (yeast)</td>
<td>11.44</td>
<td>chr10</td>
</tr>
<tr>
<td>DNAJA2</td>
<td>DNAJ (Hsp40) homolog, subfamily A, member 2</td>
<td>3.03</td>
<td>chr16</td>
</tr>
<tr>
<td>DNAJA4</td>
<td>DNAJ (Hsp40) homolog, subfamily A, member 4</td>
<td>2.66</td>
<td>chr15</td>
</tr>
<tr>
<td>DNAJB6</td>
<td>DNAJ (Hsp40) homolog, subfamily B, member 6</td>
<td>3.26</td>
<td>chr7</td>
</tr>
<tr>
<td>DNAJC17</td>
<td>DNAJ (Hsp40) homolog, subfamily C, member 17</td>
<td>2.38</td>
<td>chr15</td>
</tr>
<tr>
<td>DNAJC19</td>
<td>DNAJ (Hsp40) homolog, subfamily C, member 19</td>
<td>2.65</td>
<td>chr14</td>
</tr>
<tr>
<td>DNAJC7</td>
<td>DNAJ (Hsp40) homolog, subfamily C, member 7</td>
<td>3.31</td>
<td>chr17</td>
</tr>
<tr>
<td>DNAJC9</td>
<td>DNAJ (Hsp40) homolog, subfamily C, member 9</td>
<td>3.02</td>
<td>chr10</td>
</tr>
<tr>
<td>DNCH2</td>
<td>dynamin, cytoplasmic, heavy polypeptide 2</td>
<td>2.71</td>
<td>chr11</td>
</tr>
<tr>
<td>DND1</td>
<td>dead end homolog 1 (zebrafish)</td>
<td>5.67</td>
<td>chr17</td>
</tr>
<tr>
<td>DNMT1</td>
<td>DNA (cytosine-5)-methyltransferase 1</td>
<td>2.76</td>
<td>chr19</td>
</tr>
<tr>
<td>DNMT2</td>
<td>DNA (cytosine-5)-methyltransferase 2</td>
<td>4.47</td>
<td>chr10</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>DNA (cytosine-5)-methyltransferase 3 alpha</td>
<td>17.15</td>
<td>chr2</td>
</tr>
<tr>
<td>DNMT3B</td>
<td>DNA (cytosine-5)-methyltransferase 3 beta</td>
<td>162.94</td>
<td>chr20</td>
</tr>
<tr>
<td>DNPEP</td>
<td>aspartyl aminopeptidase</td>
<td>2.07</td>
<td>chr2</td>
</tr>
<tr>
<td>DOCK3</td>
<td>dedicator of cytokinesis 3</td>
<td>2.22</td>
<td>chr3</td>
</tr>
<tr>
<td>DOCK4</td>
<td>dedicator of cytokinesis 4</td>
<td>2.49</td>
<td>chr7</td>
</tr>
<tr>
<td>DONSON</td>
<td>downstream neighbor of SON</td>
<td>3.03</td>
<td>chr21</td>
</tr>
<tr>
<td>DOT1L</td>
<td>DOT1-like, histone H3 methyltransferase (S. cerevisiae)</td>
<td>2.17</td>
<td>chr19</td>
</tr>
<tr>
<td>DPH2</td>
<td>DPH2 homolog (S. cerevisiae)</td>
<td>3.48</td>
<td>chr1</td>
</tr>
<tr>
<td>DPH5</td>
<td>DPH5 homolog (S. cerevisiae)</td>
<td>2.40</td>
<td>chr1</td>
</tr>
<tr>
<td>DPP3</td>
<td>dipeptidylpeptidase 3</td>
<td>2.39</td>
<td>chr11</td>
</tr>
<tr>
<td>DPPA2</td>
<td>developmental pluripotency associated 2</td>
<td>13.48</td>
<td>chr3</td>
</tr>
<tr>
<td>DPPA3</td>
<td>developmental pluripotency associated 3</td>
<td>8.51</td>
<td>chr14</td>
</tr>
<tr>
<td>DPPA4</td>
<td>developmental pluripotency associated 4</td>
<td>173.49</td>
<td>chr3</td>
</tr>
<tr>
<td>DPPA5</td>
<td>developmental pluripotency associated 5</td>
<td>4.27</td>
<td>chr6</td>
</tr>
<tr>
<td>DPSYL3</td>
<td>dihydropyrimidinase-like 3</td>
<td>6.42</td>
<td>chr5</td>
</tr>
<tr>
<td>DRIM</td>
<td>down-regulated in metastasis</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>DSC2</td>
<td>desmosinolin 2</td>
<td>18.30</td>
<td>chr18</td>
</tr>
<tr>
<td>DSU</td>
<td>dilute suppressor</td>
<td>14.11</td>
<td>chr2</td>
</tr>
<tr>
<td>DTL</td>
<td>denticleless homolog (Drosophila)</td>
<td>13.63</td>
<td>chr1</td>
</tr>
<tr>
<td>DTNA</td>
<td>dystrobrevin, alpha</td>
<td>4.74</td>
<td>chr18</td>
</tr>
<tr>
<td>DTX3</td>
<td>deltex 3 homolog (Drosophila)</td>
<td>2.75</td>
<td>chr12</td>
</tr>
<tr>
<td>DTX4</td>
<td>deltex 4 homolog (Drosophila)</td>
<td>2.25</td>
<td>chr11</td>
</tr>
<tr>
<td>DTYMK</td>
<td>deoxynthymidylate kinase (thymidylate kinase)</td>
<td>2.48</td>
<td>chr2, random</td>
</tr>
<tr>
<td>DUS1L</td>
<td>dihydrouridine synthase 1-like (S. cerevisiae)</td>
<td>2.02</td>
<td>chr17</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUSSL</td>
<td>dihydouridine synthase 3-like (S. cerevisiae)</td>
<td>4.04</td>
<td>chr19</td>
</tr>
<tr>
<td>DUS4L</td>
<td>dihydouridine synthase 4-like (S. cerevisiae)</td>
<td>3.95</td>
<td>chr7</td>
</tr>
<tr>
<td>DUSP16</td>
<td>dual specificity phosphatase 16</td>
<td>5.74</td>
<td>chr12</td>
</tr>
<tr>
<td>DUSP6</td>
<td>dual specificity phosphatase 6</td>
<td>2.83</td>
<td>chr12</td>
</tr>
<tr>
<td>DUT</td>
<td>diUTP pyrophosphatase</td>
<td>13.41</td>
<td>chr15</td>
</tr>
<tr>
<td>DVL2</td>
<td>dishevelled, dsh homolog 2 (Drosophila)</td>
<td>2.32</td>
<td>chr17</td>
</tr>
<tr>
<td>DXS9879E</td>
<td>DNA segment on chromosome X (unique) 9879 expressed sequence</td>
<td>3.77</td>
<td>chrX</td>
</tr>
<tr>
<td>DYNL2C</td>
<td>Dynemin, light chain, LC8-type 2</td>
<td>2.10</td>
<td>chr17</td>
</tr>
<tr>
<td>EZH2</td>
<td>Polycomb repressive complex 2 (PRC2)</td>
<td>4.45</td>
<td>chr3</td>
</tr>
<tr>
<td>EZ2-230K</td>
<td>likely ortholog of mouse ubiquitin-conjugating enzyme EZ2-230K</td>
<td>3.21</td>
<td>chr17</td>
</tr>
<tr>
<td>EZF1</td>
<td>EZF transcription factor 1</td>
<td>2.23</td>
<td>chr20</td>
</tr>
<tr>
<td>EZF3</td>
<td>EZF transcription factor 3</td>
<td>2.45</td>
<td>chr6</td>
</tr>
<tr>
<td>EZF5</td>
<td>EZF transcription factor 5, p130-binding</td>
<td>6.01</td>
<td>chr8</td>
</tr>
<tr>
<td>EZF8</td>
<td>EZF transcription factor 6</td>
<td>6.77</td>
<td>chr11</td>
</tr>
<tr>
<td>EZIG5</td>
<td>growth and transformation-dependent protein</td>
<td>3.50</td>
<td>chr3</td>
</tr>
<tr>
<td>EAF2</td>
<td>ELL associated factor 2</td>
<td>2.93</td>
<td>chr3</td>
</tr>
<tr>
<td>EBA9</td>
<td>estrogen receptor binding site associated, antigen, 9</td>
<td>2.22</td>
<td>chr8</td>
</tr>
<tr>
<td>EBP</td>
<td>emopamil binding protein (sterol isomerase)</td>
<td>3.70</td>
<td>chrX</td>
</tr>
<tr>
<td>EBPI</td>
<td>emopamil binding protein-like</td>
<td>2.70</td>
<td>chr13</td>
</tr>
<tr>
<td>ECAT11</td>
<td>hypothetical protein FLJ10884</td>
<td>671.16</td>
<td>chr1</td>
</tr>
<tr>
<td>ECH1</td>
<td>enoyl Coenzyme A hydratase 1, peroxisomal</td>
<td>2.55</td>
<td>chr19</td>
</tr>
<tr>
<td>ECHDC2</td>
<td>enoyl Coenzyme A hydratase domain containing 2</td>
<td>2.49</td>
<td>chr1</td>
</tr>
<tr>
<td>ECHDC3</td>
<td>enoyl Coenzyme A hydratase domain containing 3</td>
<td>2.64</td>
<td>chr10</td>
</tr>
<tr>
<td>ECT2</td>
<td>epithelial cell transforming sequence 2 oncogene</td>
<td>3.24</td>
<td>chr3</td>
</tr>
<tr>
<td>EDD1</td>
<td>E3 ubiquitin protein ligase, HECT domain containing, 1</td>
<td>3.16</td>
<td>chr8</td>
</tr>
<tr>
<td>EDG4</td>
<td>endothelial differentiation, lysosphosphatic acid G-protein-coupled receptor, 4</td>
<td>13.14</td>
<td>chr19</td>
</tr>
<tr>
<td>EDG7</td>
<td>Endothelial differentiation, lysosphosphatic acid G-protein-coupled receptor, 7</td>
<td>9.01</td>
<td>chr1</td>
</tr>
<tr>
<td>EDNRB</td>
<td>endothelin receptor type B</td>
<td>22.33</td>
<td>chr13</td>
</tr>
<tr>
<td>EED</td>
<td>embryonic ectoderm development</td>
<td>2.55</td>
<td>chr11</td>
</tr>
<tr>
<td>EF1E1</td>
<td>eukaryotic translation elongation factor 1 epsilon 1</td>
<td>2.97</td>
<td>chr6</td>
</tr>
<tr>
<td>EFHC1</td>
<td>EF-hand domain (C-terminal) containing 1</td>
<td>2.26</td>
<td>chr6</td>
</tr>
<tr>
<td>ENA4</td>
<td>ephrin-A4</td>
<td>2.45</td>
<td>chr1</td>
</tr>
<tr>
<td>ENA5</td>
<td>ephrin-A5</td>
<td>3.06</td>
<td>chr5</td>
</tr>
<tr>
<td>ENB3</td>
<td>ephrin-B3</td>
<td>2.29</td>
<td>chr17</td>
</tr>
<tr>
<td>EFTUD1</td>
<td>elongation factor Tu GTP binding domain containing 1</td>
<td>3.56</td>
<td>chr15</td>
</tr>
<tr>
<td>EGLN3</td>
<td>egl nine homolog 3 (C. elegans)</td>
<td>3.49</td>
<td>chr14</td>
</tr>
<tr>
<td>EHADH</td>
<td>enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase</td>
<td>2.01</td>
<td>chr3</td>
</tr>
<tr>
<td>EHM1</td>
<td>euchromatic histone-lysine N-methyltransferase 1</td>
<td>3.31</td>
<td>chr9</td>
</tr>
<tr>
<td>EHM2</td>
<td>euchromatic histone-lysine N-methyltransferase 2</td>
<td>4.70</td>
<td>chr6</td>
</tr>
<tr>
<td>EID3</td>
<td>E1A-like inhibitor of differentiation 3</td>
<td>2.08</td>
<td>chr12</td>
</tr>
<tr>
<td>EIFIAX</td>
<td>eukaryotic translation initiation factor 1A, X-linked</td>
<td>3.04</td>
<td>chr1</td>
</tr>
<tr>
<td>EIFT2AK4</td>
<td>eukaryotic translation initiation factor 2 alpha kinase 4</td>
<td>2.59</td>
<td>chr15</td>
</tr>
<tr>
<td>EIFT2B4</td>
<td>eukaryotic translation initiation factor 2B, subunit 4 delta, 67kDa</td>
<td>2.18</td>
<td>chr2</td>
</tr>
<tr>
<td>EIFT2C2</td>
<td>eukaryotic translation initiation factor 2C, 2</td>
<td>3.65</td>
<td>chr15</td>
</tr>
<tr>
<td>EIFT2S2</td>
<td>eukaryotic translation initiation factor 2, subunit 2 beta, 38kDa</td>
<td>2.19</td>
<td>chr2</td>
</tr>
<tr>
<td>EIFT3S1</td>
<td>eukaryotic translation initiation factor 3, subunit 10 theta, 150/170kDa</td>
<td>2.07</td>
<td>chr10</td>
</tr>
<tr>
<td>EIFT3S12</td>
<td>eukaryotic translation initiation factor 3, subunit 12</td>
<td>2.73</td>
<td>chr19</td>
</tr>
<tr>
<td>EIFT3S4</td>
<td>eukaryotic translation initiation factor 3, subunit 4 delta, 44kDa</td>
<td>2.04</td>
<td>chr19</td>
</tr>
<tr>
<td>EIFT3S8</td>
<td>eukaryotic translation initiation factor 3, subunit 8, 110kDa</td>
<td>2.74</td>
<td>chr16</td>
</tr>
<tr>
<td>EIFT3S9</td>
<td>eukaryotic translation initiation factor 3, subunit 9 eta, 116kDa</td>
<td>5.05</td>
<td>chr7</td>
</tr>
<tr>
<td>EIFT4A1</td>
<td>eukaryotic translation initiation factor 4A, isofrom 1</td>
<td>2.05</td>
<td>chr12</td>
</tr>
<tr>
<td>EIFT4E</td>
<td>eukaryotic translation initiation factor 4E</td>
<td>2.83</td>
<td>chr4</td>
</tr>
<tr>
<td>EIFT4E3</td>
<td>eukaryotic translation initiation factor 4E member 3</td>
<td>3.95</td>
<td>chr3</td>
</tr>
<tr>
<td>EIFT4EBP2</td>
<td>eukaryotic translation initiation factor 4E binding protein 2</td>
<td>7.55</td>
<td>chr10</td>
</tr>
<tr>
<td>EIFT4G3</td>
<td>eukaryotic translation initiation factor 4 gamma, 3</td>
<td>2.36</td>
<td>chr1</td>
</tr>
<tr>
<td>EIFT5</td>
<td>eukaryotic translation initiation factor 5</td>
<td>2.34</td>
<td>chr14</td>
</tr>
<tr>
<td>ELAC2</td>
<td>elaC homolog 2 (E. coli)</td>
<td>2.36</td>
<td>chr17</td>
</tr>
<tr>
<td>ELAVL1</td>
<td>ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu antigen R)</td>
<td>2.03</td>
<td>chr19</td>
</tr>
<tr>
<td>ELAVL2</td>
<td>ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen R)</td>
<td>8.46</td>
<td>chr9</td>
</tr>
<tr>
<td>ELL3</td>
<td>elongation factor RNA polymerase II-like 3</td>
<td>2.15</td>
<td>chr15</td>
</tr>
<tr>
<td>ELOVL6</td>
<td>ELOVL family member 6, elongation of long chain fatty acids (FEN1/Elo2, SUR4)</td>
<td>5.58</td>
<td>chr4</td>
</tr>
<tr>
<td>ELOVL7</td>
<td>ELOVL family member 7, elongation of long chain fatty acids (yeast)</td>
<td>14.29</td>
<td>chr5</td>
</tr>
<tr>
<td>ELP4</td>
<td>elongation protein 4 homolog (S. cerevisiae)</td>
<td>2.12</td>
<td>chr11</td>
</tr>
<tr>
<td>EME1</td>
<td>essential meiotic endonuclease 1 homolog 1 (S. pombe)</td>
<td>2.93</td>
<td>chr17</td>
</tr>
<tr>
<td>EMID2</td>
<td>EMI domain containing 2</td>
<td>5.51</td>
<td>chr7</td>
</tr>
<tr>
<td>EML4</td>
<td>echinoderm microtubule associated protein like 4</td>
<td>2.26</td>
<td>chr2</td>
</tr>
<tr>
<td>EN01</td>
<td>enolate 1, (alpha) /// small nuclear ribonucleoprotein polypeptide F</td>
<td>4.19</td>
<td>chr12</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05\))

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSO2</td>
<td>enolase 2 (gamma, neuronal)</td>
<td>2.35</td>
<td>chr12</td>
</tr>
<tr>
<td>ENSO3</td>
<td>enolase 3 (beta, muscle)</td>
<td>3.56</td>
<td>chr17</td>
</tr>
<tr>
<td>ENOSF1</td>
<td>enolase superfamily member 1</td>
<td>2.85</td>
<td>chr18</td>
</tr>
<tr>
<td>ENPP1</td>
<td>ectonucleotide pyrophosphatase/phosphodiesterase 1</td>
<td>4.19</td>
<td>chr6</td>
</tr>
<tr>
<td>ENPP2</td>
<td>ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin)</td>
<td>3.22</td>
<td>chr8</td>
</tr>
<tr>
<td>ENPP4</td>
<td>ectonucleotide pyrophosphatase/phosphodiesterase 4 (putative function)</td>
<td>4.56</td>
<td>chr6</td>
</tr>
<tr>
<td>ENPP5</td>
<td>ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative function)</td>
<td>3.14</td>
<td>chr6</td>
</tr>
<tr>
<td>ENSA</td>
<td>endosulfine alpha</td>
<td>3.90</td>
<td>chr1</td>
</tr>
<tr>
<td>ENYQ</td>
<td>enhancer of yellow 2 homolog (Drosophila)</td>
<td>2.13</td>
<td>chr8</td>
</tr>
<tr>
<td>EOMES</td>
<td>homeodomain protein (Xenopus laevis)</td>
<td>3.86</td>
<td>chr9</td>
</tr>
<tr>
<td>EP300</td>
<td>E1A binding protein p300</td>
<td>2.85</td>
<td>chr22</td>
</tr>
<tr>
<td>EP400</td>
<td>E1A binding protein p400</td>
<td>2.39</td>
<td>chr12</td>
</tr>
<tr>
<td>EPB41</td>
<td>erythrocyte membrane protein band 4.1 (elliptocytosis 1, RH-linked)</td>
<td>8.93</td>
<td>chr1</td>
</tr>
<tr>
<td>EPB41L2</td>
<td>erythrocyte membrane protein band 4.1-like 2</td>
<td>2.38</td>
<td>chr6</td>
</tr>
<tr>
<td>EPB41L4B</td>
<td>erythrocyte membrane protein band 4.1-like 4B</td>
<td>8.75</td>
<td>chr9</td>
</tr>
<tr>
<td>EPB41L5</td>
<td>erythrocyte membrane protein band 4.1-like 5</td>
<td>9.76</td>
<td>chr2</td>
</tr>
<tr>
<td>EPC2</td>
<td>enhancer of polycomb homolog 2 (Drosophila)</td>
<td>2.34</td>
<td>chr2</td>
</tr>
<tr>
<td>EPHA1</td>
<td>EPH receptor A1</td>
<td>14.27</td>
<td>chr7</td>
</tr>
<tr>
<td>EPHA7</td>
<td>EPH receptor A7</td>
<td>5.60</td>
<td>chr6</td>
</tr>
<tr>
<td>EPHB1</td>
<td>EPH receptor B1</td>
<td>3.65</td>
<td>chr3</td>
</tr>
<tr>
<td>EPHB4</td>
<td>EPH receptor B4</td>
<td>2.21</td>
<td>chr7</td>
</tr>
<tr>
<td>EPPK1</td>
<td>epilakin 1</td>
<td>7.19</td>
<td>chr8</td>
</tr>
<tr>
<td>EPS8L1</td>
<td>EPS8-like 1</td>
<td>5.16</td>
<td>chr19</td>
</tr>
<tr>
<td>EPS8L2</td>
<td>EPS8-like 2</td>
<td>5.61</td>
<td>chr11</td>
</tr>
<tr>
<td>ERBB2</td>
<td>v-erb-b2 erythroblast leukemia viral oncogene homolog 2, neuro/glioblastoma</td>
<td>4.29</td>
<td>chr17</td>
</tr>
<tr>
<td>ERBB3</td>
<td>v-erb-b2 erythroblast leukemia viral oncogene homolog 3 (avian)</td>
<td>33.97</td>
<td>chr12</td>
</tr>
<tr>
<td>ERBB</td>
<td>estrogen receptor binding protein</td>
<td>2.63</td>
<td>chr1</td>
</tr>
<tr>
<td>ERCC3</td>
<td>excision repair cross-complementing rodent repair deficiency, complementation</td>
<td>2.30</td>
<td>chr2</td>
</tr>
<tr>
<td>ERH</td>
<td>enhancer of rudimentary homolog (Drosophila) // enhancer of rudimentary homolog (Drosophila)</td>
<td>2.41</td>
<td>chr14</td>
</tr>
<tr>
<td>ERSP</td>
<td>endoplasmic reticulum protein 29</td>
<td>3.32</td>
<td>chr12</td>
</tr>
<tr>
<td>ESC01</td>
<td>establishment of cohesion 1 homolog 1 (S. cerevisiae)</td>
<td>4.22</td>
<td>chr18</td>
</tr>
<tr>
<td>ESPL1</td>
<td>extra spindle poles like 1 (S. cerevisiae)</td>
<td>13.37</td>
<td>chr12</td>
</tr>
<tr>
<td>ESRRG</td>
<td>estrogen-related receptor gamma</td>
<td>2.43</td>
<td>chr1</td>
</tr>
<tr>
<td>EST1B</td>
<td>Est1p-like protein B</td>
<td>2.16</td>
<td>chr1</td>
</tr>
<tr>
<td>ETF1</td>
<td>eukaryotic translation termination factor 1</td>
<td>2.06</td>
<td>chr5</td>
</tr>
<tr>
<td>ETNK1</td>
<td>Ethanolamine kinase 1</td>
<td>3.92</td>
<td>chr12</td>
</tr>
<tr>
<td>ETV1</td>
<td>ets variant gene 1</td>
<td>5.25</td>
<td>chr7</td>
</tr>
<tr>
<td>ETV4</td>
<td>ets variant gene 4 (E1A enhancer binding protein, E1AF) // ets variant gene 4 (E1AF)</td>
<td>3.51</td>
<td>chr22</td>
</tr>
<tr>
<td>EWSR1</td>
<td>Ewing sarcoma breakpoint region 1</td>
<td>2.96</td>
<td>chr22</td>
</tr>
<tr>
<td>EXO1</td>
<td>exonuclease 1</td>
<td>6.17</td>
<td>chr1</td>
</tr>
<tr>
<td>EXOSC1</td>
<td>exosome component 1</td>
<td>2.14</td>
<td>chr10</td>
</tr>
<tr>
<td>EXOSC10</td>
<td>exosome component 10</td>
<td>2.25</td>
<td>chr1</td>
</tr>
<tr>
<td>EXOSC2</td>
<td>exosome component 2</td>
<td>5.05</td>
<td>chr9</td>
</tr>
<tr>
<td>EXOSC3</td>
<td>exosome component 3</td>
<td>5.76</td>
<td>chr9</td>
</tr>
<tr>
<td>EXOSC4</td>
<td>exosome component 4</td>
<td>2.62</td>
<td>chr8</td>
</tr>
<tr>
<td>EXOSC5</td>
<td>exosome component 5</td>
<td>4.29</td>
<td>chr19</td>
</tr>
<tr>
<td>EXOSC7</td>
<td>exosome component 7</td>
<td>4.46</td>
<td>chr3</td>
</tr>
<tr>
<td>EXOSC8</td>
<td>exosome component 8</td>
<td>3.75</td>
<td>chr13</td>
</tr>
<tr>
<td>EXOSC9</td>
<td>exosome component 9</td>
<td>3.99</td>
<td>chr4</td>
</tr>
<tr>
<td>EZH2</td>
<td>enhancer of zeste homolog 2 (Drosophila)</td>
<td>5.64</td>
<td>chr7</td>
</tr>
<tr>
<td>F11R</td>
<td>F11 receptor</td>
<td>56.82</td>
<td>chr1</td>
</tr>
<tr>
<td>FABP5</td>
<td>fatty acid binding protein 5 (psoriasis-associated)</td>
<td>6.51</td>
<td>chr7</td>
</tr>
<tr>
<td>FABP7</td>
<td>fatty acid binding protein 7, brain</td>
<td>12.13</td>
<td>chr6</td>
</tr>
<tr>
<td>FADS1</td>
<td>fatty acid desaturase 1</td>
<td>2.67</td>
<td>chr11</td>
</tr>
<tr>
<td>FAF1</td>
<td>Fas (TNFRSF6) associated factor 1</td>
<td>2.37</td>
<td>chr1</td>
</tr>
<tr>
<td>FAHD2A</td>
<td>famylicic acidocetate hydrolase domain containing 2A</td>
<td>2.01</td>
<td>chr2</td>
</tr>
<tr>
<td>FAIM</td>
<td>Fas apoptotic inhibitory molecule</td>
<td>3.11</td>
<td>chr3</td>
</tr>
<tr>
<td>FALZ</td>
<td>familial Alzheimer antigen</td>
<td>17.12</td>
<td>chr17</td>
</tr>
<tr>
<td>FAM20A</td>
<td>Family with sequence similarity 20, member A</td>
<td>2.63</td>
<td>chr17</td>
</tr>
<tr>
<td>FAM29A</td>
<td>family with sequence similarity 29, member A</td>
<td>5.17</td>
<td>chr7</td>
</tr>
<tr>
<td>FAM33A</td>
<td>family with sequence similarity 33, member A</td>
<td>3.05</td>
<td>chr17</td>
</tr>
<tr>
<td>FAM44B</td>
<td>family with sequence similarity 44, member B</td>
<td>2.74</td>
<td>chr5</td>
</tr>
<tr>
<td>FAM46B</td>
<td>family with sequence similarity 46, member B</td>
<td>2.85</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM48A</td>
<td>family with sequence similarity 48, member B</td>
<td>2.31</td>
<td>chr13</td>
</tr>
<tr>
<td>FAM49B</td>
<td>family with sequence similarity 49, member B</td>
<td>9.78</td>
<td>chr8</td>
</tr>
<tr>
<td>FAM54A</td>
<td>family with sequence similarity 54, member A</td>
<td>4.24</td>
<td>chr6</td>
</tr>
<tr>
<td>FAM59A</td>
<td>family with sequence similarity 59, member A</td>
<td>4.06</td>
<td>chr18</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM69B</td>
<td>family with sequence similarity 59, member B</td>
<td>2.25</td>
<td>chr2</td>
</tr>
<tr>
<td>FAM560A</td>
<td>family with sequence similarity 60, member A</td>
<td>8.19</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM561A</td>
<td>family with sequence similarity 61, member A</td>
<td>2.22</td>
<td>chr19</td>
</tr>
<tr>
<td>FAM561B</td>
<td>family with sequence similarity 61, member B</td>
<td>2.10</td>
<td>chr20</td>
</tr>
<tr>
<td>FAM562B</td>
<td>family with sequence similarity 62 (C2 domain containing) member B</td>
<td>2.08</td>
<td>chr7</td>
</tr>
<tr>
<td>FAM564A</td>
<td>family with sequence similarity 64, member A</td>
<td>11.88</td>
<td>chr17</td>
</tr>
<tr>
<td>FAM572A</td>
<td>family with sequence similarity 72, member A</td>
<td>12.60</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM576A</td>
<td>family with sequence similarity 76, member A</td>
<td>3.37</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM576B</td>
<td>family with sequence similarity 76, member B</td>
<td>2.44</td>
<td>chr11</td>
</tr>
<tr>
<td>FAM577A</td>
<td>family with sequence similarity 77, member A2</td>
<td>2.05</td>
<td>(vide)</td>
</tr>
<tr>
<td>FAM580A</td>
<td>family with sequence similarity 80, member A</td>
<td>2.35</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM580B</td>
<td>family with sequence similarity 80, member B</td>
<td>2.89</td>
<td>chr12</td>
</tr>
<tr>
<td>FAM596A</td>
<td>family with sequence similarity 96, member A</td>
<td>2.59</td>
<td>chr15</td>
</tr>
<tr>
<td>FAM598B</td>
<td>family with sequence similarity 98, member B</td>
<td>2.61</td>
<td>chr15</td>
</tr>
<tr>
<td>FANCD2</td>
<td>Fanconi anemia, complementation group D2</td>
<td>11.33</td>
<td>chr3</td>
</tr>
<tr>
<td>FANCE</td>
<td>Fanconi anemia, complementation group E</td>
<td>2.07</td>
<td>chr6</td>
</tr>
<tr>
<td>FANCF</td>
<td>Fanconi anemia, complementation group F</td>
<td>3.58</td>
<td>chr11</td>
</tr>
<tr>
<td>FANCG</td>
<td>Fanconi anemia, complementation group G</td>
<td>6.29</td>
<td>chr9</td>
</tr>
<tr>
<td>FANCL</td>
<td>Fanconi anemia, complementation group L</td>
<td>5.67</td>
<td>chr2</td>
</tr>
<tr>
<td>FANCM</td>
<td>Fanconi anemia, complementation group M</td>
<td>2.86</td>
<td>chr14</td>
</tr>
<tr>
<td>FARS1A</td>
<td>pharynlarine-IRNA synthetase-like, alpha subunit</td>
<td>2.12</td>
<td>chr19</td>
</tr>
<tr>
<td>FASN</td>
<td>fatty acid synthase</td>
<td>2.76</td>
<td>chr6</td>
</tr>
<tr>
<td>FBL</td>
<td>fibrilin</td>
<td></td>
<td>fibrilin</td>
</tr>
<tr>
<td>FBLX10</td>
<td>F-box and leucine-rich repeat protein 10</td>
<td>6.00</td>
<td>chr12</td>
</tr>
<tr>
<td>FBLX16</td>
<td>F-box and leucine-rich repeat protein 16</td>
<td>2.65</td>
<td>chr16</td>
</tr>
<tr>
<td>FBLX20</td>
<td>F-box and leucine-rich repeat protein 20</td>
<td>2.20</td>
<td>chr17</td>
</tr>
<tr>
<td>FBLX6</td>
<td>F-box and leucine-rich repeat protein 6</td>
<td>2.28</td>
<td>chr6</td>
</tr>
<tr>
<td>FBLX7</td>
<td>F-box and leucine-rich repeat protein 7</td>
<td>2.12</td>
<td>chr5</td>
</tr>
<tr>
<td>FBXO11</td>
<td>F-box protein 11</td>
<td>2.68</td>
<td>chr2</td>
</tr>
<tr>
<td>FBXO2</td>
<td>F-box protein 2</td>
<td>4.30</td>
<td>chr1</td>
</tr>
<tr>
<td>FBXO25</td>
<td>F-box protein 25</td>
<td>4.62</td>
<td>chr8</td>
</tr>
<tr>
<td>FBXO28</td>
<td>F-box protein 28</td>
<td>3.91</td>
<td>chr1</td>
</tr>
<tr>
<td>FBXO41</td>
<td>F-box protein 41</td>
<td>2.25</td>
<td>chr2</td>
</tr>
<tr>
<td>FBXO45</td>
<td>F-box protein 45</td>
<td>2.45</td>
<td>chr3</td>
</tr>
<tr>
<td>FBXO5</td>
<td>F-box protein 5</td>
<td>5.11</td>
<td>chr6</td>
</tr>
<tr>
<td>FBXW4</td>
<td>F-box and WD-40 domain protein 4</td>
<td>2.29</td>
<td>chr10</td>
</tr>
<tr>
<td>FDFT1</td>
<td>farnesyl-diphosphate farnesyltransferase 1</td>
<td>2.68</td>
<td>chr8</td>
</tr>
<tr>
<td>FDPS</td>
<td>farnesyl diphosphate synthase (farnesyl pyrophosphate synthetase, dimethylallyl diphosphate synthase)</td>
<td>2.62</td>
<td>chr1</td>
</tr>
<tr>
<td>FEM1A</td>
<td>Fet-1 homolog A (C.elegans)</td>
<td>2.10</td>
<td>chr13</td>
</tr>
<tr>
<td>FEN1</td>
<td>flap structure-specific endonuclease 1</td>
<td>7.50</td>
<td>chr11</td>
</tr>
<tr>
<td>FG4D4</td>
<td>FYVE, RhoGEF and PH domain containing 4</td>
<td>19.15</td>
<td>chr12</td>
</tr>
<tr>
<td>FG5D</td>
<td>FYVE, RhoGEF and PH domain containing 5</td>
<td>2.51</td>
<td>chr3</td>
</tr>
<tr>
<td>FG6D</td>
<td>FYVE, RhoGEF and PH domain containing 6</td>
<td>2.42</td>
<td>chr12</td>
</tr>
<tr>
<td>FGFI1</td>
<td>fibroblist growth factor 11</td>
<td>2.99</td>
<td>chr17</td>
</tr>
<tr>
<td>FGFI3</td>
<td>fibroblist growth factor 13</td>
<td>32.75</td>
<td>chrX</td>
</tr>
<tr>
<td>FGFI9</td>
<td>fibroblist growth factor 19</td>
<td>3.16</td>
<td>chr11</td>
</tr>
<tr>
<td>FGFI4</td>
<td>fibroblist growth factor 4 (heparin secreatory transforming protein 1, Kaposi sarcoma)</td>
<td>12.46</td>
<td>chr11</td>
</tr>
<tr>
<td>FGFR1</td>
<td>fibroblist growth factor receptor 1 (lens-related tyrosine kinase 2, Pfeiffer syndrome)</td>
<td>7.15</td>
<td>chr8</td>
</tr>
<tr>
<td>FGFR1OP</td>
<td>fibroblist growth factor receptor 1 oncogene partner</td>
<td>3.43</td>
<td>chr6</td>
</tr>
<tr>
<td>FGFR2</td>
<td>fibroblist growth factor receptor 2 (bacteria-expressed kinase, keratinocyte growth factor)</td>
<td>28.00</td>
<td>chr10</td>
</tr>
<tr>
<td>FGFR3</td>
<td>fibroblist growth factor receptor 3 (achondroplasia, thanatophoric dwarfism)</td>
<td>13.26</td>
<td>chr4</td>
</tr>
<tr>
<td>FGFR4</td>
<td>fibroblist growth factor receptor 4</td>
<td>4.27</td>
<td>chr5</td>
</tr>
<tr>
<td>FIGN</td>
<td>Fidgetin</td>
<td>3.25</td>
<td>chr2</td>
</tr>
<tr>
<td>FGNL1</td>
<td>Fidgetin-like 1</td>
<td>2.64</td>
<td>chr7</td>
</tr>
<tr>
<td>FPLIP1</td>
<td>Fibrillarin</td>
<td></td>
<td>Fibrillarin</td>
</tr>
<tr>
<td>PKB1B</td>
<td>FSK56 binding protein 1B, 12.6 kDa</td>
<td>5.59</td>
<td>chr2</td>
</tr>
<tr>
<td>PKBP3</td>
<td>FSK56 binding protein 3, 25kDa</td>
<td>2.87</td>
<td>chr14</td>
</tr>
<tr>
<td>PKBP4</td>
<td>FSK56 binding protein 4, 59kDa</td>
<td>3.43</td>
<td>chr12</td>
</tr>
<tr>
<td>PKBP5</td>
<td>FSK56 binding protein 5</td>
<td>5.45</td>
<td>chr6</td>
</tr>
<tr>
<td>PKCBL</td>
<td>FSK56 binding protein like</td>
<td>2.31</td>
<td>chr6</td>
</tr>
<tr>
<td>PKS1G4</td>
<td>leucine zipper protein FKS1G4</td>
<td>3.99</td>
<td>chr5</td>
</tr>
<tr>
<td>FLAD1</td>
<td>Fad1, flavin adenine dinucleotide synthetase, homolog (yeast)</td>
<td>3.65</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ10006</td>
<td>hypothetical protein FLJ10006</td>
<td>2.66</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ10154</td>
<td>hypothetical protein FLJ10154</td>
<td>2.39</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ10213</td>
<td>hypothetical protein FLJ10213</td>
<td>2.62</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ10374</td>
<td>hypothetical protein FLJ10374</td>
<td>2.74</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ10379</td>
<td>hypothetical protein FLJ10379</td>
<td>2.26</td>
<td>chr2</td>
</tr>
</tbody>
</table>
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLJ0415</td>
<td>hypothetical protein FLJ0415</td>
<td>2.14</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ0534</td>
<td>hypothetical protein FLJ0534</td>
<td>4.32</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ0652</td>
<td>hypothetical protein FLJ0652</td>
<td>19.55</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ0700</td>
<td>hypothetical protein FLJ0700</td>
<td>3.52</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ0707</td>
<td>hypothetical protein FLJ0707</td>
<td>2.24</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ0719</td>
<td>hypothetical protein FLJ0719</td>
<td>9.90</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ0774</td>
<td>N-acetyltransferase-Ike protein</td>
<td>4.48</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ0803</td>
<td>hypothetical protein FLJ0803</td>
<td>3.73</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ0847</td>
<td>hypothetical protein FLJ0847</td>
<td>2.03</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ1021</td>
<td>similar to splicing factor, arginine/serine-rich 4</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ1127</td>
<td>hypothetical protein FLJ1127</td>
<td>2.08</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ1200</td>
<td>hypothetical protein FLJ1200</td>
<td>2.10</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ1301</td>
<td>hypothetical protein FLJ1301</td>
<td>3.34</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ1305</td>
<td>hypothetical protein FLJ1305</td>
<td>2.66</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ1712</td>
<td>hypothetical protein FLJ1712</td>
<td>2.68</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ1806</td>
<td>nuclear protein UKp66</td>
<td>3.09</td>
<td>chr14</td>
</tr>
<tr>
<td>FLJ1850</td>
<td>hypothetical protein FLJ1850</td>
<td>2.38</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ2436</td>
<td>hypothetical protein FLJ2436</td>
<td>3.28</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ2443</td>
<td>hypothetical protein FLJ2443</td>
<td>5.35</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ2505</td>
<td>hypothetical protein FLJ2505</td>
<td>13.72</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ2610</td>
<td>hypothetical protein FLJ2610</td>
<td>2.35</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ2684</td>
<td>hypothetical protein FLJ2684</td>
<td>5.45</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ2788</td>
<td>hypothetical protein FLJ2788</td>
<td>2.03</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ2949</td>
<td>hypothetical protein FLJ2949</td>
<td>2.93</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ3089</td>
<td>hypothetical protein FLJ3089</td>
<td>2.14</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ3149</td>
<td>hypothetical protein FLJ3149</td>
<td>2.37</td>
<td>chr20</td>
</tr>
<tr>
<td>FLJ3213</td>
<td>modulator of estrogen induced transcription</td>
<td>3.91</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ3220</td>
<td>hypothetical protein FLJ3220</td>
<td>2.52</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ3273</td>
<td>hypothetical protein FLJ3273</td>
<td>2.61</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ3305</td>
<td>hypothetical protein FLJ3305</td>
<td>7.27</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ3491</td>
<td>hypothetical protein FLJ3491</td>
<td>2.20</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ3614</td>
<td>hypothetical protein FLJ3614</td>
<td>2.51</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ3848</td>
<td>hypothetical protein FLJ3848</td>
<td>2.69</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ3909</td>
<td>hypothetical protein FLJ3909</td>
<td>7.82</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ3910</td>
<td>hypothetical protein FLJ3910</td>
<td>5.68</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ3912</td>
<td>hypothetical protein FLJ3912</td>
<td>3.44</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ3984</td>
<td>hypothetical protein FLJ3984</td>
<td>3.46</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ4001</td>
<td>hypothetical protein FLJ4001</td>
<td>6.58</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ4503</td>
<td>hypothetical protein FLJ4503</td>
<td>3.30</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ4624</td>
<td>hypothetical protein FLJ4624</td>
<td>2.35</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ4627</td>
<td>hypothetical protein FLJ4627</td>
<td>3.49</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ4668</td>
<td>hypothetical protein FLJ4668</td>
<td>3.18</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ4712</td>
<td>hypothetical protein FLJ4712</td>
<td>16.52</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ4827</td>
<td>hypothetical protein FLJ4827</td>
<td>2.46</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ4981</td>
<td>hypothetical protein FLJ4981</td>
<td>2.05</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ5205</td>
<td>FLJ20105 protein</td>
<td>7.60</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ5209</td>
<td>hypothetical protein FLJ20209</td>
<td>3.42</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ5211</td>
<td>hypothetical protein FLJ20211</td>
<td>2.75</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ5273</td>
<td>RNA-binding protein</td>
<td>38.26</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ2097 // FLJ10776 /// FLJ5627</td>
<td>hypothetical protein FLJ2097 // FLJ41352 protein</td>
<td>2.97</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ2039</td>
<td>hypothetical protein FLJ2039</td>
<td>3.09</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ2033</td>
<td>hypothetical protein FLJ2033 // hypothetical protein FLJ2033</td>
<td>2.94</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ2037</td>
<td>hypothetical protein FLJ2037</td>
<td>2.88</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ2049</td>
<td>hypothetical protein FLJ2049</td>
<td>9.15</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ2048</td>
<td>hypothetical protein FLJ2048</td>
<td>2.75</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ2052</td>
<td>hypothetical protein FLJ2052</td>
<td>4.19</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ2056</td>
<td>timeless-interacting protein</td>
<td>4.34</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ2055</td>
<td>hypothetical protein FLJ2055</td>
<td>2.26</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ2058</td>
<td>hypothetical protein FLJ2058</td>
<td>2.97</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ2068</td>
<td>hypothetical protein FLJ2068 // hypothetical protein FLJ2068</td>
<td>2.81</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ2061</td>
<td>hypothetical protein FLJ2061</td>
<td>6.83</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ2063</td>
<td>hypothetical protein FLJ2063</td>
<td>2.54</td>
<td>chr19</td>
</tr>
<tr>
<td>FLJ2067</td>
<td>hypothetical protein FLJ2067</td>
<td>10.63</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ2075</td>
<td>FLJ2075 protein</td>
<td>5.11</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ2089</td>
<td>FLJ2089 gene</td>
<td>3.05</td>
<td>chr14</td>
</tr>
<tr>
<td>FLJ2103</td>
<td>hypothetical protein FLJ2103</td>
<td>2.70</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ2114</td>
<td>hypothetical protein FLJ2114</td>
<td>7.14</td>
<td>chr16</td>
</tr>
</tbody>
</table>
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

FLJ21168	80143	hypothetical protein FLJ21168 // hypothetical protein FLJ21168	2.05	chr1
FLJ21816	79728	hypothetical protein FLJ21816	3.96	chr16
FLJ21839	60509	hypothetical protein FLJ21839	2.65	chr2
FLJ21865	64772	endo-beta-N-acetylglucosaminidase	2.23	chr17
FLJ21901	79675	hypothetical protein FLJ21901	4.79	chr2
FLJ21924	79832	hypothetical protein FLJ21924	6.81	chr11
FLJ21945	80304	hypothetical protein FLJ21945	3.73	chr2
FLJ21963	79611	FLJ21963 protein	7.45	chr12
FLJ22104	65084	hypothetical protein FLJ22104	2.64	chr11
FLJ22318	64777	hypothetical protein FLJ22318	2.99	chr5
FLJ22531	79703	hypothetical protein FLJ22531	3.97	chr11
FLJ22555	79568	hypothetical protein FLJ22555	2.57	chr2
FLJ22624	79866	FLJ22624 protein	5.99	chr13
FLJ22662	79887	hypothetical protein FLJ22662	26.69	chr12
FLJ22795	80154	hypothetical protein FLJ22795	2.05	chr15
FLJ23342	79684	Hypothetical protein FLJ23342	3.02	chr11
FLJ23441	79731	hypothetical protein FLJ23441	3.91	chr11
FLJ23556	79938	hypothetical protein FLJ23556	6.18	chr10
FLJ23861	151050	hypothetical protein FLJ23861	2.76	chr2
FLJ25006	124923	hypothetical protein FLJ25006	6.04	chr17
FLJ25076	134111	similar to CG4502-PA	4.90	chr5
FLJ25222	374666	CXXorf1-related protein	2.71	chr2
FLJ25416	220042	hypothetical protein FLJ25416	9.94	chr11
FLJ25778	254048	Hypothetical protein FLJ25778	4.22	chr7
FLJ25967	440823	hypothetical gene supported by AK098833	27.57	chr22
FLJ26175	386586	FLJ26175 protein	2.23	chr19
FLJ27354	400761	hypothetical gene supported by AK130864	14.74	chr1
FLJ30046	122660	hypothetical protein FLJ30046	15.55	chr13
FLJ30428	150519	similar to hypothetical protein A230046P18; cDNA sequence BC055759	8.21	chr2
FLJ30656	124801	hypothetical protein FLJ30656	2.81	chr8
FLJ30707	220108	hypothetical protein FLJ30707	12.56	chr13
FLJ31204	158584	hypothetical protein FLJ31204	2.64	chrX
FLJ31978	144423	hypothetical protein FLJ31978	2.16	chr12
FLJ32009	220001	hypothetical protein FLJ32009	2.44	chr11
FLJ32363	375444	FLJ32363 protein	3.57	chr5
FLJ32452	93058	hypothetical protein FLJ32452	3.62	chr12
FLJ32499	124637	hypothetical protein FLJ32499	2.51	chr17
FLJ32745	165055	hypothetical protein FLJ32745	4.98	chr2
FLJ32810	143872	hypothetical protein FLJ32810	2.59	chr11
FLJ33008	145748	hypothetical protein FLJ33008	2.13	chr15
FLJ33318	162461	hypothetical protein FLJ33318	2.43	chr17
FLJ34208	401106	Hypothetical gene supported by AK091527	2.22	chr3
FLJ35119	126074	hypothetical protein FLJ35119	3.15	chr19
FLJ35348	266655	FLJ35348	3.46	chr9
FLJ35801	150291	hypothetical protein FLJ35801	3.03	chr22
FLJ35934	400579 // 400569	hypothetical gene supported by AK093253	2.15	chr17
FLJ36954	166968	hypothetical protein FLJ36954	2.74	chr5
FLJ36116	388666	hypothetical locus LOC388666	9.18	chr1
FLJ37478	339983	hypothetical protein LOC339983	2.89	chr4
FLJ37953	129450	hypothetical protein FLJ37953	2.11	chr2
FLJ38426	283742	hypothetical protein FLJ38426	2.24	chr15
FLJ38973	205327	hypothetical protein FLJ38973	4.57	chr2
FLJ38991	285521	mitochondrial COX18	2.14	chr4
FLJ39616	51275	apoptosis-related protein PNAS-1	2.64	chr12
FLJ39739	388685	FLJ39739 protein	5.96	chr1
FLJ40092	401196	FLJ40092 protein	6.32	chr5
FLJ40142	400079	FLJ40142 protein	2.30	chr12
FLJ40432	151195	hypothetical protein FLJ40432	2.54	chr2
FLJ40869	348654	hypothetical protein FLJ40869	2.14	chr2
FLJ41131	284325	FLJ41131 protein	2.32	chr19
FLJ44186	346689	FLJ44186 protein	5.11	chr7
FLJ46072	286077	FLJ46072 protein	7.62	chr8
FLJ46419	388507	FLJ46419 protein	11.93	chr19
FLJ90024	129303	fastigial-inducible integral membrane protein TM6P1	2.01	chr2
FLJ90036	255403	hypothetical protein FLJ90036	4.15	chr4
FLJ90086	389389	Similar to A1614523 protein	4.72	chr6
FLJ90231	283176	hypothetical protein FLJ90231	18.33	chr11

Table S5: Genes downregulated in MPC compared to hES (Fold Change > 2; P < 0.05)
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; p < 0.05)

<p>| FLJ90652 | 283899 | hypothetical protein FLJ90652 | 2.34 | chr16 |
| FLT1 | 2321 | Fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability factor receptor) | 3.96 | chr13 |
| FLVCR1 | 28982 | feline leukemia virus subgroup C cellular receptor | 15.20 | chr1 |
| FN5 | 56935 | FNS protein | 2.60 | chr11 |
| FNBP1L | 54874 | Fornin binding protein 1-like | 4.18 | chr1 |
| FNBP3 | 55665 | formin binding protein 3 | 2.53 | chr2 |
| FOS | 2353 | v-fos FB2 murine osteosarcoma viral oncogene homolog | 3.11 | chr14 |
| FOXA3 | 3171 | forkhead box A3 | 29.89 | chr19 |
| FOXD3 | 27022 | Forkhead box D3 | 4.63 | chr1 |
| FOXH1 | 8928 | Forkhead box H1 | 16.42 | chr8 |
| FOXM1 | 2305 | forkhead box M1 | 5.94 | chr12 |
| FOXO1A | 2308 | forkhead box O1A (rhabdomysarcoma) | 10.79 | chr13 |
| FOXO6 | 343552 | forkhead box protein O6 | 6.29 | chr1 |
| FRA2 | 27315 | FGF receptor activating protein 1 | 4.79 | chr9 |
| FRA3 | 80144 | Fraser syndrome 1 | 47.12 | chr4 |
| FRA1T | 10023 | frequently rearranged in advanced T-cell lymphomas | 4.48 | chr10 |
| FRA2T | 23401 | frequently rearranged in advanced T-cell lymphomas 2 | 28.64 | chr10 |
| FREM2 | 341640 | FRAS1 related extracellular matrix protein 2 | 17.37 | chr13 |
| FSD1 | 79187 | fibronectin type III and SPRY domain containing 1 | 3.17 | chr19 |
| FSHPR1 | 2491 | FSH primary response (LRPR1 homolog, rat) 1 | 2.45 | chrX |
| FTSJ2 | 29960 | Ftsj homolog 2 (E. coli) | 2.61 | chr7 |
| FTSJ3 | 117246 | Ftsj homolog 3 (E. coli) | 2.03 | chr17 |
| FUBP1 | 8880 | Far upstream element (FUSE) binding protein 1 | 3.27 | chr1 |
| FUS | 2521 | fusion (involved in t(12;16) in malignant liposarcoma) | 6.51 | chr16 |
| FUSP1 | 10772 | FUS interacting protein (serine/arginine-rich) 1 | 2.83 | chr1_random |
| FUT1 | 2523 | fucosyltransferase 1 (galactoside 2-alpha-L-fucosyltransferase) | 3.99 | chr12 |
| FUT10 | 84750 | fucosyltransferase 10 (alpha (1,3) fucosyltransferase) | 2.78 | chr8 |
| FUT4 | 2585 | fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific) | 2.77 | chr1 |
| FXN | 2395 | frataxin | 3.59 | chr9 |
| FXR1 | 8087 | fragile X mental retardation, autosomal homolog 1 | 3.89 | chr3 |
| FXYD6 | 53826 | FXYD domain containing ion transport regulator 6 | 9.99 | chr11 |
| FZD3 | 7976 | frizzled homolog 3 (Drosophila) | 11.16 | chr8 |
| FZD5 | 7855 | frizzled homolog 5 (Drosophila) | 3.52 | chr2 |
| GJBP1 | 10146 | Ras-GTAP-activating protein SH3-domain-binding protein | 3.99 | chr5 |
| GJBP2 | 9908 | Ras-GTAP activating protein SH3 domain-binding protein 2 | 3.32 | chr4 |
| GAB1 | 2549 | GRB2-associated binding protein 1 | 2.61 | chr4 |
| GABBR1 | 2550 | gamma-aminobutyric acid (GABA) B receptor, 1 | 2.10 | chr6 |
| GABPB1 | 2553 | GA binding protein transcription factor, beta subunit 2 | 3.21 | chr15 |
| GABRB3 | 2562 | gamma-aminobutyric acid (GABA) A receptor, beta 3 | 100.50 | chr15 |
| GABRB3 | 1653 /// 2562 | Gamma-aminobutyric acid (GABA) A receptor, beta 3 /// DEAD (Asp-Glu-Ala-Asp) domain containing protein | 55.60 | chr15 |
| GADD45GIP1 | 90480 | growth arrest and DNA-damage-inducible, gamma interacting protein 1 | 2.63 | chr19 |
| GAJ | 84057 | GAJ protein | 13.42 | chr4 |
| GAL | 51083 | galalin | 53.56 | chr11 |
| GALNAC4S-6 | 51363 | B cell RAG associated protein | 9.57 | chr10 |
| GALNT12 | 79695 | UDP-N-acetyl-alpha-D-galactosamine polyepitope N-acetylgalactosaminyltransferase | 13.20 | chr9 |
| GALNT13 | 114805 | UDP-N-acetyl-alpha-D-galactosamine polyepitope N-acetylgalactosaminyltransferase | 3.78 | chr2 |
| GALNT3 | 2591 | UDP-N-acetyl-alpha-D-galactosamine polyepitope N-acetylgalactosaminyltransferase | 12.62 | chr2 |
| GAP43 | 2596 | growth associated protein 43 | 12.36 | chr3 |
| GAPDH | 26330 | Glyceraldehyde-3-phosphate dehydrogenase, spastomagenic | 4.10 | chr19 |
| GARNL1 | 253959 | GTPase activating Rap/RanGAP domain-like 1 | 2.76 | chr9 |
| GARNL4 | 23108 | GTPase activating Rap/RanGAP domain-like 4 | 4.66 | chr17 |
| GART | 2618 | Phosphoribosylglycaminide formyltransferase, phosphoribosylglycinamin synthase | 5.03 | chr21 |
| GATA1D | 57798 | GATA zinc finger domain containing 1 | 2.02 | chr7 |
| GATA2D | 54815 | GATA zinc finger domain containing 2A | 2.63 | chr19 |
| GATA2B | 57459 | GATA zinc finger domain containing 2B | 2.09 | chr1 |
| GATM | 2628 | glycine amidotransferase (L-arginine:glycine amidotransferase) | 3.72 | chr15 |
| GBA2 | 57704 | Glucosidase, beta (bile acid) 2 | 3.20 | chr9 |
| GCA | 25801 | grancalcin, EF-hand calcium binding protein /// grancalcin, EF-hand calcium binding protein | 9.28 | chr2 |
| GCDH | 2639 | glutaryl-Coenzyme A dehydrogenase | 2.72 | chr19 |
| GCH1 | 2643 | GTP cyclohydrolase 1 (dopa-responsive dystonia) | 3.95 | chr14 |
| GCHFR | 2644 | GTP cyclohydrolase I feedback regulator | 3.42 | chr15 |
| GCL | 64395 | Germ cell-less homolog 1 (Drosophila) | 2.43 | chr2 |
| GCLC | 2729 | glutamate-cysteine ligase, catalytic subunit | 4.53 | chr6 |
| GCT1 | 2650 | glucosaminyl (N-acetyl) transferase 1, core 2 (beta-N-acetylglucosaminyltransferase) | 2.73 | chr9 |
| GGT2 | 2651 | glucosaminyl (N-acetyl) transferase 2, 1-branching enzyme | 51.06 | chr6 |
| GCSH | 2653 | glycine cleavage system protein H (aminomethyl carrier) | 4.63 | chr5 |
| GDAP1 | 54332 | Ganglioside-induced differentiation-associated protein 1 | 10.97 | chr8 |</p>
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Symbol</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDAP1L1</td>
<td>78997</td>
<td>gangloside-induced differentiation-associated protein 1-like 1</td>
<td>2.36</td>
<td>chr20</td>
</tr>
<tr>
<td>GDF1</td>
<td>10715 /// 2657</td>
<td>growth differentiation factor 1 /// LAG1 longevity assurance homolog 1 (S. cerevisiae)</td>
<td>2.46</td>
<td>chr19</td>
</tr>
<tr>
<td>GDF3</td>
<td>9573</td>
<td>growth differentiation factor 3</td>
<td>20.30</td>
<td>chr12</td>
</tr>
<tr>
<td>GDPD2</td>
<td>54867</td>
<td>glycerophosphodiester phosphodiesterase domain containing 2</td>
<td>2.16</td>
<td>chrX</td>
</tr>
<tr>
<td>GEMIN4</td>
<td>50628</td>
<td>gem (nuclear organelle) associated protein 4</td>
<td>4.30</td>
<td>chr17</td>
</tr>
<tr>
<td>GEMIN5</td>
<td>25929</td>
<td>gem (nuclear organelle) associated protein 5</td>
<td>3.99</td>
<td>chr5</td>
</tr>
<tr>
<td>GEMIN6</td>
<td>79633</td>
<td>gem (nuclear organelle) associated protein 6</td>
<td>3.29</td>
<td>chr6</td>
</tr>
<tr>
<td>GEMIN7</td>
<td>79760</td>
<td>gem (nuclear organelle) associated protein 7</td>
<td>2.17</td>
<td>chr18</td>
</tr>
<tr>
<td>GGA2</td>
<td>23062</td>
<td>golgi associated, gamma adaptin ear containing, ARF binding protein 2</td>
<td>5.26</td>
<td>chr16</td>
</tr>
<tr>
<td>GGA3</td>
<td>23163</td>
<td>golgi associated, gamma adaptin ear containing, ARF binding protein 3</td>
<td>3.07</td>
<td>chr17</td>
</tr>
<tr>
<td>GGT1</td>
<td>2678</td>
<td>gamma-glutamyltransferase 1</td>
<td>3.51</td>
<td>chr22</td>
</tr>
<tr>
<td>GYD2</td>
<td>54959 /// 79090</td>
<td>GIGYF domain containing 2 /// GIGYF domain containing 1</td>
<td>2.03</td>
<td>chr16</td>
</tr>
<tr>
<td>GJA7</td>
<td>10052</td>
<td>gap junction protein, alpha 7, 45kDa (connexin 45)</td>
<td>3.90</td>
<td>chr17</td>
</tr>
<tr>
<td>GKO01</td>
<td>57003</td>
<td>GKO01 protein</td>
<td>2.95</td>
<td>chr17</td>
</tr>
<tr>
<td>GKP1</td>
<td>80318</td>
<td>G kinase anchoring protein 1</td>
<td>3.42</td>
<td>chr9</td>
</tr>
<tr>
<td>GLCCI1</td>
<td>113263</td>
<td>glucocorticoid induced transcript 1</td>
<td>3.81</td>
<td>chr7</td>
</tr>
<tr>
<td>GLDC</td>
<td>2731</td>
<td>glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system)</td>
<td>87.67</td>
<td>chr4</td>
</tr>
<tr>
<td>GLI2</td>
<td>2736</td>
<td>GLI-Kruppel family member GLI2</td>
<td>3.07</td>
<td>chr2</td>
</tr>
<tr>
<td>GLMN</td>
<td>11146</td>
<td>gluculin, PXBP associated protein</td>
<td>4.11</td>
<td>chr1</td>
</tr>
<tr>
<td>GLOX1</td>
<td>84842</td>
<td>glyoxalase domain containing 1</td>
<td>6.83</td>
<td>chr1</td>
</tr>
<tr>
<td>GLS2</td>
<td>27165</td>
<td>glutaminase 2 (liver, mitochondrial)</td>
<td>4.33</td>
<td>chr12</td>
</tr>
<tr>
<td>GLUL</td>
<td>2752</td>
<td>glutamate-ammonia ligase (glutamine synthetase)</td>
<td>4.30</td>
<td>chr1</td>
</tr>
<tr>
<td>GLYAT1L1</td>
<td>92292</td>
<td>glycine-N-acetyltransferase-1</td>
<td>2.12</td>
<td>chr11</td>
</tr>
<tr>
<td>GMCL1</td>
<td>64395</td>
<td>Germ cell-less homolog 1 (Drosophila)</td>
<td>3.18</td>
<td>chr2</td>
</tr>
<tr>
<td>GMDS</td>
<td>2762</td>
<td>GDP-mannose 4,6-dehydratase</td>
<td>2.73</td>
<td>chr6</td>
</tr>
<tr>
<td>GMEB1</td>
<td>10691</td>
<td>glucocorticoid modulatory element binding protein 1</td>
<td>2.64</td>
<td>chr1</td>
</tr>
<tr>
<td>GMINI</td>
<td>51503</td>
<td>geminin, DNA replication inhibitor</td>
<td>5.59</td>
<td>chr6</td>
</tr>
<tr>
<td>GMP5</td>
<td>8833</td>
<td>Guanine monophosphate synthetase</td>
<td>2.47</td>
<td>chr3</td>
</tr>
<tr>
<td>GNAL</td>
<td>2774</td>
<td>guanine nucleotide binding protein (G protein), alpha activating activity polypeptide</td>
<td>2.61</td>
<td>chr18</td>
</tr>
<tr>
<td>GNAS</td>
<td>2778</td>
<td>GNAS complex locus</td>
<td>6.61</td>
<td>chr20</td>
</tr>
<tr>
<td>GNBL1</td>
<td>10399</td>
<td>Guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1</td>
<td>2.90</td>
<td>chr5</td>
</tr>
<tr>
<td>GN4G</td>
<td>2786</td>
<td>guanine nucleotide binding protein (G protein), gamma 4</td>
<td>3.72</td>
<td>chr1</td>
</tr>
<tr>
<td>GN3</td>
<td>26354</td>
<td>guanine nucleotide binding protein-like 3 (nucleolar)</td>
<td>2.91</td>
<td>chr3</td>
</tr>
<tr>
<td>GNPD4</td>
<td>10007</td>
<td>glucosamine-6-phosphate deaminase 1</td>
<td>3.66</td>
<td>chr5</td>
</tr>
<tr>
<td>GOLGA1</td>
<td>2800</td>
<td>Golgi autoantigen, golgin subfamily a, 1</td>
<td>2.49</td>
<td>chr9</td>
</tr>
<tr>
<td>GON4</td>
<td>54856</td>
<td>gon-4 homolog (C. elegans)</td>
<td>2.10</td>
<td>chr1</td>
</tr>
<tr>
<td>GPAM</td>
<td>57678</td>
<td>glycerol-3-phosphate acyltransferase, mitochondrial</td>
<td>2.38</td>
<td>chr10</td>
</tr>
<tr>
<td>GPC5C</td>
<td>55105</td>
<td>G patch domain containing 2</td>
<td>2.19</td>
<td>chr1</td>
</tr>
<tr>
<td>GPCAT4</td>
<td>54865</td>
<td>G patch domain containing 4</td>
<td>4.91</td>
<td>chr1</td>
</tr>
<tr>
<td>GBP1B</td>
<td>65056</td>
<td>GC-rich promoter binding protein 1</td>
<td>3.62</td>
<td>chr5</td>
</tr>
<tr>
<td>GBP1L1</td>
<td>60313</td>
<td>GC-rich promoter binding protein 1-like 1</td>
<td>2.17</td>
<td>chr1</td>
</tr>
<tr>
<td>GPC2</td>
<td>221914</td>
<td>glypican 2 (cerebrolysin)</td>
<td>2.14</td>
<td>chr7</td>
</tr>
<tr>
<td>GPC3</td>
<td>2719</td>
<td>glypican 3</td>
<td>4.73</td>
<td>chrX</td>
</tr>
<tr>
<td>GPC4</td>
<td>2239</td>
<td>glypican 4</td>
<td>52.71</td>
<td>chrX</td>
</tr>
<tr>
<td>GPD2</td>
<td>2820</td>
<td>glycerol-3-phosphate dehydrogenase 2 (mitochondrial)</td>
<td>2.36</td>
<td>chr2</td>
</tr>
<tr>
<td>GPIA1</td>
<td>4078</td>
<td>GPI-anchored membrane protein 1</td>
<td>3.24</td>
<td>chr11</td>
</tr>
<tr>
<td>GPMB</td>
<td>2824</td>
<td>glycoprotein M6B</td>
<td>63.43</td>
<td>chrX</td>
</tr>
<tr>
<td>GPR125</td>
<td>166647</td>
<td>G protein-coupled receptor 125</td>
<td>3.73</td>
<td>chr1</td>
</tr>
<tr>
<td>GPR143</td>
<td>4935</td>
<td>G protein-coupled receptor 143</td>
<td>9.16</td>
<td>chrX</td>
</tr>
<tr>
<td>GPR160</td>
<td>26996</td>
<td>G protein-coupled receptor 160</td>
<td>34.21</td>
<td>chr3</td>
</tr>
<tr>
<td>GPR19</td>
<td>2842</td>
<td>G protein-coupled receptor 19</td>
<td>28.34</td>
<td>chr12</td>
</tr>
<tr>
<td>GPR23</td>
<td>2846</td>
<td>G protein-coupled receptor 23</td>
<td>3.28</td>
<td>chrX</td>
</tr>
<tr>
<td>GPR27</td>
<td>2850</td>
<td>G protein-coupled receptor 27</td>
<td>35.07</td>
<td>chr3</td>
</tr>
<tr>
<td>GPR37</td>
<td>2861</td>
<td>G protein-coupled receptor 37 (endothelin receptor type B-like)</td>
<td>2.66</td>
<td>chr7</td>
</tr>
<tr>
<td>GPR51</td>
<td>9568</td>
<td>G protein-coupled receptor 51</td>
<td>2.04</td>
<td>chr9</td>
</tr>
<tr>
<td>GPR54</td>
<td>84634</td>
<td>G protein-coupled receptor 54</td>
<td>5.37</td>
<td>chr19</td>
</tr>
<tr>
<td>GPR63</td>
<td>81491</td>
<td>G protein-coupled receptor 63 /// G protein-coupled receptor 63</td>
<td>2.10</td>
<td>chr6</td>
</tr>
<tr>
<td>GPR64</td>
<td>10149</td>
<td>G protein-coupled receptor 64</td>
<td>24.81</td>
<td>chrX</td>
</tr>
<tr>
<td>GPRAS2P2</td>
<td>114928</td>
<td>G protein-coupled receptor associated sorting protein 2</td>
<td>2.45</td>
<td>chrX</td>
</tr>
<tr>
<td>GPRC5B</td>
<td>51704</td>
<td>G protein-coupled receptor, family C, group 5, member B</td>
<td>55.30</td>
<td>chr16</td>
</tr>
<tr>
<td>GSPN2</td>
<td>9524</td>
<td>glycoprotein, synaptic 2</td>
<td>2.38</td>
<td>chr19</td>
</tr>
<tr>
<td>GPX3</td>
<td>2878</td>
<td>glutathione peroxidase 3 (plasma)</td>
<td>4.57</td>
<td>chr5</td>
</tr>
<tr>
<td>GRB10</td>
<td>2887</td>
<td>growth factor receptor-bound protein 10</td>
<td>3.18</td>
<td>chr7</td>
</tr>
<tr>
<td>GRB14</td>
<td>2888</td>
<td>growth factor receptor-bound protein 14</td>
<td>5.66</td>
<td>chr2</td>
</tr>
<tr>
<td>GREB1</td>
<td>9687</td>
<td>GREB1 protein</td>
<td>2.61</td>
<td>chr2</td>
</tr>
<tr>
<td>GRHL1</td>
<td>25841</td>
<td>grainyhead-like 1 (Drosophila)</td>
<td>3.76</td>
<td>chr2</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRHL2</td>
<td>grainyhead-like 2 (Drosophila)</td>
<td>3.35</td>
<td>chr8</td>
</tr>
<tr>
<td>GRIPAP1</td>
<td>GRIP1 associated protein 1</td>
<td>2.13</td>
<td>chrX</td>
</tr>
<tr>
<td>GRPEL2</td>
<td>GrpE-like 2, mitochondrial (E. coli)</td>
<td>2.57</td>
<td>chr5</td>
</tr>
<tr>
<td>GRSF1</td>
<td>G-rich RNA sequence binding factor 1</td>
<td>2.08</td>
<td>chr4</td>
</tr>
<tr>
<td>GRTPI</td>
<td>Growth hormone regulated TBC protein 1</td>
<td>32.25</td>
<td>chr13</td>
</tr>
<tr>
<td>GRWD1</td>
<td>glutamate-rich WD repeat containing 1</td>
<td>2.91</td>
<td>chr19</td>
</tr>
<tr>
<td>GSDMDC1</td>
<td>glutamyl-tRNA synthetase domain containing 1</td>
<td>2.70</td>
<td>chr8</td>
</tr>
<tr>
<td>GSQ2</td>
<td>germ cell associated 2 (haspin)</td>
<td>2.20</td>
<td>chr17</td>
</tr>
<tr>
<td>GSP1T1</td>
<td>G1 to S phase transition 1</td>
<td>2.51</td>
<td>chr16</td>
</tr>
<tr>
<td>GSP1T2</td>
<td>G1 to S phase transition 2 / G1 to S phase transition 2</td>
<td>2.71</td>
<td>chrX</td>
</tr>
<tr>
<td>GSRT1</td>
<td>glutathione reductase</td>
<td>2.04</td>
<td>chr8</td>
</tr>
<tr>
<td>GSTO2</td>
<td>glutathione S-transferase omega 2</td>
<td>10.16</td>
<td>chr10</td>
</tr>
<tr>
<td>GSTP1</td>
<td>glutathione S-transferase pi</td>
<td>2.42</td>
<td>chr11</td>
</tr>
<tr>
<td>GSTT1</td>
<td>Glutathione S-transferase theta 1</td>
<td>2.55</td>
<td>chr22</td>
</tr>
<tr>
<td>GSTZ1</td>
<td>glutathione transferase zeta 1 (maleylacetoacetate isomerase)</td>
<td>3.45</td>
<td>chr14</td>
</tr>
<tr>
<td>GTF2E1</td>
<td>general transcription factor IIE, polypeptide 1, alpha 56kDa</td>
<td>3.49</td>
<td>chr3</td>
</tr>
<tr>
<td>GTF2H2</td>
<td>general transcription factor IHH, polypeptide 2, 44kDa</td>
<td>4.18</td>
<td>chr5</td>
</tr>
<tr>
<td>GTF2H4</td>
<td>general transcription factor IHH, polypeptide 4, 52kDa</td>
<td>4.38</td>
<td>chr6</td>
</tr>
<tr>
<td>GTF3A</td>
<td>general transcription factor IIA</td>
<td>2.66</td>
<td>chr13</td>
</tr>
<tr>
<td>GTF3C1</td>
<td>general transcription factor IIIC, polypeptide 1, alpha 220kDa</td>
<td>2.41</td>
<td>chr16</td>
</tr>
<tr>
<td>GTF3C2</td>
<td>general transcription factor IIIC, polypeptide 2, beta 110kDa</td>
<td>3.32</td>
<td>chr2</td>
</tr>
<tr>
<td>GTF3C4</td>
<td>general transcription factor IIIC, polypeptide 4, 90kDa</td>
<td>2.54</td>
<td>chr9</td>
</tr>
<tr>
<td>GTF3C5</td>
<td>general transcription factor IIIC, polypeptide 5, 63kDa</td>
<td>2.76</td>
<td>chr9</td>
</tr>
<tr>
<td>GTPBP1</td>
<td>GTP binding protein 1</td>
<td>2.75</td>
<td>chr22</td>
</tr>
<tr>
<td>GTPBP6</td>
<td>GTP binding protein 6 (putative)</td>
<td>2.39</td>
<td>chrX_random</td>
</tr>
<tr>
<td>GTPBP7</td>
<td>GTP-binding protein 7</td>
<td>3.63</td>
<td>chr10</td>
</tr>
<tr>
<td>GTSE1</td>
<td>G-2 and S-phase expressed 1</td>
<td>4.60</td>
<td>chr22</td>
</tr>
<tr>
<td>GTSE1E2</td>
<td>G-2 and S-phase expressed 1 /// hypothetical gene supported by BCO69212</td>
<td>2.15</td>
<td>chr22</td>
</tr>
<tr>
<td>GulC1A1</td>
<td>guanylate cyclase activator 1A (retina)</td>
<td>17.64</td>
<td>chr6</td>
</tr>
<tr>
<td>GULP1</td>
<td>GULP, engulfment adaptor PTB domain containing 1</td>
<td>3.94</td>
<td>chr2</td>
</tr>
<tr>
<td>GUSB</td>
<td>glucuronidase, beta</td>
<td>2.09</td>
<td>chr7</td>
</tr>
<tr>
<td>GYG2</td>
<td>glycogenin 2</td>
<td>9.77</td>
<td>chrX</td>
</tr>
<tr>
<td>GYTL1B</td>
<td>glycoprenyltransferase-like 1B</td>
<td>5.12</td>
<td>chr11</td>
</tr>
<tr>
<td>H17</td>
<td>hypothetical protein H17</td>
<td>3.97</td>
<td>chr11</td>
</tr>
<tr>
<td>H1F0</td>
<td>H1 histone family, member 0</td>
<td>2.54</td>
<td>chr22</td>
</tr>
<tr>
<td>H1FX</td>
<td>H1 histone family, member X</td>
<td>2.50</td>
<td>chr3</td>
</tr>
<tr>
<td>H2AFV</td>
<td>H2A histone family, member V</td>
<td>2.01</td>
<td>chr7</td>
</tr>
<tr>
<td>H2AFX</td>
<td>H2A histone family, member X</td>
<td>7.02</td>
<td>chr11</td>
</tr>
<tr>
<td>H3F3A</td>
<td>H3 histone, family 3A</td>
<td>2.68</td>
<td>chr1</td>
</tr>
<tr>
<td>H3F3A</td>
<td>H3 histone, family 3A /// H3 histone, family 3A pseudogene</td>
<td>4.78</td>
<td>chr2</td>
</tr>
<tr>
<td>HA-1</td>
<td>minor histocompatibility antigen HA-1</td>
<td>16.31</td>
<td>chr19</td>
</tr>
<tr>
<td>HADH2</td>
<td>hydroxoyxyl-Cozyme A dehydrogenase, type II</td>
<td>2.20</td>
<td>chrX</td>
</tr>
<tr>
<td>HADHSC</td>
<td>L-3-hydroxoyxyl-Cozyme A dehydrogenase, short chain</td>
<td>2.10</td>
<td>chr4</td>
</tr>
<tr>
<td>HAS2</td>
<td>3-hydroxoyl-Cozyme synthase 2</td>
<td>13.06</td>
<td>chr8</td>
</tr>
<tr>
<td>HAS3</td>
<td>3-hydroxoyl-Cozyme synthase 3</td>
<td>6.93</td>
<td>chr16</td>
</tr>
<tr>
<td>HAT1</td>
<td>histone acetyltransferase 1</td>
<td>2.36</td>
<td>chr2</td>
</tr>
<tr>
<td>HBII-276HG</td>
<td>HBII-276 host gene</td>
<td>2.33</td>
<td>chr8</td>
</tr>
<tr>
<td>HBII-437</td>
<td>HBII-437 C/D box snoRNA /// HBII-13 snoRNA</td>
<td>6.22</td>
<td>chr15</td>
</tr>
<tr>
<td>HBII-437</td>
<td>HBII-437 C/D box snoRNA /// HBII-13 snoRNA</td>
<td>6.22</td>
<td>chr15</td>
</tr>
<tr>
<td>HBLD1</td>
<td>HESB like domain containing 1</td>
<td>2.22</td>
<td>chr14</td>
</tr>
<tr>
<td>HBLD2</td>
<td>HESB like domain containing 2</td>
<td>3.00</td>
<td>chr1</td>
</tr>
<tr>
<td>HBLD2</td>
<td>HESB like domain containing 2</td>
<td>3.00</td>
<td>chr1</td>
</tr>
<tr>
<td>HBXP</td>
<td>hepatitis B virus x associated protein</td>
<td>2.27</td>
<td>chr11</td>
</tr>
<tr>
<td>hCAP-D3</td>
<td>KIAA0056 protein</td>
<td>3.31</td>
<td>chr11</td>
</tr>
<tr>
<td>HCAP-G</td>
<td>chromosome condensation protein G</td>
<td>6.93</td>
<td>chr4</td>
</tr>
<tr>
<td>HCAP-H2</td>
<td>kinesin beta</td>
<td>2.98</td>
<td>chr22</td>
</tr>
<tr>
<td>HCG12</td>
<td>HLA complex group 12</td>
<td>3.24</td>
<td>chr6</td>
</tr>
<tr>
<td>HCG18</td>
<td>HLA complex group 18</td>
<td>2.34</td>
<td>chr6</td>
</tr>
<tr>
<td>HCNGP</td>
<td>transcriptional regulator protein</td>
<td>2.16</td>
<td>chr17</td>
</tr>
<tr>
<td>HCRP1</td>
<td>hepatoacellular carcinoma-related HCRP1</td>
<td>2.38</td>
<td>chr6</td>
</tr>
<tr>
<td>HD</td>
<td>huntingtin (Huntington disease)</td>
<td>2.24</td>
<td>chr4</td>
</tr>
<tr>
<td>HDA1</td>
<td>histone deacetylase 1</td>
<td>2.74</td>
<td>chr1</td>
</tr>
<tr>
<td>HDA2</td>
<td>histone deacetylase 2</td>
<td>3.07</td>
<td>chr6</td>
</tr>
<tr>
<td>HDA3</td>
<td>histone deacetylase 3</td>
<td>2.19</td>
<td>chr5</td>
</tr>
<tr>
<td>HDA4</td>
<td>histone deacetylase 4</td>
<td>2.62</td>
<td>chr2</td>
</tr>
<tr>
<td>HDA5</td>
<td>histone deacetylase 5</td>
<td>3.52</td>
<td>chr17</td>
</tr>
<tr>
<td>HDA6</td>
<td>histone deacetylase 6</td>
<td>2.43</td>
<td>chrX</td>
</tr>
<tr>
<td>HDCA18P</td>
<td>HDCA18P protein</td>
<td>201.71</td>
<td>chr4</td>
</tr>
<tr>
<td>HHDC2</td>
<td>HD domain containing 2</td>
<td>2.69</td>
<td>chr6</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>FC</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdf</td>
<td>Hepatoma-derived growth factor (high-mobility group protein 1-like)</td>
<td>2.03</td>
<td>chr1</td>
</tr>
<tr>
<td>HDHD1A</td>
<td>Halocid dehalogenase-1-like hydrodase domain containing 1A</td>
<td>2.01</td>
<td>chrX</td>
</tr>
<tr>
<td>HDHD2</td>
<td>Halocid dehalogenase-1-like hydrodase domain containing 2</td>
<td>3.02</td>
<td>chr18</td>
</tr>
<tr>
<td>HEATR1</td>
<td>HEAT repeat containing 1</td>
<td>3.73</td>
<td>chr1</td>
</tr>
<tr>
<td>HELL</td>
<td>Helicase, lymphoid-specific</td>
<td>22.76</td>
<td>chr10</td>
</tr>
<tr>
<td>HERC5</td>
<td>Hect domain and RLD 5</td>
<td>24.83</td>
<td>chr4</td>
</tr>
<tr>
<td>HERC6</td>
<td>Hect domain and RLD 6</td>
<td>3.91</td>
<td>chr4</td>
</tr>
<tr>
<td>HES6</td>
<td>Hair and enhancer of split 6 (Drosophila)</td>
<td>5.65</td>
<td>chr2</td>
</tr>
<tr>
<td>HESX1</td>
<td>Homeo box (expressed in ES cells)</td>
<td>2.43</td>
<td>chr3</td>
</tr>
<tr>
<td>HEXM2</td>
<td>Hexamethylene bis-acetamide inducible 2</td>
<td>2.78</td>
<td>chr17</td>
</tr>
<tr>
<td>HEY2</td>
<td>Hair/Enhancer-of-split-related with YRPW motif 2</td>
<td>13.03</td>
<td>chr6</td>
</tr>
<tr>
<td>HIATL2</td>
<td>Hippocampus abundant gene transcript-like 2</td>
<td>2.05</td>
<td>chr9</td>
</tr>
<tr>
<td>HIC2</td>
<td>Hypermethylated in cancer 2</td>
<td>7.88</td>
<td>chr22</td>
</tr>
<tr>
<td>HIG2</td>
<td>Hypoxia-inducible protein 2</td>
<td>3.72</td>
<td>chr7</td>
</tr>
<tr>
<td>HINT2</td>
<td>Histidine triad nucleotide binding protein 2</td>
<td>2.27</td>
<td>chr9</td>
</tr>
<tr>
<td>HIP1</td>
<td>Huntingtin interacting protein 1</td>
<td>4.66</td>
<td>chr7</td>
</tr>
<tr>
<td>HIP2</td>
<td>Huntingtin interacting protein 2</td>
<td>4.67</td>
<td>chr4</td>
</tr>
<tr>
<td>HIRP3</td>
<td>WRA interacting protein 3</td>
<td>2.75</td>
<td>chr16</td>
</tr>
<tr>
<td>HIST1A1</td>
<td>Histone 1, H1a</td>
<td>9.81</td>
<td>chr6</td>
</tr>
<tr>
<td>HIST1H1C</td>
<td>Histone 1, H1c</td>
<td>2.62</td>
<td>chr6</td>
</tr>
<tr>
<td>HIST1H1D</td>
<td>Histone 1, H1d</td>
<td>3.23</td>
<td>chr6</td>
</tr>
<tr>
<td>HIST1H4K</td>
<td>Histone 1, H4k // histone 1, H4j</td>
<td>4.42</td>
<td>chr6</td>
</tr>
<tr>
<td>HIST2H4</td>
<td>Histone H4/o</td>
<td>3.09</td>
<td>chr1</td>
</tr>
<tr>
<td>HIST3H2A</td>
<td>Histone 3, H2a</td>
<td>2.39</td>
<td>chr1</td>
</tr>
<tr>
<td>HK1</td>
<td>Hexokinase 1</td>
<td>2.02</td>
<td>chr10</td>
</tr>
<tr>
<td>HK2</td>
<td>Hexokinase 2</td>
<td>3.51</td>
<td>chr2</td>
</tr>
<tr>
<td>HKE2</td>
<td>HL class II region expressed gene KE2</td>
<td>2.41</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-DOA</td>
<td>Major histocompatibility complex, class II, DO alpha</td>
<td>5.15</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-DPA1</td>
<td>Major histocompatibility complex, class II, DP alpha 1</td>
<td>2.60</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-DBP1</td>
<td>Major histocompatibility complex, class II, DP beta 1</td>
<td>2.74</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-DBP2</td>
<td>Major histocompatibility complex, class II, DP beta 2 (pseudogene)</td>
<td>102.72</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-DRBI</td>
<td>Major histocompatibility complex, class II, DR beta 1 // major histocompatibility complex</td>
<td>4.43</td>
<td>chr6, hla_hap1</td>
</tr>
<tr>
<td>HLC-8</td>
<td>Lung cancer-related protein 8</td>
<td>2.29</td>
<td>chr17</td>
</tr>
<tr>
<td>HLR1C</td>
<td>HEAT-like (PBS lyase) repeat containing 1 // HEAT-like (PBS lyase) repeat containing 1</td>
<td>4.51</td>
<td>chr19</td>
</tr>
<tr>
<td>HMBS</td>
<td>Hydromethylbilane synthase</td>
<td>3.70</td>
<td>chr11</td>
</tr>
<tr>
<td>HMG4L</td>
<td>High-mobility group (nonhistone chromosomal) protein 4-like</td>
<td>4.88</td>
<td>chrX</td>
</tr>
<tr>
<td>HMG1A</td>
<td>High mobility group AT-hook 1</td>
<td>4.94</td>
<td>chr6</td>
</tr>
<tr>
<td>HMBG1</td>
<td>High-mobility group box 1</td>
<td>4.12</td>
<td>chr15</td>
</tr>
<tr>
<td>HMBG1B</td>
<td>High-mobility group box 1</td>
<td>4.12</td>
<td>chr15</td>
</tr>
<tr>
<td>HMBG1C</td>
<td>High-mobility group box 1</td>
<td>4.12</td>
<td>chr15</td>
</tr>
<tr>
<td>HMBG1D</td>
<td>High-mobility group box 1</td>
<td>4.12</td>
<td>chr15</td>
</tr>
<tr>
<td>HMBG1E</td>
<td>High-mobility group box 1</td>
<td>4.12</td>
<td>chr15</td>
</tr>
<tr>
<td>HMBG2</td>
<td>High-mobility group box 2</td>
<td>2.31</td>
<td>chr4</td>
</tr>
<tr>
<td>HMBG3</td>
<td>High-mobility group box 3</td>
<td>10.93</td>
<td>chr1</td>
</tr>
<tr>
<td>HMGCR</td>
<td>3-hydroxy-3-methylglutaryl-Coenzyme A reductase</td>
<td>3.67</td>
<td>chr5</td>
</tr>
<tr>
<td>HMGCS1</td>
<td>3-hydroxy-3-methylglutaryl-Coenzyme A synthase (soluble)</td>
<td>3.51</td>
<td>chr5</td>
</tr>
<tr>
<td>HMGN3</td>
<td>High mobility group nucleosomal binding domain 3</td>
<td>4.02</td>
<td>chr6</td>
</tr>
<tr>
<td>HMR</td>
<td>Hyaluronan-mediated motilily receptor (RHAMM)</td>
<td>9.71</td>
<td>chr5</td>
</tr>
<tr>
<td>HVI</td>
<td>Hematological and neurological expressed 1</td>
<td>2.97</td>
<td>chr17</td>
</tr>
<tr>
<td>HNRPA2</td>
<td>Heterogeneous nuclear ribonucleoprotein A0</td>
<td>2.65</td>
<td>chr5</td>
</tr>
<tr>
<td>HNRPA1</td>
<td>Heterogeneous nuclear ribonucleoprotein A1</td>
<td>4.63</td>
<td>chr12</td>
</tr>
<tr>
<td>HNRPA2B1</td>
<td>Heterogeneous nuclear ribonucleoprotein A2/B1</td>
<td>2.61</td>
<td>chr7</td>
</tr>
<tr>
<td>HNRPA3B1</td>
<td>Heterogeneous nuclear ribonucleoprotein A3</td>
<td>3.44</td>
<td>chr2</td>
</tr>
<tr>
<td>HNRPA8B</td>
<td>Heterogeneous nuclear ribonucleoprotein A/B</td>
<td>2.84</td>
<td>chr5</td>
</tr>
<tr>
<td>HNRPC</td>
<td>Heterogeneous nuclear ribonucleoprotein C (C1/C2)</td>
<td>2.84</td>
<td>chr14</td>
</tr>
<tr>
<td>HNRPD</td>
<td>Heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein)</td>
<td>5.95</td>
<td>chr4</td>
</tr>
<tr>
<td>HNRPD1</td>
<td>Heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein)</td>
<td>5.95</td>
<td>chr4</td>
</tr>
<tr>
<td>HNRPF</td>
<td>Heterogeneous nuclear ribonucleoprotein F</td>
<td>4.97</td>
<td>chr10</td>
</tr>
<tr>
<td>HNRPH1</td>
<td>Heterogeneous nuclear ribonucleoprotein H1 (H)</td>
<td>3.35</td>
<td>chr5</td>
</tr>
<tr>
<td>HNRPH3</td>
<td>Heterogeneous nuclear ribonucleoprotein H3 (2HB)</td>
<td>3.60</td>
<td>chr10</td>
</tr>
<tr>
<td>HNRPK</td>
<td>Heterogeneous nuclear ribonucleoprotein K</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>HNRPM</td>
<td>Heterogeneous nuclear ribonucleoprotein M</td>
<td>5.58</td>
<td>chr19</td>
</tr>
<tr>
<td>HNRPU</td>
<td>Heterogeneous nuclear ribonucleoprotein U (scaffold attachment factor A)</td>
<td>5.69</td>
<td>chr1</td>
</tr>
<tr>
<td>HOMER1</td>
<td>Homolog homolog 1 (Drosophila)</td>
<td>5.12</td>
<td>chr5</td>
</tr>
<tr>
<td>HOOK1</td>
<td>Hook homolog 1 (Drosophila)</td>
<td>24.88</td>
<td>chr1</td>
</tr>
<tr>
<td>HOOK2</td>
<td>Hook homolog 2 (Drosophila)</td>
<td>2.68</td>
<td>chr19</td>
</tr>
<tr>
<td>HOXA7</td>
<td>Homeo box A7</td>
<td>5.12</td>
<td>chr1</td>
</tr>
<tr>
<td>HPCL2</td>
<td>3-hydroxyphytyl-CoA lyase</td>
<td>5.99</td>
<td>chr3</td>
</tr>
<tr>
<td>HPRT1</td>
<td>Hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan syndrome)</td>
<td>2.88</td>
<td>chrX</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPS3</td>
<td>Hermansky-Pudlak syndrome 3</td>
<td>3.72</td>
<td>chr9</td>
</tr>
<tr>
<td>HRASLS1</td>
<td>HRAS-like suppressor</td>
<td>2.33</td>
<td>chr3</td>
</tr>
<tr>
<td>HRASLS3</td>
<td>HRAS-like suppressor 3</td>
<td>61.46</td>
<td>chr11</td>
</tr>
<tr>
<td>HRB</td>
<td>HIV-1 Rev binding protein</td>
<td>3.15</td>
<td>chr2</td>
</tr>
<tr>
<td>HRB2</td>
<td>HIV-1 rev binding protein 2</td>
<td>2.28</td>
<td>chr12</td>
</tr>
<tr>
<td>HRLP5</td>
<td>H-rev107-like protein 5</td>
<td>3.96</td>
<td>chr11</td>
</tr>
<tr>
<td>HMT1L3</td>
<td>HM1 hnrNP methyltransferase-like 3 (S. cerevisiae)</td>
<td>2.39</td>
<td>chr11</td>
</tr>
<tr>
<td>HMT1L6</td>
<td>HM1 hnrNP methyltransferase-like 6 (S. cerevisiae)</td>
<td>4.19</td>
<td>chr1</td>
</tr>
<tr>
<td>HRSPI2</td>
<td>heat-responsive protein 12</td>
<td>3.92</td>
<td>chr8</td>
</tr>
<tr>
<td>HSST1</td>
<td>heparan sulfate (glucosamine) 3-O-sulfotransferase 4</td>
<td>3.19</td>
<td>chr16</td>
</tr>
<tr>
<td>HSST1</td>
<td>heparan sulfate 6-O-sulfotransferase 1</td>
<td>2.30</td>
<td>chr1</td>
</tr>
<tr>
<td>HSST2</td>
<td>heparan sulfate 6-O-sulfotransferase 2</td>
<td>5.56</td>
<td>chrX</td>
</tr>
<tr>
<td>HSCARG</td>
<td>HSCARG protein</td>
<td>2.02</td>
<td>chr16</td>
</tr>
<tr>
<td>HSD1B2</td>
<td>hydroxysteroid (11-beta) dehydrogenase 2</td>
<td>2.05</td>
<td>chr2</td>
</tr>
<tr>
<td>HSD1B4</td>
<td>hydroxysteroid (17-beta) dehydrogenase 4</td>
<td>6.62</td>
<td>chr5</td>
</tr>
<tr>
<td>HSD1B7</td>
<td>hydroxysteroid (17-beta) dehydrogenase 7</td>
<td>3.01</td>
<td>chr1</td>
</tr>
<tr>
<td>HSD1B8</td>
<td>hydroxysteroid (17-beta) dehydrogenase 8</td>
<td>2.46</td>
<td>chr6</td>
</tr>
<tr>
<td>HSDL1</td>
<td>hydroxysteroid dehydrogenase like 1</td>
<td>2.44</td>
<td>chr16</td>
</tr>
<tr>
<td>HSGT1</td>
<td>suppressor of S. cerevisiae gor2</td>
<td>2.06</td>
<td>chr10</td>
</tr>
<tr>
<td>HSPA14</td>
<td>heat shock 70kDa protein 14</td>
<td>4.39</td>
<td>chr10</td>
</tr>
<tr>
<td>HSPA2</td>
<td>heat shock 70kDa protein 2</td>
<td>21.71</td>
<td>chr14</td>
</tr>
<tr>
<td>HSPA4</td>
<td>heat shock 70kDa protein 4</td>
<td>6.93</td>
<td>chr5</td>
</tr>
<tr>
<td>HSPA8</td>
<td>heat shock 70kDa protein 8</td>
<td>2.23</td>
<td>chr3</td>
</tr>
<tr>
<td>HSPA9B</td>
<td>heat shock 70kDa protein 9B (mortalin-2)</td>
<td>2.34</td>
<td>chr2</td>
</tr>
<tr>
<td>HSPBP1</td>
<td>HBSP (heat shock 27kDa) associated protein 1</td>
<td>2.50</td>
<td>chr3</td>
</tr>
<tr>
<td>HSPC009</td>
<td>HSPC009 protein</td>
<td>2.61</td>
<td>chr17</td>
</tr>
<tr>
<td>HSPC065</td>
<td>HSPC065 protein</td>
<td>2.38</td>
<td>chr16</td>
</tr>
<tr>
<td>HSPC111</td>
<td>hypothetical protein HSPC111</td>
<td>5.41</td>
<td>chr5</td>
</tr>
<tr>
<td>HSPC121</td>
<td>butyrate-induced protein 1</td>
<td>3.15</td>
<td>chr15</td>
</tr>
<tr>
<td>HSPC128</td>
<td>HSPC128 protein</td>
<td>2.71</td>
<td>chr12</td>
</tr>
<tr>
<td>HSPC138</td>
<td>hypothetical protein HSPC138</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>HSPC159</td>
<td>HSPC159 protein</td>
<td>3.29</td>
<td>chr2</td>
</tr>
<tr>
<td>HSPC176</td>
<td>hematopoietic stem/progenitor cells 176</td>
<td>2.99</td>
<td>chr16</td>
</tr>
<tr>
<td>HSPCB</td>
<td>heat shock 90kDa protein 1, beta</td>
<td>4.16</td>
<td>chr6</td>
</tr>
<tr>
<td>HSPD1</td>
<td>heat shock 60kDa protein 1 (chaperonin)</td>
<td>6.10</td>
<td>chr5</td>
</tr>
<tr>
<td>HSPF1</td>
<td>heat shock 10kDa protein 1 (chaperonin 10)</td>
<td>4.12</td>
<td>chr2</td>
</tr>
<tr>
<td>HSPH1</td>
<td>Heat shock 105kDa/110kDa protein 1</td>
<td>2.38</td>
<td>chr13</td>
</tr>
<tr>
<td>HSPU1</td>
<td>Similar to RPE-spondin</td>
<td>6.50</td>
<td>chr20</td>
</tr>
<tr>
<td>HT007</td>
<td>uncharacterized hypothalamus protein HT007</td>
<td>2.49</td>
<td>chr11</td>
</tr>
<tr>
<td>HTATIP2</td>
<td>HIV-1 Tat interactive protein 2, 30kDa</td>
<td>2.93</td>
<td>chr11</td>
</tr>
<tr>
<td>HJNK</td>
<td>hormonally upregulated Neu-associated kinase</td>
<td>4.91</td>
<td>chr21</td>
</tr>
<tr>
<td>HUEWE1</td>
<td>HECT, UBA and WWE domain containing 1</td>
<td>2.40</td>
<td>chrX</td>
</tr>
<tr>
<td>HYSL1</td>
<td>hydrothalamus syndrome 1</td>
<td>7.07</td>
<td>chr11</td>
</tr>
<tr>
<td>ICA1</td>
<td>alet cell autoantigen 1, 69kDa</td>
<td>5.70</td>
<td>chr7</td>
</tr>
<tr>
<td>ICT1</td>
<td>immature colon carcinoma transcript 1</td>
<td>2.85</td>
<td>chr17</td>
</tr>
<tr>
<td>ID1</td>
<td>inhibitor of DNA binding 1, dominant negative helix-loop-helix protein</td>
<td>5.59</td>
<td>chr20</td>
</tr>
<tr>
<td>ID2</td>
<td>insulin-degrading enzyme</td>
<td>2.75</td>
<td>chr10</td>
</tr>
<tr>
<td>IDH1</td>
<td>ascorbate dehydrogenase 1 (NAD+), soluble</td>
<td>4.73</td>
<td>chr2</td>
</tr>
<tr>
<td>IDH3B</td>
<td>ascorbate dehydrogenase 3 (NAD+) beta</td>
<td>2.73</td>
<td>chr20</td>
</tr>
<tr>
<td>IER2</td>
<td>immediate early response 2</td>
<td>2.99</td>
<td>chr19</td>
</tr>
<tr>
<td>IFI30</td>
<td>interferon, gamma-inducible protein 30</td>
<td>4.77</td>
<td>chr19</td>
</tr>
<tr>
<td>IFITM1</td>
<td>interferon induced transmembrane protein 1 (9-27)</td>
<td>10.86</td>
<td>chr11</td>
</tr>
<tr>
<td>GGBP1</td>
<td>immunoglobulin (CD79A) binding protein 1</td>
<td>2.16</td>
<td>chrX</td>
</tr>
<tr>
<td>GFBPL1</td>
<td>insulin-like growth factor binding protein-1ike 1</td>
<td>17.18</td>
<td>chr9</td>
</tr>
<tr>
<td>GSF3</td>
<td>immunoglobulin superfamily, member 1</td>
<td>4.90</td>
<td>chrX</td>
</tr>
<tr>
<td>GSF3</td>
<td>immunoglobulin superfamily, member 2</td>
<td>25.76</td>
<td>chr1</td>
</tr>
<tr>
<td>GSF4D</td>
<td>immunoglobulin superfamily, member 4D</td>
<td>2.05</td>
<td>chr3</td>
</tr>
<tr>
<td>GSF9</td>
<td>immunoglobulin superfamily, member 9</td>
<td>2.96</td>
<td>chr1</td>
</tr>
<tr>
<td>H2PK</td>
<td>inositol hexaphosphate kinase 2</td>
<td>2.19</td>
<td>chr3</td>
</tr>
<tr>
<td>IIP45</td>
<td>invasion inhibitory protein 45</td>
<td>2.75</td>
<td>chr1</td>
</tr>
<tr>
<td>IL17RB</td>
<td>interleukin 17 receptor B</td>
<td>2.37</td>
<td>chr3</td>
</tr>
<tr>
<td>IL17RD</td>
<td>interleukin 17 receptor D</td>
<td>27.55</td>
<td>chr3</td>
</tr>
<tr>
<td>IL19</td>
<td>interleukin 19</td>
<td>4.99</td>
<td>chr17</td>
</tr>
<tr>
<td>ILF2</td>
<td>interleukin enhancer binding factor 2, 45kDa /// interleukin enhancer binding factor 2, 27kDa</td>
<td>2.26</td>
<td>chr1</td>
</tr>
<tr>
<td>ILF3</td>
<td>interleukin enhancer binding factor 3, 90kDa</td>
<td>5.98</td>
<td>chr19</td>
</tr>
<tr>
<td>IMPT1L</td>
<td>MP1 inner mitochondrial membrane peptidase-like (S. cerevisiae)</td>
<td>2.58</td>
<td>chr11</td>
</tr>
<tr>
<td>IMP-1</td>
<td>IGF-II mRNA-binding protein 1</td>
<td>5.86</td>
<td>chr17</td>
</tr>
<tr>
<td>Gene</td>
<td>Gene ID</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>IMP3</td>
<td>55272</td>
<td>IMP3, U3 small nuclear ribonucleoprotein, homolog (yeast)</td>
<td></td>
</tr>
<tr>
<td>IMP-3</td>
<td>10643</td>
<td>IFG-2 mRNA-binding protein 3</td>
<td></td>
</tr>
<tr>
<td>IMPA2</td>
<td>3613</td>
<td>inositol-(myo)-1(or 4-) monophosphatase 2</td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td>55364</td>
<td>hypothetical protein IMPACT</td>
<td></td>
</tr>
<tr>
<td>IMPDH2</td>
<td>3615</td>
<td>IMP (inosine monophosphate) dehydrogenase 2</td>
<td></td>
</tr>
<tr>
<td>INADL</td>
<td>10207</td>
<td>Inositol dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>INDEC</td>
<td>3619</td>
<td>Inner centromere protein antigen 135/155kDa</td>
<td></td>
</tr>
<tr>
<td>INDO</td>
<td>3620</td>
<td>indoleamine-tryptamine 2.3 dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>ING1</td>
<td>3621</td>
<td>inhibitor of growth family, member 1</td>
<td></td>
</tr>
<tr>
<td>ING2</td>
<td>3622</td>
<td>inhibitor of growth family, member 2</td>
<td></td>
</tr>
<tr>
<td>ING3</td>
<td>54556</td>
<td>inhibitor of growth family, member 3</td>
<td></td>
</tr>
<tr>
<td>ING5</td>
<td>84289</td>
<td>inhibitor of growth family, member 5</td>
<td></td>
</tr>
<tr>
<td>INSR</td>
<td>3643</td>
<td>Insulin receptor</td>
<td></td>
</tr>
<tr>
<td>IPO11</td>
<td>51194</td>
<td>importin 11</td>
<td></td>
</tr>
<tr>
<td>IPO4</td>
<td>79711</td>
<td>importin 4</td>
<td></td>
</tr>
<tr>
<td>IPO9</td>
<td>55705</td>
<td>importin 9</td>
<td></td>
</tr>
<tr>
<td>IPW</td>
<td>3653</td>
<td>imprinted in Prader-Willi syndrome</td>
<td></td>
</tr>
<tr>
<td>IQCA</td>
<td>79781</td>
<td>IQ motif containing with AAA domain</td>
<td></td>
</tr>
<tr>
<td>IQCB1</td>
<td>9667</td>
<td>IQ motif containing in 3B</td>
<td></td>
</tr>
<tr>
<td>IQCQ</td>
<td>10788</td>
<td>IQ motif containing GTPase activating protein 2</td>
<td></td>
</tr>
<tr>
<td>IRAK1BP1</td>
<td>134728</td>
<td>Interleukin-1 receptor-associated kinase 1 binding protein 1</td>
<td></td>
</tr>
<tr>
<td>IRF3</td>
<td>3661</td>
<td>interferon regulatory factor 3</td>
<td></td>
</tr>
<tr>
<td>IRF6</td>
<td>3664</td>
<td>interferon regulatory factor 6</td>
<td></td>
</tr>
<tr>
<td>IRS4</td>
<td>8471</td>
<td>insulin receptor substrate 4</td>
<td></td>
</tr>
<tr>
<td>IRX2</td>
<td>153572</td>
<td>irquis homeobox protein 2</td>
<td></td>
</tr>
<tr>
<td>ISG20L1</td>
<td>64782</td>
<td>interferon stimulated exoknukase gene 20kDa like 1</td>
<td></td>
</tr>
<tr>
<td>ISG20L2</td>
<td>81875</td>
<td>interferon stimulated exoknukase gene 20kDa like 2, JA3</td>
<td></td>
</tr>
<tr>
<td>ISO9</td>
<td>79765</td>
<td>isochromatase domain containing 2</td>
<td></td>
</tr>
<tr>
<td>JAG6</td>
<td>3655</td>
<td>integrin, alpha 6</td>
<td></td>
</tr>
<tr>
<td>JAG7</td>
<td>3679</td>
<td>integrin, alpha 7</td>
<td></td>
</tr>
<tr>
<td>JAGB1P3</td>
<td>27231</td>
<td>integrin beta 1 binding protein 3</td>
<td></td>
</tr>
<tr>
<td>JAGEB3BP</td>
<td>23421</td>
<td>integrin beta 3 binding protein (beta3-endonexin)</td>
<td></td>
</tr>
<tr>
<td>ITM2A</td>
<td>9452</td>
<td>integral membrane protein 2A</td>
<td></td>
</tr>
<tr>
<td>ITPK1</td>
<td>3705</td>
<td>inositol 1,3,4-triphosphate 5/6 kinase</td>
<td></td>
</tr>
<tr>
<td>ITPR3</td>
<td>3710</td>
<td>inositol 1,4,5-triphosphate receptor, type 3</td>
<td></td>
</tr>
<tr>
<td>ITSN1</td>
<td>6453</td>
<td>intersectin 1 (SH3 domain protein)</td>
<td></td>
</tr>
<tr>
<td>JAPD1B</td>
<td>3712</td>
<td>sialyl-Coenzyme A dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>JARID1B</td>
<td>10765</td>
<td>Jumonji, AT rich interactive domain 1B (RB2-like)</td>
<td></td>
</tr>
<tr>
<td>JARID2</td>
<td>3720</td>
<td>Jumonji, AT rich interactive domain 2</td>
<td></td>
</tr>
<tr>
<td>JMJD1B</td>
<td>51780</td>
<td>jumonji domain containing 1B</td>
<td></td>
</tr>
<tr>
<td>JMJD1C</td>
<td>221037</td>
<td>jumonji domain containing 1C</td>
<td></td>
</tr>
<tr>
<td>JMJD2A</td>
<td>9682</td>
<td>jumonji domain containing 2A</td>
<td></td>
</tr>
<tr>
<td>JMJD2C</td>
<td>23081</td>
<td>jumonji domain containing 2C</td>
<td></td>
</tr>
<tr>
<td>JMY</td>
<td>133746</td>
<td>junction-mediating and regulatory protein</td>
<td></td>
</tr>
<tr>
<td>JPH1</td>
<td>56704</td>
<td>junctophilin 1</td>
<td></td>
</tr>
<tr>
<td>JPH2</td>
<td>57338</td>
<td>junctophilin 3</td>
<td></td>
</tr>
<tr>
<td>JPH4</td>
<td>84502</td>
<td>junctophilin 4</td>
<td></td>
</tr>
<tr>
<td>JTV1</td>
<td>7965</td>
<td>JTV1 gene</td>
<td></td>
</tr>
<tr>
<td>KAL1</td>
<td>3730</td>
<td>Kallmann syndrome 1 sequence</td>
<td></td>
</tr>
<tr>
<td>KARCA1</td>
<td>126823</td>
<td>kelcharkin repeat containing cyclin A1 interacting protein</td>
<td></td>
</tr>
<tr>
<td>KARS</td>
<td>3735</td>
<td>lysyl-tRNA synthetase, lysyl-tRNA synthetase</td>
<td></td>
</tr>
<tr>
<td>KATN1</td>
<td>11104</td>
<td>katarin p60 (ATPase-containing) subunit A 1</td>
<td></td>
</tr>
<tr>
<td>KATNB1</td>
<td>10300</td>
<td>katarin p80 (WD repeat containing) subunit B 1</td>
<td></td>
</tr>
<tr>
<td>KBBT07</td>
<td>84078</td>
<td>kelch repeat and BTB (PCOZ) domain containing 7</td>
<td></td>
</tr>
<tr>
<td>KBBT08</td>
<td>84541</td>
<td>kelch repeat and BTB (PCOZ) domain containing 8</td>
<td></td>
</tr>
<tr>
<td>KCND2</td>
<td>3751</td>
<td>potassium voltage-gated channel, Shal-related subfamily, member 2</td>
<td></td>
</tr>
<tr>
<td>KCNG3</td>
<td>170850</td>
<td>potassium voltage-gated channel, subfamily G, member 3</td>
<td></td>
</tr>
<tr>
<td>KCNK12</td>
<td>56660</td>
<td>potassium channel, subfamily K, member 12</td>
<td></td>
</tr>
<tr>
<td>KCNK5</td>
<td>8645</td>
<td>potassium channel, subfamily K, member 5</td>
<td></td>
</tr>
<tr>
<td>KCNB4</td>
<td>27345</td>
<td>potassium channel, calcium-activated channel, subfamily M, beta mertz</td>
<td></td>
</tr>
<tr>
<td>KCNN2</td>
<td>3781</td>
<td>potassium intermediate/small conductance calcium-activated channel, subfamily</td>
<td></td>
</tr>
<tr>
<td>KCNQ2</td>
<td>3785</td>
<td>potassium voltage-gated channel, Kv7-like subfamily, member 2</td>
<td></td>
</tr>
<tr>
<td>KCNS3</td>
<td>3790</td>
<td>potassium voltage-gated channel, delayed-rectifier, subfamily, S, member 3</td>
<td></td>
</tr>
<tr>
<td>KCTD14</td>
<td>65987</td>
<td>potassium channel tetramerisation domain containing 14</td>
<td></td>
</tr>
<tr>
<td>KCTD2</td>
<td>23510</td>
<td>potassium channel tetramerisation domain containing 2</td>
<td></td>
</tr>
<tr>
<td>KCTD6</td>
<td>205845</td>
<td>potassium channel tetramerisation domain containing 6</td>
<td></td>
</tr>
</tbody>
</table>

Table S5: Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>KDR</th>
<th>3791</th>
<th>kinase insert domain receptor (a type III receptor tyrosine kinase)</th>
<th>10.56</th>
<th>chr4</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEAP1</td>
<td>9817</td>
<td>N-ethylmaleimide-sensitive dimerization domain-containing protein 1</td>
<td>2.46</td>
<td>chr19</td>
</tr>
<tr>
<td>KHDRBS1</td>
<td>1067</td>
<td>KH domain containing, RNA binding, signal transduction associated 1</td>
<td>2.40</td>
<td>chr1</td>
</tr>
<tr>
<td>KHK</td>
<td>3795</td>
<td>ketohexokinase (fructokinase) // ketohexokinase (fructokinase)</td>
<td>6.22</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA0200</td>
<td>9933</td>
<td>KIAA0200</td>
<td>2.32</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA0114</td>
<td>5729</td>
<td>KIAA0114 gene product</td>
<td>11.39</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA0133</td>
<td>9816</td>
<td>KIAA0133</td>
<td>5.15</td>
<td>chr1</td>
</tr>
<tr>
<td>KIAA0152</td>
<td>9761</td>
<td>KIAA0152</td>
<td>2.58</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA0153</td>
<td>23170</td>
<td>KIAA0153 protein</td>
<td>5.73</td>
<td>chr22</td>
</tr>
<tr>
<td>KIAA0179</td>
<td>23076</td>
<td>KIAA0179</td>
<td>2.58</td>
<td>chr21</td>
</tr>
<tr>
<td>KIAA0182</td>
<td>23199</td>
<td>KIAA0182 protein</td>
<td>5.08</td>
<td>chr16</td>
</tr>
<tr>
<td>KIAA0286</td>
<td>23306</td>
<td>KIAA0286 protein</td>
<td>6.45</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA0368</td>
<td>23392</td>
<td>KIAA0368</td>
<td>3.18</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA0391</td>
<td>9692</td>
<td>KIAA0391</td>
<td>2.36</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA0406</td>
<td>9675</td>
<td>KIAA0406 gene product</td>
<td>3.70</td>
<td>chr20</td>
</tr>
<tr>
<td>KIAA0495</td>
<td>57212</td>
<td>KIAA0495</td>
<td>2.38</td>
<td>chr1</td>
</tr>
<tr>
<td>KIAA0523</td>
<td>23302</td>
<td>KIAA0523 protein</td>
<td>13.63</td>
<td>chr17</td>
</tr>
<tr>
<td>KIAA0528</td>
<td>9847</td>
<td>KIAA0528 gene product</td>
<td>4.33</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA0555</td>
<td>9832</td>
<td>Jak and microtubule interacting protein 2</td>
<td>4.25</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA0582</td>
<td>23177</td>
<td>KIAA0582</td>
<td>3.47</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA0649</td>
<td>9858</td>
<td>KIAA0649</td>
<td>2.69</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA0664</td>
<td>23277</td>
<td>KIAA0664 protein</td>
<td>2.15</td>
<td>chr17</td>
</tr>
<tr>
<td>KIAA0672</td>
<td>9912</td>
<td>KIAA0672 gene product</td>
<td>4.34</td>
<td>chr17</td>
</tr>
<tr>
<td>KIAA0683</td>
<td>9894</td>
<td>KIAA0683 gene product</td>
<td>2.91</td>
<td>chr16</td>
</tr>
<tr>
<td>KIAA0828</td>
<td>23382</td>
<td>KIAA0828 protein</td>
<td>2.44</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0841</td>
<td>23354</td>
<td>KIAA0841</td>
<td>2.08</td>
<td>chr19</td>
</tr>
<tr>
<td>KIAA0859</td>
<td>5163</td>
<td>KIAA0859</td>
<td>3.68</td>
<td>chr1</td>
</tr>
<tr>
<td>KIAA0863</td>
<td>22850</td>
<td>KIAA0863 protein</td>
<td>4.60</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA0888</td>
<td>26049</td>
<td>KIAA0888 protein</td>
<td>18.52</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA0922</td>
<td>23240</td>
<td>KIAA0922 protein</td>
<td>2.39</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA0947</td>
<td>23379</td>
<td>KIAA0947 protein</td>
<td>2.27</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA0971</td>
<td>22868</td>
<td>KIAA0971</td>
<td>2.13</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA0980</td>
<td>22981</td>
<td>KIAA0980 protein</td>
<td>5.98</td>
<td>chr20</td>
</tr>
<tr>
<td>KIAA0984</td>
<td>23329</td>
<td>KIAA0984 protein</td>
<td>2.34</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA0999</td>
<td>23387</td>
<td>KIAA0999 protein</td>
<td>4.85</td>
<td>chr11</td>
</tr>
<tr>
<td>KIAA1143</td>
<td>57456</td>
<td>KIAA1143</td>
<td>3.22</td>
<td>chr3</td>
</tr>
<tr>
<td>KIAA1155</td>
<td>40096</td>
<td>KIAA1155 protein</td>
<td>6.94</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1166</td>
<td>55906</td>
<td>KIAA1166 protein</td>
<td>2.86</td>
<td>chrX</td>
</tr>
<tr>
<td>KIAA1111</td>
<td>57482</td>
<td>KIAA1111 protein</td>
<td>4.71</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1212</td>
<td>55704</td>
<td>KIAA1212 protein</td>
<td>4.35</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1219</td>
<td>57148</td>
<td>KIAA1219 protein</td>
<td>2.03</td>
<td>chr20</td>
</tr>
<tr>
<td>KIAA1240</td>
<td>54454</td>
<td>KIAA1240 protein</td>
<td>2.65</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1244</td>
<td>57221</td>
<td>KIAA1244 protein</td>
<td>2.89</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1274</td>
<td>27143</td>
<td>KIAA1274</td>
<td>3.71</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1287</td>
<td>57508</td>
<td>KIAA1287 protein</td>
<td>2.29</td>
<td>chr17</td>
</tr>
<tr>
<td>KIAA1324L</td>
<td>22223</td>
<td>KIAA1324-lik // KIAA1324-Like</td>
<td>4.49</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA1333</td>
<td>55632</td>
<td>KIAA1333 protein</td>
<td>3.51</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA1344</td>
<td>57544</td>
<td>KIAA1344 protein</td>
<td>3.83</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA1411</td>
<td>57579</td>
<td>KIAA1411 protein</td>
<td>2.94</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1467</td>
<td>57613</td>
<td>KIAA1467 protein</td>
<td>4.04</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA1509</td>
<td>44019</td>
<td>KIAA1509 protein</td>
<td>7.86</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA1524</td>
<td>57650</td>
<td>KIAA1524 protein</td>
<td>4.73</td>
<td>chr3</td>
</tr>
<tr>
<td>KIAA1533</td>
<td>57655</td>
<td>KIAA1533 protein</td>
<td>2.09</td>
<td>chr19</td>
</tr>
<tr>
<td>KIAA1542</td>
<td>57661</td>
<td>CTD-binding SR-like protein rA9</td>
<td>2.18</td>
<td>chr11</td>
</tr>
<tr>
<td>KIAA1545</td>
<td>57666</td>
<td>KIAA1545 protein</td>
<td>2.81</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA1549</td>
<td>57670</td>
<td>KIAA1549 protein</td>
<td>3.58</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA1553</td>
<td>57673</td>
<td>KIAA1553 protein</td>
<td>13.35</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1586</td>
<td>57691</td>
<td>KIAA1586 protein</td>
<td>2.27</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1598</td>
<td>57698</td>
<td>KIAA1598 protein</td>
<td>2.37</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1604</td>
<td>57703</td>
<td>KIAA1604 protein</td>
<td>2.89</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1627</td>
<td>57721</td>
<td>KIAA1627 protein</td>
<td>2.07</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1648</td>
<td>284900</td>
<td>KIAA1648 protein</td>
<td>5.53</td>
<td>chr22</td>
</tr>
<tr>
<td>KIAA1671</td>
<td>85379</td>
<td>KIAA1671 protein</td>
<td>7.72</td>
<td>chr22</td>
</tr>
<tr>
<td>KIAA1718</td>
<td>80853</td>
<td>KIAA1718 protein</td>
<td>2.77</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA1727</td>
<td>85462</td>
<td>KIAA1727 protein</td>
<td>8.07</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1731</td>
<td>85459</td>
<td>KIAA1731 protein</td>
<td>2.26</td>
<td>chr11</td>
</tr>
<tr>
<td>KIAA1737</td>
<td>85457</td>
<td>KIAA1737 protein</td>
<td>2.77</td>
<td>chr14</td>
</tr>
</tbody>
</table>
Table S5: Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

KIAA1754L	KIAA1754-like	2.93	chr2
KIAA1804	mixed lineage kinase 4	22.07	chr1
KIAA1815	KIAA1815	3.86	chr9
KIAA1906	KIAA1906 protein	7.00	chr12
KIAA1909	KIAA1909 protein	6.79	chr5
KIAA1935	KIAA1935 protein	6.69	chr5
KIAA1944	KIAA1944 protein	2.84	chr12
KIAA1958	KIAA1958	18.10	chr9
KIAA1970	KIAA1970 protein	3.99	chr16
KIAA1982	KIAA1982 protein	5.40	chr4
KIAA2010	KIAA2010	2.17	chr14
KIBRA	KIBRA protein	4.01	chr5
KIF11	kinesin family member 11	6.99	chr10
KIF14	kinesin family member 14	7.32	chr1
KIF15	kinesin family member 15	11.53	chr3
KIF18A	kinesin family member 18A // kinesin family member 18A	2.36	chr11
KIF1A	kinesin family member 1A	40.11	chr2
KIF1B	kinesin family member 1B	5.00	chr1
KIF20A	kinesin family member 20A	8.23	chr5
KIF21A	kinesin family member 21A	6.33	chr12
KIF22	kinesin family member 22	10.39	chr16
KIF23	kinesin family member 23	3.68	chr15
KIF26A	kinesin family member 26A	4.00	chr14
KIF2C	kinesin family member 2C	6.72	chr1
KIF4A	kinesin family member 4A	5.74	chr5
KIF5A	Kinesin family member 5A	18.02	chr12
KIF5C	Kinesin family member 5C	147.77	chr2
KIF9	kinesin family member 9	2.26	chr3
KIFC1	kinesin family member C1	2.87	chr6
KIT	\(\gamma \)-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog	12.41	chr4
KLF4	Kruppel-like factor 4 (gut)	6.08	chr9
KLF8	Kruppel-like factor 8	6.52	chrX
KLHDC4	Kelch domain containing 4	2.57	chr16
KLHL12	Kelch-like 12 (Drosophila)	2.08	chr22
KLHL13	Kelch-like 13 (Drosophila)	3.96	chrX
KLHL23	Kelch-like 23 (Drosophila)	8.07	chr2
KLHL3	Kelch-like 3 (Drosophila)	4.86	chr5
KLHL7	Kelch-like 7 (Drosophila)	7.93	chr7
KLKB1	Kallikrein B, plasma (Fletcher factor) 1	10.84	chr4
KNTC1	kinetochore associated 1	6.70	chr12
KNTC2	kinetochore associated 2	6.21	chr18
KPNA2	karyopherin alpha 2 (RAG cohort 1, importin alpha 1) // karyopherin alpha 2 (RAG cohort 1, importin alpha 1)	2.94	chr17
KPNA3	Karyopherin alpha 3 (importin alpha 4)	2.83	chr13
KPNA5	Karyopherin alpha 5 (importin alpha 6)	2.01	chr6
KPNB1	Karyopherin (importin) beta 1	2.02	chr17
KPTN	Kapartin (actin binding protein)	3.41	chr9
KRTAP4-7	Keratin associated protein 4-7	5.40	chr15
KRTAP53	Keratinocyte associated protein 3	11.82	chr2
KUB3	Ku70-binding protein 3	2.86	chr12
L2HGIDH	L-2-hydroxyglutarate dehydrogenase	3.06	chr14
LACTB2	Lactamase, beta 2	2.05	chr8
LAM1	laminin, alpha 1	21.06	chr18
LAMC3	laminin, gamma 3	2.39	chr9
LANC1	Lantibiotic synthetase component C-like 2 (bacterial)	2.39	chr7
LAPTM4B	lysosomal associated protein transmembrane 4 beta	6.03	chr8
LARP2	La ribonucleoprotein domain family, member 2	3.81	chr4
LARP4	La ribonucleoprotein domain family, member 4	2.34	chr12
LARP5	La ribonucleoprotein domain family, member 5	2.44	chr10
LARS	Leucyl-tRNA synthetase	2.62	chr5
LARS2	Leucyl-tRNA synthetase, mitochondrial	4.24	chr3
LAS1L	LAS1-like (S. cerevisiae) // LAS1-like (S. cerevisiae)	4.72	chrX
LASS1	LAG1 longevity assurance homolog 1 (S. cerevisiae)	2.87	chr19
LASS4	LAG1 longevity assurance homolog 4 (S. cerevisiae)	2.08	chr19
LASS6	LAG1 longevity assurance homolog 6 (S. cerevisiae)	3.09	chr2
LBR	lamin B receptor	2.94	chr1
LCHN	LCHN protein	3.72	chr7
LCK	lymphocyte-specific protein tyrosine kinase	37.69	chr1
Stem Cells and Development

Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>LOC</th>
<th>Description</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC1</td>
<td>Leucine carboxyl methyltransferase 1</td>
<td>2.60</td>
</tr>
<tr>
<td>LOC2</td>
<td>Leucine carboxyl methyltransferase 2</td>
<td>2.40</td>
</tr>
<tr>
<td>LDS2</td>
<td>Lim domain binding 2</td>
<td>3.82</td>
</tr>
<tr>
<td>LOC1</td>
<td>Eukaryotic cell derived chemotaxin 1</td>
<td>46.66</td>
</tr>
<tr>
<td>LOC1</td>
<td>Left-right determination factor 1</td>
<td>70.89</td>
</tr>
<tr>
<td>LOC2</td>
<td>Left-right determination factor 2</td>
<td>38.07</td>
</tr>
<tr>
<td>LOC1</td>
<td>Leu1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)</td>
<td>2.26</td>
</tr>
<tr>
<td>LOC1</td>
<td>Sach, galactoside-binding, soluble, 1 (galactin 1)</td>
<td>76.19</td>
</tr>
<tr>
<td>LOC1</td>
<td>Lipidic acid synthase</td>
<td>3.79</td>
</tr>
<tr>
<td>LOC1</td>
<td>Lgase I, DNA, ATP-dependent</td>
<td>4.24</td>
</tr>
<tr>
<td>LOC1</td>
<td>Lgase III, DNA, ATP-dependent</td>
<td>4.17</td>
</tr>
<tr>
<td>LOC2</td>
<td>In-28 homolog (C. elegans)</td>
<td>660.24</td>
</tr>
<tr>
<td>LOC2</td>
<td>In-28 homolog B (C. elegans)</td>
<td>143.10</td>
</tr>
<tr>
<td>LPT1</td>
<td>Lipoyltransferase 1</td>
<td>3.03</td>
</tr>
<tr>
<td>LOC1</td>
<td>Liver-specific bHLH-Zip transcription factor</td>
<td>6.93</td>
</tr>
<tr>
<td>LOC1</td>
<td>Lipopolysaccharide-induced TNF factor</td>
<td>2.75</td>
</tr>
<tr>
<td>LOC1</td>
<td>Ethyl giant larvae homolog 1 (Drosophila)</td>
<td>2.94</td>
</tr>
<tr>
<td>LOC1</td>
<td>Ethyl giant larvae homolog 2 (Drosophila)</td>
<td>2.85</td>
</tr>
<tr>
<td>LOC1</td>
<td>Lamin B1</td>
<td>11.56</td>
</tr>
<tr>
<td>LOC1</td>
<td>Lamin B2</td>
<td>2.48</td>
</tr>
<tr>
<td>LOC1</td>
<td>Lim domain only 4</td>
<td>3.64</td>
</tr>
<tr>
<td>LOC1</td>
<td>Lemur tyrosine kinase 2</td>
<td>3.05</td>
</tr>
<tr>
<td>LOC1</td>
<td>Ligand of numb protein X</td>
<td>3.13</td>
</tr>
<tr>
<td>LOC1</td>
<td>Ligand of numb protein X 2</td>
<td>2.10</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein BC004941</td>
<td>2.78</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein BC011981</td>
<td>2.56</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein BC012010</td>
<td>4.91</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein BC011824</td>
<td>2.58</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein BC014148</td>
<td>13.14</td>
</tr>
<tr>
<td>LOC1</td>
<td>Similar to hypothetical protein FLJ13659</td>
<td>3.98</td>
</tr>
<tr>
<td>LOC1</td>
<td>Similar to hypothetical protein FLJ13659 /// hypothetical protein LOC148203 ///</td>
<td>4.02</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein BC014072</td>
<td>4.06</td>
</tr>
<tr>
<td>LOC1</td>
<td>LOC124491</td>
<td>5.42</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC126295</td>
<td>5.31</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein BC018453</td>
<td>2.53</td>
</tr>
<tr>
<td>LOC1</td>
<td>Similar to G14894-PA</td>
<td>2.43</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC131076</td>
<td>4.45</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC132241</td>
<td>2.10</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC137886</td>
<td>2.89</td>
</tr>
<tr>
<td>LOC1</td>
<td>OTTHUMP000002143</td>
<td>60.20</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC139886</td>
<td>3.39</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC145786</td>
<td>6.72</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC146909</td>
<td>4.51</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC147645</td>
<td>3.91</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC147727</td>
<td>2.56</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC148203</td>
<td>10.72</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC149832</td>
<td>2.17</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC150084</td>
<td>2.11</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC150271</td>
<td>8.28</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC150371</td>
<td>8.35</td>
</tr>
<tr>
<td>LOC1</td>
<td>Similar to hepato unicellular carcinoma-associated antigen HCA557b</td>
<td>10.84</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein AV099107</td>
<td>2.18</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein BC007882</td>
<td>2.77</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC152485</td>
<td>3.26</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC153346</td>
<td>11.22</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC153496</td>
<td>16.62</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC153546</td>
<td>3.39</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC153561</td>
<td>11.34</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC157627</td>
<td>9.48</td>
</tr>
<tr>
<td>LOC1</td>
<td>Similar to hypothetical protein MGC17347</td>
<td>2.77</td>
</tr>
<tr>
<td>LOC1</td>
<td>Similar to Zinc finger protein 93 (Zinc finger protein HTF34)</td>
<td>4.03</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC169834</td>
<td>13.96</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC169394</td>
<td>2.24</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC200169</td>
<td>3.82</td>
</tr>
<tr>
<td>LOC1</td>
<td>Similar to KIAA0386</td>
<td>2.22</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC201725</td>
<td>2.82</td>
</tr>
<tr>
<td>LOC1</td>
<td>Hypothetical protein LOC202451</td>
<td>9.64</td>
</tr>
</tbody>
</table>

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.
LOC202781	202781	hypothetical protein LOC202781	2.54	chr7
LOC203547	203547	hypothetical protein LOC203547	2.28	chrX
LOC219638	219638	hypothetical LOC219638	2.22	chr11
LOC23117 /// 348162 /// 44KAAO22-like protein /// hypothetical gene LOC238346 /// hypothetical protein 3	4.62	chr16		
LOC253842	253842	hypothetical protein LOC253842	27.88	chr9
LOC254128	254128	hypothetical protein LOC254128	2.24	chr2
LOC263377	263377	hypothetical protein LOC263377	2.67	chr12
LOC263841	263841	hypothetical protein LOC263841	2.60	chr13
LOC263871	263871	hypothetical protein LOC263871	6.51	chr16
LOC284058	284058	LC0284058 protein	3.56	chr17
LOC284214	284214	hypothetical protein LOC284214	2.10	chr18
LOC284373	284373	Hypothetical Protein LOC284373	2.06	(vde)
LOC284408	284408	Hypothetical Protein LOC284408	2.47	chr19
LOC284611	284611	hypothetical protein LOC284611	3.67	chr1
LOC284701	284701	hypothetical protein LOC284701	7.29	chr1
LOC284701 /// 440470 /// hypothetical protein LOC284701 /// hypothetical gene supported by AK128780 /// 2.46	chr1			
LOC284702	284702	hypothetical protein LOC284702	4.19	chr1
LOC284801	284801	hypothetical protein LOC284801	3.96	chr20
LOC285016	285016	hypothetical protein LOC285016	2.78	chr2
LOC285401	285401	hypothetical protein LOC285401	2.37	chr3
LOC285958	285958	hypothetical protein LOC285958	2.45	chr7
LOC286044	286044	hypothetical protein LOC286044	4.30	chr8
LOC339077 /// 440549 /// 440717 /// hypothetical gene supported by AK092558; AL137655; BC006361 /// similar to C	2.38	chr1		
LOC342892	342892	Hypothetical protein LOC342892	8.57	chr19
LOC342979	342979	hypothetical LOC342979	8.51	chr19
LOC345630	345630	similar to fibrin / fibrinogen	2.26	chr5
LOC347273	347273	similar to RIKEN cDNA 2310039D09	3.68	chr9
LOC348801	348801	hypothetical LOC348801	3.88	chr3
LOC349338 /// 374666 /// CXXorf1-related protein /// CXXorf1-related protein	2.64	chr2		
LOC388291	388291	Hypothetical LOC388291	2.10	chr16
LOC388335	388335	similar to RIKEN cDNA A730055C05 gene	2.42	chr17
LOC388388	388388	chromodomain helicase DNA binding protein 3	5.80	chr17_random
LOC388494	388494	hypothetical gene supported by AL365406; BC034005	23.78	chr19
LOC388508	388508	similar to ribosomal protein L17	3.52	chr19
LOC388638	388638	hypothetical LOC388638	8.32	chr1
LOC388889 /// 440882 /// Hypothetical LOC388889 /// Hypothetical protein LOC150271	3.63	chr22		
LOC389203	389203	hypothetical gene supported by BC032913; BC048425	2.94	chr2
LOC389188	389188	Hypothetical LOC389188	3.17	chr3
LOC389295	389295	hypothetical protein LOC153561	5.02	chr5
LOC389362	389362	hypothetical LOC389362	2.64	chr6
LOC389541	389541	similar to CG14777-PA	4.46	chr7
LOC389831	389831	hypothetical gene supported by AL713796	5.88	chr7_random
LOC389857	389857	hypothetical protein	3.19	chrX
LOC390940	390940	similar to R28379_1	3.60	chr19
LOC391356	391356	similar to CG14903-PA	2.32	chr2
LOC391833	391833	similar to 40S ribosomal protein S10	3.01	chr5
LOC400451	400451	hypothetical gene supported by AK075564; BC060873	2.83	chr15
LOC400506	400506	Similar to TSG118_1	7.62	chr16
LOC400680	400680	hypothetical gene supported by AK097381; BC040866	7.36	chr19
LOC400690	400690	hypothetical gene supported by AK092138	13.94	chr19
LOC400740	400740	LOC440570	4.08	chr1
LOC400741	400741	hypothetical protein LOC400741	3.60	chr1
LOC400793	400793	hypothetical gene supported by AK125212	3.07	chr1
LOC401499	401499	Hypothetical LOC401499	2.54	chr9
LOC402563	402563	Hypothetical LOC402563	2.22	chr7
LOC439949	439949	hypothetical gene supported by A0Y01755	7.84	chr10
LOC439987	439987	LOC439987	2.66	chr10
LOC440008 /// 440008 /// C-terminal binding protein 2 /// LOC440008	4.18	chr5		
LOC440085	440085	similar to protamin alpha	3.31	chr2
LOC440122	440122	similar to CRAB zinc finger protein 6D	3.66	chr12
LOC440132	440132	LOC440132	4.64	chr13
LOC440282	440282	Hypothetical protein LOC145783	2.44	chr15
LOC440288	440288	similar to FLJ16518 protein	4.20	chr15
LOC440338	440338	hypothetical gene supported by AJ002784	24.11	chr16
LOC440388	440388	similar to coenzyme A diphosphate reductase	3.79	chr16
LOC440416	440416	hypothetical gene supported by BC072410	3.58	chr17
LOC440426	440426	hypothetical gene supported by AK092922; AL831912	3.61	chr12
Table S5. Genes downregulated in hESC compared to hES (Fold Change > 2; \(\alpha < 0.05 \)).

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC440524</td>
<td>LOC440524</td>
<td>6.67</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC440667</td>
<td>LOC440667 // LOC440669 // LOC440688</td>
<td>2.70</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC440669</td>
<td>LOC440669</td>
<td>3.25</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC440701</td>
<td>LOC440701</td>
<td>2.03</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC440731</td>
<td>LOC440731</td>
<td>2.13</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC440957</td>
<td>similar to CG32736-PA</td>
<td>2.41</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC440971</td>
<td>similar to Zinc finger protein RII (Rearranged L-myc fusion gene protein) (Zn-15)</td>
<td>3.07</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC440983</td>
<td>hypothetical gene supported by BC065380</td>
<td>3.64</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC440996</td>
<td>hypothetical gene supported by BC065380</td>
<td>2.45</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC441027</td>
<td>Similar to hypothetical protein LOC231503</td>
<td>4.73</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC441114</td>
<td>Similar to acidic ribosomal protein P0</td>
<td>2.02</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC441164</td>
<td>Chromosome 6 open reading frame 160</td>
<td>5.15</td>
<td>chr6</td>
</tr>
<tr>
<td>LOC441241</td>
<td>LOC441241 // LOC441244</td>
<td>2.31</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC441458</td>
<td>hypothetical gene supported by AK091930</td>
<td>5.88</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC441628</td>
<td>similar to POU domain, class 5, transcription factor 1 (Octamer-binding transcription factor 5)</td>
<td>26.46</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC442075</td>
<td>weakly similar to serine/threonine protein kinase Kp78</td>
<td>3.39</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC442447</td>
<td>Similar to Chloride intracellular channel protein 4 (Intracellular chloride ion channel 4)</td>
<td>10.45</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC442699</td>
<td>Zinc finger protein 100</td>
<td>6.69</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC493856</td>
<td>similar to RIKEN cDNA 1500008M05 gene</td>
<td>2.15</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC494143</td>
<td>LOC494143</td>
<td>3.65</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC497257</td>
<td>Hypothetical LOC497257</td>
<td>12.27</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC554203</td>
<td>hypothetic LOC554203</td>
<td>2.53</td>
<td>(vide)</td>
</tr>
<tr>
<td>LOC57168</td>
<td>similar to aspartate beta hydroxylase (ASPH)</td>
<td>2.85</td>
<td>chr22</td>
</tr>
<tr>
<td>LOC58489</td>
<td>hypothetical protein from EUROIMAGE 588495</td>
<td>2.65</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC63920</td>
<td>transposon-derived Buster3 transposase-like</td>
<td>2.27</td>
<td>(vide)</td>
</tr>
<tr>
<td>LOC641298</td>
<td>Pi-3-kinase-related kinase SMG-1-like locus</td>
<td>2.16</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC641522</td>
<td>ADP-ribosylation factor-like 17 pseudogene</td>
<td>3.38</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC811558</td>
<td>C/EBP-induced protein II / C/EBP-induced protein</td>
<td>9.77</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC84661</td>
<td>sph-30-like protein</td>
<td>2.82</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC89894</td>
<td>hypothetic protein BC000282</td>
<td>2.64</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC90321</td>
<td>hypothetic protein LOC90321</td>
<td>3.71</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC90799</td>
<td>hypothetic protein BC099518</td>
<td>3.93</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC91431</td>
<td>prematurely terminated mRNA decay-factor-like</td>
<td>11.02</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC91661</td>
<td>hypothetic protein BC01610</td>
<td>2.94</td>
<td>(vide)</td>
</tr>
<tr>
<td>LOC92345</td>
<td>hypothetic protein LOC928207</td>
<td>2.16</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC92497</td>
<td>hypothetic protein LOC92497</td>
<td>2.95</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC92558</td>
<td>hypothetic protein LOC92558</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC94431</td>
<td>similar to RNA polymerase I transcription factor RNR3</td>
<td>2.23</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC95258</td>
<td>LOC441164</td>
<td>2.03</td>
<td>chr11</td>
</tr>
<tr>
<td>LONRF1</td>
<td>LON peptidase N-terminal domain and ring finger 1</td>
<td>4.07</td>
<td>chr8</td>
</tr>
<tr>
<td>LPHN1</td>
<td>lathrophiin 1</td>
<td>5.34</td>
<td>chr19</td>
</tr>
<tr>
<td>LPHN2</td>
<td>lathrophiin 2</td>
<td>5.09</td>
<td>chr1</td>
</tr>
<tr>
<td>LPHN3</td>
<td>lathrophiin 3</td>
<td>7.21</td>
<td>chr4</td>
</tr>
<tr>
<td>LRG1</td>
<td>leucine-rich repeat and immunoglobulin-like domains 1 // leucine-rich repeats a</td>
<td>5.65</td>
<td>chr3</td>
</tr>
<tr>
<td>LRG2</td>
<td>9860 leucine-rich repeats and immunoglobulin-like domains 2</td>
<td>2.52</td>
<td>chr1</td>
</tr>
<tr>
<td>LR6P</td>
<td>low density lipoprotein receptor-related protein 6</td>
<td>2.75</td>
<td>chr12</td>
</tr>
<tr>
<td>LR8P</td>
<td>low density lipoprotein receptor-related protein 8, apolipoprotein E receptor</td>
<td>5.13</td>
<td>chr1</td>
</tr>
<tr>
<td>LLPRRC</td>
<td>10128 leucine-rich PPR-motif containing</td>
<td>4.06</td>
<td>chr2</td>
</tr>
<tr>
<td>LRC16</td>
<td>Leucine rich repeat containing 16</td>
<td>6.18</td>
<td>chr6</td>
</tr>
<tr>
<td>LRC34</td>
<td>Leucine rich repeat containing 34</td>
<td>5.52</td>
<td>chr3</td>
</tr>
<tr>
<td>LRC37B</td>
<td>Leucine rich repeat containing 37B</td>
<td>2.15</td>
<td>chr17</td>
</tr>
<tr>
<td>LRC45</td>
<td>Leucine rich repeat containing 45</td>
<td>2.26</td>
<td>chr17</td>
</tr>
<tr>
<td>LRC47</td>
<td>Leucine rich repeat containing 47</td>
<td>2.09</td>
<td>chr1</td>
</tr>
<tr>
<td>LRC81</td>
<td>Leucine rich repeat containing 8 family, member A</td>
<td>5.41</td>
<td>chr1</td>
</tr>
<tr>
<td>LRC8D</td>
<td>Leucine rich repeat containing 8 family, member D</td>
<td>2.32</td>
<td>chr1</td>
</tr>
<tr>
<td>LRRN1</td>
<td>Leucine rich repeat neuronal 1</td>
<td>54.54</td>
<td>chr8</td>
</tr>
<tr>
<td>LRRN6A</td>
<td>Leucine rich repeat neuronal 6A</td>
<td>4.78</td>
<td>chr15</td>
</tr>
<tr>
<td>LRRM4</td>
<td>Leucine rich repeat transmembrane neuronal 4</td>
<td>3.05</td>
<td>chr2</td>
</tr>
<tr>
<td>LSM2</td>
<td>LSM2 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td>2.62</td>
<td>chr6</td>
</tr>
<tr>
<td>LSM3</td>
<td>LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td>3.06</td>
<td>chr3</td>
</tr>
<tr>
<td>LSM4</td>
<td>LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td>3.74</td>
<td>chr19</td>
</tr>
<tr>
<td>LSM5</td>
<td>LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td>3.25</td>
<td>chr7</td>
</tr>
<tr>
<td>LSM6</td>
<td>LSM6 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td>4.62</td>
<td>chr4</td>
</tr>
<tr>
<td>LSM7</td>
<td>LSM7 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td>3.30</td>
<td>chr19</td>
</tr>
<tr>
<td>LSS</td>
<td>Lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)</td>
<td>2.03</td>
<td>chr21</td>
</tr>
<tr>
<td>LTA4H</td>
<td>Leukotriene A4 hydrolase</td>
<td>2.79</td>
<td>chr12</td>
</tr>
<tr>
<td>LUC7L</td>
<td>LUC7-like (S. cerevisiae)</td>
<td>4.63</td>
<td>chr16</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUC7L2</td>
<td>LUC7-like 2 (S. cerevisiae)</td>
<td>2.02</td>
<td>chr7</td>
</tr>
<tr>
<td>LUZP5</td>
<td>leucine zipper protein 5</td>
<td>7.76</td>
<td>chr7</td>
</tr>
<tr>
<td>LYAR</td>
<td>hypothetical protein FLJ20425</td>
<td>9.64</td>
<td>chr4</td>
</tr>
<tr>
<td>LYPLA2</td>
<td>lysophospholipase II</td>
<td>2.90</td>
<td>chr1</td>
</tr>
<tr>
<td>LYPLA2</td>
<td>lysophospholipase II // lysophospholipase II pseudogene 1 // similar to Acy1-pro</td>
<td>2.47</td>
<td>chr1</td>
</tr>
<tr>
<td>M11S1</td>
<td>membrane component, chromosome 11, surface marker 1</td>
<td>2.59</td>
<td>chr11</td>
</tr>
<tr>
<td>MAC30</td>
<td>hypothetical protein MAC30</td>
<td>12.85</td>
<td>chr17</td>
</tr>
<tr>
<td>MAD2L1</td>
<td>MAD2 mitotic arrest deficient-like 1 (yeast)</td>
<td>5.91</td>
<td>chr14</td>
</tr>
<tr>
<td>MAD2L1BP</td>
<td>MAD2L1 binding protein</td>
<td>2.09</td>
<td>chr6</td>
</tr>
<tr>
<td>MAD2L2</td>
<td>MAD2 mitotic arrest deficient-2 (yeast)</td>
<td>8.42</td>
<td>chr1</td>
</tr>
<tr>
<td>MAFB</td>
<td>v-musculoaponeurotic fibrosarcoma oncogene homolog B (avian)</td>
<td>2.53</td>
<td>chr20</td>
</tr>
<tr>
<td>MAGE1</td>
<td>melanoma antigen family E, 1</td>
<td>2.19</td>
<td>chrX</td>
</tr>
<tr>
<td>MAGH1</td>
<td>membrane associated guanylate kinase, WW and PDZ domain containing 1</td>
<td>4.14</td>
<td>chr3</td>
</tr>
<tr>
<td>MAGI2</td>
<td>membrane associated guanylate kinase, WW and PDZ domain containing 2</td>
<td>5.20</td>
<td>chr7</td>
</tr>
<tr>
<td>MAGOH</td>
<td>mags-nashi homolog, proliferation-associated (Drosophila)</td>
<td>4.79</td>
<td>chr1</td>
</tr>
<tr>
<td>MAG3</td>
<td>Mak3 homolog (S. cerevisiae)</td>
<td>3.96</td>
<td>chr3</td>
</tr>
<tr>
<td>MAML2</td>
<td>mnt, T-cell differentiation protein 2</td>
<td>58.76</td>
<td>chr8</td>
</tr>
<tr>
<td>MAML1</td>
<td>mastermind-like 1 (Drosophila)</td>
<td>2.39</td>
<td>chr5</td>
</tr>
<tr>
<td>MAN2C1</td>
<td>Mannosidase, alpha, class 2C, member 1</td>
<td>2.73</td>
<td>chr15</td>
</tr>
<tr>
<td>MAP2K6</td>
<td>mitogen-activated protein kinase 6</td>
<td>20.91</td>
<td>chr17</td>
</tr>
<tr>
<td>MAP3K1</td>
<td>mitogen-activated protein kinase 1</td>
<td>3.76</td>
<td>chr5</td>
</tr>
<tr>
<td>MAP3K4</td>
<td>mitogen-activated protein kinase 4</td>
<td>4.78</td>
<td>chr6</td>
</tr>
<tr>
<td>MAP3K9</td>
<td>mitogen-activated protein kinase 9</td>
<td>6.61</td>
<td>chr14</td>
</tr>
<tr>
<td>MAP4K1</td>
<td>mitogen-activated protein kinase 1</td>
<td>4.85</td>
<td>chr19</td>
</tr>
<tr>
<td>MAP7</td>
<td>microtubule-associated protein 7</td>
<td>167.78</td>
<td>chr6</td>
</tr>
<tr>
<td>MAPK1</td>
<td>mitogen-activated protein kinase 1</td>
<td>2.26</td>
<td>chr22</td>
</tr>
<tr>
<td>MAPK13</td>
<td>mitogen-activated protein kinase 13</td>
<td>3.98</td>
<td>chr6</td>
</tr>
<tr>
<td>MAPK7</td>
<td>mitogen-activated protein kinase 7</td>
<td>2.10</td>
<td>chr17</td>
</tr>
<tr>
<td>MAPKAPK3</td>
<td>mitogen-activated protein kinase-activated protein kinase 3</td>
<td>4.42</td>
<td>chr3</td>
</tr>
<tr>
<td>MAPKAPK5</td>
<td>mitogen-activated protein kinase-activated protein kinase 5</td>
<td>3.60</td>
<td>chr12</td>
</tr>
<tr>
<td>MAPRE2</td>
<td>microtubule-associated protein, RP/EB family, member 2</td>
<td>2.47</td>
<td>chr18</td>
</tr>
<tr>
<td>MARCKS1</td>
<td>MARCKS-like 1</td>
<td>3.12</td>
<td>chr1</td>
</tr>
<tr>
<td>MAR1</td>
<td>MAP/microtubule affinity-regulating kinase 1</td>
<td>6.81</td>
<td>chr1</td>
</tr>
<tr>
<td>MARS</td>
<td>methylthioadenosine-ribose synthetase</td>
<td>2.15</td>
<td>chr12</td>
</tr>
<tr>
<td>MARVELD2</td>
<td>MARVEL domain containing 2</td>
<td>18.36</td>
<td>chr5</td>
</tr>
<tr>
<td>MARVELD3</td>
<td>MARVEL domain containing 3</td>
<td>14.15</td>
<td>chr16</td>
</tr>
<tr>
<td>MASA</td>
<td>E-1 enzyme</td>
<td>2.42</td>
<td>chr4</td>
</tr>
<tr>
<td>MASK</td>
<td>Ms3 and SOK1-related kinase</td>
<td>2.12</td>
<td>chrX</td>
</tr>
<tr>
<td>MASS1</td>
<td>monogenic, audiogenic seizure susceptibility 1 homolog (mouse)</td>
<td>15.98</td>
<td>chr5</td>
</tr>
<tr>
<td>MASTL</td>
<td>microtubule associated serine/threonine kinase-like</td>
<td>4.33</td>
<td>chr10</td>
</tr>
<tr>
<td>MAT2A</td>
<td>Methionine adenosyltransferase II, alpha</td>
<td>3.39</td>
<td>chr2</td>
</tr>
<tr>
<td>MATK</td>
<td>megakaryocyte-associated tyrosine kinase</td>
<td>5.85</td>
<td>chr19</td>
</tr>
<tr>
<td>MATR3</td>
<td>Matrix 3</td>
<td>5.48</td>
<td>chr5</td>
</tr>
<tr>
<td>MB2D</td>
<td>methyl-CpG binding domain protein 2</td>
<td>60.46</td>
<td>chr18</td>
</tr>
<tr>
<td>MB3D</td>
<td>methyl-CpG binding domain protein 3</td>
<td>2.07</td>
<td>chr19</td>
</tr>
<tr>
<td>MB4D</td>
<td>methyl-CpG binding domain protein 4</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>MBP</td>
<td>myelin basic protein</td>
<td>2.20</td>
<td>chr18</td>
</tr>
<tr>
<td>MBTD1</td>
<td>Mbt domain containing 1</td>
<td>7.51</td>
<td>chr17</td>
</tr>
<tr>
<td>MCCC1</td>
<td>methylcrotonyl-Coenzyme A carboxylase 1 (alpha)</td>
<td>2.07</td>
<td>chr3</td>
</tr>
<tr>
<td>MCCC2</td>
<td>methylcrotonyl-Coenzyme A carboxylase 2 (beta)</td>
<td>3.32</td>
<td>chr5</td>
</tr>
<tr>
<td>MCM10</td>
<td>MCM10 minichromosome maintenance deficient 10 (S. cerevisiae)</td>
<td>13.39</td>
<td>chr10</td>
</tr>
<tr>
<td>MCM2</td>
<td>MCM2 minichromosome maintenance deficient 2, mitolin (S. cerevisiae)</td>
<td>10.74</td>
<td>chr3</td>
</tr>
<tr>
<td>MCM3</td>
<td>MCM3 minichromosome maintenance deficient 3 (S. cerevisiae)</td>
<td>12.59</td>
<td>chr6</td>
</tr>
<tr>
<td>MCM5APAS</td>
<td>MCM5 minichromosome maintenance deficient 3 (S. cerevisiae) associated protein</td>
<td>2.12</td>
<td>chr21</td>
</tr>
<tr>
<td>MCM4</td>
<td>MCM4 minichromosome maintenance deficient 4 (S. cerevisiae)</td>
<td>12.12</td>
<td>chr8</td>
</tr>
<tr>
<td>MCM5</td>
<td>MCM5 minichromosome maintenance deficient 5, cell division cycle 46 (S. cerevisiae)</td>
<td>16.16</td>
<td>chr22</td>
</tr>
<tr>
<td>MCM6</td>
<td>MCM6 minichromosome maintenance deficient 6 (MIS homolog, S. pombe) (S. cerevisiae)</td>
<td>6.30</td>
<td>chr2</td>
</tr>
<tr>
<td>MCM7</td>
<td>MCM7 minichromosome maintenance deficient 7 (S. cerevisiae)</td>
<td>10.45</td>
<td>chr7</td>
</tr>
<tr>
<td>MCM8</td>
<td>MCM8 minichromosome maintenance deficient 8 (S. cerevisiae)</td>
<td>5.60</td>
<td>chr20</td>
</tr>
<tr>
<td>MCOLN3</td>
<td>mucolipin 3</td>
<td>3.86</td>
<td>chr1</td>
</tr>
<tr>
<td>MCPH1</td>
<td>Microcephaly, primary/autosomal recessive 1</td>
<td>2.07</td>
<td>chr8</td>
</tr>
<tr>
<td>MDC1</td>
<td>mediator of DNA damage checkpoint 1</td>
<td>3.50</td>
<td>chr6</td>
</tr>
<tr>
<td>MDH1</td>
<td>malate dehydrogenase 1, NAD (soluble)</td>
<td>2.18</td>
<td>chr2</td>
</tr>
<tr>
<td>MDK</td>
<td>midline (neurite growth-promoting factor 2)</td>
<td>2.44</td>
<td>chr11</td>
</tr>
<tr>
<td>MDM4</td>
<td>Mdm4, transformed 3T3 cell double minute 4, p53 binding protein (mouse)</td>
<td>2.37</td>
<td>chr1</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in iPSC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDN1</td>
<td>MDN1, midasin homolog (yeast)</td>
<td>11.08</td>
<td>chr6</td>
</tr>
<tr>
<td>ME2</td>
<td>Malic enzyme 2, NAD(+)-dependent, mitochondrial</td>
<td>2.50</td>
<td>chr8</td>
</tr>
<tr>
<td>MEA1</td>
<td>Male-enhanced antigen 1</td>
<td>2.12</td>
<td>chr6</td>
</tr>
<tr>
<td>MED25</td>
<td>Mediator of RNA polymerase II transcription, subunit 25 homolog (yeast)</td>
<td>3.15</td>
<td>chr9</td>
</tr>
<tr>
<td>MED28</td>
<td>Mediator of RNA polymerase II transcription, subunit 28 homolog (yeast)</td>
<td>5.34</td>
<td>chr1</td>
</tr>
<tr>
<td>MED4</td>
<td>Mediator of RNA polymerase II transcription, subunit 4 homolog (yeast)</td>
<td>2.07</td>
<td>chr13</td>
</tr>
<tr>
<td>ME6</td>
<td>Mediator of RNA polymerase II transcription, subunit 6 homolog (yeast)</td>
<td>2.26</td>
<td>chr14</td>
</tr>
<tr>
<td>MED9</td>
<td>Mediator of RNA polymerase II transcription, subunit 9 homolog (yeast)</td>
<td>2.04</td>
<td>chr17</td>
</tr>
<tr>
<td>MEF2A</td>
<td>MADS box transcription factor 2, polyepitope A (myocyte enhancer factor 2A)</td>
<td>2.97</td>
<td>chr2</td>
</tr>
<tr>
<td>MEGF10</td>
<td>MEGF10 protein</td>
<td>68.97</td>
<td>chr5</td>
</tr>
<tr>
<td>MELK</td>
<td>Maternal embryonic leucine zipper kinase</td>
<td>3.45</td>
<td>chr9</td>
</tr>
<tr>
<td>MERTK</td>
<td>c-mer proto-oncogene tyrosine kinase</td>
<td>2.50</td>
<td>chr2</td>
</tr>
<tr>
<td>METAP1</td>
<td>Methionyl aminopeptidase 1</td>
<td>2.02</td>
<td>chr4</td>
</tr>
<tr>
<td>METP2</td>
<td>Methionyl aminopeptidase 2</td>
<td>3.16</td>
<td>chr12</td>
</tr>
<tr>
<td>METTL3</td>
<td>Methyltransferase like 3</td>
<td>3.97</td>
<td>chr14</td>
</tr>
<tr>
<td>MFHAS1</td>
<td>Malignant fibrosarcoma amplified sequence 1</td>
<td>11.20</td>
<td>chr8</td>
</tr>
<tr>
<td>MFSD3</td>
<td>Major facilitator superfamily domain containing 3</td>
<td>5.53</td>
<td>chr8</td>
</tr>
<tr>
<td>MGA</td>
<td>MAX gene associated</td>
<td>2.97</td>
<td>chr15</td>
</tr>
<tr>
<td>MGAT4A</td>
<td>Mannosyl(alpha-1,3)-glycoprotein beta-1,4-N-acetylgalcosaminyltransferase, isoform OS</td>
<td>2.70</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC1091</td>
<td>Hypothetical protein MGC1091</td>
<td>2.70</td>
<td>chr7</td>
</tr>
<tr>
<td>MGC1093</td>
<td>Hypothetical protein MGC1093</td>
<td>6.41</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC1126</td>
<td>Hypothetical protein MGC1126</td>
<td>3.66</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC13017</td>
<td>Similar to RIKEN cDNA A430101806 gene</td>
<td>2.13</td>
<td>chr5</td>
</tr>
<tr>
<td>MGC13096</td>
<td>Hypothetical protein MGC13096</td>
<td>9.22</td>
<td>chr9</td>
</tr>
<tr>
<td>MGC13125</td>
<td>Hypothetical protein MGC13125</td>
<td>4.20</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC13170</td>
<td>Multidrug resistance-related protein /// Multidrug resistance-related protein</td>
<td>3.54</td>
<td>chr9</td>
</tr>
<tr>
<td>MGC13183</td>
<td>Hypothetical protein MGC13183</td>
<td>4.96</td>
<td>chr12</td>
</tr>
<tr>
<td>MGC13204</td>
<td>Hypothetical protein MGC13204</td>
<td>5.93</td>
<td>chr12</td>
</tr>
<tr>
<td>MGC13379</td>
<td>Hypothetical protein MGC13379</td>
<td>2.66</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC14798</td>
<td>Similar to RIKEN cDNA 5730421E18 gene</td>
<td>7.49</td>
<td>chr15</td>
</tr>
<tr>
<td>MGC15416</td>
<td>Hypothetical protein MGC15416</td>
<td>4.62</td>
<td>chr16</td>
</tr>
<tr>
<td>MGC15634</td>
<td>Hypothetical protein MGC15634</td>
<td>10.55</td>
<td>chr1</td>
</tr>
<tr>
<td>MGC15763</td>
<td>Hypothetical protein BC008322</td>
<td>2.62</td>
<td>chr3</td>
</tr>
<tr>
<td>MGC16207</td>
<td>Hypothetical protein MGC16207</td>
<td>2.09</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC16824</td>
<td>Esophageal cancer associated protein</td>
<td>4.86</td>
<td>chr16</td>
</tr>
<tr>
<td>MGC16943</td>
<td>Similar to RIKEN cDNA 4933424N09 gene</td>
<td>2.14</td>
<td>chr16</td>
</tr>
<tr>
<td>MGC17299</td>
<td>Hypothetical protein MGC17299</td>
<td>11.61</td>
<td>chr1</td>
</tr>
<tr>
<td>MGC20255</td>
<td>Hypothetical protein MGC20255</td>
<td>2.21</td>
<td>chr19</td>
</tr>
<tr>
<td>MGC21881</td>
<td>Hypothetical protein MGC21881</td>
<td>7.42</td>
<td>chr9</td>
</tr>
<tr>
<td>MGC21881</td>
<td>Hypothetical protein MGC21881 /// Hypothetical LOC401510</td>
<td>4.93</td>
<td>chr9</td>
</tr>
<tr>
<td>MGC22014</td>
<td>Hypothetical protein MGC22014</td>
<td>2.12</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC22265</td>
<td>(clone CB1) mRNA fragment /// Hypothetical protein MGC22265</td>
<td>9.90</td>
<td>chr5</td>
</tr>
<tr>
<td>MGC22793</td>
<td>Hypothetical protein MGC22793</td>
<td>3.17</td>
<td>chr7</td>
</tr>
<tr>
<td>MGC23280</td>
<td>Hypothetical protein MGC23280</td>
<td>8.07</td>
<td>chr17</td>
</tr>
<tr>
<td>MGC2408</td>
<td>Hypothetical protein MGC2408</td>
<td>2.60</td>
<td>chr3</td>
</tr>
<tr>
<td>MGC24103</td>
<td>Hypothetical protein MGC24103</td>
<td>3.67</td>
<td>chr9</td>
</tr>
<tr>
<td>MGC24665</td>
<td>Hypothetical protein MGC24665</td>
<td>22.02</td>
<td>chr16</td>
</tr>
<tr>
<td>MGC2477</td>
<td>Hypothetical protein MGC2477</td>
<td>3.34</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC2574</td>
<td>Hypothetical protein MGC2574</td>
<td>3.08</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC27345</td>
<td>Hypothetical protein MGC27345</td>
<td>2.25</td>
<td>chr7</td>
</tr>
<tr>
<td>MGC3040</td>
<td>Hypothetical protein MGC3040</td>
<td>5.04</td>
<td>chr3</td>
</tr>
<tr>
<td>MGC3196</td>
<td>Hypothetical protein MGC3196</td>
<td>4.01</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC3214</td>
<td>Hypothetical protein MGC3214</td>
<td>2.14</td>
<td>chr5</td>
</tr>
<tr>
<td>MGC3299</td>
<td>Hypothetical protein MGC3299</td>
<td>3.75</td>
<td>chr17</td>
</tr>
<tr>
<td>MGC3584</td>
<td>Hypothetical protein MGC3584</td>
<td>4.88</td>
<td>chr7</td>
</tr>
<tr>
<td>MGC36326</td>
<td>Hypothetical protein MGC36326</td>
<td>3.41</td>
<td>chr9</td>
</tr>
<tr>
<td>MGC3731</td>
<td>Hypothetical protein MGC3731</td>
<td>3.31</td>
<td>chr22</td>
</tr>
<tr>
<td>MGC39606</td>
<td>Hypothetical protein MGC39606</td>
<td>4.51</td>
<td>chrX</td>
</tr>
<tr>
<td>MGC40107</td>
<td>Hypothetical protein MGC40107</td>
<td>2.43</td>
<td>chr17</td>
</tr>
<tr>
<td>MGC40168</td>
<td>Hypothetical protein MGC40168</td>
<td>2.80</td>
<td>chr1</td>
</tr>
<tr>
<td>MGC40397</td>
<td>Hypothetical protein MGC40397</td>
<td>3.46</td>
<td>chr12</td>
</tr>
<tr>
<td>MGC40405</td>
<td>Hypothetical protein MGC40405 /// Similar to RIKEN cDNA 5830415L20</td>
<td>2.57</td>
<td>chr5</td>
</tr>
<tr>
<td>MGC4172</td>
<td>Short-chain dehydrogenase/reductase</td>
<td>6.97</td>
<td>chr17</td>
</tr>
<tr>
<td>MGC4308</td>
<td>Hypothetical protein MGC4308 /// Hypothetical protein MGC4308</td>
<td>4.63</td>
<td>chr3</td>
</tr>
<tr>
<td>MGC4399</td>
<td>Mitochondrial carrier protein</td>
<td>2.95</td>
<td>chr1</td>
</tr>
<tr>
<td>MGC4562</td>
<td>Hypothetical protein MGC4562</td>
<td>3.53</td>
<td>chr15</td>
</tr>
<tr>
<td>MGC45866</td>
<td>Leucine-rich repeat kinase 1</td>
<td>7.82</td>
<td>chr15</td>
</tr>
<tr>
<td>Gene No.</td>
<td>Symbol</td>
<td>Description</td>
<td>Fold Change</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MGC4825</td>
<td>79135</td>
<td>hypothetical protein MGC4825</td>
<td>3.02</td>
</tr>
<tr>
<td>MGC50372</td>
<td>253143</td>
<td>hypothetical protein MGC50372</td>
<td>3.80</td>
</tr>
<tr>
<td>MGC5139</td>
<td>84747</td>
<td>hypothetical protein MGC5139</td>
<td>2.23</td>
</tr>
<tr>
<td>MGC52000</td>
<td>375260</td>
<td>CXorf1-related protein</td>
<td>2.04</td>
</tr>
<tr>
<td>MGC5352</td>
<td>192111</td>
<td>Bcl-XL-binding protein v68</td>
<td>2.32</td>
</tr>
<tr>
<td>MGC57346</td>
<td>401884</td>
<td>hypothetical LOC401884</td>
<td>4.47</td>
</tr>
<tr>
<td>MGC61598</td>
<td>441478</td>
<td>Similar to ankyrin-repeat protein Narp</td>
<td>19.06</td>
</tr>
<tr>
<td>MGC72075</td>
<td>340277</td>
<td>hypothetical protein MGC72075</td>
<td>8.77</td>
</tr>
<tr>
<td>MGC90512</td>
<td>121642</td>
<td>similar to hypothetical protein 935302G02</td>
<td>2.93</td>
</tr>
<tr>
<td>MGC90133</td>
<td>386759</td>
<td>hypothetical protein MGC90133</td>
<td>2.39</td>
</tr>
<tr>
<td>MGEA5</td>
<td>10724</td>
<td>meningioma expressed antigen 5 (hyaluronidase)</td>
<td>2.18</td>
</tr>
<tr>
<td>MGST1</td>
<td>4257</td>
<td>microsomal glutathione S-transferase 1</td>
<td>5.00</td>
</tr>
<tr>
<td>MID1P1</td>
<td>58526</td>
<td>MID1 interacting protein 1 (gastrulation specific G12-like (zebrafish))</td>
<td>2.55</td>
</tr>
<tr>
<td>MIDN</td>
<td>90007</td>
<td>midolin</td>
<td>2.07</td>
</tr>
<tr>
<td>MIPFP</td>
<td>4265</td>
<td>mitochondrial intermediate peptidase</td>
<td>2.19</td>
</tr>
<tr>
<td>MITF</td>
<td>25988</td>
<td>MB2 (met) (Gp binding protein)-interacting zinc finger protein</td>
<td>2.37</td>
</tr>
<tr>
<td>MKI67</td>
<td>4288</td>
<td>antigen identified by monoclonal antibody Ki-67</td>
<td>5.75</td>
</tr>
<tr>
<td>MKI67P</td>
<td>84035</td>
<td>MKI67 (FHA domain) interacting nuclear phosphoprotein</td>
<td>2.67</td>
</tr>
<tr>
<td>MKKS</td>
<td>8195</td>
<td>McKusick-Kaufman syndrome</td>
<td>2.48</td>
</tr>
<tr>
<td>MKLN1</td>
<td>4289</td>
<td>musclein 1, intracellular mediator containing kelch motifs</td>
<td>2.18</td>
</tr>
<tr>
<td>MKN2</td>
<td>2872</td>
<td>MAP kinase interacting serine/threonine kinase 2</td>
<td>2.09</td>
</tr>
<tr>
<td>MLC1S6</td>
<td>140465</td>
<td>myosin light chain 1 slow a</td>
<td>2.63</td>
</tr>
<tr>
<td>MLL1F1P</td>
<td>79682</td>
<td>MLF1 interacting protein</td>
<td>13.67</td>
</tr>
<tr>
<td>MLH1</td>
<td>4292</td>
<td>mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli)</td>
<td>2.05</td>
</tr>
<tr>
<td>MLL2</td>
<td>8085</td>
<td>myeloid/lymphoid or mixed-lineage leukemia 2</td>
<td>2.05</td>
</tr>
<tr>
<td>MLL3</td>
<td>58508</td>
<td>myeloid/lymphoid or mixed-lineage leukemia 3</td>
<td>2.37</td>
</tr>
<tr>
<td>MLL5</td>
<td>55904</td>
<td>myeloid/lymphoid or mixed-lineage leukemia 5 (trithorax homolog, Drosophila)</td>
<td>3.62</td>
</tr>
<tr>
<td>MLL7</td>
<td>8038</td>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); trisomy 12</td>
<td>3.11</td>
</tr>
<tr>
<td>MLL7T4</td>
<td>4301</td>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); trisomy 12</td>
<td>4.34</td>
</tr>
<tr>
<td>MMD</td>
<td>23531</td>
<td>monocyte to macrophage differentiation-associated</td>
<td>4.38</td>
</tr>
<tr>
<td>MMRP19</td>
<td>51074</td>
<td>likely ortholog of mouse monocyte macrophage 19</td>
<td>2.09</td>
</tr>
<tr>
<td>MMS19L1</td>
<td>64210</td>
<td>MMS19-like (MET18 homolog, S. cerevisiae)</td>
<td>2.34</td>
</tr>
<tr>
<td>MNB</td>
<td>54542</td>
<td>membrane associated DNA binding protein</td>
<td>2.82</td>
</tr>
<tr>
<td>MNS1</td>
<td>55329</td>
<td>meiosis-specific nuclear structural 1</td>
<td>3.74</td>
</tr>
<tr>
<td>MOKK1L2B</td>
<td>79817</td>
<td>MOB1, Mps One Binder kinase activator-like 2B (yeast)</td>
<td>17.80</td>
</tr>
<tr>
<td>MOSC1</td>
<td>64757</td>
<td>MOCS sulphurase C-terminal domain containing 1</td>
<td>16.57</td>
</tr>
<tr>
<td>MPDU1</td>
<td>9526</td>
<td>mammalian-P-dolchol utilization defect 1</td>
<td>2.08</td>
</tr>
<tr>
<td>MPDZ</td>
<td>8777</td>
<td>multiple PDZ domain protein</td>
<td>2.30</td>
</tr>
<tr>
<td>MPHOSPH1</td>
<td>9585</td>
<td>M-phase phosphoprotein 1</td>
<td>4.74</td>
</tr>
<tr>
<td>MPHOSPH6</td>
<td>10200</td>
<td>M-phase phosphoprotein 6</td>
<td>2.52</td>
</tr>
<tr>
<td>MPHOSPH9</td>
<td>10198</td>
<td>M-phase phosphoprotein 9</td>
<td>2.97</td>
</tr>
<tr>
<td>MP6</td>
<td>51678</td>
<td>membrane protein, palmiaylated 6 (MAGUK p55 subfamily member 6)</td>
<td>6.18</td>
</tr>
<tr>
<td>MPPE1</td>
<td>65258</td>
<td>metallophosphoesterase 1</td>
<td>14.58</td>
</tr>
<tr>
<td>MPPED2</td>
<td>744</td>
<td>metallophosphoesterase domain containing 2</td>
<td>7.34</td>
</tr>
<tr>
<td>MREE1A</td>
<td>4361</td>
<td>MRE11 meiotic recombination 11 homolog A (S. cerevisiae)</td>
<td>3.99</td>
</tr>
<tr>
<td>MRP6</td>
<td>78988</td>
<td>mitochondrial ribosomal protein 63</td>
<td>2.33</td>
</tr>
<tr>
<td>MRP10</td>
<td>124996</td>
<td>mitochondrial ribosomal protein L10</td>
<td>2.65</td>
</tr>
<tr>
<td>MRP11</td>
<td>65003</td>
<td>mitochondrial ribosomal protein L11</td>
<td>3.59</td>
</tr>
<tr>
<td>MRP12</td>
<td>6182</td>
<td>mitochondrial ribosomal protein L12</td>
<td>2.44</td>
</tr>
<tr>
<td>MRP13</td>
<td>28998</td>
<td>mitochondrial ribosomal protein L13</td>
<td>2.37</td>
</tr>
<tr>
<td>MRP14</td>
<td>64928</td>
<td>mitochondrial ribosomal protein L14</td>
<td>2.09</td>
</tr>
<tr>
<td>MRP15</td>
<td>29088</td>
<td>mitochondrial ribosomal protein L15</td>
<td>3.00</td>
</tr>
<tr>
<td>MRP16</td>
<td>54948</td>
<td>mitochondrial ribosomal protein L16</td>
<td>4.43</td>
</tr>
<tr>
<td>MRP2</td>
<td>51069</td>
<td>mitochondrial ribosomal protein L2</td>
<td>2.12</td>
</tr>
<tr>
<td>MRP21</td>
<td>219927</td>
<td>mitochondrial ribosomal protein L21</td>
<td>3.67</td>
</tr>
<tr>
<td>MRP22</td>
<td>29093</td>
<td>mitochondrial ribosomal protein L22</td>
<td>2.44</td>
</tr>
<tr>
<td>MRP27</td>
<td>51264</td>
<td>mitochondrial ribosomal protein L27 // mitochondrial ribosomal protein L27</td>
<td>2.09</td>
</tr>
<tr>
<td>MRP30</td>
<td>51263</td>
<td>mitochondrial ribosomal protein L30</td>
<td>2.16</td>
</tr>
<tr>
<td>MRP32</td>
<td>64983</td>
<td>mitochondrial ribosomal protein L32</td>
<td>3.38</td>
</tr>
<tr>
<td>MRP34</td>
<td>64981</td>
<td>mitochondrial ribosomal protein L34 // mitochondrial ribosomal protein L34</td>
<td>2.57</td>
</tr>
<tr>
<td>MRP35</td>
<td>51318</td>
<td>mitochondrial ribosomal protein L35</td>
<td>2.30</td>
</tr>
<tr>
<td>MRP39</td>
<td>54148</td>
<td>mitochondrial ribosomal protein L39</td>
<td>2.88</td>
</tr>
<tr>
<td>MRP4</td>
<td>51073</td>
<td>mitochondrial ribosomal protein L4</td>
<td>2.26</td>
</tr>
<tr>
<td>MRP42</td>
<td>28977</td>
<td>mitochondrial ribosomal protein L42</td>
<td>2.75</td>
</tr>
<tr>
<td>MRP44</td>
<td>65080</td>
<td>mitochondrial ribosomal protein L44</td>
<td>3.25</td>
</tr>
<tr>
<td>MRP45</td>
<td>84311</td>
<td>mitochondrial ribosomal protein L45 // mitochondrial ribosomal protein L45</td>
<td>3.11</td>
</tr>
<tr>
<td>MRP46</td>
<td>26589</td>
<td>mitochondrial ribosomal protein L46</td>
<td>2.50</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; p < 0.05)

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRPL47</td>
<td>57129</td>
<td>mitochondrial ribosomal protein 47</td>
<td>2.58</td>
<td>chr3</td>
</tr>
<tr>
<td>MRPL50</td>
<td>54534</td>
<td>mitochondrial ribosomal protein 50</td>
<td>2.86</td>
<td>chr9</td>
</tr>
<tr>
<td>MRPL51</td>
<td>51258</td>
<td>mitochondrial ribosomal protein 51</td>
<td>2.20</td>
<td>chr12</td>
</tr>
<tr>
<td>MRPS12</td>
<td>6183</td>
<td>mitochondrial ribosomal protein 12</td>
<td>3.50</td>
<td>chr19</td>
</tr>
<tr>
<td>MRPS17</td>
<td>51373</td>
<td>mitochondrial ribosomal protein 17</td>
<td>2.53</td>
<td>chr7</td>
</tr>
<tr>
<td>MRPS18A</td>
<td>55168</td>
<td>mitochondrial ribosomal protein 18A</td>
<td>2.69</td>
<td>chr6</td>
</tr>
<tr>
<td>MRPS18B</td>
<td>28973</td>
<td>mitochondrial ribosomal protein 18B</td>
<td>3.26</td>
<td>chr6</td>
</tr>
<tr>
<td>MRPS2</td>
<td>51116</td>
<td>mitochondrial ribosomal protein 2</td>
<td>3.60</td>
<td>chr9</td>
</tr>
<tr>
<td>MRPS23</td>
<td>51649</td>
<td>mitochondrial ribosomal protein 23</td>
<td>2.28</td>
<td>chr17</td>
</tr>
<tr>
<td>MRPS25</td>
<td>64432</td>
<td>mitochondrial ribosomal protein 25</td>
<td>2.83</td>
<td>chr3</td>
</tr>
<tr>
<td>MRPS26</td>
<td>64949</td>
<td>mitochondrial ribosomal protein 26</td>
<td>4.84</td>
<td>chr20</td>
</tr>
<tr>
<td>MRPS27</td>
<td>23107</td>
<td>mitochondrial ribosomal protein 27</td>
<td>2.61</td>
<td>chr5</td>
</tr>
<tr>
<td>MRPS28</td>
<td>28957</td>
<td>mitochondrial ribosomal protein 28</td>
<td>3.85</td>
<td>chr8</td>
</tr>
<tr>
<td>MRPS30</td>
<td>10884</td>
<td>mitochondrial ribosomal protein 30</td>
<td>3.61</td>
<td>chr5</td>
</tr>
<tr>
<td>MRPS31</td>
<td>10240</td>
<td>mitochondrial ribosomal protein 31</td>
<td>3.38</td>
<td>chr13</td>
</tr>
<tr>
<td>MRPS34</td>
<td>65993</td>
<td>mitochondrial ribosomal protein 34</td>
<td>4.96</td>
<td>chr16</td>
</tr>
<tr>
<td>MRPS6</td>
<td>64968</td>
<td>mitochondrial ribosomal protein 6</td>
<td>4.16</td>
<td>chr21</td>
</tr>
<tr>
<td>MRPS7</td>
<td>51081</td>
<td>mitochondrial ribosomal protein 7</td>
<td>2.45</td>
<td>chr17</td>
</tr>
<tr>
<td>MRPS9</td>
<td>64965</td>
<td>mitochondrial ribosomal protein 9</td>
<td>5.66</td>
<td>chr2</td>
</tr>
<tr>
<td>MRS2L</td>
<td>57380</td>
<td>MRS2-like, magnesium homeostasis factor (S. cerevisiae)</td>
<td>8.79</td>
<td>chr6</td>
</tr>
<tr>
<td>MS2H1</td>
<td>4436</td>
<td>mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)</td>
<td>19.28</td>
<td>chr2</td>
</tr>
<tr>
<td>MS2H5</td>
<td>4439</td>
<td>mutS homolog 5 (E. coli)</td>
<td>2.25</td>
<td>chr6</td>
</tr>
<tr>
<td>MS2H6</td>
<td>2956</td>
<td>mutS homolog 6 (E. coli)</td>
<td>5.15</td>
<td>chr2</td>
</tr>
<tr>
<td>MSTP9</td>
<td>11223</td>
<td>macrophage stimulating, pseudogene 9</td>
<td>2.13</td>
<td>chr1</td>
</tr>
<tr>
<td>MTA1</td>
<td>9112</td>
<td>metastasis associated 1</td>
<td>2.49</td>
<td>chr14</td>
</tr>
<tr>
<td>MTA3</td>
<td>57504</td>
<td>metastasis associated 1 family, member 3</td>
<td>8.95</td>
<td>chr2</td>
</tr>
<tr>
<td>MTA2CD1</td>
<td>123036</td>
<td>membrane targeting (tandem) C2 domain containing 1</td>
<td>7.55</td>
<td>chr14</td>
</tr>
<tr>
<td>MTC2H2</td>
<td>23788</td>
<td>mitochondrial carrier homolog 2 (C. elegans)</td>
<td>2.86</td>
<td>chr11</td>
</tr>
<tr>
<td>MTERF1</td>
<td>51001</td>
<td>MTERF domain containing 1</td>
<td>3.13</td>
<td>chr8</td>
</tr>
<tr>
<td>MTERF2</td>
<td>130916</td>
<td>MTERF domain containing 2</td>
<td>3.08</td>
<td>chr2</td>
</tr>
<tr>
<td>MTF2</td>
<td>22823</td>
<td>Metal response element binding transcription factor 2</td>
<td>12.75</td>
<td>chr1</td>
</tr>
<tr>
<td>MTHFD1</td>
<td>4522</td>
<td>methylerythritol 4,5-diphosphate dehydratase (NADP+-dependent)</td>
<td>4.04</td>
<td>chr14</td>
</tr>
<tr>
<td>MTHFS</td>
<td>10588</td>
<td>5,10-methylenetetrahydrofolate synthetase (5-formyltetrahydrofolate cyclo-ligase)</td>
<td>2.30</td>
<td>chr15</td>
</tr>
<tr>
<td>MTIF2</td>
<td>4528</td>
<td>mitochondrial translational initiation factor 2</td>
<td>2.55</td>
<td>chr2</td>
</tr>
<tr>
<td>MTIL5</td>
<td>9633</td>
<td>Metallothionein-like 5, testis-specific (lesmin)</td>
<td>2.09</td>
<td>chr11</td>
</tr>
<tr>
<td>MTRM12</td>
<td>54545</td>
<td>myotubulin related protein 12</td>
<td>2.61</td>
<td>chr5</td>
</tr>
<tr>
<td>MTMR9</td>
<td>66036</td>
<td>myotubulin related protein 9</td>
<td>2.16</td>
<td>chr8</td>
</tr>
<tr>
<td>MTP19</td>
<td>51537</td>
<td>mitochondrial protein 18 kDa</td>
<td>8.93</td>
<td>chr22</td>
</tr>
<tr>
<td>MTRF1</td>
<td>9617</td>
<td>mitochondrial translational release factor 1</td>
<td>3.66</td>
<td>chr13</td>
</tr>
<tr>
<td>MTSS1</td>
<td>9788</td>
<td>metastasis suppressor 1</td>
<td>3.63</td>
<td>chr8</td>
</tr>
<tr>
<td>MX2</td>
<td>10651</td>
<td>metacin 2</td>
<td>2.73</td>
<td>chr2</td>
</tr>
<tr>
<td>MX3</td>
<td>345778</td>
<td>metacin 3</td>
<td>2.34</td>
<td>chr5</td>
</tr>
<tr>
<td>MUM1</td>
<td>84939</td>
<td>Melanoma associated antigen (mutated) 1</td>
<td>4.63</td>
<td>chr19</td>
</tr>
<tr>
<td>MUTYH</td>
<td>4595</td>
<td>mutY homolog (E. coli)</td>
<td>9.11</td>
<td>chr1</td>
</tr>
<tr>
<td>MYB</td>
<td>4602</td>
<td>v-myc myeloblastosis viral oncogene homolog (avian)</td>
<td>8.56</td>
<td>chr6</td>
</tr>
<tr>
<td>MYBL2</td>
<td>4605</td>
<td>v-myc myeloblastosis viral oncogene homolog (avian)-like 2</td>
<td>13.60</td>
<td>chr20</td>
</tr>
<tr>
<td>MYCBP</td>
<td>26292</td>
<td>c-myc binding protein</td>
<td>2.40</td>
<td>chr16</td>
</tr>
<tr>
<td>MYCL1</td>
<td>4610</td>
<td>v-myc myeloblastosis viral oncogene homolog 1, lung carcinoma derived (avian)</td>
<td>3.75</td>
<td>chr1</td>
</tr>
<tr>
<td>MYCN</td>
<td>4613</td>
<td>v-myc myeloblastosis viral related oncogene, neuroblastoma derived (avian)</td>
<td>52.98</td>
<td>chr2</td>
</tr>
<tr>
<td>MYEF2</td>
<td>50804</td>
<td>myelin expression factor 2</td>
<td>3.20</td>
<td>chr15</td>
</tr>
<tr>
<td>MYLIP</td>
<td>29116</td>
<td>myosin regulatory light chain interacting protein</td>
<td>5.48</td>
<td>chr6</td>
</tr>
<tr>
<td>MYO10</td>
<td>4651</td>
<td>myosin X</td>
<td>2.16</td>
<td>chr5</td>
</tr>
<tr>
<td>MYO1B</td>
<td>4645</td>
<td>myosin VB</td>
<td>7.83</td>
<td>chr18</td>
</tr>
<tr>
<td>MYO5B</td>
<td>55930</td>
<td>myosin VC</td>
<td>29.17</td>
<td>chr15</td>
</tr>
<tr>
<td>MYOD1</td>
<td>80179</td>
<td>myosin head domain containing 1</td>
<td>3.08</td>
<td>chr17</td>
</tr>
<tr>
<td>MYOZ3</td>
<td>91977</td>
<td>myozin 3</td>
<td>2.88</td>
<td>chr5</td>
</tr>
<tr>
<td>MYSM1</td>
<td>114803</td>
<td>myb-like, SWIRM and MPN domains 1</td>
<td>2.47</td>
<td>chr1</td>
</tr>
<tr>
<td>MYST2</td>
<td>11143</td>
<td>MYST histone acetyltransferase 2</td>
<td>8.92</td>
<td>chr17</td>
</tr>
<tr>
<td>MYST4</td>
<td>23522</td>
<td>MYST histone acetyltransferase (monocytic leukemia) 4</td>
<td>3.88</td>
<td>chr10</td>
</tr>
<tr>
<td>NAB2</td>
<td>55728</td>
<td>Nedd4 binding protein 2</td>
<td>2.98</td>
<td>chr4</td>
</tr>
<tr>
<td>NAAAL2D</td>
<td>10003</td>
<td>N-acetylated alpha-linked acidic dipeptidase</td>
<td>2.87</td>
<td>chr11</td>
</tr>
<tr>
<td>NACA</td>
<td>4666//83955</td>
<td>nascent-polypeptide-associated complex alpha polypeptide // nascent-polypeptide</td>
<td>2.08</td>
<td>chr12</td>
</tr>
<tr>
<td>NAG6</td>
<td>64753</td>
<td>hypothetical protein DKFZp434G156</td>
<td>3.25</td>
<td>chr7</td>
</tr>
<tr>
<td>NALP12</td>
<td>91662</td>
<td>NACH, leucine rich repeat and PYD containing 12</td>
<td>2.63</td>
<td>chr12</td>
</tr>
<tr>
<td>NALP2</td>
<td>55655</td>
<td>NACH, leucine rich repeat and PYD containing 2</td>
<td>30.94</td>
<td>chr19</td>
</tr>
<tr>
<td>NACOG</td>
<td>79923</td>
<td>Nanog homeobox</td>
<td>300.80</td>
<td>chr12</td>
</tr>
<tr>
<td>NANO5</td>
<td>340719</td>
<td>nanos homolog 1 (Drosophila)</td>
<td>2.08</td>
<td>chr10</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \)).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Entrez ID</th>
<th>Description</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAP1L1</td>
<td>4673</td>
<td>Nucleosome assembly protein 1-like 1</td>
<td>chr12</td>
</tr>
<tr>
<td>NAP1L2</td>
<td>4674</td>
<td>Nucleosome assembly protein 1-like 2</td>
<td>chrX</td>
</tr>
<tr>
<td>NAP1L3</td>
<td>4675</td>
<td>Nucleosome assembly protein 1-like 3</td>
<td>chrX</td>
</tr>
<tr>
<td>NAPRT1</td>
<td>93100</td>
<td>Nicotinate phosphoribosyltransferase domain containing 1</td>
<td>chr8</td>
</tr>
<tr>
<td>NARF</td>
<td>26502</td>
<td>Nuclear prelamin A recognition factor</td>
<td>chr17</td>
</tr>
<tr>
<td>NARG1</td>
<td>80155</td>
<td>NM23A receptor regulated 1</td>
<td>chr4</td>
</tr>
<tr>
<td>NARG2</td>
<td>79612</td>
<td>NM23A receptor regulated 1-like</td>
<td>chr13</td>
</tr>
<tr>
<td>NARS</td>
<td>4678</td>
<td>Nuclear autoantigenic sperm protein (histone-binding)</td>
<td>chr1</td>
</tr>
<tr>
<td>NBEA</td>
<td>26960</td>
<td>Neurobeachin</td>
<td>chr13</td>
</tr>
<tr>
<td>NBEAL1</td>
<td>23218</td>
<td>Neurobeachin-like 2</td>
<td>chr3</td>
</tr>
<tr>
<td>NBla04196</td>
<td>64921</td>
<td>Putative protein product of Nbla04196</td>
<td>chr7</td>
</tr>
<tr>
<td>NCBP1</td>
<td>4686</td>
<td>Nuclear cap binding protein subunit 1, 80kDa</td>
<td>chr9</td>
</tr>
<tr>
<td>NCL</td>
<td>4691</td>
<td>Nucleolin</td>
<td>chr2</td>
</tr>
<tr>
<td>NCOA5</td>
<td>57727</td>
<td>Nuclear receptor coactivator 5</td>
<td>chr20</td>
</tr>
<tr>
<td>NCOA6IP</td>
<td>96764</td>
<td>Nuclear receptor coactivator 6 interacting protein</td>
<td>chr8</td>
</tr>
<tr>
<td>NCRM3</td>
<td>196475</td>
<td>Non-coding RNA in rabdomyosarcoma (RMS)</td>
<td>chr12</td>
</tr>
<tr>
<td>NDRG2</td>
<td>57447</td>
<td>NDRG family member 2</td>
<td>chr14</td>
</tr>
<tr>
<td>NDUFAT1</td>
<td>51079</td>
<td>NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 13</td>
<td>chr9</td>
</tr>
<tr>
<td>NDUFATB1</td>
<td>4706</td>
<td>NADH dehydrogenase (ubiquinone) 1 alpha beta subcomplex, 1, 8kDa</td>
<td>chr16</td>
</tr>
<tr>
<td>NDUFATB10</td>
<td>4716</td>
<td>NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa</td>
<td>chr16</td>
</tr>
<tr>
<td>NDUFATB9</td>
<td>4715</td>
<td>NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa</td>
<td>chr8</td>
</tr>
<tr>
<td>NDUFAT3</td>
<td>4722</td>
<td>NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q)</td>
<td>chr11</td>
</tr>
<tr>
<td>NDUFAT6</td>
<td>4726</td>
<td>NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q)</td>
<td>chr5</td>
</tr>
<tr>
<td>NDUFAT7</td>
<td>4731</td>
<td>NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q)</td>
<td>chr19</td>
</tr>
<tr>
<td>NDUFAT2</td>
<td>4729</td>
<td>NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa</td>
<td>chr8</td>
</tr>
<tr>
<td>NCBP1</td>
<td>10529</td>
<td>Nebulette</td>
<td>chr10</td>
</tr>
<tr>
<td>NFR3</td>
<td>4741</td>
<td>Neurofilament 3 (150kDa medium)</td>
<td>chr8</td>
</tr>
<tr>
<td>NFR3L1</td>
<td>4747</td>
<td>Neurofilament, light polypeptide 68kDa</td>
<td>chr8</td>
</tr>
<tr>
<td>NFR3L2</td>
<td>55247</td>
<td>Nei endonuclease VIII-like 3 (E. coli)</td>
<td>chr4</td>
</tr>
<tr>
<td>NFRS</td>
<td>4751</td>
<td>NIMA (never in mitosis gene a)-related kinase 2</td>
<td>chr14</td>
</tr>
<tr>
<td>NFRS</td>
<td>6787</td>
<td>NIMA (never in mitosis gene a)-related kinase 4</td>
<td>chr3</td>
</tr>
<tr>
<td>NFRS</td>
<td>284086</td>
<td>NIMA (never in mitosis gene a)-related kinase 8</td>
<td>chr17</td>
</tr>
<tr>
<td>NERL2</td>
<td>4753</td>
<td>NEL-like 2 (chicken) // NEL-like 2 (chicken)</td>
<td>chr12</td>
</tr>
<tr>
<td>NERL1</td>
<td>4756</td>
<td>Neogenin homolog 1 (chicken)</td>
<td>chr15</td>
</tr>
<tr>
<td>NERL1</td>
<td>91624</td>
<td>Melixin (F actin binding protein)</td>
<td>chr1</td>
</tr>
<tr>
<td>NERL1</td>
<td>84901</td>
<td>Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 interacting</td>
<td>chr16</td>
</tr>
<tr>
<td>NERL1</td>
<td>9063</td>
<td>Nuclear factor (erythroid-derived)-2-like 3</td>
<td>chr7</td>
</tr>
<tr>
<td>NERL1</td>
<td>4798</td>
<td>Nuclear factor related to kappab binding protein</td>
<td>chr11</td>
</tr>
<tr>
<td>NERL1</td>
<td>4799</td>
<td>Nuclear transcription factor, X-box binding 1</td>
<td>chr9</td>
</tr>
<tr>
<td>NERL1</td>
<td>152518</td>
<td>Nuclear transcription factor, X-box binding-like 1</td>
<td>chr4</td>
</tr>
<tr>
<td>NERL1</td>
<td>4801</td>
<td>Nuclear transcription factor, Y beta</td>
<td>chr3</td>
</tr>
<tr>
<td>NERL1</td>
<td>340542</td>
<td>NGFRAP1-1-like</td>
<td>chrX</td>
</tr>
<tr>
<td>NERL1</td>
<td>55768</td>
<td>N-glycanase 1</td>
<td>chr3</td>
</tr>
<tr>
<td>NERL1</td>
<td>4809</td>
<td>NHPP2J non-histone chromatin protein 2-like 1 (S. cerevisiae)</td>
<td>chr22</td>
</tr>
<tr>
<td>NERL1</td>
<td>57224</td>
<td>NHPS-like 1</td>
<td>chr6</td>
</tr>
<tr>
<td>NERL1</td>
<td>60491</td>
<td>NIF3-NGG1 interacting factor 3-like 1 (S. pombe)</td>
<td>chr2</td>
</tr>
<tr>
<td>NERE14</td>
<td>10430</td>
<td>Seven transmembrane domain protein</td>
<td>chr19</td>
</tr>
<tr>
<td>NERP1L</td>
<td>25836</td>
<td>Nipped-B homolog (Drosophila)</td>
<td>chr5</td>
</tr>
<tr>
<td>NERP1L</td>
<td>64149</td>
<td>Protein kinase Njm-R1</td>
<td>chr17</td>
</tr>
<tr>
<td>NERP1L</td>
<td>54475</td>
<td>Notchless homolog 1 (Drosophila)</td>
<td>chr17</td>
</tr>
<tr>
<td>NERP1L</td>
<td>57502</td>
<td>Neurologin 4, X-linked</td>
<td>chrX</td>
</tr>
<tr>
<td>NERP1L</td>
<td>51701</td>
<td>Nemo like kinase</td>
<td>chr17</td>
</tr>
<tr>
<td>NERP1L</td>
<td>57486</td>
<td>Neurolysin (metalloprotease M3 family)</td>
<td>chr5</td>
</tr>
<tr>
<td>NERP1L</td>
<td>4832</td>
<td>Non-metastatic cells 3, protein expressed in</td>
<td>chr16</td>
</tr>
<tr>
<td>NERP1L</td>
<td>9111</td>
<td>N-myc (and STAT) 1 interactor</td>
<td>chr2</td>
</tr>
<tr>
<td>NERP1L</td>
<td>23057</td>
<td>Nicotinamide nucleotide adenyltransferase 2</td>
<td>chr1</td>
</tr>
<tr>
<td>NERP1L</td>
<td>10874</td>
<td>Neuromedian U</td>
<td>chr4</td>
</tr>
<tr>
<td>NOBI1</td>
<td>28987</td>
<td>Nin one binding protein</td>
<td>chr4</td>
</tr>
<tr>
<td>NODAL</td>
<td>4838</td>
<td>Nodal homolog (mouse)</td>
<td>chr10</td>
</tr>
<tr>
<td>NODAL</td>
<td>79050</td>
<td>Nucleolar complex associated 4 homolog (S. cerevisiae)</td>
<td>chr12</td>
</tr>
<tr>
<td>NODAL</td>
<td>4839</td>
<td>Nucleolar protein 1, 120kDa</td>
<td>chr12</td>
</tr>
<tr>
<td>NODAL</td>
<td>25926</td>
<td>Nucleolar protein 11</td>
<td>chr17</td>
</tr>
<tr>
<td>NODAL</td>
<td>79707</td>
<td>Nucleolar protein 9</td>
<td>chr1</td>
</tr>
<tr>
<td>NODAL</td>
<td>10528</td>
<td>Nucleolar protein 5A (56kDa with KKE/D repeat)</td>
<td>chr20</td>
</tr>
<tr>
<td>NODAL</td>
<td>51406</td>
<td>Nucleolar protein 7, 27kDa</td>
<td>chr6</td>
</tr>
<tr>
<td>NODAL</td>
<td>26141</td>
<td>Nucleolar protein 9</td>
<td>chr1</td>
</tr>
<tr>
<td>NODAL</td>
<td>26141</td>
<td>Nucleolar protein 9</td>
<td>chr1</td>
</tr>
<tr>
<td>NODAL</td>
<td>26141</td>
<td>Nucleolar protein 9</td>
<td>chr1</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; p < 0.05).

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene Name</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOLC1</td>
<td>nucleolar and coiled-body phosphoprotein 1</td>
<td>6.23</td>
</tr>
<tr>
<td>NOP5/NOP58</td>
<td>nucleolar protein NOP5/NOP58</td>
<td>3.26</td>
</tr>
<tr>
<td>NOSIP</td>
<td>nitric oxide synthase interacting protein</td>
<td>2.37</td>
</tr>
<tr>
<td>NOVA1</td>
<td>neuro-oncological ventral antigen 1</td>
<td>2.65</td>
</tr>
<tr>
<td>NP</td>
<td>nucleoside phosphorylase</td>
<td>2.63</td>
</tr>
<tr>
<td>NPA</td>
<td>nuclear protein, ataxia-telangectasia locus</td>
<td>2.48</td>
</tr>
<tr>
<td>NPM1</td>
<td>nucleophosphin (nucleophosphor protein B23, numatrin) /// nucleophosphin (nucl.)</td>
<td>2.54</td>
</tr>
<tr>
<td>NPM3</td>
<td>nucleophosphin/nucleoplasm, 3</td>
<td>6.82</td>
</tr>
<tr>
<td>NPTN</td>
<td>Neuroplakin</td>
<td>2.56</td>
</tr>
<tr>
<td>NPTX1</td>
<td>neuronal pentraxin I</td>
<td>4.21</td>
</tr>
<tr>
<td>NPTX2</td>
<td>neuronal pentraxin II</td>
<td>6.43</td>
</tr>
<tr>
<td>NQQ2</td>
<td>NAD(P) dehydrogenase, quinone 2</td>
<td>2.60</td>
</tr>
<tr>
<td>NR2C1</td>
<td>nuclear receptor subfamily 2, group C, member 1</td>
<td>2.54</td>
</tr>
<tr>
<td>NR2C2</td>
<td>nuclear receptor subfamily 2, group C, member 2</td>
<td>2.25</td>
</tr>
<tr>
<td>NR2F6</td>
<td>nuclear receptor subfamily 2, group F, member 6</td>
<td>4.56</td>
</tr>
<tr>
<td>NR5A2</td>
<td>nuclear receptor subfamily 5, group A, member 2</td>
<td>2.33</td>
</tr>
<tr>
<td>NRF1</td>
<td>nuclear respiratory factor 1</td>
<td>2.68</td>
</tr>
<tr>
<td>NRG3</td>
<td>neuregulin 3</td>
<td>2.28</td>
</tr>
<tr>
<td>NRM</td>
<td>norn (nuclear envelope membrane protein)</td>
<td>2.05</td>
</tr>
<tr>
<td>NRXN1</td>
<td>neurxin 1</td>
<td>3.54</td>
</tr>
<tr>
<td>NSBP1</td>
<td>nucleososomal binding protein 1</td>
<td>9.80</td>
</tr>
<tr>
<td>NSD1</td>
<td>nuclear receptor binding SET domain protein 1</td>
<td>4.48</td>
</tr>
<tr>
<td>NSDH4</td>
<td>NAD(P) dependent steroid dehydrogenase-like</td>
<td>2.22</td>
</tr>
<tr>
<td>NSUN2</td>
<td>NOL1/NOP2/Sun domain family, member 2</td>
<td>2.30</td>
</tr>
<tr>
<td>NSUN5</td>
<td>NOL1/NOP2/Sun domain family, member 5</td>
<td>3.89</td>
</tr>
<tr>
<td>NSUN5C</td>
<td>NOL1/NOP2/Sun domain family, member 5C</td>
<td>4.60</td>
</tr>
<tr>
<td>NSUN6</td>
<td>NOL1/NOP2/Sun domain family, member 6</td>
<td>2.16</td>
</tr>
<tr>
<td>NT5C2</td>
<td>5', 3'-nucleotidease, cytosolic</td>
<td>2.07</td>
</tr>
<tr>
<td>NTSC2</td>
<td>5', 3'-nucleotidease, cytosolic II</td>
<td>2.43</td>
</tr>
<tr>
<td>NTSC2L1</td>
<td>5', 3'-nucleotidease, cytosolic II-like 1</td>
<td>7.02</td>
</tr>
<tr>
<td>NTHL1</td>
<td>mph endonuclease III-like 1 (E. coli)</td>
<td>4.93</td>
</tr>
<tr>
<td>NTS</td>
<td>neurotensin</td>
<td>10.94</td>
</tr>
<tr>
<td>NUBP1</td>
<td>nucleotide binding protein 1 (MinD homolog, E. coli)</td>
<td>2.03</td>
</tr>
<tr>
<td>NUCKS1</td>
<td>nuclear casein kinase and cyclin-dependent kinase substrate 1</td>
<td>2.78</td>
</tr>
<tr>
<td>NUDC</td>
<td>nuclear distribution gene C homolog (A. nidulans)</td>
<td>3.08</td>
</tr>
<tr>
<td>NUDCD1</td>
<td>NudC domain containing 1</td>
<td>2.13</td>
</tr>
<tr>
<td>NUDCD2</td>
<td>NudC domain containing 2</td>
<td>3.81</td>
</tr>
<tr>
<td>NUDT1</td>
<td>nudix (nucleoside diphosphate linked moeity X)-type motif 1</td>
<td>7.03</td>
</tr>
<tr>
<td>NUDT10</td>
<td>nudix (nucleoside diphosphate linked moeity X)-type motif 10</td>
<td>3.37</td>
</tr>
<tr>
<td>NUDT11</td>
<td>nudix (nucleoside diphosphate linked moeity X)-type motif 11</td>
<td>2.89</td>
</tr>
<tr>
<td>NUDT15</td>
<td>nudix (nucleoside diphosphate linked moeity X)-type motif 15</td>
<td>6.99</td>
</tr>
<tr>
<td>NUDT21</td>
<td>nudix (nucleoside diphosphate linked moeity X)-type motif 21</td>
<td>3.80</td>
</tr>
<tr>
<td>NUDT5</td>
<td>nudix (nucleoside diphosphate linked moeity X)-type motif 5</td>
<td>2.44</td>
</tr>
<tr>
<td>NUFIP1</td>
<td>nuclear fragile X mental retardation protein interacting protein 1</td>
<td>4.02</td>
</tr>
<tr>
<td>NUP167</td>
<td>nucleoporin 107kDa</td>
<td>4.23</td>
</tr>
<tr>
<td>NUP133</td>
<td>nucleoporin 133kDa</td>
<td>2.28</td>
</tr>
<tr>
<td>NUP153</td>
<td>nucleoporin 153kDa</td>
<td>2.03</td>
</tr>
<tr>
<td>NUP155</td>
<td>nucleoporin 159kDa</td>
<td>2.67</td>
</tr>
<tr>
<td>NUP160</td>
<td>nucleoporin 160kDa</td>
<td>3.04</td>
</tr>
<tr>
<td>NUP188</td>
<td>nucleoporin 188kDa</td>
<td>2.37</td>
</tr>
<tr>
<td>NUP205</td>
<td>nucleoporin 205kDa</td>
<td>4.75</td>
</tr>
<tr>
<td>NUP210</td>
<td>nucleoporin 210kDa</td>
<td>9.21</td>
</tr>
<tr>
<td>NUP214</td>
<td>nucleoporin 214kDa</td>
<td>2.51</td>
</tr>
<tr>
<td>NUP35</td>
<td>nucleoporin 35kDa</td>
<td>6.49</td>
</tr>
<tr>
<td>NUP37</td>
<td>nucleoporin 37kDa</td>
<td>2.47</td>
</tr>
<tr>
<td>NUP43</td>
<td>nucleoporin 43kDa</td>
<td>2.01</td>
</tr>
<tr>
<td>NUP50</td>
<td>nucleoporin 50kDa</td>
<td>2.88</td>
</tr>
<tr>
<td>NUP54</td>
<td>nucleoporin 54kDa</td>
<td>2.89</td>
</tr>
<tr>
<td>NUP62</td>
<td>nucleoporin 62kDa</td>
<td>3.03</td>
</tr>
<tr>
<td>NUP88</td>
<td>nucleoporin 88kDa</td>
<td>3.83</td>
</tr>
<tr>
<td>NUP93</td>
<td>nucleoporin 93kDa</td>
<td>3.63</td>
</tr>
<tr>
<td>NUP98</td>
<td>nucleoporin 98kDa</td>
<td>3.63</td>
</tr>
<tr>
<td>NUPL1</td>
<td>Nucleolin-like 1</td>
<td>2.48</td>
</tr>
<tr>
<td>NUSAP1</td>
<td>nucleolar and spindle associated protein 1</td>
<td>7.77</td>
</tr>
<tr>
<td>NVT1</td>
<td>nuclear VCP-like</td>
<td>3.43</td>
</tr>
<tr>
<td>NXY2</td>
<td>nuclear transport factor 2-like export factor 2</td>
<td>2.58</td>
</tr>
<tr>
<td>NY-REN-41</td>
<td>nuclear REN-41 antigen</td>
<td>6.41</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Accession</th>
<th>Gene Symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY-REN-58</td>
<td>NY-REN-58</td>
<td>antigen</td>
<td>2.68</td>
<td>chr12</td>
</tr>
<tr>
<td>NY-REN-48</td>
<td>NY-REN-48</td>
<td>sarcoma antigen</td>
<td>2.84</td>
<td>chr19</td>
</tr>
<tr>
<td>OACT1</td>
<td>OACT1</td>
<td>O-acetyltransferase (membrane bound) domain containing 1</td>
<td>3.43</td>
<td>chr6</td>
</tr>
<tr>
<td>OAZ2</td>
<td>OAZ2</td>
<td>ornithine decarboxylase antizyme 2</td>
<td>6.10</td>
<td>chr15</td>
</tr>
<tr>
<td>OCIAD2</td>
<td>OCIAD2</td>
<td>OCIA domain containing 2</td>
<td>3.15</td>
<td>chr4</td>
</tr>
<tr>
<td>OCLN</td>
<td>OCLN</td>
<td>Ocladin</td>
<td>32.56</td>
<td>chr5</td>
</tr>
<tr>
<td>OFD1</td>
<td>OFD1</td>
<td>oral-facial-digital syndrome 1</td>
<td>2.37</td>
<td>chrX</td>
</tr>
<tr>
<td>OGDH</td>
<td>OGDH</td>
<td>Oxoglutarate (alpha-ketoglutarate) dehydrogenase (flavoenzyme)</td>
<td>2.09</td>
<td>chr22</td>
</tr>
<tr>
<td>OGDHL</td>
<td>OGDHL</td>
<td>oxoglutarate dehydrogenase-1</td>
<td>4.21</td>
<td>chr10</td>
</tr>
<tr>
<td>OIP5</td>
<td>OIP5</td>
<td>Oipa interacting protein 5</td>
<td>29.30</td>
<td>chr15</td>
</tr>
<tr>
<td>OLFM1</td>
<td>OLFM1</td>
<td>ollactomedin 1</td>
<td>24.69</td>
<td>chr9</td>
</tr>
<tr>
<td>OMA1</td>
<td>OMA1</td>
<td>OMA1 homolog, zinc metalloproteinase (S. cerevisiae)</td>
<td>2.34</td>
<td>chr1</td>
</tr>
<tr>
<td>OPA1</td>
<td>OPA1</td>
<td>optic atrophy 1 (autosomal dominant)</td>
<td>2.11</td>
<td>chr3</td>
</tr>
<tr>
<td>ORC1L</td>
<td>ORC1L</td>
<td>origin recognition complex, subunit 1-like (yeast)</td>
<td>14.39</td>
<td>chr1</td>
</tr>
<tr>
<td>ORC2L</td>
<td>ORC2L</td>
<td>origin recognition complex, subunit 2-like (yeast)</td>
<td>6.24</td>
<td>chr2</td>
</tr>
<tr>
<td>ORC3L</td>
<td>ORC3L</td>
<td>origin recognition complex, subunit 3-like (yeast)</td>
<td>3.36</td>
<td>chr6</td>
</tr>
<tr>
<td>ORC4L</td>
<td>ORC4L</td>
<td>origin recognition complex, subunit 4-like (yeast)</td>
<td>2.43</td>
<td>chr2</td>
</tr>
<tr>
<td>ORC5L</td>
<td>ORC5L</td>
<td>origin recognition complex, subunit 5-like (yeast)</td>
<td>2.06</td>
<td>chr7</td>
</tr>
<tr>
<td>ORC6L</td>
<td>ORC6L</td>
<td>origin recognition complex, subunit 6 homolog-like (yeast)</td>
<td>4.91</td>
<td>chr16</td>
</tr>
<tr>
<td>OSBPL10</td>
<td>OSBPL10</td>
<td>oysterin binding protein-like 10</td>
<td>3.31</td>
<td>chr3</td>
</tr>
<tr>
<td>OSBPL1A</td>
<td>OSBPL1A</td>
<td>oysterin binding protein-like 1A</td>
<td>2.50</td>
<td>chr18</td>
</tr>
<tr>
<td>OSHEP</td>
<td>OSHEP</td>
<td>O-sialyglycoprotein endopeptidase</td>
<td>3.13</td>
<td>chr14</td>
</tr>
<tr>
<td>OSHEP1</td>
<td>OSHEP1</td>
<td>O-sialyglycoprotein endopeptidase-like 1</td>
<td>2.27</td>
<td>chr2</td>
</tr>
<tr>
<td>OTX2</td>
<td>OTX2</td>
<td>orthodenticle homolog 2 (Drosophila)</td>
<td>10.09</td>
<td>chr14</td>
</tr>
<tr>
<td>OVO1</td>
<td>OVO1</td>
<td>ovo-like 1 (Drosophila)</td>
<td>2.23</td>
<td>chr11</td>
</tr>
<tr>
<td>OVO2</td>
<td>OVO2</td>
<td>ovo-like 2 (Drosophila) /// ovo-like 2 (Drosophila)</td>
<td>9.10</td>
<td>chr20</td>
</tr>
<tr>
<td>OVOS2</td>
<td>OVOS2</td>
<td>ovostatin 2</td>
<td>14.87</td>
<td>chr12</td>
</tr>
<tr>
<td>PARS</td>
<td>PARS</td>
<td>Hypothetical protein FLJ10656</td>
<td>3.06</td>
<td>chr18</td>
</tr>
<tr>
<td>P2RX5</td>
<td>P2RX5</td>
<td>purinergic receptor P2X, ligand-gated ion channel, 5</td>
<td>2.57</td>
<td>chr17</td>
</tr>
<tr>
<td>PABPN1</td>
<td>PABPN1</td>
<td>poly(A) binding protein, nuclear 1</td>
<td>3.57</td>
<td>chr14</td>
</tr>
<tr>
<td>PACSIN1</td>
<td>PACSIN1</td>
<td>protein kinase C and casein kinase substrate in neurons 1</td>
<td>4.41</td>
<td>chr6</td>
</tr>
<tr>
<td>PAFAH1B3</td>
<td>PAFAH1B3</td>
<td>platelet-activating factor acetylhydrolase, isoform Ib, gamma subunit 29kDa</td>
<td>4.04</td>
<td>chr19</td>
</tr>
<tr>
<td>PAH</td>
<td>PAH</td>
<td>phospholipase A hydroxylase</td>
<td>2.37</td>
<td>chr12</td>
</tr>
<tr>
<td>PAICS</td>
<td>PAICS</td>
<td>phosphoribosylaminomimidazole carboxylase, phosphoribosylaminomimidazole succinyltransferase</td>
<td>5.00</td>
<td>chr4</td>
</tr>
<tr>
<td>PAIP1</td>
<td>PAIP1</td>
<td>poly(A) binding protein interacting protein 1</td>
<td>4.62</td>
<td>chr17</td>
</tr>
<tr>
<td>PAIP2</td>
<td>PAIP2</td>
<td>poly(A) binding protein interacting protein 2</td>
<td>5.12</td>
<td>chr5</td>
</tr>
<tr>
<td>PAK1</td>
<td>PAK1</td>
<td>p21(Cdc42/Rac1)-activated kinase 1 (STZ20 homolog, yeast)</td>
<td>7.56</td>
<td>chr11</td>
</tr>
<tr>
<td>PAK1IP1</td>
<td>PAK1IP1</td>
<td>PAK1 interacting protein 1</td>
<td>4.57</td>
<td>chr6</td>
</tr>
<tr>
<td>PAK6</td>
<td>PAK6</td>
<td>p21(CDK11A)-activated kinase 6</td>
<td>2.97</td>
<td>chr15</td>
</tr>
<tr>
<td>PAN3</td>
<td>PAN3</td>
<td>PABP1-dependent poly A-specific ribonuclease subunit PAN3</td>
<td>4.92</td>
<td>chr13</td>
</tr>
<tr>
<td>PANK1</td>
<td>PANK1</td>
<td>pantothenate kinase 1</td>
<td>7.37</td>
<td>chr10</td>
</tr>
<tr>
<td>PANK2</td>
<td>PANK2</td>
<td>pantothenate kinase 2 (Hallervorden-Spatz syndrome)</td>
<td>2.24</td>
<td>chr20</td>
</tr>
<tr>
<td>PAPD1</td>
<td>PAPD1</td>
<td>PAP associated domain containing 1</td>
<td>5.61</td>
<td>chr10</td>
</tr>
<tr>
<td>PAPLN</td>
<td>PAPLN</td>
<td>papolin, proteoglycan-like sulfated glycoprotein</td>
<td>7.08</td>
<td>chr14</td>
</tr>
<tr>
<td>PAPOLG</td>
<td>PAPOLG</td>
<td>poly(A) polymerase gamma</td>
<td>2.62</td>
<td>chr2</td>
</tr>
<tr>
<td>PAQR5</td>
<td>PAQR5</td>
<td>progestin and adipoQ receptor family member V</td>
<td>2.63</td>
<td>chr15</td>
</tr>
<tr>
<td>PAQR8</td>
<td>PAQR8</td>
<td>progestin and adipoQ receptor family member VIII</td>
<td>4.28</td>
<td>chr6</td>
</tr>
<tr>
<td>PAKR9</td>
<td>PAKR9</td>
<td>progesterin and adipoQ receptor family member IX</td>
<td>2.05</td>
<td>chr3</td>
</tr>
<tr>
<td>PAR3D</td>
<td>PAR3D</td>
<td>par-3 partitioning defective 3 homolog (C. elegans)</td>
<td>2.54</td>
<td>chr10</td>
</tr>
<tr>
<td>PAR6A</td>
<td>PAR6A</td>
<td>par-6 partitioning defective 6 homolog alpha (C.elegans)</td>
<td>3.68</td>
<td>chr16</td>
</tr>
<tr>
<td>PAR6B</td>
<td>PAR6B</td>
<td>par-6 partitioning defective 6 homolog beta (C.elegans)</td>
<td>19.92</td>
<td>chr20</td>
</tr>
<tr>
<td>PARY1</td>
<td>PARY1</td>
<td>poly (AD-ribosyl) polymerase family, member 1</td>
<td>6.38</td>
<td>chr1</td>
</tr>
<tr>
<td>PARY2</td>
<td>PARY2</td>
<td>poly (AD-ribosyl) polymerase family, member 2</td>
<td>3.20</td>
<td>chr14</td>
</tr>
<tr>
<td>PARY8</td>
<td>PARY8</td>
<td>poly (AD-ribosyl) polymerase family, member 8</td>
<td>2.00</td>
<td>chr5</td>
</tr>
<tr>
<td>PARS2</td>
<td>PARS2</td>
<td>prolyl-tRNA synthetase (mitochondrial)/putative</td>
<td>2.99</td>
<td>chr1</td>
</tr>
<tr>
<td>PASK</td>
<td>PASK</td>
<td>PAS domain containing serine/threonine kinase</td>
<td>6.87</td>
<td>chr2</td>
</tr>
<tr>
<td>PAXP1</td>
<td>PAXP1</td>
<td>PAX interacting (with transcription-activation domain) protein 1</td>
<td>5.23</td>
<td>chr7</td>
</tr>
<tr>
<td>PBP</td>
<td>PBP</td>
<td>prostatic binding protein</td>
<td>4.38</td>
<td>chr12</td>
</tr>
<tr>
<td>PBX1</td>
<td>PBX1</td>
<td>Pre-B-cell leukemia transcription factor 1</td>
<td>9.33</td>
<td>chr1</td>
</tr>
<tr>
<td>PBX2</td>
<td>PBX2</td>
<td>pre-B-cell leukemia transcription factor 2</td>
<td>3.90</td>
<td>chr3</td>
</tr>
<tr>
<td>PCBD2</td>
<td>PCBD2</td>
<td>6-pyruvoyl-tetrahydroprotein synthase/dimerization cofactor of hepatocyte nuclear factor</td>
<td>2.75</td>
<td>chr5</td>
</tr>
<tr>
<td>PCBP1</td>
<td>PCBP1</td>
<td>poly(C) binding protein 1</td>
<td>2.78</td>
<td>chr2</td>
</tr>
<tr>
<td>PCBP2</td>
<td>PCBP2</td>
<td>Poly(C) binding protein 2</td>
<td>2.19</td>
<td>chr12</td>
</tr>
<tr>
<td>PCCA</td>
<td>PCCA</td>
<td>propionyl-Coenzyme A carboxylase, alpha polypeptide</td>
<td>4.68</td>
<td>chr13</td>
</tr>
<tr>
<td>PCCK</td>
<td>PCCK</td>
<td>propionyl-Coenzyme A carboxylase, beta polypeptide</td>
<td>2.79</td>
<td>chr3</td>
</tr>
<tr>
<td>PCDH11</td>
<td>PCDH11</td>
<td>Pcdh11 protein (cadherin-like 1)</td>
<td>2.22</td>
<td>chr5</td>
</tr>
<tr>
<td>PCDH11X</td>
<td>PCDH11X</td>
<td>Pcdh11 protein (cadherin 11 X-linked) /// Pcdh11 protein (cadherin 11 Y-linked)</td>
<td>3.56</td>
<td>chrY</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCDH8</td>
<td>protocadherin 8</td>
<td>4.56</td>
<td>chr13</td>
</tr>
<tr>
<td>PCDHB3</td>
<td>protocadherin beta 3</td>
<td>2.03</td>
<td>chr5</td>
</tr>
<tr>
<td>PCDHB5</td>
<td>protocadherin beta 5</td>
<td>6.58</td>
<td>chr5</td>
</tr>
<tr>
<td>PCDHGA4</td>
<td>protocadherin gamma subfamily A, 4</td>
<td>2.75</td>
<td>chr5</td>
</tr>
<tr>
<td>PCD11</td>
<td>PCDF11, cleavage and polyadenylation factor subunit, homolog (S. cerevisiae)</td>
<td>2.51</td>
<td>chr11</td>
</tr>
<tr>
<td>PCFG3</td>
<td>Polycomb group ring finger 3</td>
<td>2.49</td>
<td>chr4</td>
</tr>
<tr>
<td>PCGF6</td>
<td>Polycomb group ring finger 6</td>
<td>2.85</td>
<td>chr10</td>
</tr>
<tr>
<td>PCG1</td>
<td>Polycomb group ring finger 1</td>
<td>2.53</td>
<td>chr7</td>
</tr>
<tr>
<td>PCMT2</td>
<td>Protein-L-isosapartate (D-aspartate) O-methyltransferase domain containing 2</td>
<td>2.40</td>
<td>chr20</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cell nuclear antigen</td>
<td>3.78</td>
<td>chr20</td>
</tr>
<tr>
<td>PCNT1</td>
<td>Pericentrin 1</td>
<td>4.18</td>
<td>chr17</td>
</tr>
<tr>
<td>PCNX2</td>
<td>Pecanx-like 2 (Drosophila)</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>PCSK9</td>
<td>Proprotein convertase subtilisin/kexin type 9</td>
<td>8.12</td>
<td>chr1</td>
</tr>
<tr>
<td>PCTP</td>
<td>Phosphatidylinositol transfer protein</td>
<td>3.42</td>
<td>chr17</td>
</tr>
<tr>
<td>PCY1B</td>
<td>Phosphatidylinositol transferase 1, choline, beta</td>
<td>4.48</td>
<td>chrX</td>
</tr>
<tr>
<td>PDCD11</td>
<td>Programmed cell death 11</td>
<td>4.98</td>
<td>chr10</td>
</tr>
<tr>
<td>PDCD2</td>
<td>Programmed cell death 2</td>
<td>3.52</td>
<td>chr6</td>
</tr>
<tr>
<td>PDCD5</td>
<td>Programmed cell death 5</td>
<td>2.13</td>
<td>chr19</td>
</tr>
<tr>
<td>PDCD6</td>
<td>Programmed cell death 6</td>
<td>5.13</td>
<td>chr5</td>
</tr>
<tr>
<td>PDCD6</td>
<td>Programmed cell death 6 // hypothetical gene supported by AK055127; BC053987</td>
<td>4.21</td>
<td>chr5</td>
</tr>
<tr>
<td>PDCL</td>
<td>Phosducin-like</td>
<td>2.38</td>
<td>chr9</td>
</tr>
<tr>
<td>PDCL3</td>
<td>Phosducin-like 3 // hypothetical protein FLJ12205</td>
<td>2.21</td>
<td>chr2</td>
</tr>
<tr>
<td>PDE3B</td>
<td>Phosphodiesterase 3B, cGMP-inhibited</td>
<td>2.18</td>
<td>chr11</td>
</tr>
<tr>
<td>PDE6D</td>
<td>Phosphodiesterase 6D, cGMP-specific, rod, delta</td>
<td>2.17</td>
<td>chr2</td>
</tr>
<tr>
<td>PDE7A</td>
<td>Phosphodiesterase 7A</td>
<td>7.01</td>
<td>chr8</td>
</tr>
<tr>
<td>PDE9A</td>
<td>Phosphodiesterase 9A</td>
<td>6.87</td>
<td>chr21</td>
</tr>
<tr>
<td>PDF</td>
<td>Peptide deformylase-like protein // component of oligomeric golgi complex 8</td>
<td>3.26</td>
<td>chr16</td>
</tr>
<tr>
<td>PDHA1</td>
<td>Pyruvate dehydrogenase (lipoamide) alpha 1</td>
<td>3.32</td>
<td>chrX</td>
</tr>
<tr>
<td>PDHA2</td>
<td>Pyruvate dehydrogenase kinase, isoenzyme 3</td>
<td>6.76</td>
<td>chrX</td>
</tr>
<tr>
<td>PDPH</td>
<td>Podoplanin</td>
<td>7.08</td>
<td>chr1</td>
</tr>
<tr>
<td>PDPR</td>
<td>Pyruvate dehydrogenase phosphatase regulatory subunit</td>
<td>3.05</td>
<td>chr16</td>
</tr>
<tr>
<td>PDXP</td>
<td>Pyridoxal (pyridoxine, vitamin B6) phosphatase</td>
<td>3.06</td>
<td>chr22</td>
</tr>
<tr>
<td>PDZK1</td>
<td>PDZ domain containing 3</td>
<td>6.21</td>
<td>chr5</td>
</tr>
<tr>
<td>PDZK2</td>
<td>PDZ domain containing 4</td>
<td>4.51</td>
<td>chrX</td>
</tr>
<tr>
<td>PEL11</td>
<td>Pelle homolog 1 (Drosophila)</td>
<td>6.44</td>
<td>chr2</td>
</tr>
<tr>
<td>PEL21</td>
<td>Pelle homolog 2 (Drosophila)</td>
<td>3.17</td>
<td>chr14</td>
</tr>
<tr>
<td>PELP1</td>
<td>Proline, glutamic acid, leucine-rich protein 1</td>
<td>2.28</td>
<td>chr17</td>
</tr>
<tr>
<td>PEMT</td>
<td>Phosphatidyethanolamine N-methyltransferase</td>
<td>2.25</td>
<td>chr17</td>
</tr>
<tr>
<td>PEO1</td>
<td>Progressive external ophthalmoplegia 1</td>
<td>4.73</td>
<td>chr10</td>
</tr>
<tr>
<td>PET11L2</td>
<td>PET11-like (yeast)</td>
<td>2.29</td>
<td>chr4</td>
</tr>
<tr>
<td>PEX1</td>
<td>Peroxisome biogenesis factor 1</td>
<td>2.27</td>
<td>chr7</td>
</tr>
<tr>
<td>PEX13</td>
<td>Peroxisome biogenesis factor 13</td>
<td>3.85</td>
<td>chr2</td>
</tr>
<tr>
<td>PEX5</td>
<td>Peroxisomal biogenesis factor 5</td>
<td>2.16</td>
<td>chr12</td>
</tr>
<tr>
<td>PFA5</td>
<td>Phosphoribosylformylglycinamide synthase (FGAR amidotransferase)</td>
<td>7.80</td>
<td>chr17</td>
</tr>
<tr>
<td>PFDN4</td>
<td>Prefoldin 4</td>
<td>2.40</td>
<td>chr20</td>
</tr>
<tr>
<td>PFKFB2</td>
<td>6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2</td>
<td>2.03</td>
<td>chr1</td>
</tr>
<tr>
<td>PK2</td>
<td>DNA replication complex GINS protein PSF2</td>
<td>8.81</td>
<td>chr16</td>
</tr>
<tr>
<td>PGP1P2</td>
<td>GPI deacylase</td>
<td>3.02</td>
<td>chr2</td>
</tr>
<tr>
<td>PGBD5</td>
<td>PiggyBac transposable element derived 5</td>
<td>8.97</td>
<td>chr1</td>
</tr>
<tr>
<td>PGGT1B</td>
<td>Protein geranylgeranyltransferase type I, beta subunit</td>
<td>2.47</td>
<td>chr5</td>
</tr>
<tr>
<td>PGML2P1</td>
<td>PGML2 2-like 1</td>
<td>2.53</td>
<td>chr11</td>
</tr>
<tr>
<td>PHACTR2</td>
<td>Phosphatase and actin regulator 2</td>
<td>2.86</td>
<td>chr6</td>
</tr>
<tr>
<td>PHB</td>
<td>Prohibitin</td>
<td>2.96</td>
<td>chr16</td>
</tr>
<tr>
<td>PHC1</td>
<td>Polychromatic-like 1 (Drosophila)</td>
<td>34.21</td>
<td>chr12</td>
</tr>
<tr>
<td>PHF10</td>
<td>Phd finger protein 10</td>
<td>2.83</td>
<td>chr6</td>
</tr>
<tr>
<td>PHF13</td>
<td>Phd finger protein 13</td>
<td>2.46</td>
<td>chr1</td>
</tr>
<tr>
<td>PHF14</td>
<td>Phd finger protein 14</td>
<td>3.30</td>
<td>chr7</td>
</tr>
<tr>
<td>PHF15</td>
<td>Phd finger protein 15</td>
<td>5.57</td>
<td>chr5</td>
</tr>
<tr>
<td>PHF16</td>
<td>Phd finger protein 16</td>
<td>3.37</td>
<td>chrX</td>
</tr>
<tr>
<td>PHF17</td>
<td>Phd finger protein 17</td>
<td>11.39</td>
<td>chr4</td>
</tr>
<tr>
<td>PHF20</td>
<td>Phd finger protein 20</td>
<td>2.15</td>
<td>chr20</td>
</tr>
<tr>
<td>PHF21B</td>
<td>Phd finger protein 21B</td>
<td>8.54</td>
<td>chr22</td>
</tr>
<tr>
<td>PHF3</td>
<td>Phd finger protein 3</td>
<td>2.77</td>
<td>chr6</td>
</tr>
<tr>
<td>PHFS5A</td>
<td>Phd finger protein 5A</td>
<td>4.32</td>
<td>chr22</td>
</tr>
<tr>
<td>PHGDH</td>
<td>Phosphoglycerate dehydrogenase</td>
<td>4.25</td>
<td>chr1</td>
</tr>
<tr>
<td>PHIP</td>
<td>Phosphotransferase domain interacting protein</td>
<td>4.67</td>
<td>chr6</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHKA2</td>
<td>2.08</td>
<td>chrX</td>
</tr>
<tr>
<td>PHLPP</td>
<td>5.94</td>
<td>chr18</td>
</tr>
<tr>
<td>PHLPPP</td>
<td>2.68</td>
<td>chr16</td>
</tr>
<tr>
<td>PHOSPHOC2</td>
<td>5.66</td>
<td>chr2</td>
</tr>
<tr>
<td>PIA52</td>
<td>4.28</td>
<td>chr18</td>
</tr>
<tr>
<td>PIA54</td>
<td>2.46</td>
<td>chr19</td>
</tr>
<tr>
<td>PIG8</td>
<td>3.57</td>
<td>chr11</td>
</tr>
<tr>
<td>PIGW</td>
<td>2.47</td>
<td>chr17</td>
</tr>
<tr>
<td>PIK3CG2</td>
<td>2.33</td>
<td>chr11</td>
</tr>
<tr>
<td>PIK3CB</td>
<td>2.44</td>
<td>chr3</td>
</tr>
<tr>
<td>PIR</td>
<td>5.24</td>
<td>chrX</td>
</tr>
<tr>
<td>PISD</td>
<td>1.94</td>
<td>chr22</td>
</tr>
<tr>
<td>PTPN1C</td>
<td>4.84</td>
<td>chr17</td>
</tr>
<tr>
<td>PKN3</td>
<td>2.76</td>
<td>chr9</td>
</tr>
<tr>
<td>PKP4</td>
<td>2.74</td>
<td>chr2</td>
</tr>
<tr>
<td>PLA2G3</td>
<td>2.37</td>
<td>chr22</td>
</tr>
<tr>
<td>PLA2G4B</td>
<td>2.51</td>
<td>chr15</td>
</tr>
<tr>
<td>PLA2G7</td>
<td>3.06</td>
<td>chr6</td>
</tr>
<tr>
<td>PLAGL2</td>
<td>2.75</td>
<td>chr20</td>
</tr>
<tr>
<td>PLCG1</td>
<td>2.38</td>
<td>chr20</td>
</tr>
<tr>
<td>PLCGL2</td>
<td>9.66</td>
<td>chr3</td>
</tr>
<tr>
<td>PLCGL3</td>
<td>8.50</td>
<td>chr3</td>
</tr>
<tr>
<td>PLCX1D</td>
<td>6.35</td>
<td>chrX</td>
</tr>
<tr>
<td>PLEKH5</td>
<td>8.88</td>
<td>chr12</td>
</tr>
<tr>
<td>PLEKH8</td>
<td>2.94</td>
<td>chr7</td>
</tr>
<tr>
<td>PLEKH9</td>
<td>2.20</td>
<td>chr7</td>
</tr>
<tr>
<td>PLEKH1B</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>PLEKH1H</td>
<td>10.69</td>
<td>chr14</td>
</tr>
<tr>
<td>PLEKH1U</td>
<td>3.86</td>
<td>chr19</td>
</tr>
<tr>
<td>PLEKH1K</td>
<td>2.19</td>
<td>chr10</td>
</tr>
<tr>
<td>PLEKH1M</td>
<td>2.10</td>
<td>chr17</td>
</tr>
<tr>
<td>PLK1</td>
<td>7.40</td>
<td>chr16</td>
</tr>
<tr>
<td>PLK4</td>
<td>13.11</td>
<td>chr4</td>
</tr>
<tr>
<td>PLP1</td>
<td>13.04</td>
<td>chrX</td>
</tr>
<tr>
<td>PLS1</td>
<td>11.22</td>
<td>chr3</td>
</tr>
<tr>
<td>PLSCR1</td>
<td>3.75</td>
<td>chr3</td>
</tr>
<tr>
<td>PMAIP1</td>
<td>3.05</td>
<td>chr18</td>
</tr>
<tr>
<td>PMF1</td>
<td>3.84</td>
<td>chr1</td>
</tr>
<tr>
<td>PMPCB</td>
<td>2.07</td>
<td>chr7</td>
</tr>
<tr>
<td>PMS1</td>
<td>3.95</td>
<td>chr2</td>
</tr>
<tr>
<td>PMS2L1</td>
<td>2.16</td>
<td>chr7</td>
</tr>
<tr>
<td>PMS2L2</td>
<td>2.04</td>
<td>chr7</td>
</tr>
<tr>
<td>PNKP</td>
<td>2.24</td>
<td>chr19</td>
</tr>
<tr>
<td>PNN</td>
<td>4.69</td>
<td>chr14</td>
</tr>
<tr>
<td>PNPT1</td>
<td>3.59</td>
<td>chr2</td>
</tr>
<tr>
<td>PNRC2</td>
<td>2.59</td>
<td>chr1</td>
</tr>
<tr>
<td>PODXL</td>
<td>59.45</td>
<td>chr7</td>
</tr>
<tr>
<td>POLA</td>
<td>8.59</td>
<td>chrX</td>
</tr>
<tr>
<td>POLA2</td>
<td>2.45</td>
<td>chr11</td>
</tr>
<tr>
<td>POLB</td>
<td>2.14</td>
<td>chr8</td>
</tr>
<tr>
<td>POLD1</td>
<td>6.28</td>
<td>chr19</td>
</tr>
<tr>
<td>POLD2</td>
<td>2.34</td>
<td>chr7</td>
</tr>
<tr>
<td>POLD3</td>
<td>4.51</td>
<td>chr11</td>
</tr>
<tr>
<td>POLID3</td>
<td>2.08</td>
<td>chr22</td>
</tr>
<tr>
<td>POLE</td>
<td>5.23</td>
<td>chr12</td>
</tr>
<tr>
<td>POLE2</td>
<td>10.68</td>
<td>chr14</td>
</tr>
<tr>
<td>POLG2</td>
<td>4.50</td>
<td>chr17</td>
</tr>
<tr>
<td>POLI</td>
<td>2.73</td>
<td>chr18</td>
</tr>
<tr>
<td>POLG</td>
<td>5.72</td>
<td>chr3</td>
</tr>
<tr>
<td>POLR1A</td>
<td>3.58</td>
<td>chr2</td>
</tr>
</tbody>
</table>
Table S5: Genes downregulated in MPC compared to hES (Fold Change > 2, α < 0.05)

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLR1B</td>
<td>polymerase (RNA) I polypeptide B, 128kDa</td>
<td>4.79</td>
<td>chr2</td>
</tr>
<tr>
<td>POLR1C</td>
<td>polymerase (RNA) I polypeptide C, 30kDa</td>
<td>2.50</td>
<td>chr6</td>
</tr>
<tr>
<td>POLR1D</td>
<td>polymerase (RNA) I polypeptide D, 16kDa</td>
<td>5.54</td>
<td>chr13</td>
</tr>
<tr>
<td>POLR2D</td>
<td>polymerase (RNA) II (DNA directed) polypeptide D</td>
<td>3.68</td>
<td>chr2</td>
</tr>
<tr>
<td>POLR2F</td>
<td>polymerase (RNA) II (DNA directed) polypeptide F</td>
<td>2.75</td>
<td>chr22</td>
</tr>
<tr>
<td>POLR2G</td>
<td>polymerase (RNA) II (DNA directed) polypeptide G</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>POLR2H</td>
<td>polymerase (RNA) II (DNA directed) polypeptide H</td>
<td>2.93</td>
<td>chr3</td>
</tr>
<tr>
<td>POLR2I</td>
<td>polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa</td>
<td>3.54</td>
<td>chr19</td>
</tr>
<tr>
<td>POLR3A</td>
<td>polymerase (RNA) III (DNA directed) polypeptide A, 159kDa</td>
<td>2.65</td>
<td>chr10</td>
</tr>
<tr>
<td>POLR3E</td>
<td>polymerase (RNA) III (DNA directed) polypeptide E (80kD)</td>
<td>3.14</td>
<td>chr16</td>
</tr>
<tr>
<td>POLR3G</td>
<td>Polymerase (RNA) III (DNA directed) polypeptide G (32kD)</td>
<td>8.94</td>
<td>chr5</td>
</tr>
<tr>
<td>POLR3K</td>
<td>polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa</td>
<td>8.19</td>
<td>chr16</td>
</tr>
<tr>
<td>POLRMT</td>
<td>polymerase (RNA) mitochondrial (DNA directed)</td>
<td>4.45</td>
<td>chr7</td>
</tr>
<tr>
<td>POP4</td>
<td>Processing of precursor 4, ribonuclease P/MPR subunit (S. cerevisiae)</td>
<td>2.49</td>
<td>chr19</td>
</tr>
<tr>
<td>POP7</td>
<td>Processing of precursor 7, ribonuclease P subunit (S. cerevisiae)</td>
<td>4.58</td>
<td>chr7</td>
</tr>
<tr>
<td>POR</td>
<td>P450 (cytochrome) oxidoreductase</td>
<td>3.75</td>
<td>chr7</td>
</tr>
<tr>
<td>POU2F1</td>
<td>POU domain, class 2, transcription factor 1</td>
<td>7.47</td>
<td>chr1</td>
</tr>
<tr>
<td>POU5F1</td>
<td>POU domain, class 5, transcription factor 1</td>
<td>118.37</td>
<td>chr1</td>
</tr>
<tr>
<td>PPA2</td>
<td>2706B, myophosphatase (inorganic)</td>
<td>2.02</td>
<td>chr4</td>
</tr>
<tr>
<td>PPAN</td>
<td>56342, pter pan homolog (Drosophila)</td>
<td>3.84</td>
<td>chr19</td>
</tr>
<tr>
<td>PPAP2A</td>
<td>8611, phosphatidic acid phosphatase type 2A</td>
<td>2.36</td>
<td>chr5</td>
</tr>
<tr>
<td>PPAP2C</td>
<td>8612, phosphatidic acid phosphatase type 2C</td>
<td>9.07</td>
<td>chr19</td>
</tr>
<tr>
<td>PPARB</td>
<td>5469, PPAR binding protein</td>
<td>2.34</td>
<td>chr17</td>
</tr>
<tr>
<td>PPAT</td>
<td>5471, phosphorosyl myophosphory lpadamtransferase</td>
<td>6.66</td>
<td>chr4</td>
</tr>
<tr>
<td>PPCDC</td>
<td>60490, phosphopantethenylcysteine decarboxylase</td>
<td>6.07</td>
<td>chr15</td>
</tr>
<tr>
<td>PPFA1</td>
<td>8500, Protein tyrosine phosphatase, receptor type. I polypeptide (PTPRF), interacting</td>
<td>2.15</td>
<td>chr11</td>
</tr>
<tr>
<td>PPHLN1</td>
<td>51535, peripilin 1</td>
<td>2.19</td>
<td>chr12</td>
</tr>
<tr>
<td>PPID</td>
<td>5481, pep tidi pliy pro lysere D (cyto clin) D</td>
<td>2.95</td>
<td>chr4</td>
</tr>
<tr>
<td>PPIG</td>
<td>9360, peptipl y pro lysere G (cyto cliph) G</td>
<td>2.77</td>
<td>chr2</td>
</tr>
<tr>
<td>PPIH</td>
<td>10465, peptipl y pro lysere H (cyto clin) H</td>
<td>4.21</td>
<td>chr1</td>
</tr>
<tr>
<td>PPL1</td>
<td>51645, peptipl y pro lysere (cytoplinc)-like 1</td>
<td>3.35</td>
<td>chr6</td>
</tr>
<tr>
<td>PPL5</td>
<td>122769, peptipl y pro lysere (cytoplinc)-like 5</td>
<td>3.66</td>
<td>chr14</td>
</tr>
<tr>
<td>PLL</td>
<td>5493, peripilin</td>
<td>9.49</td>
<td>chr16</td>
</tr>
<tr>
<td>PPM1B</td>
<td>5495, protein phosphatase 1B (formerly 2C), magnesium-dependent, beta isoform</td>
<td>4.87</td>
<td>chr2</td>
</tr>
<tr>
<td>PPM1E</td>
<td>22843, protein phosphatase 1E (PP2C domain containing)</td>
<td>15.90</td>
<td>chr17</td>
</tr>
<tr>
<td>PPM1G</td>
<td>5496, protein phosphatase 1G (formerly 2C), magnesium-dependent, gamma isoform</td>
<td>4.48</td>
<td>chr12</td>
</tr>
<tr>
<td>PPM1H</td>
<td>57460, protein phosphatase 1H (PP2C domain containing)</td>
<td>11.60</td>
<td>chr12</td>
</tr>
<tr>
<td>PPM1J</td>
<td>333926, protein phosphatase 1J (PP2C domain containing)</td>
<td>2.97</td>
<td>chr1</td>
</tr>
<tr>
<td>PPM1L</td>
<td>151742, Protein phosphatase 1 (formerly 2C)-like</td>
<td>3.64</td>
<td>chr3</td>
</tr>
<tr>
<td>PPOX</td>
<td>5498, protoporphyrin oxidase</td>
<td>2.60</td>
<td>chr1</td>
</tr>
<tr>
<td>PPP1CC</td>
<td>5501, protein phosphatase 1C, catalytic subunit, gamma isoform</td>
<td>2.51</td>
<td>chr12</td>
</tr>
<tr>
<td>PPP1R10</td>
<td>5514, protein phosphatase 1A regulatory subunit 10</td>
<td>2.44</td>
<td>chr6</td>
</tr>
<tr>
<td>PPP1R13B</td>
<td>23368, Protein phosphatase 1, regulatory (inhibitor) subunit 13B</td>
<td>23.43</td>
<td>chr10</td>
</tr>
<tr>
<td>PPP1R14B</td>
<td>26472, protein phosphatase 1, regulatory (inhibitor) subunit 14B</td>
<td>2.64</td>
<td>chr22</td>
</tr>
<tr>
<td>PPP1R16B</td>
<td>26051, protein phosphatase 1, regulatory (inhibitor) subunit 16B</td>
<td>4.20</td>
<td>chr20</td>
</tr>
<tr>
<td>PPP1R1A</td>
<td>5502, protein phosphatase 1A regulatory (inhibitor) subunit 1A</td>
<td>2.31</td>
<td>chr12</td>
</tr>
<tr>
<td>PPP1R9A</td>
<td>55607, Protein phosphatase 1A regulatory (inhibitor) subunit 9A</td>
<td>21.83</td>
<td>chr7</td>
</tr>
<tr>
<td>PPP2R1B</td>
<td>5519, protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65), beta isoform</td>
<td>8.56</td>
<td>chr11</td>
</tr>
<tr>
<td>PPP2R2A</td>
<td>5520, protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52), alpha isoform</td>
<td>2.80</td>
<td>chr8</td>
</tr>
<tr>
<td>PPP2R2B</td>
<td>5521, protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52), beta isoform</td>
<td>29.75</td>
<td>chr5</td>
</tr>
<tr>
<td>PPP2R2C</td>
<td>5522, protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52), gamma isoform</td>
<td>2.15</td>
<td>chr4</td>
</tr>
<tr>
<td>PPP2R3B</td>
<td>28227, protein phosphatase 2 (formerly 2A), regulatory subunit B, beta</td>
<td>3.04</td>
<td>chrY</td>
</tr>
<tr>
<td>PPP2R5A</td>
<td>5525, protein phosphatase 2, regulatory subunit B (B56), alpha isoform</td>
<td>2.06</td>
<td>chr1</td>
</tr>
<tr>
<td>PPP3CA</td>
<td>5530, Protein phosphatase 3 (formerly 2B), catalytic subunit, alpha isoform (calcineurin)</td>
<td>2.69</td>
<td>chr4</td>
</tr>
<tr>
<td>PPP3R1</td>
<td>5534, Protein phosphatase 3 (formerly 2B), regulatory subunit B, 19kDa, alpha isoform</td>
<td>2.65</td>
<td>chr2</td>
</tr>
<tr>
<td>PPP6C</td>
<td>5537, Protein phosphatase 6, catalytic subunit</td>
<td>2.96</td>
<td>chr9</td>
</tr>
<tr>
<td>PPCC</td>
<td>23082, peroxisome proliferative activated receptor, gamma, coactivator-related 1</td>
<td>2.98</td>
<td>chr10</td>
</tr>
<tr>
<td>PPT1</td>
<td>5538, peroxisome proliferative activated receptor, gamma, coactivator-related 1</td>
<td>3.94</td>
<td>chr1</td>
</tr>
<tr>
<td>PPWD1</td>
<td>23398, peptidipliy pro lysere domain and WD repeat containing 1</td>
<td>3.43</td>
<td>chr5</td>
</tr>
<tr>
<td>PQQP1</td>
<td>10084, polyglutamine binding protein 1</td>
<td>2.70</td>
<td>chrX</td>
</tr>
<tr>
<td>PRCC</td>
<td>5546, papillary renal cell carcinoma (translocation-associated)</td>
<td>2.19</td>
<td>chr1</td>
</tr>
<tr>
<td>PRDM10</td>
<td>56980, PR domain containing 10</td>
<td>2.22</td>
<td>chr11</td>
</tr>
<tr>
<td>PRDM14</td>
<td>63978, PR domain containing 14</td>
<td>14.71</td>
<td>chr8</td>
</tr>
<tr>
<td>PRDX1</td>
<td>5052, peroxiredoxin 1</td>
<td>2.62</td>
<td>chr1</td>
</tr>
<tr>
<td>PREP</td>
<td>5550, Prolyl endopeptidase</td>
<td>2.48</td>
<td>chr6</td>
</tr>
<tr>
<td>PRM1</td>
<td>5557, arimase, polypeptide 1, 49kDa</td>
<td>25.84</td>
<td>chr12</td>
</tr>
<tr>
<td>PRIMA1</td>
<td>145270, Proline rich mem brane anchor 1</td>
<td>4.43</td>
<td>chr14</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Change</td>
<td>Chromosome</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>PRKAA2</td>
<td>Protein kinase, AMP-activated, alpha 2 catalytic subunit</td>
<td>3.58</td>
<td>chr1</td>
</tr>
<tr>
<td>PRKAR1A</td>
<td>protein kinase, cAMP-dependent, regulatory, type I, alpha (tissue specific</td>
<td>2.65</td>
<td>chr17</td>
</tr>
<tr>
<td>PRKAR1B</td>
<td>Protein kinase, cAMP-dependent, regulatory, type I, beta</td>
<td>6.61</td>
<td>chr21</td>
</tr>
<tr>
<td>PRKAR2B</td>
<td>protein kinase, cAMP-dependent, regulatory, type II, beta</td>
<td>7.32</td>
<td>chr7</td>
</tr>
<tr>
<td>PRKCA</td>
<td>Homo sapiens, clone IMAGE:4103364, mRNA /// Protein kinase C, alpha</td>
<td>2.48</td>
<td>chr15</td>
</tr>
<tr>
<td>PRKCB1</td>
<td>protein kinase C, beta 1</td>
<td>7.43</td>
<td>chr16</td>
</tr>
<tr>
<td>PRKCBP1</td>
<td>protein kinase C binding protein 1</td>
<td>4.07</td>
<td>chr20</td>
</tr>
<tr>
<td>PRKCC</td>
<td>protein kinase C, theta</td>
<td>7.06</td>
<td>chr10</td>
</tr>
<tr>
<td>PRKCD</td>
<td>protein kinase C, zeta</td>
<td>11.48</td>
<td>chr1</td>
</tr>
<tr>
<td>PRKDK2</td>
<td>protein kinase D2</td>
<td>2.17</td>
<td>chr19</td>
</tr>
<tr>
<td>PRKDK3</td>
<td>protein kinase D3 /// protein kinase D3</td>
<td>2.05</td>
<td>chr2</td>
</tr>
<tr>
<td>PRKX</td>
<td>protein kinase, X-linked</td>
<td>4.27</td>
<td>chrX</td>
</tr>
<tr>
<td>PRKX</td>
<td>protein kinase, X-linked /// protein kinase, Y-linked</td>
<td>3.33</td>
<td>chrX</td>
</tr>
<tr>
<td>PRMT7</td>
<td>protein arginine N-methyltransferase 7</td>
<td>2.63</td>
<td>chr16</td>
</tr>
<tr>
<td>PRO1580</td>
<td>hypothetical protein PRO1580</td>
<td>3.28</td>
<td>chr5</td>
</tr>
<tr>
<td>PRO1843</td>
<td>hypothetical protein PRO1843</td>
<td>4.60</td>
<td>chr3</td>
</tr>
<tr>
<td>PRO1853</td>
<td>hypothetical protein PRO1853</td>
<td>5.29</td>
<td>chr2</td>
</tr>
<tr>
<td>PRO2852</td>
<td>hypothetical protein PRO2852</td>
<td>2.69</td>
<td>chr8</td>
</tr>
<tr>
<td>PRODH</td>
<td>proline dehydrogenase (oxidase) 1</td>
<td>7.54</td>
<td>chr22</td>
</tr>
<tr>
<td>PROM1</td>
<td>proline 1</td>
<td>54.82</td>
<td>chr4</td>
</tr>
<tr>
<td>PRPF19</td>
<td>PRPF19/PSO4 pre-mRNA processing factor 19 homolog (S. cerevisiae)</td>
<td>2.90</td>
<td>chr11</td>
</tr>
<tr>
<td>PRPF38A</td>
<td>PRPF38 pre-mRNA processing factor 38 (yeast) domain containing A</td>
<td>4.62</td>
<td>chr1</td>
</tr>
<tr>
<td>PRPF38B</td>
<td>PRPF38 pre-mRNA processing factor 38 (yeast) domain containing B</td>
<td>2.84</td>
<td>chr1</td>
</tr>
<tr>
<td>PRPF40A</td>
<td>PRPF40 pre-mRNA processing factor 40 homolog A (yeast)</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>PRPS2</td>
<td>Phosphoribosyl pyrophosphate synthetase 2</td>
<td>2.22</td>
<td>chrX</td>
</tr>
<tr>
<td>PRPSAP2</td>
<td>phosphoribosylpyrophosphate synthetase-associated protein 2</td>
<td>2.30</td>
<td>chr17</td>
</tr>
<tr>
<td>PRR6</td>
<td>proline rich 6</td>
<td>11.50</td>
<td>chr7</td>
</tr>
<tr>
<td>PRQ4</td>
<td>Proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane)</td>
<td>2.63</td>
<td>chr11</td>
</tr>
<tr>
<td>PRSS15</td>
<td>protease, serine, 15</td>
<td>2.27</td>
<td>chr19</td>
</tr>
<tr>
<td>PRSS16</td>
<td>protease, serine, 16 (thymus)</td>
<td>6.65</td>
<td>chr6</td>
</tr>
<tr>
<td>PRSS8</td>
<td>protease, serine, 8 (prostatin)</td>
<td>5.16</td>
<td>chr16</td>
</tr>
<tr>
<td>PRTG</td>
<td>Protogenin homolog (Gallus gallus)</td>
<td>9.91</td>
<td>chr15</td>
</tr>
<tr>
<td>PRUNE</td>
<td>prune homolog (Drosophila)</td>
<td>2.65</td>
<td>chr1</td>
</tr>
<tr>
<td>PSARL</td>
<td>presenilin associated, rhomboid-like</td>
<td>2.34</td>
<td>chr6</td>
</tr>
<tr>
<td>PSEN2</td>
<td>presenilin 2 (Alzheimer disease 4)</td>
<td>2.29</td>
<td>chr1</td>
</tr>
<tr>
<td>PSF1</td>
<td>DNA replication complex GINS protein PSF1</td>
<td>13.11</td>
<td>chr20</td>
</tr>
<tr>
<td>PSIP1</td>
<td>PC4 and SFRS1 interacting protein 1</td>
<td>12.30</td>
<td>chr9</td>
</tr>
<tr>
<td>PSMA2</td>
<td>proteasome (prosome, macropain) subunit, alpha, type 2</td>
<td>4.09</td>
<td>chr7</td>
</tr>
<tr>
<td>PSMA3</td>
<td>proteasome (prosome, macropain) subunit, alpha, type 3</td>
<td>2.70</td>
<td>chr14</td>
</tr>
<tr>
<td>PSMB1</td>
<td>proteasome (prosome, macropain) subunit, beta type, 1</td>
<td>2.00</td>
<td>chr6</td>
</tr>
<tr>
<td>PSMB4</td>
<td>proteasome (prosome, macropain) subunit, beta type, 4</td>
<td>2.31</td>
<td>chr1</td>
</tr>
<tr>
<td>PSMB6</td>
<td>proteasome (prosome, macropain) subunit, beta type, 6</td>
<td>2.11</td>
<td>chr17</td>
</tr>
<tr>
<td>PSMC4</td>
<td>proteasome (prosome, macropain) 26S subunit, ATPase, 4</td>
<td>2.02</td>
<td>chr19</td>
</tr>
<tr>
<td>PSMD11</td>
<td>proteasome (prosome, macropain) 26S subunit, non-ATPase, 11</td>
<td>3.40</td>
<td>chr17</td>
</tr>
<tr>
<td>PSMD3</td>
<td>proteasome (prosome, macropain) 26S subunit, non-ATPase, 3</td>
<td>2.07</td>
<td>chr17</td>
</tr>
<tr>
<td>PSME4</td>
<td>Proteasome (prosome, macropain) activator subunit 4</td>
<td>2.83</td>
<td>chr2</td>
</tr>
<tr>
<td>PSPEC1</td>
<td>Paraspeckle component 1 /// TPTE and PTEN homologous inositol lipid phospho-</td>
<td>2.35</td>
<td>chr13</td>
</tr>
<tr>
<td>PSPEC1</td>
<td>inositol lipid phospho-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSPEC1</td>
<td>374491 /// 552699 paraspeckle component 1 /// TPTE and PTEN homologous inositol lipid phospho-</td>
<td>3.73</td>
<td>chr13</td>
</tr>
<tr>
<td>PSRC1</td>
<td>proline/serine rich coiled-coil 1</td>
<td>6.19</td>
<td>chr1</td>
</tr>
<tr>
<td>PTBP1</td>
<td>polyplymidine trich binding protein 1</td>
<td>3.72</td>
<td>chr19</td>
</tr>
<tr>
<td>PTBP2</td>
<td>polyplymidine trich binding protein 2</td>
<td>4.28</td>
<td>chr1</td>
</tr>
<tr>
<td>PTCDO1</td>
<td>pentatricopeptide repeat domain 1</td>
<td>2.88</td>
<td>chr7</td>
</tr>
<tr>
<td>PTCOH</td>
<td>patched homolog (Drosophila)</td>
<td>13.40</td>
<td>chr9</td>
</tr>
<tr>
<td>PTCOH</td>
<td>patched domain containing 1</td>
<td>2.43</td>
<td>chrX</td>
</tr>
<tr>
<td>PTER</td>
<td>phosphotriesterase related</td>
<td>2.80</td>
<td>chr10</td>
</tr>
<tr>
<td>PTGES3</td>
<td>prostaglandin E synthase 3 (cytosolic)</td>
<td>3.00</td>
<td>chr2</td>
</tr>
<tr>
<td>PTMA</td>
<td>prostaglandin, alpha (gene sequence 28)</td>
<td>4.00</td>
<td>chr2</td>
</tr>
<tr>
<td>PTMA</td>
<td>441454 /// 441454 prostaglandin, alpha (gene sequence 28) /// similar to prothromosin alpha /// hypofunction</td>
<td>2.40</td>
<td>chr3</td>
</tr>
<tr>
<td>PTOV1</td>
<td>prostate tumor overexpressed gene 1</td>
<td>2.03</td>
<td>chr19</td>
</tr>
<tr>
<td>PTPMT1</td>
<td>protein tyrosine phosphatase, mitochondrial 1</td>
<td>2.52</td>
<td>chr11</td>
</tr>
<tr>
<td>PTPN2</td>
<td>protein tyrosine phosphatase, non-receptor type 2</td>
<td>5.52</td>
<td>chr13</td>
</tr>
<tr>
<td>PTPN4</td>
<td>protein tyrosine phosphatase, non-receptor type 4</td>
<td>5.52</td>
<td>chr2</td>
</tr>
<tr>
<td>PTPN5</td>
<td>protein tyrosine phosphatase, non-receptor type 5 (striatum-enriched)</td>
<td>5.93</td>
<td>chr11</td>
</tr>
<tr>
<td>PTPN6</td>
<td>protein tyrosine phosphatase, non-receptor type 6</td>
<td>4.52</td>
<td>chr12</td>
</tr>
<tr>
<td>PTPRD</td>
<td>Protein tyrosine phosphatase, receptor type, D</td>
<td>15.44</td>
<td>chr9</td>
</tr>
<tr>
<td>PTPRQ</td>
<td>Protein tyrosine phosphatase, receptor type, G</td>
<td>2.86</td>
<td>chr3</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>Chromosome</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>PTPRS</td>
<td>Protein tyrosine phosphatase, receptor type, S</td>
<td>chr9</td>
<td>2.66</td>
</tr>
<tr>
<td>PTPRZ1</td>
<td>protein tyrosine phosphatase, receptor-type, Z polypeptide 1</td>
<td>chr7</td>
<td>176.52</td>
</tr>
<tr>
<td>PTG1</td>
<td>Pituitary tumor-transforming 1</td>
<td>chr5</td>
<td>4.18</td>
</tr>
<tr>
<td>PUM2</td>
<td>Pumilio homolog 2 (Drosophila)</td>
<td>chr2</td>
<td>2.88</td>
</tr>
<tr>
<td>PUNC</td>
<td>Putative neuronal cell adhesion molecule</td>
<td>chr15</td>
<td>9.73</td>
</tr>
<tr>
<td>PUS1</td>
<td>Pseudouridylate synthase 1</td>
<td>chr12</td>
<td>5.16</td>
</tr>
<tr>
<td>PUS3</td>
<td>Pseudouridylate synthase 3 // pseudouridylate synthase 3</td>
<td>chr11</td>
<td>2.33</td>
</tr>
<tr>
<td>PWP2H</td>
<td>PWP2 periodic tryptophan protein homolog (yeast)</td>
<td>chr21</td>
<td>5.31</td>
</tr>
<tr>
<td>PX19</td>
<td>px19-like protein</td>
<td>chr1</td>
<td>2.81</td>
</tr>
<tr>
<td>PYCARD</td>
<td>PYD and CARD domain containing</td>
<td>chr16</td>
<td>5.75</td>
</tr>
<tr>
<td>PYCR2</td>
<td>Pyrimidine-5-carboxylate reductase family, member 2</td>
<td>chr1</td>
<td>3.58</td>
</tr>
<tr>
<td>QPRT</td>
<td>Quinoline phosphate/transferase (nicotinate-nucleotide pyrophosphorylase)</td>
<td>chr16</td>
<td>3.98</td>
</tr>
<tr>
<td>QRSL1</td>
<td>Glutaminyl-tRNA synthase (glutamine-hydrolyzing)-like 1</td>
<td>chr6</td>
<td>3.82</td>
</tr>
<tr>
<td>QTRT1</td>
<td>Queuine tRNA-ribosyltransferase 1 (tRNA-guanine transglycosylase) 1 // queuine tRNA-ribosyltransferase 1 (tRNA-guanine transglycosylase)</td>
<td>chr19</td>
<td>2.77</td>
</tr>
<tr>
<td>QTRTD1</td>
<td>Queuine tRNA-ribosyltransferase domain containing 1</td>
<td>chr3</td>
<td>5.44</td>
</tr>
<tr>
<td>RAB11FIP4</td>
<td>Rab11 family interacting protein 4 (class II)</td>
<td>chr17</td>
<td>7.60</td>
</tr>
<tr>
<td>RAB12</td>
<td>Rab12, member RAS oncogene family</td>
<td>chr18</td>
<td>4.81</td>
</tr>
<tr>
<td>RAB15</td>
<td>Rab15, member RAS oncogene family</td>
<td>chr14</td>
<td>7.10</td>
</tr>
<tr>
<td>RAB20</td>
<td>Rab20, member RAS oncogene family</td>
<td>chr13</td>
<td>7.07</td>
</tr>
<tr>
<td>RAB25</td>
<td>Rab25, member RAS oncogene family</td>
<td>chr1</td>
<td>6.71</td>
</tr>
<tr>
<td>RAB38</td>
<td>Rab38, member RAS oncogene family</td>
<td>chr11</td>
<td>11.31</td>
</tr>
<tr>
<td>RAB39B</td>
<td>Rab39B, member RAS oncogene family</td>
<td>chrX</td>
<td>5.31</td>
</tr>
<tr>
<td>RAB3D</td>
<td>Rab3D, member RAS oncogene family</td>
<td>chr19</td>
<td>4.14</td>
</tr>
<tr>
<td>RAB3IP</td>
<td>Rab3A interacting protein (rabin3)</td>
<td>chr12</td>
<td>4.41</td>
</tr>
<tr>
<td>RAB6B</td>
<td>Rab6B, member RAS oncogene family</td>
<td>chr3</td>
<td>2.41</td>
</tr>
<tr>
<td>RAB9A</td>
<td>Rab9A, member RAS oncogene family</td>
<td>chrX</td>
<td>2.28</td>
</tr>
<tr>
<td>RASGAP1L</td>
<td>Rab GTPase activating protein 1-like</td>
<td>chr1</td>
<td>11.26</td>
</tr>
<tr>
<td>RABL4</td>
<td>Rab, member RAS oncogene family-like 4</td>
<td>chr22</td>
<td>2.51</td>
</tr>
<tr>
<td>RACGP1</td>
<td>Rac GTPase activating protein 1</td>
<td>chr12</td>
<td>2.02</td>
</tr>
<tr>
<td>RAD17</td>
<td>Rad17 homolog (S. pombe)</td>
<td>chr5</td>
<td>2.44</td>
</tr>
<tr>
<td>RAD23B</td>
<td>Rad23 homolog B (S. cerevisiae)</td>
<td>chr9</td>
<td>2.03</td>
</tr>
<tr>
<td>RAD50</td>
<td>Rad50 homolog (S. cerevisiae)</td>
<td>chr5</td>
<td>3.34</td>
</tr>
<tr>
<td>RAD51</td>
<td>Rad51 homolog (RecA homolog, E. coli) (S. cerevisiae)</td>
<td>chr15</td>
<td>7.17</td>
</tr>
<tr>
<td>RAD51A1P</td>
<td>Rad51 associated protein 1</td>
<td>chr12</td>
<td>9.26</td>
</tr>
<tr>
<td>RAD54B</td>
<td>Rad54 homolog B (S. cerevisiae)</td>
<td>chr8</td>
<td>3.48</td>
</tr>
<tr>
<td>RAD54L</td>
<td>Rad54-like (S. cerevisiae)</td>
<td>chr1</td>
<td>5.69</td>
</tr>
<tr>
<td>RAE1</td>
<td>Rae1 RNA export 1 homolog (S. pombe)</td>
<td>chr20</td>
<td>2.45</td>
</tr>
<tr>
<td>RAF1</td>
<td>Raf-1, murine leukemia viral oncogene homolog 1</td>
<td>chr3</td>
<td>2.51</td>
</tr>
<tr>
<td>RALGPS1</td>
<td>Raf GEF with PH domain and SH3 binding motif 1</td>
<td>chr9</td>
<td>3.24</td>
</tr>
<tr>
<td>RAN</td>
<td>Ran, member RAS oncogene family</td>
<td>chr6</td>
<td>2.42</td>
</tr>
<tr>
<td>RANBP1</td>
<td>Ran binding protein 1</td>
<td>chr22</td>
<td>4.44</td>
</tr>
<tr>
<td>RANBP2</td>
<td>Ran binding protein 2</td>
<td>chr2</td>
<td>3.58</td>
</tr>
<tr>
<td>RANBP5</td>
<td>Ran binding protein 5</td>
<td>chr13</td>
<td>2.48</td>
</tr>
<tr>
<td>RANGAP1</td>
<td>Ran GTPase activating protein 1</td>
<td>chr22</td>
<td>2.86</td>
</tr>
<tr>
<td>RANGNFR</td>
<td>Ran guanine nucleotide release factor</td>
<td>chr17</td>
<td>2.81</td>
</tr>
<tr>
<td>RAPGEF5</td>
<td>Rap guanine nucleotide exchange factor (GEF) 5</td>
<td>chr7</td>
<td>5.10</td>
</tr>
<tr>
<td>RARRES2</td>
<td>Retinoic acid receptor resporer (tazarotene induced) 2</td>
<td>chr7</td>
<td>76.23</td>
</tr>
<tr>
<td>RASEF</td>
<td>Ras and EF-hand domain containing</td>
<td>chr9</td>
<td>13.45</td>
</tr>
<tr>
<td>RASGEF1A</td>
<td>RasGEF domain family, member 1A</td>
<td>chr10</td>
<td>22.42</td>
</tr>
<tr>
<td>RASGEF1B</td>
<td>RasGEF domain family, member 1B</td>
<td>chr4</td>
<td>3.18</td>
</tr>
<tr>
<td>RASGRP2</td>
<td>Ras guanyl releasing protein 2 (calcium and DAG-regulated)</td>
<td>chr11</td>
<td>2.89</td>
</tr>
<tr>
<td>RASIP1</td>
<td>Ras interacting protein 1</td>
<td>chr19</td>
<td>2.03</td>
</tr>
<tr>
<td>RASL1B</td>
<td>Ras-like, family 11, member B</td>
<td>chr4</td>
<td>28.53</td>
</tr>
<tr>
<td>RASL12</td>
<td>Ras-like, family 12</td>
<td>chr15</td>
<td>2.14</td>
</tr>
<tr>
<td>RASSF2</td>
<td>Ras association (RagDGS/AF-6) domain family 2</td>
<td>chr20</td>
<td>2.22</td>
</tr>
<tr>
<td>RB1CC1</td>
<td>RB1-inducible coiled-coil 1</td>
<td>chr8</td>
<td>2.90</td>
</tr>
<tr>
<td>RBB4</td>
<td>Retinoblastoma binding protein 4</td>
<td>chr1</td>
<td>3.31</td>
</tr>
<tr>
<td>RBBP6</td>
<td>Retinoblastoma binding protein 6</td>
<td>chr16</td>
<td>3.00</td>
</tr>
<tr>
<td>RBBP7</td>
<td>Retinoblastoma binding protein 7</td>
<td>chrX</td>
<td>6.06</td>
</tr>
<tr>
<td>RBBP8</td>
<td>Retinoblastoma binding protein 8</td>
<td>chr18</td>
<td>4.19</td>
</tr>
<tr>
<td>RBM10</td>
<td>RNA binding motif protein 10</td>
<td>chrX</td>
<td>3.51</td>
</tr>
<tr>
<td>RBM12</td>
<td>RNA binding motif protein 12</td>
<td>chr20</td>
<td>3.28</td>
</tr>
<tr>
<td>RBM12B</td>
<td>RNA binding motif protein 12B</td>
<td>chr8</td>
<td>3.78</td>
</tr>
<tr>
<td>RBM13</td>
<td>RNA binding motif protein 13 // RNA binding motif protein 13</td>
<td>chr8</td>
<td>2.75</td>
</tr>
<tr>
<td>RBM14</td>
<td>RNA binding motif protein 14</td>
<td>chr11</td>
<td>4.85</td>
</tr>
<tr>
<td>RBM15</td>
<td>RNA binding motif protein 15</td>
<td>chr9</td>
<td>2.87</td>
</tr>
<tr>
<td>RBM15B</td>
<td>RNA binding motif protein 15B</td>
<td>chr3</td>
<td>2.72</td>
</tr>
</tbody>
</table>
Table S5: Genes downregulated in MPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBM17</td>
<td>2.98</td>
<td>chr10</td>
</tr>
<tr>
<td>RBM19</td>
<td>2.45</td>
<td>chr12</td>
</tr>
<tr>
<td>RBM25</td>
<td>3.43</td>
<td>chr14</td>
</tr>
<tr>
<td>RBM27</td>
<td>2.61</td>
<td>chr5</td>
</tr>
<tr>
<td>RBM28</td>
<td>2.43</td>
<td>chr7</td>
</tr>
<tr>
<td>RBM35A</td>
<td>119.95</td>
<td>chr8</td>
</tr>
<tr>
<td>RBM35B</td>
<td>9.27</td>
<td>chr16</td>
</tr>
<tr>
<td>RBM4</td>
<td>2.16</td>
<td>chr11</td>
</tr>
<tr>
<td>RBM6</td>
<td>3.27</td>
<td>chr3</td>
</tr>
<tr>
<td>RBM8A</td>
<td>3.52</td>
<td>chr1</td>
</tr>
<tr>
<td>RbxMXL1</td>
<td>4.34</td>
<td>chr9</td>
</tr>
<tr>
<td>RBP1</td>
<td>2.39</td>
<td>chr1</td>
</tr>
<tr>
<td>RBP7</td>
<td>4.50</td>
<td>chr3</td>
</tr>
<tr>
<td>RBPMS</td>
<td>5.28</td>
<td>chr8</td>
</tr>
<tr>
<td>RBPMS2</td>
<td>85.61</td>
<td>chr15</td>
</tr>
<tr>
<td>RBPUSH</td>
<td>3.12</td>
<td>chr4</td>
</tr>
<tr>
<td>RC74</td>
<td>3.24</td>
<td>chr8</td>
</tr>
<tr>
<td>RBCTB2</td>
<td>2.16</td>
<td>chr13</td>
</tr>
<tr>
<td>RCC1</td>
<td>7.95</td>
<td>chr1</td>
</tr>
<tr>
<td>RCC2</td>
<td>5.22</td>
<td>chr11</td>
</tr>
<tr>
<td>RCHY1</td>
<td>3.38</td>
<td>chr4</td>
</tr>
<tr>
<td>RCL1</td>
<td>2.62</td>
<td>chr9</td>
</tr>
<tr>
<td>RCor2</td>
<td>6.56</td>
<td>chr11</td>
</tr>
<tr>
<td>RDH13</td>
<td>3.30</td>
<td>chr19</td>
</tr>
<tr>
<td>RECL1</td>
<td>9.34</td>
<td>chr14</td>
</tr>
<tr>
<td>RECL4</td>
<td>6.26</td>
<td>chr8</td>
</tr>
<tr>
<td>REPS1</td>
<td>2.78</td>
<td>chr6</td>
</tr>
<tr>
<td>RERE</td>
<td>2.68</td>
<td>chr1</td>
</tr>
<tr>
<td>RET</td>
<td>3.04</td>
<td>chr10</td>
</tr>
<tr>
<td>REXO4</td>
<td>2.52</td>
<td>chr9</td>
</tr>
<tr>
<td>RFC2</td>
<td>4.41</td>
<td>chr7</td>
</tr>
<tr>
<td>RFC3</td>
<td>5.20</td>
<td>chr13</td>
</tr>
<tr>
<td>RFC4</td>
<td>7.31</td>
<td>chr3</td>
</tr>
<tr>
<td>RFC5</td>
<td>4.76</td>
<td>chr12</td>
</tr>
<tr>
<td>RFP2</td>
<td>2.82</td>
<td>chr13</td>
</tr>
<tr>
<td>RFT1</td>
<td>2.74</td>
<td>chr3</td>
</tr>
<tr>
<td>RFWD3</td>
<td>4.61</td>
<td>chr16</td>
</tr>
<tr>
<td>RFX3</td>
<td>2.83</td>
<td>chr9</td>
</tr>
<tr>
<td>RFXAP</td>
<td>2.30</td>
<td>chr13</td>
</tr>
<tr>
<td>RFXDC2</td>
<td>2.26</td>
<td>chr15</td>
</tr>
<tr>
<td>RG9MTD1</td>
<td>3.76</td>
<td>chr3</td>
</tr>
<tr>
<td>RGL3</td>
<td>2.13</td>
<td>chr19</td>
</tr>
<tr>
<td>RGS17</td>
<td>3.30</td>
<td>chr6</td>
</tr>
<tr>
<td>RHBDL4</td>
<td>2.24</td>
<td>chr17</td>
</tr>
<tr>
<td>RHEB</td>
<td>2.07</td>
<td>chr7</td>
</tr>
<tr>
<td>RHC72</td>
<td>3.02</td>
<td>chr16</td>
</tr>
<tr>
<td>RHPN2</td>
<td>6.35</td>
<td>chr16</td>
</tr>
<tr>
<td>RICS</td>
<td>3.57</td>
<td>chr11</td>
</tr>
<tr>
<td>RIF1</td>
<td>4.62</td>
<td>chr2</td>
</tr>
<tr>
<td>RIMS2</td>
<td>6.68</td>
<td>chr8</td>
</tr>
<tr>
<td>RIMS3</td>
<td>9.28</td>
<td>chr1</td>
</tr>
<tr>
<td>RICK1</td>
<td>2.42</td>
<td>chr6</td>
</tr>
<tr>
<td>RIP</td>
<td>2.17</td>
<td>chr17</td>
</tr>
<tr>
<td>RIPK4</td>
<td>2.90</td>
<td>chr21</td>
</tr>
<tr>
<td>RLFL</td>
<td>2.42</td>
<td>chr1</td>
</tr>
<tr>
<td>RMST</td>
<td>6.98</td>
<td>chr12</td>
</tr>
<tr>
<td>RNASEH2A</td>
<td>9.22</td>
<td>chr19</td>
</tr>
<tr>
<td>RNASEN</td>
<td>2.40</td>
<td>chr5</td>
</tr>
<tr>
<td>RN1D</td>
<td>2.96</td>
<td>chr19</td>
</tr>
<tr>
<td>RN2D</td>
<td>8.85</td>
<td>chr17</td>
</tr>
<tr>
<td>RNF10</td>
<td>5.28</td>
<td>chr12</td>
</tr>
<tr>
<td>RNF125</td>
<td>3.99</td>
<td>chr18</td>
</tr>
<tr>
<td>RNF130</td>
<td>3.52</td>
<td>chr5</td>
</tr>
<tr>
<td>RNF138</td>
<td>5.66</td>
<td>chr18</td>
</tr>
<tr>
<td>RNF175</td>
<td>7.07</td>
<td>chr4</td>
</tr>
<tr>
<td>RNF184</td>
<td>2.83</td>
<td>chr3</td>
</tr>
</tbody>
</table>
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Transcript Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNF26</td>
<td>ring finger protein 26</td>
<td>3.54</td>
<td>chr11</td>
</tr>
<tr>
<td>RNF38</td>
<td>ring finger protein 38</td>
<td>2.88</td>
<td>chr9</td>
</tr>
<tr>
<td>RNF44</td>
<td>ring finger protein 44</td>
<td>6.28</td>
<td>chr5</td>
</tr>
<tr>
<td>RNF5</td>
<td>ring finger protein 5</td>
<td>2.82</td>
<td>chr6</td>
</tr>
<tr>
<td>RNF8</td>
<td>ring finger protein 8</td>
<td>3.38</td>
<td>chr6</td>
</tr>
<tr>
<td>RNMTL1</td>
<td>RNA methyltransferase 1</td>
<td>2.41</td>
<td>chr17</td>
</tr>
<tr>
<td>RNPC2</td>
<td>RNA-binding region (RN1, RRM) containing 2</td>
<td>2.00</td>
<td>chr20</td>
</tr>
<tr>
<td>RNPS1</td>
<td>RNA binding protein S1, serine-rich domain</td>
<td>2.81</td>
<td>chr4</td>
</tr>
<tr>
<td>RNUB2</td>
<td>RNA, U22 small nucleolar</td>
<td>4.21</td>
<td>chr11</td>
</tr>
<tr>
<td>RNUSP2</td>
<td>RNA, U3 small nuclear interacting protein 2</td>
<td>4.43</td>
<td>chr3</td>
</tr>
<tr>
<td>RNUA4</td>
<td>RNA, U47 small nuclear</td>
<td>2.22</td>
<td>chr1</td>
</tr>
<tr>
<td>ROR1</td>
<td>receptor tyrosine kinase-like orphan receptor 1</td>
<td>7.53</td>
<td>chr1</td>
</tr>
<tr>
<td>RORA</td>
<td>RAR-related orphan receptor A</td>
<td>2.80</td>
<td>chr15</td>
</tr>
<tr>
<td>RP1-112K5.2</td>
<td>hypothetical protein DT1P1A10</td>
<td>2.20</td>
<td>chrX</td>
</tr>
<tr>
<td>RP11-311P8.3</td>
<td>hypothetical protein MGC23937 similar to CG4798</td>
<td>2.41</td>
<td>chrX</td>
</tr>
<tr>
<td>RP11-50D16.2</td>
<td>Similar to RIKEN cDNA 8030451K01</td>
<td>2.67</td>
<td>chr13</td>
</tr>
<tr>
<td>RPA1</td>
<td>replication protein A1, 70kDa</td>
<td>2.84</td>
<td>chr17</td>
</tr>
<tr>
<td>RPA2</td>
<td>replication protein A2, 32kDa</td>
<td>4.11</td>
<td>chr1</td>
</tr>
<tr>
<td>RPA3</td>
<td>replication protein A3, 14kDa</td>
<td>6.57</td>
<td>chr7</td>
</tr>
<tr>
<td>RPA1P1</td>
<td>RNA polymerase II associated protein 1</td>
<td>2.62</td>
<td>chr15</td>
</tr>
<tr>
<td>RPL18A</td>
<td>ribosomal protein L18a // similar to ribosomal protein L18a; 60S ribosomal protein</td>
<td>2.20</td>
<td>chr1</td>
</tr>
<tr>
<td>RPL39L</td>
<td>ribosomal protein L39-like</td>
<td>3.02</td>
<td>chr3</td>
</tr>
<tr>
<td>RP3P0</td>
<td>ribonuclease P/MRP 30kDa subunit</td>
<td>3.40</td>
<td>chr10</td>
</tr>
<tr>
<td>RP3P8</td>
<td>ribonuclease P/MRP 38kDa subunit</td>
<td>2.18</td>
<td>chr10</td>
</tr>
<tr>
<td>RP4P0</td>
<td>ribonuclease P 40kDa subunit</td>
<td>2.42</td>
<td>chr6</td>
</tr>
<tr>
<td>RPRM</td>
<td>reprimor, TP53 dependent G2 arrest mediator candidate</td>
<td>5.85</td>
<td>chr2</td>
</tr>
<tr>
<td>RPS21</td>
<td>ribosomal protein S21</td>
<td>2.23</td>
<td>chr1</td>
</tr>
<tr>
<td>RPS24</td>
<td>ribosomal protein S24</td>
<td>2.43</td>
<td>chr10</td>
</tr>
<tr>
<td>RPS6</td>
<td>ribosomal protein S6</td>
<td>5.12</td>
<td>chr9</td>
</tr>
<tr>
<td>RPS6K6A1</td>
<td>ribosomal protein S6 kinase, 90kDa, polypeptide 1</td>
<td>5.70</td>
<td>chr1</td>
</tr>
<tr>
<td>RPS6K5A5</td>
<td>ribosomal protein S6 kinase, 90kDa, polypeptide 5</td>
<td>2.03</td>
<td>chr14</td>
</tr>
<tr>
<td>RPS7</td>
<td>ribosomal protein S7 // ribosomal protein S7</td>
<td>2.01</td>
<td>chr2</td>
</tr>
<tr>
<td>RPUSD2</td>
<td>RNA pseudouridylate synthase domain containing 2</td>
<td>3.38</td>
<td>chr15</td>
</tr>
<tr>
<td>RPUSD3</td>
<td>RNA pseudouridylate synthase domain containing 3</td>
<td>2.49</td>
<td>chr3</td>
</tr>
<tr>
<td>RPUSD4</td>
<td>RNA pseudouridylate synthase domain containing 4</td>
<td>3.89</td>
<td>chr11</td>
</tr>
<tr>
<td>RQCD1</td>
<td>RCD1 required for cell differentiation1 homolog (S. pombe)</td>
<td>3.02</td>
<td>chr2</td>
</tr>
<tr>
<td>RRAGD</td>
<td>Ras-related GTP binding D</td>
<td>12.61</td>
<td>chr6</td>
</tr>
<tr>
<td>RPEB1</td>
<td>Ras responsive element binding protein 1</td>
<td>2.08</td>
<td>chr6</td>
</tr>
<tr>
<td>RRMI</td>
<td>ribonucleotide reductase M1 polypeptide</td>
<td>2.75</td>
<td>chr11</td>
</tr>
<tr>
<td>RM2</td>
<td>ribonucleotide reductase M2 polypeptide</td>
<td>7.19</td>
<td>chr2</td>
</tr>
<tr>
<td>RRS1</td>
<td>RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)</td>
<td>5.48</td>
<td>chr8</td>
</tr>
<tr>
<td>RSB1N1</td>
<td>Round spermatid basic protein 1-like</td>
<td>2.14</td>
<td>chr7</td>
</tr>
<tr>
<td>RSC1A1</td>
<td>regulatory solute carrier protein, family 1, member 1</td>
<td>3.74</td>
<td>chr1</td>
</tr>
<tr>
<td>RSRC1</td>
<td>arginine/serine-rich coiled-coil 1</td>
<td>2.44</td>
<td>chr3</td>
</tr>
<tr>
<td>RTKN</td>
<td>rhotekin</td>
<td>2.79</td>
<td>chr2</td>
</tr>
<tr>
<td>RTN1</td>
<td>reticulin 1</td>
<td>3.45</td>
<td>chr14</td>
</tr>
<tr>
<td>RTTN</td>
<td>retin</td>
<td>2.22</td>
<td>chr18</td>
</tr>
<tr>
<td>RUNX1T1</td>
<td>Runx-related transcription factor 1; translocated to, 1 (cyclin D-related)</td>
<td>4.66</td>
<td>chr8</td>
</tr>
<tr>
<td>RUNV1L1</td>
<td>RuvB-like 1 (E. coli)</td>
<td>3.17</td>
<td>chr9</td>
</tr>
<tr>
<td>RUNV2L2</td>
<td>RuvB-like 2 (E. coli)</td>
<td>2.17</td>
<td>chr19</td>
</tr>
<tr>
<td>RYBP</td>
<td>RING1 and Y11 binding protein</td>
<td>5.13</td>
<td>chr3</td>
</tr>
<tr>
<td>RYR1</td>
<td>Ryandine receptor 1 (skeletal)</td>
<td>2.89</td>
<td>chr14</td>
</tr>
<tr>
<td>S100PBP1</td>
<td>S100P binding protein Riken</td>
<td>3.01</td>
<td>chr1</td>
</tr>
<tr>
<td>SAC3D1</td>
<td>SAC3 domain containing 1</td>
<td>2.22</td>
<td>chr11</td>
</tr>
<tr>
<td>SAE1</td>
<td>SUMO-1 activating enzyme subunit 1</td>
<td>2.16</td>
<td>chr11</td>
</tr>
<tr>
<td>SAFB</td>
<td>scaffold attachment factor B</td>
<td>3.67</td>
<td>chr19</td>
</tr>
<tr>
<td>SALL1</td>
<td>sal-like 1 (Drosophila)</td>
<td>5.39</td>
<td>chr16</td>
</tr>
<tr>
<td>SALL2</td>
<td>sal-like 2 (Drosophila)</td>
<td>16.27</td>
<td>chr14</td>
</tr>
<tr>
<td>SALL4</td>
<td>sal-like 4 (Drosophila)</td>
<td>162.24</td>
<td>chr20</td>
</tr>
<tr>
<td>SAMD6</td>
<td>sterile alpha motif domain containing 6</td>
<td>3.85</td>
<td>chr9</td>
</tr>
<tr>
<td>SAMHD1</td>
<td>SAM domain and HD domain 1</td>
<td>7.17</td>
<td>chr20</td>
</tr>
<tr>
<td>SANG</td>
<td>GNAT1 antisense</td>
<td>3.77</td>
<td>chr20</td>
</tr>
<tr>
<td>SAP130</td>
<td>mSin3A-associated protein 130</td>
<td>2.53</td>
<td>chr2</td>
</tr>
<tr>
<td>SAP18</td>
<td>sin3-associated polypeptide, 18kDa</td>
<td>2.63</td>
<td>chr13</td>
</tr>
<tr>
<td>SAP30</td>
<td>sin3-associated polypeptide, 30kDa</td>
<td>2.66</td>
<td>chr4</td>
</tr>
<tr>
<td>SAPS3</td>
<td>SAPS domain family, member 3</td>
<td>3.88</td>
<td>chr11</td>
</tr>
<tr>
<td>SAPS2</td>
<td>seryl-RNA synthetase 2</td>
<td>3.45</td>
<td>chr19</td>
</tr>
</tbody>
</table>
SART3 9733 squamous cell carcinoma antigen recognised by T cells 3 // squamous cell carcinoma antigen 3 4.60 chr12
SASS6 163786 spindle assembly 6 homolog (C. elegans) 2.46 chr1
SATB1 6304 special AT-rich sequence binding protein 1 (binds to nuclear matrix/scaffold-associated protein 1) 3.11 chr3
SAY1 60485 salivary homolog 1 (Drosophila) 2.08 chr14
SBK1 388228 SH3-binding domain kinase 1 28.31 chr16
SBNO1 55206 Sno, strawberry notch homolog 1 (Drosophila) 2.08 chr12
SC5DL 6309 sterol-CS-desaturase (ERG3 delta-5-desaturase homolog, fungal-like) 2.49 chr11
SCAMP5 192683 secretory carrier membrane protein 5 3.83 chr15
SCAND1 51282 SCAN domain containing 1 2.49 chr20
SCAP 22937 SREBP cleavage-activating protein 4.16 chr3
SCD 6319 stearyl-CoA desaturase (delta-9-desaturase) // stearyl-CoA desaturase (delta-9) 4.64 chr10
SCG3 29106 secretogranin III 21.28 chr15
SCGB3A2 117156 secretoglobin, family 3A, member 2 16.94 chr5
SCLY 51540 selenocysteine lyase 3.60 chr2
SCNN1A 6337 sodium channel, nonvoltage-gated 1 alpha 63.47 chr12
SCNN1G 6340 sodium channel, nonvoltage-gated 1, gamma 2.17 chr16
SC01 6341 SCO cytochrome oxidase deficient homolog 1 (yeast) 2.67 chr17
SDAD1 55153 SOAT1 domain containing 1 2.35 chr4
SDCAG8 10293 serologically defined colon cancer antigen 3 // serologically defined colon cancer antigen 3 2.55 chr9
SDHC 6391 succinate dehydrogenase complex, subunit C, integral membrane protein, 15KD 2.05 chr1
SEC11L1 23478 SEC11-like 1 (S. cerevisiae) 2.40 chr8
SEC11L3 90701 SEC11-like 3 (S. cerevisiae) 2.96 chr18
SEC14L5 9171 SEC14-like 5 (S. cerevisiae) 2.13 chr16
SEC22L3 9117 SEC22 vesicle trafficking protein-like 3 (S. cerevisiae) // SEC22 vesicle trafficking protein-like 3 3.01 chr3
SEC5L1 55770 SEC5-like 1 (S. cerevisiae) 2.21 chr6
SEC61A2 55176 Sec61 alpha 2 subunit (S. cerevisiae) 3.11 chr10
SEC5BP2 79048 SEC61 binding protein 2 5.82 chr9
SEC43 54952 sRNA selenocysteine-activating protein 2.70 chr1
SEHIL 81929 SEH1-like (S. cerevisiae) 2.41 chr18
SELI 85465 selenoprotein I 2.75 chr2
SEMA3F 6405 sema domain, immunoglobulin domain (ig), short basic domain, secreted, (sema domain, immunoglobulin domain (ig), short basic domain, secreted) 8.60 chr3
SEMA4C 54910 sema domain, immunoglobulin domain (ig), transmembrane domain (TM) and 8.77 chr2
SEMA4D 10507 sema domain, immunoglobulin domain (ig), transmembrane domain (TM) and 8.77 chr9
SEMA5B 54437 sema domain, seven transmembrane repeats (type 1 and type 1-like), transmembrane domain (TM) and 3.24 chr3
SEMA6A 57556 sema domain, transmembrane domain (TM), and cytoplasmic domain, (sema domain, transmembrane domain (TM), and cytoplasmic domain) 114.93 chr5
SENP2 59433 SUMO1/sumo/SMT3 specific peptidase 2 2.33 chr3
SENP3 26168 SUMO1/sumo/SMT3 specific peptidase 3 2.38 chr17
SENP6 26054 SUMO1/sumo/SMT3 specific peptidase 6 3.15 chr6
SEPHS1 123228 SUMO/sumo specific peptidase family member 8 2.52 chr15
SFN 22929 Selenophosphate synthetase 1 27.72 chr2
SERBP1 62315 SERPINE1 mRNA binding protein 1 4.31 chr1
SERF1A 8293 small EDRK-rich factor 1A (telomeric) 3.05 chr5
SERF1B 56617 // 8293 small EDRK-rich factor 1A (telomeric) // small EDRK-rich factor 1B (centromeric) 6.49 chr5
SERF2 10169 // 25764 small EDRK-rich factor 2 // Huntingtin interacting protein K 2.61 chr15
SERPINB6 5269 serpin peptidase inhibitor, clade B (ovabinulin), member 6 13.45 chr1
SERPINB9 5272 serpin peptidase inhibitor, clade B (ovabinulin), member 9 7.56 chr6
SERPINI1 5274 serpin peptidase inhibitor, clade I (neuroserpin), member 1 4.85 chr3
SET 6418 SET translocation (myeloid leukemia-associated) 4.73 chr1
SET 389168 // 6418 SET translocation (myeloid leukemia-associated) // similar to SET protein (Phosphoprotein regulated by SET1A) 4.83 chrX
SETDB1 9869 SET domain, bifurcated 1 2.45 chr1
SDF1 7536 splicing factor 1 3.06 chr11
SDF2 10291 splicing factor 3a, subunit 1, 120KDa 2.02 chr22
SDF3A2 8715 splicing factor 3a, subunit 2, 66KDa 3.18 chr19
SDF3A3 10946 splicing factor 3a, subunit 3, 60KDa 2.47 chr1
SDF3B1 23451 splicing factor 3b, subunit 1, 155KDa 3.54 chr2
SDF3B3 23450 splicing factor 3b, subunit 3, 130KDa 2.34 chr16
SFMBT1 51460 Scm-like with four mbd domains 1 5.51 chr3
SFMBT2 57713 Scm-like with four mbd domains 2 2.37 chr10
SFN 2810 straflin 6.90 chr1
SFPQ 6421 Splicing factor proline/glutamine-rich (polypyrimidine tract binding protein associated) 3.61 chr1
SFRP2 6423 secreted frizzled-related protein 2 113.98 chr4
SFRS1 6426 Splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate splicing factor) 4.65 chr17
SFRS10 6434 splicing factor, arginine/serine-rich 10 (transformer 2 homolog, Drosophila) 3.15 chr3
SFRS12 140890 Splicing factor, arginine/serine-rich 12 2.11 chr5
SFRS15 57466 splicing factor, arginine/serine-rich 15 2.82 chr21
SFRS2 6427 splicing factor, arginine/serine-rich 2 3.19 chr17
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

<p>| Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; p < 0.05) |
|---------------------------------|-----------------|-----------------|
| SFRS3 | 6428 | 3.82 |
| SFRS4 | 6429 | 2.19 |
| SFRS5 | 6430 | 2.09 |
| SFRS7 | 6432 | 6.09 |
| SFT2D1 | 113402 | 2.23 |
| SXN2 | 118980 | 3.66 |
| SXNXS | 94097 | 2.09 |
| SGEF | 26084 | 6.00 |
| SGEI1 | 6447 | 2.70 |
| SGOL2 | 151246 | 3.78 |
| STAG | 6449 | 2.22 |
| SHGL2 | 6456 | 4.09 |
| SHGGL3 | 6457 | 3.72 |
| SHANK2 | 22941 | 8.11 |
| SHMT1 | 6470 | 3.69 |
| SNP1 | 257218 | 3.64 |
| SIAH1 | 6477 | 2.52 |
| SIAHBP1 | 22827 | 2.00 |
| SIGIRR | 59307 | 3.44 |
| SIL | 6491 | 4.52 |
| SILV | 6490 | 30.56 |
| SNS3A | 25942 | 3.15 |
| SIP1 | 8487 | 2.35 |
| SIPA1L2 | 57568 | 3.70 |
| SIRT1 | 23411 | 6.15 |
| SIRT5 | 23408 | 2.69 |
| SITPEC | 51295 | 2.73 |
| SNA | 10572 | 3.49 |
| SKB1 | 10419 | 2.09 |
| SKIL | 6498 | 2.26 |
| SKIV2L2 | 23517 | 3.94 |
| SKP2 | 6502 | 8.02 |
| SLC11A2 | 4891 | 4.97 |
| SLC12A9 | 56996 | 2.21 |
| SLC15A4 | 121260 | 2.21 |
| SLC16A1 | 6566 | 7.32 |
| SLC16A10 | 117247 | 20.68 |
| SLC16A4 | 9122 | 6.68 |
| SLC16A9 | 220963 | 21.54 |
| SLC19A1 | 6573 | 2.27 |
| SLC19A2 | 10560 | 4.38 |
| SLC1A2 | 6506 | 2.30 |
| SLC1A6 | 6511 | 30.29 |
| SLC24A3 | 57419 | 2.69 |
| SLC25A13 | 10165 | 5.65 |
| SLC25A15 | 10166 | 3.06 |
| SLC25A19 | 65386 | 5.05 |
| SLC25A21 | 89974 | 3.13 |
| SLC25A29 | 112386 | 2.67 |
| SLC25A37 | 123096 | 3.93 |
| SLC25A4 | 51312 | 2.15 |
| SLC25A5 | 291 | 3.21 |
| SLC26A6 | 65010 | 2.77 |
| SLC27A2 | 11001 | 5.76 |
| SLC27A3 | 11000 | 10.12 |
| SLC27A5 | 10998 | 2.54 |
| SLC29A1 | 2030 | 7.02 |
| SLC29A2 | 3177 | 2.26 |
| SLC29A3 | 53515 | 2.37 |
| SLC2A3 | 6515 | 10.38 |
| SLC2A3 144195 /// 6515 | 23512 | 7.96 |
| SLC35B4 | 84912 | 2.14 |
| SLC35F1 | 222553 | 9.40 |
| SLC37A1 | 54020 | 2.87 |
| SLC37A4 | 2542 | 2.39 |
| SLC38A1 | 81539 | 2.97 |</p>
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC38A5</td>
<td>Solute Carrier Family 38, Member 5</td>
<td>X</td>
</tr>
<tr>
<td>SLC39A1</td>
<td>Solute Carrier Family 39 (Zinc Transporter), Member 1</td>
<td>1</td>
</tr>
<tr>
<td>SLC39A10</td>
<td>Solute Carrier Family 39 (Zinc Transporter), Member 10</td>
<td>2</td>
</tr>
<tr>
<td>SLC39A8</td>
<td>Solute Carrier Family 39 (Zinc Transporter), Member 8</td>
<td>4</td>
</tr>
<tr>
<td>SLC43A1</td>
<td>Solute Carrier Family 43, Member 1</td>
<td>11</td>
</tr>
<tr>
<td>SLC43A3</td>
<td>Solute Carrier Family 43, Member 3</td>
<td>11</td>
</tr>
<tr>
<td>SLC44A1</td>
<td>Solute Carrier Family 44, Member 1</td>
<td>11</td>
</tr>
<tr>
<td>SLC45A4</td>
<td>Solute Carrier Family 45, Member 4</td>
<td>12</td>
</tr>
<tr>
<td>SLC4A11</td>
<td>Solute Carrier Family 4, Sodium Bicarbonate Transporter-like, Member 11</td>
<td>12</td>
</tr>
<tr>
<td>SLC5A10</td>
<td>Solute Carrier Family 5 (Sodium/Glucose Cotransporter), Member 6</td>
<td>12</td>
</tr>
<tr>
<td>SLC6A6</td>
<td>Solute Carrier Family 6 (Neurotransmitter Transporter, Tau5ine), Member 6</td>
<td>16</td>
</tr>
<tr>
<td>SLC6A8</td>
<td>Solute Carrier Family 6 (Neurotransmitter Transporter, Creatine), Member 8</td>
<td>16</td>
</tr>
<tr>
<td>SLC6A8</td>
<td>386757 /// 6535 Solute Carrier Family 6 (Neurotransmitter Transporter, Creatine), Member 8 /// Similar</td>
<td>16</td>
</tr>
<tr>
<td>SLC7A3</td>
<td>Solute Carrier Family 7 (Cationic Amino Acid Transporter, Y+ System), Member 3</td>
<td>19</td>
</tr>
<tr>
<td>SLC7A8</td>
<td>Solute Carrier Family 7 (Cationic Amino Acid Transporter, Y+ System), Member 8</td>
<td>X</td>
</tr>
<tr>
<td>SLC9A3R1</td>
<td>Solute Carrier Family 9 (Sodium/Hydrogen Exchanger), Member 3 Regulator</td>
<td>11</td>
</tr>
<tr>
<td>SLC9A3</td>
<td>Solute Carrier Family 9 (Sodium/Hydrogen Exchanger), Member 3</td>
<td>11</td>
</tr>
<tr>
<td>SLC9C4</td>
<td>Solute Carrier Organic Anion Transporter Family, Member 4A1</td>
<td>11</td>
</tr>
<tr>
<td>SLC9C41</td>
<td>Solute Carrier Organic Anion Transporter Family, Member 4C1</td>
<td>11</td>
</tr>
<tr>
<td>SLD5</td>
<td>SLDS Homolog /// SLDS Homolog</td>
<td>1</td>
</tr>
<tr>
<td>SLITRK5</td>
<td>SLIT and NTRK-like Family, Member 5</td>
<td>1</td>
</tr>
<tr>
<td>SM40</td>
<td>SM4</td>
<td>1</td>
</tr>
<tr>
<td>MARCA3</td>
<td>SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily A, Member 3</td>
<td>1</td>
</tr>
<tr>
<td>MARCA4</td>
<td>SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily A, Member 4</td>
<td>1</td>
</tr>
<tr>
<td>MARCA5</td>
<td>SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily A, Member 5</td>
<td>1</td>
</tr>
<tr>
<td>MARCAD1</td>
<td>SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily D, Member 1</td>
<td>1</td>
</tr>
<tr>
<td>MARCB1</td>
<td>SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily B, Member 1</td>
<td>1</td>
</tr>
<tr>
<td>MARCC1</td>
<td>SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily C, Member 1</td>
<td>1</td>
</tr>
<tr>
<td>MARCC2</td>
<td>SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily C, Member 2</td>
<td>1</td>
</tr>
<tr>
<td>MARCE1</td>
<td>SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily E, Member 1</td>
<td>1</td>
</tr>
<tr>
<td>SMCL1</td>
<td>SMC1 Structural Maintenance of Chromosomes 1-like 1 (yeast)</td>
<td>1</td>
</tr>
<tr>
<td>SMCL2</td>
<td>SMC2 Structural Maintenance of Chromosomes 2-like 1 (yeast)</td>
<td>1</td>
</tr>
<tr>
<td>SMCL4</td>
<td>SMC4 Structural Maintenance of Chromosomes 4-like 1 (yeast)</td>
<td>1</td>
</tr>
<tr>
<td>SMCL6</td>
<td>SMG6 Structural Maintenance of Chromosomes 6-like 1 (yeast)</td>
<td>1</td>
</tr>
<tr>
<td>SMG1</td>
<td>Pi-3-Kinase-related Kinase SMG-1 /// KIAA0200-like Protein /// Hypothetical Protein</td>
<td>1</td>
</tr>
<tr>
<td>SMN1</td>
<td>Survival of Motor Neuron 1, Telomeric /// Survival of Motor Neuron 2, Centromeric</td>
<td>1</td>
</tr>
<tr>
<td>SNPD1</td>
<td>Spingomyelin Phosphodiesterase, Acid-like 3B</td>
<td>1</td>
</tr>
<tr>
<td>SMU1</td>
<td>Smu-1 Suppressor of Mecl-8 and Unc-52 Homolog (C. elegans)</td>
<td>1</td>
</tr>
<tr>
<td>SMUG1</td>
<td>Single-strand-selective Monofunctional Uracil-DNA Glycosylase 1</td>
<td>1</td>
</tr>
<tr>
<td>SMYD4</td>
<td>SET and MYND Domain Containing 4</td>
<td>1</td>
</tr>
<tr>
<td>SNCA</td>
<td>Synuclein, Alpha (Non A4 Component of Amyloid Precursor) /// Synuclein, Alpha (Non A4 Component of Amyloid Precursor)</td>
<td>1</td>
</tr>
<tr>
<td>SNDC1</td>
<td>Staphylococcal Nuclease Domain Containing 1 /// Staphylococcal Nuclease Domain Containing 1</td>
<td>1</td>
</tr>
<tr>
<td>SNN</td>
<td>Stannin</td>
<td>1</td>
</tr>
<tr>
<td>SNPA1</td>
<td>Small Nuclear Ribonucleoprotein Polypeptide A</td>
<td>1</td>
</tr>
<tr>
<td>SNRB1</td>
<td>Small Nuclear Ribonucleoprotein Polypeptide B and B1</td>
<td>1</td>
</tr>
<tr>
<td>SNPC</td>
<td>Small Nuclear Ribonucleoprotein Polypeptide C</td>
<td>1</td>
</tr>
<tr>
<td>SNPPD1</td>
<td>Small Nuclear Ribonucleoprotein D1 Polypeptide 16kDa</td>
<td>1</td>
</tr>
<tr>
<td>SNPPD2</td>
<td>Small Nuclear Ribonucleoprotein D2 Polypeptide 16.5kDa</td>
<td>1</td>
</tr>
<tr>
<td>SNPPD3</td>
<td>Small Nuclear Ribonucleoprotein D3 Polypeptide 18kDa</td>
<td>1</td>
</tr>
<tr>
<td>SNRP</td>
<td>Small Nuclear Ribonucleoprotein Polypeptide E</td>
<td>1</td>
</tr>
<tr>
<td>SNRP</td>
<td>Small Nuclear Ribonucleoprotein Polypeptide N</td>
<td>1</td>
</tr>
<tr>
<td>SNRP</td>
<td>Small Nuclear Ribonucleoprotein Polypeptide N /// SNRPN Upstream Reading Frame</td>
<td>1</td>
</tr>
<tr>
<td>SNX10</td>
<td>Sorting Nexin 10</td>
<td>1</td>
</tr>
<tr>
<td>SXN5</td>
<td>Sorting Nexin 5</td>
<td>1</td>
</tr>
<tr>
<td>SOSC1</td>
<td>Suppressor of Cytokine Signaling 1</td>
<td>1</td>
</tr>
<tr>
<td>SOSC2</td>
<td>Suppressor of Cytokine Signaling 2</td>
<td>1</td>
</tr>
<tr>
<td>SOSC7</td>
<td>Suppressor of Cytokine Signaling 7</td>
<td>1</td>
</tr>
<tr>
<td>SORB51</td>
<td>Sorbin and SH3 Domain Containing 1</td>
<td>1</td>
</tr>
<tr>
<td>SORD</td>
<td>Sorbitol Dehydrogenase</td>
<td>1</td>
</tr>
<tr>
<td>SORL1</td>
<td>Soritin-related Receptor, L(DLR class) A Repeats-containing</td>
<td>1</td>
</tr>
<tr>
<td>SOX11</td>
<td>SRY (Sex Determining Region Y) Box 11</td>
<td>1</td>
</tr>
<tr>
<td>SOX13</td>
<td>SRY (Sex Determining Region Y) Box 13</td>
<td>1</td>
</tr>
<tr>
<td>SOX15</td>
<td>SRY (Sex Determining Region Y) Box 15</td>
<td>1</td>
</tr>
<tr>
<td>SOX2</td>
<td>SRY (Sex Determining Region Y) Box 2</td>
<td>1</td>
</tr>
<tr>
<td>SOX3</td>
<td>SRY (Sex Determining Region Y) Box 3</td>
<td>1</td>
</tr>
<tr>
<td>SOX4</td>
<td>SRY (Sex Determining Region Y) Box 4</td>
<td>1</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOX7</td>
<td>2.20</td>
<td>chr8</td>
</tr>
<tr>
<td>SOX8</td>
<td>4.23</td>
<td>chr16</td>
</tr>
<tr>
<td>SP1</td>
<td>2.33</td>
<td>chr12</td>
</tr>
<tr>
<td>SP3</td>
<td>2.93</td>
<td>chr2</td>
</tr>
<tr>
<td>SP4</td>
<td>7.37</td>
<td>chr7</td>
</tr>
<tr>
<td>SP8</td>
<td>3.32</td>
<td>chr7</td>
</tr>
<tr>
<td>SPAG5</td>
<td>8.31</td>
<td>chr17</td>
</tr>
<tr>
<td>SPAC7</td>
<td>10.1</td>
<td>chr17</td>
</tr>
<tr>
<td>SPATA13</td>
<td>3.38</td>
<td>chr13</td>
</tr>
<tr>
<td>SPATA2</td>
<td>2.66</td>
<td>chr20</td>
</tr>
<tr>
<td>SPATA5L</td>
<td>2.23</td>
<td>chr15</td>
</tr>
<tr>
<td>SPATA6</td>
<td>3.58</td>
<td>chr1</td>
</tr>
<tr>
<td>SPBC24</td>
<td>3.53</td>
<td>chr1</td>
</tr>
<tr>
<td>SPBC25</td>
<td>11.32</td>
<td>chr2</td>
</tr>
<tr>
<td>SPEN</td>
<td>2.03</td>
<td>chr1</td>
</tr>
<tr>
<td>SPHK2</td>
<td>3.44</td>
<td>chr19</td>
</tr>
<tr>
<td>SPIB</td>
<td>2.92</td>
<td>chr19</td>
</tr>
<tr>
<td>SPINT1</td>
<td>7.99</td>
<td>chr15</td>
</tr>
<tr>
<td>SPINT2</td>
<td>21.93</td>
<td>chr19</td>
</tr>
<tr>
<td>SPON1</td>
<td>2.51</td>
<td>chr11</td>
</tr>
<tr>
<td>SPP1</td>
<td>5.65</td>
<td>chr4</td>
</tr>
<tr>
<td>SPRY1</td>
<td>3.36</td>
<td>chr16</td>
</tr>
<tr>
<td>SPRY4</td>
<td>10.38</td>
<td>chr4</td>
</tr>
<tr>
<td>SPSB2</td>
<td>2.48</td>
<td>chr11</td>
</tr>
<tr>
<td>SPSB4</td>
<td>2.42</td>
<td>chr12</td>
</tr>
<tr>
<td>S Q L E</td>
<td>4.36</td>
<td>chr3</td>
</tr>
<tr>
<td>SR140</td>
<td>6.93</td>
<td>chr3</td>
</tr>
<tr>
<td>SRBP1</td>
<td>2.48</td>
<td>chr17</td>
</tr>
<tr>
<td>SRPK1</td>
<td>2.25</td>
<td>chr6</td>
</tr>
<tr>
<td>SRRM2</td>
<td>3.63</td>
<td>chr16</td>
</tr>
<tr>
<td>SRY</td>
<td>2.88</td>
<td>chrY</td>
</tr>
<tr>
<td>SS17L2</td>
<td>3.87</td>
<td>chr3</td>
</tr>
<tr>
<td>SS2</td>
<td>4.23</td>
<td>chr2</td>
</tr>
<tr>
<td>SSBP1</td>
<td>2.73</td>
<td>chr7</td>
</tr>
<tr>
<td>SSBP2</td>
<td>2.52</td>
<td>chr5</td>
</tr>
<tr>
<td>SSBP3</td>
<td>3.10</td>
<td>chr7</td>
</tr>
<tr>
<td>SSRP1</td>
<td>3.35</td>
<td>chr11</td>
</tr>
<tr>
<td>ST14</td>
<td>3.11</td>
<td>chr11</td>
</tr>
<tr>
<td>T3GAL6</td>
<td>2.11</td>
<td>chr3</td>
</tr>
<tr>
<td>T6GAL1</td>
<td>12.34</td>
<td>chr3</td>
</tr>
<tr>
<td>T6GALNAC</td>
<td>6.05</td>
<td>chr1</td>
</tr>
<tr>
<td>T S I A 3</td>
<td>2.13</td>
<td>chr18</td>
</tr>
<tr>
<td>TAG2</td>
<td>3.36</td>
<td>chrX</td>
</tr>
<tr>
<td>STAT2</td>
<td>2.29</td>
<td>chr19</td>
</tr>
<tr>
<td>STARTD</td>
<td>2.65</td>
<td>chr2</td>
</tr>
<tr>
<td>STAT5B</td>
<td>2.30</td>
<td>chr17</td>
</tr>
<tr>
<td>STC1</td>
<td>4.83</td>
<td>chr8</td>
</tr>
<tr>
<td>TP1P1</td>
<td>2.45</td>
<td>chr11</td>
</tr>
<tr>
<td>STK11P</td>
<td>2.03</td>
<td>chr2</td>
</tr>
<tr>
<td>STK24</td>
<td>2.55</td>
<td>chr13</td>
</tr>
<tr>
<td>STK33</td>
<td>2.79</td>
<td>chr11</td>
</tr>
<tr>
<td>STK35</td>
<td>3.26</td>
<td>chr20</td>
</tr>
<tr>
<td>STK6</td>
<td>6.21</td>
<td>chr20</td>
</tr>
<tr>
<td>STMN3</td>
<td>2.58</td>
<td>chr20</td>
</tr>
<tr>
<td>STN2</td>
<td>6.44</td>
<td>chr14</td>
</tr>
<tr>
<td>STOML2</td>
<td>3.17</td>
<td>chr9</td>
</tr>
<tr>
<td>STOX2</td>
<td>2.23</td>
<td>chr9</td>
</tr>
<tr>
<td>STRA13</td>
<td>2.46</td>
<td>chr17</td>
</tr>
<tr>
<td>STRBP</td>
<td>33.04</td>
<td>chr9</td>
</tr>
<tr>
<td>STRN</td>
<td>3.33</td>
<td>chr2</td>
</tr>
<tr>
<td>STX3A</td>
<td>5.38</td>
<td>chr11</td>
</tr>
<tr>
<td>STX6</td>
<td>2.64</td>
<td>chr1</td>
</tr>
<tr>
<td>SUB1</td>
<td>2.50</td>
<td>chr5</td>
</tr>
<tr>
<td>SUMO1</td>
<td>2.13</td>
<td>chr1</td>
</tr>
<tr>
<td>SUMO2</td>
<td>2.25</td>
<td>chr5</td>
</tr>
<tr>
<td>SUP716H</td>
<td>4.09</td>
<td>chr12</td>
</tr>
<tr>
<td>SUPT3H</td>
<td>2.73</td>
<td>chr6</td>
</tr>
</tbody>
</table>
Table S5: Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene</th>
<th>Log2 Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURF2</td>
<td>2.32</td>
<td>chr9</td>
</tr>
<tr>
<td>SURF5</td>
<td>5.46</td>
<td>chr9</td>
</tr>
<tr>
<td>SURF6</td>
<td>2.61</td>
<td>chr9</td>
</tr>
<tr>
<td>SUV39H1</td>
<td>2.36</td>
<td>chrX</td>
</tr>
<tr>
<td>SUV39H2</td>
<td>7.01</td>
<td>chr10</td>
</tr>
<tr>
<td>SUV420H1</td>
<td>4.63</td>
<td>chr11</td>
</tr>
<tr>
<td>SUZ12</td>
<td>2.72</td>
<td>chr17</td>
</tr>
<tr>
<td>SYPK</td>
<td>3.36</td>
<td>chr19</td>
</tr>
<tr>
<td>SYN2</td>
<td>2.09</td>
<td>chr9</td>
</tr>
<tr>
<td>SYNC1</td>
<td>4.58</td>
<td>chr1</td>
</tr>
<tr>
<td>SYNCRIP</td>
<td>2.44</td>
<td>chr20</td>
</tr>
<tr>
<td>SYNE2</td>
<td>15.87</td>
<td>chr14</td>
</tr>
<tr>
<td>SYNGR3</td>
<td>3.49</td>
<td>chr16</td>
</tr>
<tr>
<td>SYT1</td>
<td>5.88</td>
<td>chr12</td>
</tr>
<tr>
<td>SYT13</td>
<td>19.22</td>
<td>chr11</td>
</tr>
<tr>
<td>SYT17</td>
<td>3.45</td>
<td>chr16</td>
</tr>
<tr>
<td>SYT4</td>
<td>4.69</td>
<td>chr18</td>
</tr>
<tr>
<td>SYT6</td>
<td>17.41</td>
<td>chr1</td>
</tr>
<tr>
<td>TAC1</td>
<td>2.80</td>
<td>chr7</td>
</tr>
<tr>
<td>TACC2</td>
<td>2.65</td>
<td>chr10</td>
</tr>
<tr>
<td>TACC3</td>
<td>11.97</td>
<td>chr4</td>
</tr>
<tr>
<td>TACSTD1</td>
<td>373.33</td>
<td>chr2</td>
</tr>
<tr>
<td>TACSTD2</td>
<td>2.30</td>
<td>chr1</td>
</tr>
<tr>
<td>TADAIL</td>
<td>117.14</td>
<td></td>
</tr>
<tr>
<td>TAF11</td>
<td>2.23</td>
<td>chr6</td>
</tr>
<tr>
<td>TAF15</td>
<td>3.92</td>
<td>chr17</td>
</tr>
<tr>
<td>TAF1A</td>
<td>3.11</td>
<td>chr1</td>
</tr>
<tr>
<td>TAF1C</td>
<td>4.04</td>
<td>chr16</td>
</tr>
<tr>
<td>TAF4</td>
<td>4.19</td>
<td>chr20</td>
</tr>
<tr>
<td>TAF4B</td>
<td>9.58</td>
<td>chr18</td>
</tr>
<tr>
<td>TAF5</td>
<td>6.35</td>
<td>chr10</td>
</tr>
<tr>
<td>TAF5L</td>
<td>2.99</td>
<td>chr1</td>
</tr>
<tr>
<td>TAF9L</td>
<td>2.35</td>
<td>chrX_random</td>
</tr>
<tr>
<td>TALDO1</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>TAOK1</td>
<td>2.30</td>
<td>chr17</td>
</tr>
<tr>
<td>TARB2</td>
<td>2.68</td>
<td>chr12</td>
</tr>
<tr>
<td>TARD8P</td>
<td>2.33</td>
<td>chr1</td>
</tr>
<tr>
<td>TARS</td>
<td>2.80</td>
<td>chr5</td>
</tr>
<tr>
<td>TARSL1</td>
<td>2.68</td>
<td>chr1</td>
</tr>
<tr>
<td>TATDN1</td>
<td>2.05</td>
<td>chr10</td>
</tr>
<tr>
<td>TBCD1</td>
<td>2.85</td>
<td>chr4</td>
</tr>
<tr>
<td>TBCD14</td>
<td>2.27</td>
<td>chr4</td>
</tr>
<tr>
<td>TBCD16</td>
<td>3.69</td>
<td>chr17</td>
</tr>
<tr>
<td>TBCD14</td>
<td>2.03</td>
<td>chr13</td>
</tr>
<tr>
<td>TBCD17</td>
<td>2.14</td>
<td>chr6</td>
</tr>
<tr>
<td>TBCD18</td>
<td>5.48</td>
<td>chr2</td>
</tr>
<tr>
<td>TBCD</td>
<td>3.29</td>
<td>chr17</td>
</tr>
<tr>
<td>TBCE</td>
<td>2.10</td>
<td>chr1</td>
</tr>
<tr>
<td>TBLY1</td>
<td>9.51</td>
<td>chrY</td>
</tr>
<tr>
<td>TBL3</td>
<td>2.52</td>
<td>chr16</td>
</tr>
<tr>
<td>TBP</td>
<td>2.40</td>
<td>chr6</td>
</tr>
<tr>
<td>TBP1P</td>
<td>2.63</td>
<td>chr17</td>
</tr>
<tr>
<td>TBRG4</td>
<td>3.66</td>
<td>chr7</td>
</tr>
<tr>
<td>TCEA1</td>
<td>2.51</td>
<td>chr3</td>
</tr>
<tr>
<td>TCEA2</td>
<td>31.45</td>
<td>chrX</td>
</tr>
<tr>
<td>TCEG31L</td>
<td>2.45</td>
<td>chr10</td>
</tr>
<tr>
<td>TCF12</td>
<td>2.38</td>
<td>chr15</td>
</tr>
<tr>
<td>TCF15</td>
<td>2.53</td>
<td>chr20</td>
</tr>
<tr>
<td>TCF20</td>
<td>2.89</td>
<td>chr22</td>
</tr>
<tr>
<td>TCF3</td>
<td>3.27</td>
<td>chr19</td>
</tr>
<tr>
<td>TCF7L1</td>
<td>4.74</td>
<td>chr2</td>
</tr>
<tr>
<td>TCF7L2</td>
<td>3.86</td>
<td>chr10</td>
</tr>
<tr>
<td>TCF8L5</td>
<td>4.08</td>
<td>chr20</td>
</tr>
<tr>
<td>TCOF1</td>
<td>6.25</td>
<td>chr5</td>
</tr>
<tr>
<td>TCOPI</td>
<td>2.13</td>
<td>chr7</td>
</tr>
<tr>
<td>TDFG1</td>
<td>648.52</td>
<td>chr3</td>
</tr>
<tr>
<td>TDP1</td>
<td>2.54</td>
<td>chr14</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>TDRK1H</td>
<td>Tudor and KH domain containing</td>
<td></td>
</tr>
<tr>
<td>TEAD2</td>
<td>TEA domain family member 2</td>
<td></td>
</tr>
<tr>
<td>TEAD4</td>
<td>TEA domain family member 4</td>
<td></td>
</tr>
<tr>
<td>TERF1</td>
<td>Serine repeat binding factor (NIMA-interacting) 1</td>
<td></td>
</tr>
<tr>
<td>TERF2</td>
<td>Serine repeat binding factor 2</td>
<td></td>
</tr>
<tr>
<td>TERT</td>
<td>Telomerase reverse transcriptase</td>
<td></td>
</tr>
<tr>
<td>TESK2</td>
<td>TLS-specific kinase 2</td>
<td></td>
</tr>
<tr>
<td>TEX10</td>
<td>Testis expressed sequence 10</td>
<td></td>
</tr>
<tr>
<td>TEX15</td>
<td>Testis expressed sequence 15</td>
<td></td>
</tr>
<tr>
<td>TEX9</td>
<td>Testis expressed sequence 9</td>
<td></td>
</tr>
<tr>
<td>TFAM</td>
<td>Telomerase binding</td>
<td></td>
</tr>
<tr>
<td>TFP2C</td>
<td>TFIIA2 transcription factor AP-2 gamma (activating enhancer binding protein 2 gamma)</td>
<td></td>
</tr>
<tr>
<td>TFB1M</td>
<td>TFIIA2 transcription factor B1, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>TFCP2</td>
<td>TFIIA2 transcription factor CP2</td>
<td></td>
</tr>
<tr>
<td>TFDP2</td>
<td>TFIIA2 transcription factor Dp-2 (E2F dimerization partner 2)</td>
<td></td>
</tr>
<tr>
<td>TGFB1R1</td>
<td>Transforming growth factor, beta receptor I (activin A receptor type II-like kinase)</td>
<td></td>
</tr>
<tr>
<td>TGFB3R1</td>
<td>Transforming growth factor, beta receptor III (betaglycan, 300kDa)</td>
<td></td>
</tr>
<tr>
<td>TGIF</td>
<td>TGFB-induced factor (TLE family homeobox)</td>
<td></td>
</tr>
<tr>
<td>TGFIF2</td>
<td>TGFB-induced factor 2 (TLE family homeobox)</td>
<td></td>
</tr>
<tr>
<td>THADA</td>
<td>Thyroid adenoma-associated</td>
<td></td>
</tr>
<tr>
<td>THAP11</td>
<td>THAP domain containing 11</td>
<td></td>
</tr>
<tr>
<td>THAP4</td>
<td>THAP domain containing 4</td>
<td></td>
</tr>
<tr>
<td>THAP9</td>
<td>THAP domain containing 9</td>
<td></td>
</tr>
<tr>
<td>THBS4</td>
<td>Thrombospondin 4</td>
<td></td>
</tr>
<tr>
<td>THEM2</td>
<td>Thioesterase superfamily member 2</td>
<td></td>
</tr>
<tr>
<td>THNSL1</td>
<td>Thromine synthase-like 1 (bacterial)</td>
<td></td>
</tr>
<tr>
<td>THOC1</td>
<td>THOC complex 1</td>
<td></td>
</tr>
<tr>
<td>THOC2</td>
<td>THOC complex 2</td>
<td></td>
</tr>
<tr>
<td>THOC3</td>
<td>THOC complex 3</td>
<td></td>
</tr>
<tr>
<td>THOC4</td>
<td>THOC complex 4</td>
<td></td>
</tr>
<tr>
<td>THRAP1</td>
<td>Thyroid hormone receptor associated protein 1</td>
<td></td>
</tr>
<tr>
<td>THRAP2</td>
<td>Thyroid hormone receptor associated protein 2</td>
<td></td>
</tr>
<tr>
<td>THRAP3</td>
<td>Thyroid hormone receptor associated protein 3</td>
<td></td>
</tr>
<tr>
<td>THRAP6</td>
<td>Thyroid hormone receptor associated protein 6</td>
<td></td>
</tr>
<tr>
<td>THRB</td>
<td>Thyroid hormone receptor, beta (erythroid leukemia viral (v-erb-a) oncogene</td>
<td></td>
</tr>
<tr>
<td>THUMP2D</td>
<td>THUMP domain containing 2</td>
<td></td>
</tr>
<tr>
<td>THUMP3D</td>
<td>THUMP domain containing 3</td>
<td></td>
</tr>
<tr>
<td>THY28</td>
<td>Thyroperoxidase thyroxine</td>
<td></td>
</tr>
<tr>
<td>TIA1</td>
<td>TIA1 cytotoxic granule-associated RNA binding protein</td>
<td></td>
</tr>
<tr>
<td>TIA1M</td>
<td>TIA1 T-cell lymphoma invasion and metastasis 1</td>
<td></td>
</tr>
<tr>
<td>TIA2M</td>
<td>TIA2 T-cell lymphoma invasion and metastasis 2</td>
<td></td>
</tr>
<tr>
<td>TIGA1</td>
<td>TIGA1</td>
<td></td>
</tr>
<tr>
<td>TIGD7</td>
<td>Tigger transposable element derived 7 // tigger transposable element derived 7</td>
<td></td>
</tr>
<tr>
<td>TIMELESS</td>
<td>Timeless homolog (Drosophila)</td>
<td></td>
</tr>
<tr>
<td>TIMM10</td>
<td>Translocase of inner mitochondrial membrane 10 homolog (yeast)</td>
<td></td>
</tr>
<tr>
<td>TIMM13</td>
<td>Translocase of inner mitochondrial membrane 13 homolog (yeast)</td>
<td></td>
</tr>
<tr>
<td>TIMM22</td>
<td>Translocase of inner mitochondrial membrane 22 homolog (yeast)</td>
<td></td>
</tr>
<tr>
<td>TIMM44</td>
<td>Translocase of inner mitochondrial membrane 44 homolog (yeast)</td>
<td></td>
</tr>
<tr>
<td>TIMM50</td>
<td>Translocase of inner mitochondrial membrane 50 homolog (yeast)</td>
<td></td>
</tr>
<tr>
<td>TIMM8A</td>
<td>Translocase of inner mitochondrial membrane 8 homolog A (yeast)</td>
<td></td>
</tr>
<tr>
<td>TIMM8B</td>
<td>Translocase of inner mitochondrial membrane 8 homolog B (yeast)</td>
<td></td>
</tr>
<tr>
<td>TIMP4</td>
<td>TIMP metalloproteinase inhibitor 4</td>
<td></td>
</tr>
<tr>
<td>TJP2</td>
<td>Tight junction protein 2 (zona occludens 2)</td>
<td></td>
</tr>
<tr>
<td>TJP3</td>
<td>Tight junction protein 3 (zona occludens 3)</td>
<td></td>
</tr>
<tr>
<td>TKT</td>
<td>Transketolase (Wernicke-Korsakoff syndrome)</td>
<td></td>
</tr>
<tr>
<td>TLE1</td>
<td>Transducin-like enhancer of split 1 (E(sp1) homolog, Drosophila)</td>
<td></td>
</tr>
<tr>
<td>TLE2</td>
<td>Transducin-like enhancer of split 2 (E(sp1) homolog, Drosophila)</td>
<td></td>
</tr>
<tr>
<td>TLE3</td>
<td>Transducin-like enhancer of split 3 (E(sp1) homolog, Drosophila)</td>
<td></td>
</tr>
<tr>
<td>TLK1</td>
<td>Tousled-like kinase 1</td>
<td></td>
</tr>
<tr>
<td>TM7SF2</td>
<td>Transmembrane 7 superfamily member 2</td>
<td></td>
</tr>
<tr>
<td>TMCC1</td>
<td>Transmembrane and coiled-coil domain family 1</td>
<td></td>
</tr>
<tr>
<td>TMEFF1</td>
<td>Transmembrane protein with EGF-like and two follistatin-like domains 1</td>
<td></td>
</tr>
<tr>
<td>TMEFF11</td>
<td>Transmembrane protein 11</td>
<td></td>
</tr>
<tr>
<td>TMEFF118</td>
<td>Transmembrane protein 118</td>
<td></td>
</tr>
<tr>
<td>TMEF28</td>
<td>Transmembrane protein 28</td>
<td></td>
</tr>
<tr>
<td>TMEM30B</td>
<td>Transmembrane protein 30B</td>
<td></td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMEM33</td>
<td>Transmembrane protein 33</td>
<td>3.05</td>
<td>chr4</td>
</tr>
<tr>
<td>TMEM37</td>
<td>Transmembrane protein 37</td>
<td>4.91</td>
<td>chr2</td>
</tr>
<tr>
<td>TMEM4</td>
<td>Transmembrane protein 4</td>
<td>2.75</td>
<td>chr12</td>
</tr>
<tr>
<td>TMEM48</td>
<td>Transmembrane protein 48</td>
<td>6.28</td>
<td>chr1</td>
</tr>
<tr>
<td>TMEM53</td>
<td>Transmembrane protein 53</td>
<td>2.80</td>
<td>chr1</td>
</tr>
<tr>
<td>TMEM63A</td>
<td>Transmembrane protein 63A</td>
<td>2.11</td>
<td>chr1</td>
</tr>
<tr>
<td>TMEM64</td>
<td>Transmembrane protein 64</td>
<td>2.39</td>
<td>chr8</td>
</tr>
<tr>
<td>TMEM68</td>
<td>Transmembrane protein 68</td>
<td>3.70</td>
<td>chr8</td>
</tr>
<tr>
<td>TMEM70</td>
<td>Transmembrane protein 70</td>
<td>2.20</td>
<td>chr8</td>
</tr>
<tr>
<td>TPO</td>
<td>Thrombopoietin</td>
<td>4.75</td>
<td>chr12</td>
</tr>
<tr>
<td>TPRSS2</td>
<td>Transmembrane protease, serine 2</td>
<td>4.23</td>
<td>chr21</td>
</tr>
<tr>
<td>TMSL8</td>
<td>Thromosulin-like 8</td>
<td>6.34</td>
<td>chrX</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor (ligand) superfamily, member 11</td>
<td>5.07</td>
<td>chr13</td>
</tr>
<tr>
<td>TNN1</td>
<td>Troponin I type 3 (cardiac)</td>
<td>5.38</td>
<td>chr19</td>
</tr>
<tr>
<td>TNN1T</td>
<td>Troponin T type 1 (skeletal, slow)</td>
<td>9.44</td>
<td>chr19</td>
</tr>
<tr>
<td>TNP3</td>
<td>Transportin 3</td>
<td>3.24</td>
<td>chr7</td>
</tr>
<tr>
<td>TNRC6A</td>
<td>Tri nucleotide repeat containing 6A</td>
<td>4.04</td>
<td>chr16</td>
</tr>
<tr>
<td>TNRC6B</td>
<td>Tri nucleotide repeat containing 6B</td>
<td>2.91</td>
<td>chr22</td>
</tr>
<tr>
<td>TNRC6C</td>
<td>Tri nucleotide repeat containing 6C</td>
<td>2.44</td>
<td>chr17</td>
</tr>
<tr>
<td>TNRC9</td>
<td>Tri nucleotide repeat containing 9</td>
<td>58.38</td>
<td>chr16</td>
</tr>
<tr>
<td>TOE1</td>
<td>Target of EGR1, member 1 (nuclear)</td>
<td>3.83</td>
<td>chr1</td>
</tr>
<tr>
<td>TOM1L1</td>
<td>Target of myb1-1k (1) (chicken)</td>
<td>2.90</td>
<td>chr17</td>
</tr>
<tr>
<td>TOMM22</td>
<td>Translocase of outer mitochondrial membrane 22 homolog (yeast)</td>
<td>2.36</td>
<td>chr22</td>
</tr>
<tr>
<td>TOMM40</td>
<td>Translocase of outer mitochondrial membrane 40 homolog (yeast)</td>
<td>2.43</td>
<td>chr14</td>
</tr>
<tr>
<td>TOMM40L</td>
<td>Translocase of outer mitochondrial membrane 40 homolog (yeast)</td>
<td>2.05</td>
<td>chr1</td>
</tr>
<tr>
<td>TOP1MT</td>
<td>Topoisomerase (DNA) I, mitochondrial</td>
<td>5.91</td>
<td>chr8</td>
</tr>
<tr>
<td>TOP2A</td>
<td>Topoisomerase (DNA) II alpha 170kDa</td>
<td>4.98</td>
<td>chr17</td>
</tr>
<tr>
<td>TOP3A</td>
<td>Topoisomerase (DNA) III alpha</td>
<td>2.43</td>
<td>chr17</td>
</tr>
<tr>
<td>TOPBP1</td>
<td>Topoisomerase (DNA) II binding protein 1</td>
<td>2.02</td>
<td>chr3</td>
</tr>
<tr>
<td>TOPORS</td>
<td>Topoisomerase I binding, arginine/serine-rich</td>
<td>2.13</td>
<td>chr9</td>
</tr>
<tr>
<td>TOR3A</td>
<td>Torin family 3, member A</td>
<td>2.97</td>
<td>chr1</td>
</tr>
<tr>
<td>TOX</td>
<td>Full-length cDNA clone CSDDM012YE14 of Fetal liver of Homo sapiens (human)</td>
<td>2.05</td>
<td>chr8</td>
</tr>
<tr>
<td>TPS3K</td>
<td>TPS3 regulating kinase</td>
<td>2.31</td>
<td>chr20</td>
</tr>
<tr>
<td>TPSD2</td>
<td>Troponin D52</td>
<td>3.48</td>
<td>chr8</td>
</tr>
<tr>
<td>TPR</td>
<td>Thiamin pyrophosphokinase 1</td>
<td>2.05</td>
<td>chr7</td>
</tr>
<tr>
<td>TPR2</td>
<td>Thymidylate synthase</td>
<td>2.62</td>
<td>chr13</td>
</tr>
<tr>
<td>TPR</td>
<td>Translocated promoter region (to activated MET oncogene)</td>
<td>3.12</td>
<td>chr1</td>
</tr>
<tr>
<td>TPR</td>
<td>Translocated promoter region (to activated MET oncogene)</td>
<td>2.67</td>
<td>chr10</td>
</tr>
<tr>
<td>TPST2</td>
<td>Tyrosylprotein sulfotransferase 2</td>
<td>3.67</td>
<td>chr22</td>
</tr>
<tr>
<td>TPX2</td>
<td>TPX2, microtubule-associated, homolog (Xenopus laevis)</td>
<td>6.28</td>
<td>chr20</td>
</tr>
<tr>
<td>TRA16</td>
<td>TRA16</td>
<td>3.03</td>
<td>chr19</td>
</tr>
<tr>
<td>TRA2A</td>
<td>Transferrin-2 alpha</td>
<td>2.33</td>
<td>chr7</td>
</tr>
<tr>
<td>TRAF2</td>
<td>TNF receptor-associated factor 2</td>
<td>2.37</td>
<td>chr9</td>
</tr>
<tr>
<td>TRAF4</td>
<td>TNF receptor-associated factor 4</td>
<td>3.00</td>
<td>chr17</td>
</tr>
<tr>
<td>TRAP1</td>
<td>TNF receptor-associated protein 1</td>
<td>3.01</td>
<td>chr16</td>
</tr>
<tr>
<td>TRAPC6A</td>
<td>Trafficking protein particle complex 6A</td>
<td>3.18</td>
<td>chr19</td>
</tr>
<tr>
<td>TREC1</td>
<td>Three prime repair exonuclease 1</td>
<td>4.60</td>
<td>chr3</td>
</tr>
<tr>
<td>TREX2</td>
<td>Three prime repair exonuclease 2</td>
<td>2.02</td>
<td>chrX</td>
</tr>
<tr>
<td>TRFP</td>
<td>Traf (TATA binding protein-related factor)-proximal homolog (Drosophila)</td>
<td>2.69</td>
<td>chr6</td>
</tr>
<tr>
<td>TRIB1</td>
<td>Tribbles homolog 1 (Drosophila)</td>
<td>4.16</td>
<td>chr8</td>
</tr>
<tr>
<td>TRIB2</td>
<td>Tribbles homolog 2 (Drosophila)</td>
<td>3.03</td>
<td>chr2</td>
</tr>
<tr>
<td>TRIM14</td>
<td>Tripartite motif-containing 14</td>
<td>3.11</td>
<td>chr9</td>
</tr>
<tr>
<td>TRIM2</td>
<td>Tripartite motif-containing 2</td>
<td>2.32</td>
<td>chr4</td>
</tr>
<tr>
<td>TRIM24</td>
<td>Tripartite motif-containing 24</td>
<td>5.73</td>
<td>chr7</td>
</tr>
<tr>
<td>TRIM26</td>
<td>Tripartite motif-containing 26</td>
<td>2.52</td>
<td>chr19</td>
</tr>
<tr>
<td>TRIM33</td>
<td>Tripartite motif-containing 33</td>
<td>3.57</td>
<td>chr1</td>
</tr>
<tr>
<td>TRIM36</td>
<td>Tripartite motif-containing 36</td>
<td>7.96</td>
<td>chr5</td>
</tr>
<tr>
<td>TRIM37</td>
<td>Tripartite motif-containing 37</td>
<td>3.21</td>
<td>chr17</td>
</tr>
<tr>
<td>TRIM39</td>
<td>Tripartite motif-containing 39</td>
<td>2.00</td>
<td>chr6</td>
</tr>
<tr>
<td>TRIM45</td>
<td>Tripartite motif-containing 45</td>
<td>5.32</td>
<td>chr1</td>
</tr>
<tr>
<td>TRIM59</td>
<td>Tripartite motif-containing 59</td>
<td>4.13</td>
<td>chr3</td>
</tr>
<tr>
<td>TRIM6</td>
<td>Tripartite motif-containing 6</td>
<td>4.14</td>
<td>chr11</td>
</tr>
<tr>
<td>TRIPS</td>
<td>TRAF interacting protein</td>
<td>2.23</td>
<td>chr3</td>
</tr>
<tr>
<td>TRIP10</td>
<td>Thyroid hormone receptor interactor 10</td>
<td>2.40</td>
<td>chr19</td>
</tr>
<tr>
<td>TRIP12</td>
<td>Thyroid hormone receptor interactor 12</td>
<td>3.99</td>
<td>(vde)</td>
</tr>
<tr>
<td>TRIP13</td>
<td>Thyroid hormone receptor interactor 13</td>
<td>4.64</td>
<td>chr5</td>
</tr>
<tr>
<td>TRIT1</td>
<td>TRNA isopenentyltransferase 1</td>
<td>2.51</td>
<td>chr1</td>
</tr>
</tbody>
</table>
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; p < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIMT1</td>
<td>TRIM1 RNA methyltransferase 1 homolog (S. cerevisiae)</td>
<td>3.18</td>
<td>chr19</td>
</tr>
<tr>
<td>TRIMT12</td>
<td>TRIM1 RNA methyltransferase 12 homolog (S. cerevisiae)</td>
<td>2.40</td>
<td>chr8</td>
</tr>
<tr>
<td>TRIMT5</td>
<td>TRIM5 RNA methyltransferase 5 homolog (S. cerevisiae)</td>
<td>2.44</td>
<td>chr14</td>
</tr>
<tr>
<td>TRUB2</td>
<td>TrUB pseudouridine (psi) synthase homolog 2 (E. coli)</td>
<td>2.45</td>
<td>chr9</td>
</tr>
<tr>
<td>TSC2D1</td>
<td>TSC22 domain family, member 1</td>
<td>2.88</td>
<td>chr13</td>
</tr>
<tr>
<td>TSEN2</td>
<td>RNA splicing endonuclease 2 homolog (SEN2, S. cerevisiae)</td>
<td>2.69</td>
<td>chr3</td>
</tr>
<tr>
<td>TSEN54</td>
<td>RNA splicing endonuclease 54 homolog (SEN54, S. cerevisiae)</td>
<td>4.46</td>
<td>chr17</td>
</tr>
<tr>
<td>TS6A10</td>
<td>Testsic specific, 10</td>
<td>3.33</td>
<td>chr2</td>
</tr>
<tr>
<td>TSN</td>
<td>transalin</td>
<td>3.33</td>
<td>chr2</td>
</tr>
<tr>
<td>TSPAN12</td>
<td>tetrascaprin 12</td>
<td>6.33</td>
<td>chr7</td>
</tr>
<tr>
<td>TSPAN18</td>
<td>tetrascaprin 18</td>
<td>2.29</td>
<td>chr11</td>
</tr>
<tr>
<td>TSPAN2</td>
<td>tetrascaprin 2</td>
<td>7.19</td>
<td>chr1</td>
</tr>
<tr>
<td>TSPAN33</td>
<td>tetrascaprin 33</td>
<td>3.98</td>
<td>chr7</td>
</tr>
<tr>
<td>TSPAN6</td>
<td>tetrascaprin 6</td>
<td>2.31</td>
<td>chrX</td>
</tr>
<tr>
<td>TTC19</td>
<td>Tetrascaprin repeat domain 19</td>
<td>5.51</td>
<td>chr17</td>
</tr>
<tr>
<td>TTC9</td>
<td>tetrascaprin repeat domain 9</td>
<td>4.33</td>
<td>chr14</td>
</tr>
<tr>
<td>TTF1</td>
<td>Transcription termination factor, RNA polymerase I</td>
<td>3.18</td>
<td>chr9</td>
</tr>
<tr>
<td>TTF2</td>
<td>Transcription termination factor, RNA polymerase II</td>
<td>3.11</td>
<td>chr1</td>
</tr>
<tr>
<td>TTK</td>
<td>TTK protein kinase</td>
<td>14.88</td>
<td>chr6</td>
</tr>
<tr>
<td>TTL4</td>
<td>tubulin tyrosine ligase-like family, member 4</td>
<td>2.91</td>
<td>chr2</td>
</tr>
<tr>
<td>TUBA1</td>
<td>tubulin, alpha 1 (testsic specific)</td>
<td>2.51</td>
<td>chr2</td>
</tr>
<tr>
<td>TUBB2</td>
<td>tubulin, beta 2 // tubulin, beta polypeptide paralog</td>
<td>3.72</td>
<td>chr6</td>
</tr>
<tr>
<td>TUBB3</td>
<td>tubulin, beta 3</td>
<td>2.02</td>
<td>chr16</td>
</tr>
<tr>
<td>TUBB-Paral</td>
<td>tubulin, beta polypeptide paralog</td>
<td>5.07</td>
<td>chr6</td>
</tr>
<tr>
<td>TUBD1</td>
<td>tubulin, delta 1</td>
<td>4.26</td>
<td>chr17</td>
</tr>
<tr>
<td>TUBG1</td>
<td>tubulin, gamma 1</td>
<td>2.58</td>
<td>chr7</td>
</tr>
<tr>
<td>TUBGCP3</td>
<td>tubulin, gamma complex associated protein 3</td>
<td>2.12</td>
<td>chr13</td>
</tr>
<tr>
<td>TUFM</td>
<td>Tu translation elongation factor, mitochondrial</td>
<td>2.78</td>
<td>chr16</td>
</tr>
<tr>
<td>TXDC</td>
<td>Thioredoxin domain containing // thioredoxin domain containing</td>
<td>3.19</td>
<td>chr14</td>
</tr>
<tr>
<td>TXNL2</td>
<td>thioredoxin-like 2</td>
<td>2.39</td>
<td>chr6</td>
</tr>
<tr>
<td>TYSM</td>
<td>Thymidylate synthetase</td>
<td>2.78</td>
<td>chr18</td>
</tr>
<tr>
<td>TYRO3</td>
<td>TyrO3 protein tyrosine kinase</td>
<td>5.79</td>
<td>chr15</td>
</tr>
<tr>
<td>U1SNRNP8B</td>
<td>U11/U12 snRNP 35K</td>
<td>2.87</td>
<td>chr12</td>
</tr>
<tr>
<td>U2AF1</td>
<td>U2(RNU2) small nuclear RNA auxiliary factor 1</td>
<td>3.61</td>
<td>chr15</td>
</tr>
<tr>
<td>U2AF2</td>
<td>U2 (RNU2) small nuclear RNA auxiliary factor 2</td>
<td>4.34</td>
<td>chr19</td>
</tr>
<tr>
<td>UBA2</td>
<td>SUMO-1 activating enzyme subunit 2</td>
<td>2.40</td>
<td>chr19</td>
</tr>
<tr>
<td>UBA2C1</td>
<td>ubiquitin associated domain containing 1</td>
<td>2.70</td>
<td>chr9</td>
</tr>
<tr>
<td>UBA2P2</td>
<td>ubiquitin associated protein 2</td>
<td>2.88</td>
<td>chr9</td>
</tr>
<tr>
<td>UBE2C</td>
<td>ubiquitin-conjugating enzyme E2C</td>
<td>10.33</td>
<td>chr20</td>
</tr>
<tr>
<td>UBE2D2</td>
<td>ubiquitin-conjugating enzyme E2D 2 (UBC45 homolog, yeast)</td>
<td>2.60</td>
<td>chr5</td>
</tr>
<tr>
<td>UBE2E2</td>
<td>ubiquitin-conjugating enzyme E2E 2 (UBC45 homolog, yeast)</td>
<td>2.93</td>
<td>chr20</td>
</tr>
<tr>
<td>UBE2G1</td>
<td>ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, yeast)</td>
<td>3.08</td>
<td>chr17</td>
</tr>
<tr>
<td>UBE2I</td>
<td>ubiquitin-conjugating enzyme E2I (UBC9 homolog, yeast)</td>
<td>2.80</td>
<td>chr16</td>
</tr>
<tr>
<td>UBE2L6</td>
<td>ubiquitin-conjugating enzyme E2L 6</td>
<td>3.28</td>
<td>chr11</td>
</tr>
<tr>
<td>UBE2N</td>
<td>ubiquitin-conjugating enzyme E2N (UBC13 homolog, yeast)</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>UBE2S</td>
<td>ubiquitin-conjugating enzyme E2S</td>
<td>4.83</td>
<td>chr17</td>
</tr>
<tr>
<td>UBE2T</td>
<td>ubiquitin-conjugating enzyme E2T (putative)</td>
<td>6.45</td>
<td>chr15</td>
</tr>
<tr>
<td>UBE3B</td>
<td>ubiquitin protein ligase E3B</td>
<td>2.10</td>
<td>chr12</td>
</tr>
<tr>
<td>UBE3C</td>
<td>ubiquitin protein ligase E3C</td>
<td>3.73</td>
<td>chr7</td>
</tr>
<tr>
<td>UBE4B</td>
<td>ubiquitination factor E4B (UF2D homolog, yeast)</td>
<td>3.97</td>
<td>chr1</td>
</tr>
<tr>
<td>UBTF</td>
<td>upstream binding transcription factor, RNA polymerase I</td>
<td>2.04</td>
<td>chr17</td>
</tr>
<tr>
<td>UCK1</td>
<td>uridine-cytidine kinase 1</td>
<td>2.11</td>
<td>chr9</td>
</tr>
<tr>
<td>UCK2</td>
<td>uridine-cytidine kinase 2</td>
<td>2.10</td>
<td>chr1</td>
</tr>
<tr>
<td>UCKL1</td>
<td>uridine-cytidine kinase 1-like 1</td>
<td>3.58</td>
<td>chr20</td>
</tr>
<tr>
<td>UGC0L2</td>
<td>UDP-glucose ceramide glucosyltransferase-ike 2</td>
<td>2.24</td>
<td>chr13</td>
</tr>
<tr>
<td>UDP2</td>
<td>UDP-glucose pyrophosphorylase 2</td>
<td>3.37</td>
<td>chr2</td>
</tr>
<tr>
<td>UGT2B</td>
<td>UDP-glucosyltransferase B (UDP-glucosylceramide galactosyltransferase)</td>
<td>19.31</td>
<td>chr4</td>
</tr>
<tr>
<td>UP1</td>
<td>UPS proteins-associated UCH interacting protein 1</td>
<td>3.20</td>
<td>chrX</td>
</tr>
<tr>
<td>UMP5</td>
<td>uridine monophosphate synthetase (orotate phosphoribosyl transferase and orotidine 5'-monophosphate phosphoribosyltransferase)</td>
<td>3.38</td>
<td>chr3</td>
</tr>
<tr>
<td>UNC13B</td>
<td>unc13 homolog B (C. elegans)</td>
<td>3.48</td>
<td>chr9</td>
</tr>
<tr>
<td>UNC5D</td>
<td>Unc-5 homolog D (C. elegans)</td>
<td>31.19</td>
<td>chr8</td>
</tr>
<tr>
<td>UNG</td>
<td>uracil DNA glycosylase</td>
<td>13.88</td>
<td>chr12</td>
</tr>
<tr>
<td>UNQ01</td>
<td>uracil DNA glycosylase</td>
<td>3.68</td>
<td>chr19</td>
</tr>
<tr>
<td>UPF3B</td>
<td>UPF3 regulator of nonsense transcripts homolog B (yeast)</td>
<td>4.20</td>
<td>chrX</td>
</tr>
<tr>
<td>UPP1</td>
<td>uridine phosphorylase 1</td>
<td>4.10</td>
<td>chr7</td>
</tr>
<tr>
<td>UQCR</td>
<td>ubiquinol-cytochrome c reductase, 6,4kDa subunit</td>
<td>2.70</td>
<td>chr18</td>
</tr>
<tr>
<td>UQCRFS1</td>
<td>ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1</td>
<td>2.00</td>
<td>chr22</td>
</tr>
</tbody>
</table>
Table S5: Genes downregulated in MPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>UQCHR</td>
<td>Ubiquinol-cytochrome c reductase hinge protein</td>
<td>2.64</td>
<td>chr1</td>
</tr>
<tr>
<td>USP1</td>
<td>Ubiquitin specific peptidase 1</td>
<td>3.68</td>
<td>chr1</td>
</tr>
<tr>
<td>USP10</td>
<td>Ubiquitin specific peptidase 10</td>
<td>2.45</td>
<td>chr14</td>
</tr>
<tr>
<td>USP13</td>
<td>Ubiquitin specific peptidase 13 (isopeptidase T-3)</td>
<td>3.14</td>
<td>chr5</td>
</tr>
<tr>
<td>USP25</td>
<td>Ubiquitin specific peptidase 25</td>
<td>3.14</td>
<td>chr21</td>
</tr>
<tr>
<td>USP28</td>
<td>Ubiquitin specific peptidase 28</td>
<td>8.39</td>
<td>chr11</td>
</tr>
<tr>
<td>USP31</td>
<td>Ubiquitin specific peptidase 31</td>
<td>5.43</td>
<td>chr16</td>
</tr>
<tr>
<td>USP32</td>
<td>Ubiquitin specific peptidase 32</td>
<td>2.30</td>
<td>chr17</td>
</tr>
<tr>
<td>USP34</td>
<td>Ubiquitin specific peptidase 34</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>USP37</td>
<td>Ubiquitin specific peptidase 37</td>
<td>3.68</td>
<td>chr2</td>
</tr>
<tr>
<td>USP39</td>
<td>Ubiquitin specific peptidase 39</td>
<td>2.33</td>
<td>chr2</td>
</tr>
<tr>
<td>USP44</td>
<td>Ubiquitin specific peptidase 44</td>
<td>50.78</td>
<td>chr12</td>
</tr>
<tr>
<td>USP45</td>
<td>Ubiquitin specific peptidase 45</td>
<td>2.02</td>
<td>chr6</td>
</tr>
<tr>
<td>USP46</td>
<td>Ubiquitin specific peptidase 46</td>
<td>2.54</td>
<td>chr4</td>
</tr>
<tr>
<td>USP51</td>
<td>Ubiquitin specific peptidase 51</td>
<td>4.06</td>
<td>chrX</td>
</tr>
<tr>
<td>USP52</td>
<td>Ubiquitin specific peptidase 52</td>
<td>2.70</td>
<td>chr12</td>
</tr>
<tr>
<td>USP54</td>
<td>Ubiquitin specific peptidase 54</td>
<td>6.98</td>
<td>chr10</td>
</tr>
<tr>
<td>USP8NL</td>
<td>USP6 N-terminal like</td>
<td>2.33</td>
<td>chr10</td>
</tr>
<tr>
<td>USP7</td>
<td>Unknown protein</td>
<td>2.94</td>
<td>chr16</td>
</tr>
<tr>
<td>USP9X</td>
<td>Ubiquitin specific peptidase 9, X-linked (fat facets-like, Drosophila)</td>
<td>3.60</td>
<td>chrX</td>
</tr>
<tr>
<td>UST</td>
<td>10090 uronyl-2-sulfotransferase</td>
<td>3.03</td>
<td>chr6</td>
</tr>
<tr>
<td>UTX</td>
<td>7403 ubiquitously transcribed tetratricopeptide repeat, X chromosome</td>
<td>2.99</td>
<td>chrX</td>
</tr>
<tr>
<td>UX1</td>
<td>80146 UDP-glucuronate deacetylase 1</td>
<td>2.12</td>
<td>chr2</td>
</tr>
<tr>
<td>VAMP8</td>
<td>8673 vesicle-associated membrane protein 8 (endobrevin)</td>
<td>15.21</td>
<td>chr2</td>
</tr>
<tr>
<td>VANGL2</td>
<td>57216 vang-like 2 (van goth, Drosophila)</td>
<td>8.83</td>
<td>chr1</td>
</tr>
<tr>
<td>VARSL</td>
<td>57178 valyl-tRNA synthetase like</td>
<td>2.55</td>
<td>chr6</td>
</tr>
<tr>
<td>VAV3</td>
<td>10451 vav 3 oncogene</td>
<td>6.21</td>
<td>chr1</td>
</tr>
<tr>
<td>VDP</td>
<td>8615 Vesicle docking protein p11</td>
<td>2.61</td>
<td>chr4</td>
</tr>
<tr>
<td>VIL2</td>
<td>7430 villin 2 (extrim)</td>
<td>6.34</td>
<td>chr6</td>
</tr>
<tr>
<td>VprBP</td>
<td>9730 Vpr-binding protein</td>
<td>2.21</td>
<td>chr3</td>
</tr>
<tr>
<td>VPS4A</td>
<td>27183 Vacular protein sorting 4A (yeast)</td>
<td>2.32</td>
<td>chr16</td>
</tr>
<tr>
<td>VRK1</td>
<td>7443 vaccinia related kinase 1</td>
<td>9.09</td>
<td>chr14</td>
</tr>
<tr>
<td>VRK2</td>
<td>7444 vaccinia related kinase 2</td>
<td>2.01</td>
<td>chr2</td>
</tr>
<tr>
<td>VSNL1</td>
<td>7447 visinin-like 1</td>
<td>17.97</td>
<td>chr2</td>
</tr>
<tr>
<td>WASL</td>
<td>8976 Wiskott-Aldrich syndrome-like</td>
<td>3.39</td>
<td>chr7</td>
</tr>
<tr>
<td>WBSCR16</td>
<td>81554 Williams-Beuren syndrome chromosome region 16 /// Williams-Beuren syndrome</td>
<td>2.06</td>
<td>chr7</td>
</tr>
<tr>
<td>WBSCR17</td>
<td>64409 Williams-Beuren syndrome chromosome region 17</td>
<td>6.65</td>
<td>chr7</td>
</tr>
<tr>
<td>WBSCR20C</td>
<td>260294 Williams Beuren syndrome chromosome region 20C</td>
<td>4.69</td>
<td>chr7</td>
</tr>
<tr>
<td>WDHD1</td>
<td>11169 WD repeat and HMG-box DNA binding protein 1</td>
<td>10.80</td>
<td>chr14</td>
</tr>
<tr>
<td>WDR12</td>
<td>55759 WD repeat domain 12</td>
<td>4.46</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR18</td>
<td>57418 WD repeat domain 18</td>
<td>3.47</td>
<td>chr19</td>
</tr>
<tr>
<td>WDR23</td>
<td>80344 WD repeat domain 23</td>
<td>2.99</td>
<td>chr14</td>
</tr>
<tr>
<td>WDR27</td>
<td>253769 CDNA FLJ46815 fis, clone TRACH03036897 /// WD repeat domain 27</td>
<td>2.95</td>
<td>chr6</td>
</tr>
<tr>
<td>WDR3</td>
<td>10885 WD repeat domain 3</td>
<td>2.13</td>
<td>chr1</td>
</tr>
<tr>
<td>WDR33</td>
<td>55339 WD repeat domain 33</td>
<td>3.29</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR34</td>
<td>89891 WD repeat domain 34</td>
<td>2.77</td>
<td>chr9</td>
</tr>
<tr>
<td>WDR35</td>
<td>57339 WD repeat domain 35</td>
<td>3.92</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR40B</td>
<td>139170 WD repeat domain 40B</td>
<td>3.67</td>
<td>chrX</td>
</tr>
<tr>
<td>WDR42A</td>
<td>50717 WD repeat domain 42A</td>
<td>5.14</td>
<td>chr1</td>
</tr>
<tr>
<td>WDR43</td>
<td>23160 WD repeat domain 43</td>
<td>2.25</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR46</td>
<td>9277 WD repeat domain 46</td>
<td>2.28</td>
<td>chr6</td>
</tr>
<tr>
<td>WDR48</td>
<td>57599 WD repeat domain 48</td>
<td>2.32</td>
<td>chr3</td>
</tr>
<tr>
<td>WDR5</td>
<td>11091 WD repeat domain 5</td>
<td>2.88</td>
<td>chr9</td>
</tr>
<tr>
<td>WDR50</td>
<td>51096 WD repeat domain 50</td>
<td>3.12</td>
<td>chr18</td>
</tr>
<tr>
<td>WDR51A</td>
<td>25886 WD repeat domain 51A</td>
<td>6.29</td>
<td>chr3</td>
</tr>
<tr>
<td>WDR54</td>
<td>84058 WD repeat domain 54</td>
<td>4.21</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR57</td>
<td>9410 WD repeat domain 57 (U5 snRNP specific)</td>
<td>3.25</td>
<td>chr1</td>
</tr>
<tr>
<td>WDR58</td>
<td>79228 WD repeat domain 58</td>
<td>2.71</td>
<td>chr16</td>
</tr>
<tr>
<td>WDR59</td>
<td>79726 WD repeat domain 59</td>
<td>3.14</td>
<td>chr16</td>
</tr>
<tr>
<td>WDR6</td>
<td>11180 WD repeat domain 6</td>
<td>2.10</td>
<td>chr3</td>
</tr>
<tr>
<td>WDR67</td>
<td>93594 WD repeat domain 67</td>
<td>3.94</td>
<td>chr8</td>
</tr>
<tr>
<td>WDR70</td>
<td>55100 WD repeat domain 70</td>
<td>2.45</td>
<td>chr5</td>
</tr>
<tr>
<td>WDR72</td>
<td>256764 WD repeat domain 72</td>
<td>9.40</td>
<td>chr15</td>
</tr>
<tr>
<td>WDR74</td>
<td>54663 WD repeat domain 74 /// WD repeat domain 74</td>
<td>4.27</td>
<td>chr11</td>
</tr>
<tr>
<td>WDR75</td>
<td>84128 WD repeat domain 75</td>
<td>3.33</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR76</td>
<td>7968 WD repeat domain 76</td>
<td>2.15</td>
<td>chr15</td>
</tr>
<tr>
<td>WDR77</td>
<td>79084 WD repeat domain 77</td>
<td>3.33</td>
<td>chr1</td>
</tr>
</tbody>
</table>

Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(p < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDR79</td>
<td>WD repeat domain 79</td>
<td>4.97</td>
<td>chr17</td>
</tr>
<tr>
<td>WDSU1B1</td>
<td>WD repeat, SAM and U-box domain containing 1</td>
<td>2.10</td>
<td>chr2</td>
</tr>
<tr>
<td>WEE1</td>
<td>WEE1 homolog (S. pombe)</td>
<td>2.37</td>
<td>chr11</td>
</tr>
<tr>
<td>WFDC2</td>
<td>WAP four-disulfide core domain 2</td>
<td>4.23</td>
<td>chr20</td>
</tr>
<tr>
<td>WHSC1</td>
<td>Wolf-Hirschhorn syndrome candidate 1</td>
<td>2.16</td>
<td>chr4</td>
</tr>
<tr>
<td>WHSC1L1</td>
<td>Wolf-Hirschhorn syndrome candidate 1-like 1</td>
<td>2.17</td>
<td>chr8</td>
</tr>
<tr>
<td>WHSC2</td>
<td>Wolf-Hirschhorn syndrome candidate 2</td>
<td>2.29</td>
<td>chr4</td>
</tr>
<tr>
<td>WIBG</td>
<td>within bgcn homolog (Drosophila) (\Rightarrow) within bgcn homolog (Drosophila)</td>
<td>3.52</td>
<td>chr12</td>
</tr>
<tr>
<td>WIF1</td>
<td>WNT inhibitory factor 1</td>
<td>17.67</td>
<td>chr12</td>
</tr>
<tr>
<td>WNK3</td>
<td>WNK lysine deficient protein kinase 3</td>
<td>13.44</td>
<td>chrX</td>
</tr>
<tr>
<td>WRRNP1</td>
<td>Werner helicase interacting protein 1</td>
<td>2.07</td>
<td>chr6</td>
</tr>
<tr>
<td>WTA1</td>
<td>Wilms tumor 1 associated protein</td>
<td>3.56</td>
<td>chr6</td>
</tr>
<tr>
<td>WWP1</td>
<td>WW domain containing E3 ubiquitin protein ligase 1</td>
<td>2.16</td>
<td>chr3</td>
</tr>
<tr>
<td>XR4</td>
<td>X-Kell blood group precursor-related family, member 4</td>
<td>2.36</td>
<td>chr8</td>
</tr>
<tr>
<td>XPO4</td>
<td>exporin 4</td>
<td>2.28</td>
<td>chr13</td>
</tr>
<tr>
<td>XPO5</td>
<td>exporin 5</td>
<td>3.38</td>
<td>chr6</td>
</tr>
<tr>
<td>XPO7</td>
<td>exporin 7</td>
<td>2.18</td>
<td>chr8</td>
</tr>
<tr>
<td>XRPR1</td>
<td>Xenotropic and polytropic retrovirus receptor</td>
<td>2.62</td>
<td>chr1</td>
</tr>
<tr>
<td>XRCC1</td>
<td>X-ray repair complementing defective repair in Chinese hamster cells 1</td>
<td>3.36</td>
<td>chr19</td>
</tr>
<tr>
<td>XRCC2</td>
<td>X-ray repair complementing defective repair in Chinese hamster cells 2</td>
<td>2.25</td>
<td>chr7</td>
</tr>
<tr>
<td>XRCC5</td>
<td>X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand break repairing)</td>
<td>3.18</td>
<td>chr2</td>
</tr>
<tr>
<td>XRCC6</td>
<td>X-ray repair complementing defective repair in Chinese hamster cells 6 (Ku auto-antigen)</td>
<td>2.23</td>
<td>chr22</td>
</tr>
<tr>
<td>XRN2</td>
<td>5'-3' exoribonuclease 2</td>
<td>2.82</td>
<td>chr20</td>
</tr>
<tr>
<td>XTP3TPA</td>
<td>XTP3-activated protein A</td>
<td>3.37</td>
<td>chr16</td>
</tr>
<tr>
<td>YARS</td>
<td>tyrosyl-tRNA synthetase</td>
<td>3.24</td>
<td>chr1</td>
</tr>
<tr>
<td>YBX1</td>
<td>Y box binding protein 1</td>
<td>2.97</td>
<td>chr1</td>
</tr>
<tr>
<td>YEATS4</td>
<td>YEATS domain containing 4</td>
<td>4.87</td>
<td>chr12</td>
</tr>
<tr>
<td>YMIE1L1</td>
<td>YMIE1-1 like (S. cerevisiae)</td>
<td>3.17</td>
<td>chr10</td>
</tr>
<tr>
<td>YPEL1</td>
<td>ypelee-like 1 (Drosophila)</td>
<td>2.30</td>
<td>chr22</td>
</tr>
<tr>
<td>YT521</td>
<td>splice factor YT521-B</td>
<td>2.89</td>
<td>chr4</td>
</tr>
<tr>
<td>YTHDC2</td>
<td>YTH domain containing 2</td>
<td>2.71</td>
<td>chr5</td>
</tr>
<tr>
<td>YTHDF2</td>
<td>YTH domain family, member 2</td>
<td>2.47</td>
<td>chr1</td>
</tr>
<tr>
<td>YWHA4</td>
<td>tyrosine 3-monoxygenase/steroylprenol 5-monoxygenase activation protein, epsilon</td>
<td>3.15</td>
<td>chr7</td>
</tr>
<tr>
<td>YY1</td>
<td>YY1 transcription factor</td>
<td>2.03</td>
<td>chr14</td>
</tr>
<tr>
<td>ZA20D3</td>
<td>Zinc finger, A20 domain containing 3</td>
<td>4.01</td>
<td>chr15</td>
</tr>
<tr>
<td>ZADH1</td>
<td>zinc binding alcohol dehydrogenase, domain containing 1</td>
<td>2.99</td>
<td>chr14</td>
</tr>
<tr>
<td>ZBED1</td>
<td>zinc finger, BED-type containing 1</td>
<td>2.29</td>
<td>chrY</td>
</tr>
<tr>
<td>ZBBT24</td>
<td>zinc finger and BTB domain containing 24</td>
<td>4.28</td>
<td>chr6</td>
</tr>
<tr>
<td>ZBBT3</td>
<td>zinc finger and BTB domain containing 3</td>
<td>5.64</td>
<td>chr11</td>
</tr>
<tr>
<td>ZBBT80B</td>
<td>zinc finger and BTB domain containing 8 opposite strand</td>
<td>2.52</td>
<td>chr1</td>
</tr>
<tr>
<td>ZBBT9</td>
<td>zinc finger and BTB domain containing 9</td>
<td>3.10</td>
<td>chr6</td>
</tr>
<tr>
<td>ZC3H10</td>
<td>zinc finger CCCH-type containing 10</td>
<td>2.74</td>
<td>chr12</td>
</tr>
<tr>
<td>ZC3HAV1</td>
<td>zinc finger CCCH-type, antiviral 1</td>
<td>3.05</td>
<td>chr7</td>
</tr>
<tr>
<td>ZC3HC1</td>
<td>zinc finger, CCCH-type containing 1</td>
<td>2.40</td>
<td>chr7</td>
</tr>
<tr>
<td>ZC3HC10</td>
<td>zinc finger, CCCH domain containing 10</td>
<td>2.09</td>
<td>chr5</td>
</tr>
<tr>
<td>ZC3HC11</td>
<td>zinc finger, CCCH domain containing 11</td>
<td>2.69</td>
<td>chr1</td>
</tr>
<tr>
<td>ZC3HC14</td>
<td>zinc finger, CCCH domain containing 14</td>
<td>2.06</td>
<td>chr16</td>
</tr>
<tr>
<td>ZC3HC23</td>
<td>zinc finger, CCCH domain containing 3</td>
<td>2.58</td>
<td>chr20</td>
</tr>
<tr>
<td>ZC3HC7</td>
<td>zinc finger, CCCH domain containing 7</td>
<td>3.72</td>
<td>chr9</td>
</tr>
<tr>
<td>ZD52F10</td>
<td>dermokine</td>
<td>28.48</td>
<td>chr19</td>
</tr>
<tr>
<td>ZDHHC11</td>
<td>zinc finger, DHHC-type containing 11</td>
<td>5.57</td>
<td>chr5</td>
</tr>
<tr>
<td>ZDHHC15</td>
<td>zinc finger, DHHC-type containing 15</td>
<td>3.54</td>
<td>chrX</td>
</tr>
<tr>
<td>ZDHHC22</td>
<td>zinc finger, DHHC-type containing 22</td>
<td>2.85</td>
<td>chr14</td>
</tr>
<tr>
<td>ZDHHC23</td>
<td>zinc finger, DHHC-type containing 23</td>
<td>10.00</td>
<td>chr3</td>
</tr>
<tr>
<td>ZF</td>
<td>HCF-binding transcription factor Zhangfei</td>
<td>2.01</td>
<td>chr11</td>
</tr>
<tr>
<td>ZFAND3</td>
<td>Zinc finger, AN1-type domain 3</td>
<td>2.19</td>
<td>chr6</td>
</tr>
<tr>
<td>ZFP161</td>
<td>zinc finger protein 161 homolog (mouse)</td>
<td>2.07</td>
<td>chr18</td>
</tr>
<tr>
<td>ZFP362</td>
<td>zinc finger protein 36, C3H-type like-2</td>
<td>2.90</td>
<td>chr2</td>
</tr>
<tr>
<td>ZFP42</td>
<td>zinc finger protein 42</td>
<td>107.59</td>
<td>chr4</td>
</tr>
<tr>
<td>ZFP62</td>
<td>zinc finger protein 62 homolog (mouse)</td>
<td>3.93</td>
<td>chr5</td>
</tr>
<tr>
<td>ZFPFL</td>
<td>Zinc finger protein like</td>
<td>3.52</td>
<td>chr19</td>
</tr>
<tr>
<td>ZGAPAT</td>
<td>zinc finger, CCCH-type with G patch domain</td>
<td>2.35</td>
<td>chr20</td>
</tr>
<tr>
<td>ZIC2</td>
<td>Zinc family member 2 (odd-paired homolog, Drosophila)</td>
<td>65.62</td>
<td>chr13</td>
</tr>
<tr>
<td>ZIC3</td>
<td>Zinc family member 3 heteroxalin 1 (odd-paired homolog, Drosophila)</td>
<td>68.18</td>
<td>chrX</td>
</tr>
<tr>
<td>ZIK1</td>
<td>Zinc finger protein interacting with K protein 1</td>
<td>9.74</td>
<td>chr19</td>
</tr>
<tr>
<td>ZMAT4</td>
<td>zinc finger, matrin type 4</td>
<td>4.76</td>
<td>chr8</td>
</tr>
<tr>
<td>ZMYM1</td>
<td>zinc finger, MYM-type 1</td>
<td>2.37</td>
<td>chr1</td>
</tr>
</tbody>
</table>
Table S5. Genes downregulated in MPC compared to hES (Fold Change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZMYND19</td>
<td>zinc finger, MYND-type containing 19</td>
<td>3.47</td>
<td>chr9</td>
</tr>
<tr>
<td>ZNF10</td>
<td>zinc finger protein 10</td>
<td>3.69</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF101</td>
<td>zinc finger protein 101</td>
<td>3.86</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF114</td>
<td>zinc finger protein 114</td>
<td>6.82</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF11B</td>
<td>zinc finger protein 11B</td>
<td>3.51</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF124</td>
<td>zinc finger protein 124 (HIZF-16)</td>
<td>5.80</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF131</td>
<td>zinc finger protein 131 (clone pHZ-10)</td>
<td>3.80</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF134</td>
<td>zinc finger protein 134 (clone pHZ-15)</td>
<td>3.38</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF137</td>
<td>zinc finger protein 137 (clone pHZ-30)</td>
<td>3.44</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF138</td>
<td>zinc finger protein 138</td>
<td>12.07</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF14</td>
<td>zinc finger protein 14 (KOX 6)</td>
<td>2.80</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF140</td>
<td>zinc finger protein 140 (clone pHZ-39)</td>
<td>2.32</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF141</td>
<td>zinc finger protein 141 (clone pHZ-44)</td>
<td>2.58</td>
<td>chr4</td>
</tr>
<tr>
<td>ZNF142</td>
<td>zinc finger protein 142 (clone pHZ-49)</td>
<td>2.18</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF143</td>
<td>zinc finger protein 143 (clone pHZ-1)</td>
<td>3.04</td>
<td>chr11</td>
</tr>
<tr>
<td>ZNF165</td>
<td>zinc finger protein 165</td>
<td>12.07</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF167</td>
<td>zinc finger protein 167</td>
<td>2.52</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF180</td>
<td>zinc finger protein 180 (HHZ168)</td>
<td>3.07</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF195</td>
<td>zinc finger protein 195</td>
<td>5.65</td>
<td>chr11</td>
</tr>
<tr>
<td>ZNF198</td>
<td>zinc finger protein 198</td>
<td>8.00</td>
<td>chr13</td>
</tr>
<tr>
<td>ZNF20</td>
<td>zinc finger protein 20 (KOX 13)</td>
<td>3.14</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF200</td>
<td>zinc finger protein 200</td>
<td>2.09</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF202</td>
<td>zinc finger protein 202</td>
<td>4.95</td>
<td>chr11</td>
</tr>
<tr>
<td>ZNF204</td>
<td>zinc finger protein 204</td>
<td>13.28</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF206</td>
<td>zinc finger protein 206</td>
<td>12.42</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF207</td>
<td>zinc finger protein 207</td>
<td>2.06</td>
<td>chr17</td>
</tr>
<tr>
<td>ZNF21</td>
<td>zinc finger protein 21 (KOX 14)</td>
<td>2.01</td>
<td>chrX</td>
</tr>
<tr>
<td>ZNF215</td>
<td>zinc finger protein 215</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>ZNF217</td>
<td>zinc finger protein 217</td>
<td>2.15</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF219</td>
<td>zinc finger protein 219</td>
<td>3.06</td>
<td>chr14</td>
</tr>
<tr>
<td>ZNF22</td>
<td>zinc finger protein 22 (KOX 15)</td>
<td>2.79</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF226</td>
<td>zinc finger protein 226</td>
<td>2.26</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF227</td>
<td>zinc finger protein 227</td>
<td>3.47</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF232</td>
<td>zinc finger protein 232</td>
<td>6.79</td>
<td>chr17</td>
</tr>
<tr>
<td>ZNF239</td>
<td>zinc finger protein 239</td>
<td>3.74</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF253</td>
<td>zinc finger protein 253 /// hypothetical protein BC014148</td>
<td>5.46</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF256</td>
<td>zinc finger protein 256</td>
<td>7.30</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF26</td>
<td>zinc finger protein 26 (KOX 20)</td>
<td>2.45</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF261</td>
<td>zinc finger protein 261</td>
<td>3.17</td>
<td>chrX</td>
</tr>
<tr>
<td>ZNF262</td>
<td>zinc finger protein 262</td>
<td>2.03</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF267</td>
<td>zinc finger protein 267</td>
<td>2.28</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF273</td>
<td>zinc finger protein 273</td>
<td>9.27</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF278</td>
<td>zinc finger protein 278</td>
<td>5.75</td>
<td>chr22</td>
</tr>
<tr>
<td>ZNF281</td>
<td>zinc finger protein 281</td>
<td>2.83</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF285</td>
<td>zinc finger protein 285</td>
<td>2.46</td>
<td>chr2</td>
</tr>
<tr>
<td>ZNF286</td>
<td>zinc finger protein 286</td>
<td>4.17</td>
<td>chr17</td>
</tr>
<tr>
<td>ZNF292</td>
<td>zinc finger protein 292</td>
<td>2.54</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF3</td>
<td>zinc finger protein 3 (A8-51)</td>
<td>2.18</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF30</td>
<td>zinc finger protein 30 (KOX 28)</td>
<td>3.02</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF300</td>
<td>zinc finger protein 300</td>
<td>5.54</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF302</td>
<td>zinc finger protein 302</td>
<td>2.77</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF311</td>
<td>zinc finger protein 311</td>
<td>2.77</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF313</td>
<td>zinc finger protein 313</td>
<td>2.77</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF323</td>
<td>zinc finger protein 323</td>
<td>2.19</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF326</td>
<td>zinc finger protein 326</td>
<td>3.59</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF331</td>
<td>zinc finger protein 331</td>
<td>11.91</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF33A</td>
<td>zinc finger protein 33A</td>
<td>3.75</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF342</td>
<td>zinc finger protein 342</td>
<td>2.28</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF35</td>
<td>zinc finger protein 35 (clone HF-10)</td>
<td>2.57</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF367</td>
<td>zinc finger protein 367</td>
<td>4.92</td>
<td>chr9</td>
</tr>
<tr>
<td>ZNF38</td>
<td>zinc finger protein 38</td>
<td>4.30</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF394</td>
<td>zinc finger protein 394</td>
<td>2.54</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF395</td>
<td>zinc finger protein 395</td>
<td>2.17</td>
<td>chr8</td>
</tr>
<tr>
<td>ZNF397</td>
<td>zinc finger protein 397</td>
<td>6.58</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF398</td>
<td>zinc finger protein 398</td>
<td>9.43</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF415</td>
<td>zinc finger protein 415</td>
<td>3.06</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF416</td>
<td>zinc finger protein 416</td>
<td>2.05</td>
<td>chr19</td>
</tr>
</tbody>
</table>
Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways (doi: 10.1089/scd.2010.0331)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

<p>| ZNF418 | 147686 | zinc finger protein 418 | 4.65 | (vide) |
| ZNF420 | 147923 | zinc finger protein 420 | 2.45 | chr19 |
| ZNF423 | 23090 | zinc finger protein 423 | 9.65 | chr16 |
| ZNF43 | 7594 | zinc finger protein 43 (HTF6) | 4.61 | chr19 |
| ZNF430 | 80264 | zinc finger protein 430 | 2.45 | chr19 |
| ZNF435 | 80345 | zinc finger protein 435 | 4.22 | chr6 |
| ZNF44 | 51710 | zinc finger protein 44 (KIX7) | 2.11 | chr19 |
| ZNF443 | 10224 | zinc finger protein 443 | 3.93 | chr19 |
| ZNF447 | 65982 | zinc finger protein 447 | 2.54 | chr19 |
| ZNF462 | 58499 | zinc finger protein 462 | 7.48 | chr9 |
| ZNF483 | 158399 | zinc finger protein 483 | 2.10 | chr9 |
| ZNF488 | 118738 | zinc finger protein 488 | 2.05 | chr10 |
| ZNF493 | 284443 | zinc finger protein 493 | 2.41 | chr19 |
| ZNF496 | 84838 | zinc finger protein 496 | 3.03 | chr1 |
| ZNF505 | 81931 | zinc finger protein 505 // zinc finger protein 505 | 16.37 | chr19 |
| ZNF507 | 22847 | zinc finger protein 507 | 2.64 | chr19 |
| ZNF511 | 118472 | zinc finger protein 511 | 3.81 | chr10 |
| ZNF518 | 9849 | zinc finger protein 518 | 6.44 | chr1 |
| ZNF519 | 162655 | zinc finger protein 519 | 8.99 | chr18 |
| ZNF529 | 57711 | zinc finger protein 529 | 2.22 | chr19 |
| ZNF532 | 52205 | zinc finger protein 532 | 2.61 | chr18 |
| ZNF544 | 27300 | Zinc finger protein 544 | 5.14 | chr19 |
| ZNF545 | 284406 | zinc finger protein 545 | 2.72 | chr19 |
| ZNF551 | 90233 | zinc finger protein 551 // zinc finger protein 551 | 8.74 | chr19 |
| ZNF553 | 197407 | zinc finger protein 553 | 2.52 | chr16 |
| ZNF559 | 84527 | zinc finger protein 559 // zinc finger protein 559 | 7.44 | chr19 |
| ZNF560 | 147741 | zinc finger protein 560 | 2.40 | chr19 |
| ZNF561 | 93134 | zinc finger protein 561 | 2.17 | chr5 |
| ZNF562 | 54811 | zinc finger protein 562 | 2.60 | chr19 |
| ZNF567 | 163081 | zinc finger protein 567 | 3.70 | chr19 |
| ZNF573 | 126231 | zinc finger protein 573 | 2.62 | chr19 |
| ZNF574 | 64763 | zinc finger protein 574 | 2.36 | chr19 |
| ZNF586 | 54807 | zinc finger protein 586 | 4.70 | chr19 |
| ZNF587 | 84914 | Zinc finger protein 587 | 2.11 | chr19 |
| ZNF588 | 51427 | zinc finger protein 588 | 15.58 | chr7 |
| ZNF589 | 51385 | zinc finger protein 589 | 16.80 | chr3 |
| ZNF6 | 7052 | zinc finger protein 6 (CMF1X) | 2.31 | chrX |
| ZNF600 | 162966 | zinc finger protein 600 | 2.66 | chr19 |
| ZNF605 | 90462 | zinc finger protein 605 | 2.60 | chr12 |
| ZNF606 | 80095 | zinc finger protein 606 | 2.32 | chr19 |
| ZNF607 | 84775 | zinc finger protein 607 | 4.26 | chr19 |
| ZNF608 | 57507 | zinc finger protein 608 | 3.16 | chr5 |
| ZNF610 | 162963 | zinc finger protein 610 | 2.50 | chr19 |
| ZNF614 | 80110 | zinc finger protein 614 | 4.51 | chr19 |
| ZNF616 | 90317 | zinc finger protein 616 | 6.45 | chr19 |
| ZNF638 | 27332 | zinc finger protein 638 | 3.74 | chr2 |
| ZNF639 | 51193 | zinc finger protein 639 | 2.08 | chr3 |
| ZNF643 | 65243 | zinc finger protein 643 | 3.02 | chr1 |
| ZNF644 | 84146 | zinc finger protein 644 | 2.37 | chr1 |
| ZNF649 | 65251 | zinc finger protein 649 | 9.20 | chr19 |
| ZNF652 | 22834 | Zinc finger protein 652 | 5.10 | chr17 |
| ZNF667 | 63934 | Zinc finger protein 667 | 4.41 | chr19 |
| ZNF669 | 79862 | zinc finger protein 669 | 2.01 | chr1 |
| ZNF670 | 93474 | zinc finger protein 670 | 4.26 | chr1 |
| ZNF675 | 171392 | zinc finger protein 675 | 2.48 | chr19 |
| ZNF677 | 342926 | Zinc finger protein 677 | 4.29 | chr19 |
| ZNF678 | 339500 | hypothetical protein MGC15634 | 8.91 | chr1 |
| ZNF680 | 340525 | zinc finger protein 680 | 8.15 | chr7 |
| ZNF682 | 91120 | zinc finger protein 682 | 7.89 | chr19 |
| ZNF689 | 115509 | zinc finger protein 689 | 3.65 | chr16 |
| ZNF690 | 146050 | zinc finger protein 690 | 2.46 | chr15 |
| ZNF691 | 51058 | zinc finger protein 691 | 3.92 | chr1 |
| ZNF692 | 55657 | zinc finger protein 692 | 2.78 | chr1 |
| ZNF694 | 342357 | zinc finger protein 694 | 2.16 | chr16 |
| ZNF700 | 90592 | zinc finger protein 700 | 2.58 | chr19 |
| ZNF708 | 7562 | Zinc finger protein 708 (KIX8) | 4.08 | chr18 |
| ZNF71 | 58491 | zinc finger protein 71 (Cos26) | 2.03 | chr19 |</p>
<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold Change</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNF74</td>
<td>zinc finger protein 74 (Cos52)</td>
<td>2.59</td>
<td>chr22</td>
</tr>
<tr>
<td>ZNF75A</td>
<td>zinc finger protein 75a</td>
<td>2.46</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF8</td>
<td>zinc finger protein 8 (clone HF.18)</td>
<td>3.31</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF84</td>
<td>Zinc finger protein 84 (HPF2)</td>
<td>2.88</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF85</td>
<td>zinc finger protein 85 (HPF4, HTF1)</td>
<td>8.00</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF9</td>
<td>zinc finger protein 9 (a cellular retroviral nucleic acid binding protein)</td>
<td>2.06</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF91</td>
<td>Zinc finger protein 91 (HPF7, HTF10)</td>
<td>3.68</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF92</td>
<td>zinc finger protein 92 (HTF12)</td>
<td>6.21</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNHT3</td>
<td>zinc finger, HIT type 3</td>
<td>2.36</td>
<td>chr17</td>
</tr>
<tr>
<td>ZNRD1</td>
<td>zinc ribbon domain containing, 1</td>
<td>2.64</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNRF1</td>
<td>zinc and ring finger 1</td>
<td>2.07</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNRF2</td>
<td>zinc and ring finger 2</td>
<td>2.82</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNRF3</td>
<td>zinc and ring finger 3</td>
<td>4.12</td>
<td>chr22</td>
</tr>
<tr>
<td>ZRANB3</td>
<td>zinc finger, RAN-binding domain containing 3</td>
<td>3.42</td>
<td>chr2</td>
</tr>
<tr>
<td>ZRF1</td>
<td>Zuotin related factor 1</td>
<td>3.84</td>
<td>chr7</td>
</tr>
<tr>
<td>ZSCAN2</td>
<td>zinc finger and SCAN domain containing 2</td>
<td>4.90</td>
<td>chr15</td>
</tr>
<tr>
<td>ZSCAN5</td>
<td>zinc finger and SCAN domain containing 5</td>
<td>2.19</td>
<td>chr19</td>
</tr>
<tr>
<td>ZSWIM3</td>
<td>zinc finger, SWIM-type containing 3</td>
<td>2.09</td>
<td>chr20</td>
</tr>
<tr>
<td>ZSWIM6</td>
<td>zinc finger, SWIM-type containing 6</td>
<td>2.05</td>
<td>chr5</td>
</tr>
<tr>
<td>ZWILCH</td>
<td>Zwilch, kinetochore associated, homolog (Drosophila)</td>
<td>4.18</td>
<td>chr15</td>
</tr>
<tr>
<td>ZWINT</td>
<td>ZW10 interactor</td>
<td>6.94</td>
<td>chr10</td>
</tr>
<tr>
<td>ZXDC</td>
<td>ZXD family zinc finger C</td>
<td>3.83</td>
<td>chr3</td>
</tr>
<tr>
<td>ZYG11A</td>
<td>zyg-11 homolog A (C. elegans)</td>
<td>3.16</td>
<td>chr1</td>
</tr>
</tbody>
</table>

Additional information:
- Primary neuroblastoma cDNA, clone:Nbla11652
- chromosome 10 open reading frame 58 // chromosome 10 open reading frame 70.9 // reticulin 4 interacting protein 1 // reticulin 4 interacting protein 1
- WW domain containing oxidoreductase
- Fancori anemia, complementation group A // Fancori anemia, complementation group B // proteasome (prosome, macropain) subunit, beta type, 2 // proteasome (prosome, macropain) subunit, beta type, 3
- melanoma cell adhesion molecule // melanoma cell adhesion molecule
- tubulin, beta, 2
- zinc finger protein 146 // zinc finger protein 146
- activating signal cointegrator 1 complex subunit 3-like 1 // activating signal cointegrator 1 complex subunit 3-like 2
- actin related protein 2/3 complex, subunit 5-like // actin related protein 2/3 complex, subunit 5-like
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change > 2; \(\alpha < 0.05 \))

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC up</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37500</td>
<td>4735</td>
<td>septin 2</td>
<td>2.38</td>
<td>chr2</td>
</tr>
<tr>
<td>39692</td>
<td>23176</td>
<td>septin 8</td>
<td>2.05</td>
<td>chr5</td>
</tr>
<tr>
<td>(vide)</td>
<td>(vide)</td>
<td>CDNA clone IMAGE:4152983</td>
<td>34.42</td>
<td>chr12</td>
</tr>
<tr>
<td>15E1.2</td>
<td>283459</td>
<td>Hypothetical protein LOC283459</td>
<td>2.71</td>
<td>chr12</td>
</tr>
<tr>
<td>76P</td>
<td>27229</td>
<td>Gamma tubulin ring complex protein (76p gene)</td>
<td>3.37</td>
<td>chr15</td>
</tr>
<tr>
<td>ABHD6</td>
<td>57406</td>
<td>abhydrolase domain containing 6</td>
<td>2.79</td>
<td>chr3</td>
</tr>
<tr>
<td>ABI2</td>
<td>10152</td>
<td>Abi interactor 2</td>
<td>2.23</td>
<td>chr2</td>
</tr>
<tr>
<td>ABL2</td>
<td>27</td>
<td>V-abl Abelson murine leukemia viral oncogene homolog 2</td>
<td>2.02</td>
<td>chr1</td>
</tr>
<tr>
<td>ACSBG2</td>
<td>81616</td>
<td>Acyl-CoA synthetase bubblegum family member 2</td>
<td>2.68</td>
<td>chr19</td>
</tr>
<tr>
<td>ACSL3</td>
<td>2181</td>
<td>Acyl-CoA synthetase long-chain family member 3</td>
<td>2.04</td>
<td>chr2</td>
</tr>
<tr>
<td>ACY1L2</td>
<td>135293</td>
<td>aminoacylase 1-like 2</td>
<td>2.50</td>
<td>chr6</td>
</tr>
<tr>
<td>ADAM17</td>
<td>6868</td>
<td>ADAM metalloepitidase domain 17 (tumor necrosis factor, alpha, converting enzyme)</td>
<td>2.02</td>
<td>chr2</td>
</tr>
<tr>
<td>ADAMTS18</td>
<td>170892</td>
<td>ADAM metalloepitidase with thrombospondin type 1 motif, 18</td>
<td>7.82</td>
<td>chr16</td>
</tr>
<tr>
<td>ADAMTS9</td>
<td>56999</td>
<td>ADAM metalloepitidase with thrombospondin type 1 motif, 9</td>
<td>19.15</td>
<td>chr3</td>
</tr>
<tr>
<td>ADSSL1</td>
<td>122622</td>
<td>adenylosuccinate synthase like 1</td>
<td>3.26</td>
<td>chr14</td>
</tr>
<tr>
<td>AFF4</td>
<td>27125</td>
<td>AF4/FMR2 family, member 4</td>
<td>3.76</td>
<td>chr5</td>
</tr>
<tr>
<td>AKAP9</td>
<td>10142</td>
<td>A kinase (PRKA) anchor protein (yotiao) 9</td>
<td>3.01</td>
<td>chr2</td>
</tr>
<tr>
<td>AKR1C1</td>
<td>1645</td>
<td>aldo-keto reductase family 1, member C1 (dihyrodiol dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid dehydrogenase)</td>
<td>2.23</td>
<td>chr7</td>
</tr>
<tr>
<td>AKR1C2</td>
<td>1646</td>
<td>aldo-keto reductase family 1, member C2 (dihyrodiol dehydrogenase 2; bile acid binding protein; 3-alpha-hydroxysteroid dehydrogenase)</td>
<td>2.43</td>
<td>chr10</td>
</tr>
<tr>
<td>ALDH1A1</td>
<td>216</td>
<td>aldehyde dehydrogenase 1 family, member A1</td>
<td>2.32</td>
<td>chr10</td>
</tr>
<tr>
<td>AMY1A</td>
<td>277 // 278 // 279</td>
<td>amylase, alpha 1A; salivary // amylase, alpha 1B; salivary // amylase, alpha 1C; salivary // amylase, alpha 2A; salivary // amylase, alpha 2B; salivary // amylase, alpha 2C</td>
<td>8.67</td>
<td>chr9</td>
</tr>
<tr>
<td>ANAPC5</td>
<td>51433</td>
<td>Anaphase promoting complex subunit 5</td>
<td>2.42</td>
<td>chr12</td>
</tr>
<tr>
<td>ANGPTL1</td>
<td>9068</td>
<td>Angiopoietin-like 1</td>
<td>2.45</td>
<td>chr1</td>
</tr>
<tr>
<td>ANK2</td>
<td>287</td>
<td>ankyrin 2, neuronal</td>
<td>4.55</td>
<td>chr4</td>
</tr>
<tr>
<td>ANKMY2</td>
<td>57037</td>
<td>ankyrin repeat and MYND domain containing 2</td>
<td>3.49</td>
<td>chr7</td>
</tr>
<tr>
<td>ANKRD38</td>
<td>163782</td>
<td>ankyrin repeat domain 38</td>
<td>21.36</td>
<td>chr1</td>
</tr>
<tr>
<td>ANKRD6</td>
<td>22881</td>
<td>ankyrin repeat domain 6</td>
<td>6.12</td>
<td>chr6</td>
</tr>
<tr>
<td>ANXA13</td>
<td>312</td>
<td>Annexin A13</td>
<td>2.90</td>
<td>chr1</td>
</tr>
<tr>
<td>AP3M1</td>
<td>26985</td>
<td>adaptor-related protein complex 3, mu 1 subunit</td>
<td>2.12</td>
<td>chr10</td>
</tr>
<tr>
<td>APCDD1</td>
<td>147495</td>
<td>adenomatosis polyposis coli down-regulated 1</td>
<td>2.95</td>
<td>chr18</td>
</tr>
<tr>
<td>AQP3</td>
<td>360</td>
<td>aquaporin 3</td>
<td>2.73</td>
<td>chr9</td>
</tr>
<tr>
<td>ARHGEF4</td>
<td>50649</td>
<td>Rho guanine nucleotide exchange factor (GEF) 4</td>
<td>2.38</td>
<td>chr2</td>
</tr>
<tr>
<td>ARNT2</td>
<td>9915</td>
<td>aryl-hydrocarbon receptor nuclear translocator 2</td>
<td>2.67</td>
<td>chr15</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ARX</td>
<td>170302</td>
<td>aristaless related homeobox</td>
<td>7.74</td>
<td>chrX</td>
</tr>
<tr>
<td>ASCC3L1</td>
<td>23020</td>
<td>Activating signal co-integrator 1 complex subunit 3-like 1</td>
<td>2.88</td>
<td>chr17</td>
</tr>
<tr>
<td>ASH1L</td>
<td>55870</td>
<td>POU domain, class 6, transcription factor 1</td>
<td>8.38</td>
<td>(vide)</td>
</tr>
<tr>
<td>ASTN</td>
<td>460</td>
<td>astrotactin</td>
<td>4.43</td>
<td>chr1</td>
</tr>
<tr>
<td>ATAD1</td>
<td>84896</td>
<td>ATPase family, AAA domain containing 1</td>
<td>2.19</td>
<td>chr10</td>
</tr>
<tr>
<td>ATP2B1</td>
<td>490</td>
<td>ATPase, Ca++ transporting, plasma membrane 1</td>
<td>3.56</td>
<td>chr12</td>
</tr>
<tr>
<td>ATP7B</td>
<td>540</td>
<td>ATPase, Cu++ transporting, beta polypeptide (Wilson disease)</td>
<td>3.42</td>
<td>chr13</td>
</tr>
<tr>
<td>B3GNT5</td>
<td>84002</td>
<td>UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5</td>
<td>3.05</td>
<td>chr3</td>
</tr>
<tr>
<td>BACH2</td>
<td>60468</td>
<td>BTB and CNC homology 1, basic leucine zipper transcription factor 2 // BTB and CNC homology 1, basic leucine zipper transcription factor 2</td>
<td>4.16</td>
<td>chr6</td>
</tr>
<tr>
<td>BAT1</td>
<td>7919</td>
<td>HLA-B associated transcript 1</td>
<td>2.16</td>
<td>chr6</td>
</tr>
<tr>
<td>BBS1</td>
<td>582</td>
<td>Bardet-Biedl syndrome 1</td>
<td>2.61</td>
<td>chr11</td>
</tr>
<tr>
<td>BBS2</td>
<td>583</td>
<td>Bardet-Biedl syndrome 2</td>
<td>2.27</td>
<td>chr16</td>
</tr>
<tr>
<td>BCHE</td>
<td>590</td>
<td>butyrylcholinesterase</td>
<td>7.49</td>
<td>chr3</td>
</tr>
<tr>
<td>BCL2</td>
<td>596</td>
<td>B-cell CLL/lymphoma 2</td>
<td>2.47</td>
<td>chr18</td>
</tr>
<tr>
<td>BCL7A</td>
<td>605</td>
<td>B-cell CLL/lymphoma 7A</td>
<td>2.02</td>
<td>chr12</td>
</tr>
<tr>
<td>BDH1</td>
<td>622</td>
<td>3-hydroxybutyrate dehydrogenase, type 1</td>
<td>2.97</td>
<td>chr3</td>
</tr>
<tr>
<td>BIN1</td>
<td>274</td>
<td>bridging integrator 1</td>
<td>2.08</td>
<td>chr2</td>
</tr>
<tr>
<td>BIRC1</td>
<td>4671</td>
<td>baculoviral IAP repeat-containing 1</td>
<td>3.46</td>
<td>chr5</td>
</tr>
<tr>
<td>BOC</td>
<td>91653</td>
<td>brother of CDO</td>
<td>11.85</td>
<td>chr3</td>
</tr>
<tr>
<td>BRWD2</td>
<td>55717</td>
<td>bromodomain and WD repeat domain containing 2</td>
<td>3.05</td>
<td>chr10</td>
</tr>
<tr>
<td>BTAF1</td>
<td>9044</td>
<td>BTAF1 RNA polymerase II, B-TFII transcription factor-associated, 170kDa (Mot1 homolog, S. cerevisiae)</td>
<td>2.00</td>
<td>chr10</td>
</tr>
<tr>
<td>BTBD5</td>
<td>54813</td>
<td>BTB (POZ) domain containing 5</td>
<td>2.46</td>
<td>chr14</td>
</tr>
<tr>
<td>BTG1</td>
<td>694</td>
<td>B-cell translocation gene 1, anti-proliferative</td>
<td>2.19</td>
<td>chr12</td>
</tr>
<tr>
<td>BZRAP1</td>
<td>9256</td>
<td>benzodiazapine receptor (peripheral) associated protein 1</td>
<td>2.39</td>
<td>chr17</td>
</tr>
<tr>
<td>C10orf104</td>
<td>119504</td>
<td>chromosome 10 open reading frame 104</td>
<td>2.81</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf118</td>
<td>54906</td>
<td>chromosome 10 open reading frame 18</td>
<td>2.18</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf30</td>
<td>222389</td>
<td>chromosome 10 open reading frame 30</td>
<td>2.34</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf33</td>
<td>84795</td>
<td>chromosome 10 open reading frame 33</td>
<td>2.13</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf38</td>
<td>221061</td>
<td>chromosome 10 open reading frame 38</td>
<td>2.17</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf46</td>
<td>143384</td>
<td>chromosome 10 open reading frame 46</td>
<td>2.40</td>
<td>chr1</td>
</tr>
<tr>
<td>C10orf58</td>
<td>84293</td>
<td>chromosome 10 open reading frame 58</td>
<td>3.91</td>
<td>chr10</td>
</tr>
<tr>
<td>C12orf22</td>
<td>81566</td>
<td>chromosome 12 open reading frame 22 // chromosome 12 open reading frame 22</td>
<td>2.07</td>
<td>chr12</td>
</tr>
<tr>
<td>C14orf101</td>
<td>54916</td>
<td>chromosome 14 open reading frame 101</td>
<td>2.39</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf162</td>
<td>56936</td>
<td>chromosome 14 open reading frame 162</td>
<td>4.47</td>
<td>chr14</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>C14orf32</td>
<td>93487</td>
<td>Chromosome 14 open reading frame 32</td>
<td>2.64</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf39</td>
<td>317761</td>
<td>chromosome 14 open reading frame 39</td>
<td>3.15</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf65</td>
<td>317762</td>
<td>chromosome 14 open reading frame 65</td>
<td>2.02</td>
<td>chr14</td>
</tr>
<tr>
<td>C15orf17</td>
<td>57184</td>
<td>chromosome 15 open reading frame 17</td>
<td>2.25</td>
<td>chr15</td>
</tr>
<tr>
<td>C15orf29</td>
<td>79768</td>
<td>chromosome 15 open reading frame 29</td>
<td>2.96</td>
<td>chr15</td>
</tr>
<tr>
<td>C16orf46</td>
<td>123775</td>
<td>Chromosome 16 open reading frame 46</td>
<td>2.60</td>
<td>chr15</td>
</tr>
<tr>
<td>C16orf48</td>
<td>84080</td>
<td>chromosome 16 open reading frame 48</td>
<td>2.06</td>
<td>chr16</td>
</tr>
<tr>
<td>C16orf55</td>
<td>124045</td>
<td>chromosome 16 open reading frame 55</td>
<td>2.59</td>
<td>chr16</td>
</tr>
<tr>
<td>C17orf42</td>
<td>79736</td>
<td>Chromosome 17 open reading frame 42</td>
<td>2.99</td>
<td>chr17</td>
</tr>
<tr>
<td>C17orf45</td>
<td>125144</td>
<td>Chromosome 17 open reading frame 45</td>
<td>4.23</td>
<td>chr17</td>
</tr>
<tr>
<td>C18orf51</td>
<td>125704</td>
<td>chromosome 18 open reading frame 51</td>
<td>2.70</td>
<td>chr18</td>
</tr>
<tr>
<td>C1GALT1C1</td>
<td>29071</td>
<td>C1GALT1-specific chaperone 1</td>
<td>3.05</td>
<td>chrX</td>
</tr>
<tr>
<td>C1orf168</td>
<td>199920</td>
<td>chromosome 1 open reading frame 168</td>
<td>2.86</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf21</td>
<td>81563</td>
<td>chromosome 1 open reading frame 21 / chromosome 1 open reading frame 21</td>
<td>2.25</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf63</td>
<td>57035</td>
<td>chromosome 1 open reading frame 63</td>
<td>2.16</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf9</td>
<td>51430</td>
<td>chromosome 1 open reading frame 9</td>
<td>2.08</td>
<td>chr1</td>
</tr>
<tr>
<td>C1RL</td>
<td>51279</td>
<td>complement component 1, r subcomponent-like</td>
<td>2.35</td>
<td>chr12</td>
</tr>
<tr>
<td>C20orf108</td>
<td>116151</td>
<td>chromosome 20 open reading frame 108</td>
<td>2.36</td>
<td>chr20</td>
</tr>
<tr>
<td>C20orf112</td>
<td>140688</td>
<td>chromosome 20 open reading frame 112</td>
<td>2.82</td>
<td>chr20</td>
</tr>
<tr>
<td>C20orf133</td>
<td>140733</td>
<td>chromosome 20 open reading frame 133</td>
<td>3.27</td>
<td>chr20</td>
</tr>
<tr>
<td>C20orf58</td>
<td>128414</td>
<td>chromosome 20 open reading frame 58</td>
<td>2.37</td>
<td>chr20</td>
</tr>
<tr>
<td>C20orf81</td>
<td>64773</td>
<td>chromosome 20 open reading frame 81</td>
<td>2.76</td>
<td>chr20</td>
</tr>
<tr>
<td>C21orf25</td>
<td>25966</td>
<td>chromosome 21 open reading frame 25</td>
<td>2.14</td>
<td>chr21</td>
</tr>
<tr>
<td>C2orf23</td>
<td>65055</td>
<td>chromosome 2 open reading frame 23</td>
<td>2.73</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf4</td>
<td>51072</td>
<td>Chromosome 2 open reading frame 4</td>
<td>2.57</td>
<td>chr2</td>
</tr>
<tr>
<td>C3orf15</td>
<td>89876</td>
<td>chromosome 3 open reading frame 15</td>
<td>7.16</td>
<td>chr3</td>
</tr>
<tr>
<td>C5</td>
<td>727</td>
<td>complement component 5</td>
<td>2.52</td>
<td>chr9</td>
</tr>
<tr>
<td>C5orf5</td>
<td>51306</td>
<td>chromosome 5 open reading frame 5</td>
<td>2.41</td>
<td>chr5</td>
</tr>
<tr>
<td>C6orf129</td>
<td>154467</td>
<td>chromosome 6 open reading frame 129</td>
<td>2.24</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf141</td>
<td>135398</td>
<td>chromosome 6 open reading frame 141</td>
<td>4.10</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf59</td>
<td>79992</td>
<td>chromosome 6 open reading frame 59</td>
<td>2.63</td>
<td>chr6</td>
</tr>
<tr>
<td>C8orf13</td>
<td>83648</td>
<td>chromosome 8 open reading frame 13</td>
<td>2.22</td>
<td>chr8</td>
</tr>
<tr>
<td>C8orf32</td>
<td>55093</td>
<td>chromosome 8 open reading frame 32</td>
<td>2.19</td>
<td>chr8</td>
</tr>
<tr>
<td>C8orf70</td>
<td>51101</td>
<td>Chromosome 8 open reading frame 70</td>
<td>2.13</td>
<td>chr8</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change >2 ; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8orf72</td>
<td>90362</td>
<td>chromosome 8 open reading frame 72</td>
<td>5.84</td>
<td>chr8</td>
</tr>
<tr>
<td>C9orf72</td>
<td>89853</td>
<td>chromosome 9 open reading frame 28</td>
<td>2.56</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf5</td>
<td>23731</td>
<td>chromosome 9 open reading frame 5</td>
<td>2.17</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf7</td>
<td>11094</td>
<td>chromosome 9 open reading frame 7</td>
<td>2.46</td>
<td>chr9</td>
</tr>
<tr>
<td>CABLES2</td>
<td>81928</td>
<td>Cdk5 and Abl enzyme substrate 2</td>
<td>2.03</td>
<td>chr20</td>
</tr>
<tr>
<td>CACNA1A</td>
<td>773</td>
<td>calcium channel, voltage-dependent, P/Q type, alpha 1A subunit</td>
<td>3.30</td>
<td>chr19</td>
</tr>
<tr>
<td>CALM2</td>
<td>805</td>
<td>Calmodulin 2 (phosphorylase kinase, delta)</td>
<td>2.30</td>
<td>chr2</td>
</tr>
<tr>
<td>CAND1</td>
<td>55832</td>
<td>cullin-associated and neddylation-dissociated 1</td>
<td>2.44</td>
<td>chr12</td>
</tr>
<tr>
<td>CAP350</td>
<td>9857</td>
<td>centrosome-associated protein 350</td>
<td>2.11</td>
<td>chr1</td>
</tr>
<tr>
<td>CAPN1</td>
<td>823</td>
<td>calpain 1, (mu/l) large subunit</td>
<td>3.99</td>
<td>chr11</td>
</tr>
<tr>
<td>CAPN6</td>
<td>827</td>
<td>calpain 6</td>
<td>6.34</td>
<td>chrX</td>
</tr>
<tr>
<td>CARD8</td>
<td>22900</td>
<td>caspase recruitment domain family, member 8</td>
<td>2.80</td>
<td>chr19</td>
</tr>
<tr>
<td>CASKIN1</td>
<td>57524</td>
<td>CASK interacting protein 1</td>
<td>2.06</td>
<td>chr16</td>
</tr>
<tr>
<td>CCDC3</td>
<td>83643</td>
<td>coiled-coil domain containing 3</td>
<td>3.17</td>
<td>chr10</td>
</tr>
<tr>
<td>CCDC52</td>
<td>152185</td>
<td>Coiled-coil domain containing 52</td>
<td>2.39</td>
<td>chr3</td>
</tr>
<tr>
<td>CCNL2</td>
<td>81669</td>
<td>cyclin L2</td>
<td>2.64</td>
<td>chr11_random</td>
</tr>
<tr>
<td>CCT6B</td>
<td>10693</td>
<td>chaperonin containing TCP1, subunit 6B (zeta 2)</td>
<td>2.07</td>
<td>chr17</td>
</tr>
<tr>
<td>CDC42BPB</td>
<td>9578</td>
<td>CDC42 binding protein kinase beta (DMPK-like)</td>
<td>2.84</td>
<td>chr14</td>
</tr>
<tr>
<td>CDK5RAP3</td>
<td>80279</td>
<td>CDK5 regulatory subunit associated protein 3</td>
<td>2.15</td>
<td>chr17</td>
</tr>
<tr>
<td>CDK1L3</td>
<td>51265</td>
<td>cyclin-dependent kinase-like 3</td>
<td>2.12</td>
<td>chr5</td>
</tr>
<tr>
<td>CDV1</td>
<td>28981</td>
<td>carnitine deficiency-associated, expressed in ventricle 1</td>
<td>3.30</td>
<td>chr12</td>
</tr>
<tr>
<td>CEP1</td>
<td>11064</td>
<td>centrosomal protein 1</td>
<td>2.32</td>
<td>chr9</td>
</tr>
<tr>
<td>Cep164</td>
<td>22897</td>
<td>KIAA1052 protein</td>
<td>2.54</td>
<td>chr11</td>
</tr>
<tr>
<td>CHD9</td>
<td>80205</td>
<td>Chromodomain helicase DNA binding protein 9</td>
<td>3.66</td>
<td>chr16</td>
</tr>
<tr>
<td>CHN2</td>
<td>1124</td>
<td>Chimerin (chimaerin) 2</td>
<td>3.09</td>
<td>chr7</td>
</tr>
<tr>
<td>CHST5</td>
<td>23563</td>
<td>carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 5</td>
<td>2.87</td>
<td>chr16</td>
</tr>
<tr>
<td>CHST5</td>
<td>23563</td>
<td>carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 5 /// hypothetical protein MGC15429</td>
<td>2.15</td>
<td>chr16</td>
</tr>
<tr>
<td>CKLFSF3</td>
<td>123920</td>
<td>chemokine-like factor superfamily 3</td>
<td>2.39</td>
<td>chr16</td>
</tr>
<tr>
<td>CLK1</td>
<td>1195</td>
<td>CDC-like kinase 1</td>
<td>2.62</td>
<td>chr2</td>
</tr>
<tr>
<td>CMKOR1</td>
<td>57007</td>
<td>chemokine orphan receptor 1</td>
<td>4.25</td>
<td>chr2</td>
</tr>
<tr>
<td>CNTN2</td>
<td>6900</td>
<td>contactin 2 (axonal)</td>
<td>3.66</td>
<td>chr1</td>
</tr>
<tr>
<td>CNTN4</td>
<td>152330</td>
<td>contactin 4</td>
<td>4.47</td>
<td>chr3</td>
</tr>
<tr>
<td>COL22A1</td>
<td>169044</td>
<td>collagen, type XXII, alpha 1</td>
<td>2.71</td>
<td>chr8</td>
</tr>
<tr>
<td>COL27A1</td>
<td>85301</td>
<td>Collagen, type XXVII, alpha 1</td>
<td>2.69</td>
<td>chr9</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL2A1</td>
<td>1280</td>
<td>collagen, type II, alpha 1 (primary osteoarthritis, spondyloepiphyseal dysplasia, congenital)</td>
<td>21,25</td>
<td>chr12</td>
</tr>
<tr>
<td>COL4A6</td>
<td>1288</td>
<td>collagen, type IV, alpha 6</td>
<td>8,80</td>
<td>chrX</td>
</tr>
<tr>
<td>COX4I1</td>
<td>1327</td>
<td>cytochrome c oxidase subunit IV isoform 1</td>
<td>2,15</td>
<td>chr16</td>
</tr>
<tr>
<td>CPAMD8</td>
<td>27151</td>
<td>C3 and PZP-like, alpha-2-macroglobulin domain containing 8</td>
<td>2,63</td>
<td>chr19</td>
</tr>
<tr>
<td>CPS1</td>
<td>1373</td>
<td>carbamoyl-phosphate synthetase 1, mitochondrial</td>
<td>4,28</td>
<td>chr2</td>
</tr>
<tr>
<td>CREM</td>
<td>1390</td>
<td>cAMP responsive element modulator</td>
<td>2,01</td>
<td>chr10</td>
</tr>
<tr>
<td>CROCC</td>
<td>9696</td>
<td>ciliary rootlet coiled-coil, rootletin</td>
<td>2,42</td>
<td>chr1</td>
</tr>
<tr>
<td>CRYZL1</td>
<td>9946</td>
<td>crystallin, zeta (quinone reductase)-like 1</td>
<td>3,27</td>
<td>chr21</td>
</tr>
<tr>
<td>CSK</td>
<td>1445</td>
<td>c-src tyrosine kinase</td>
<td>2,02</td>
<td>chr15</td>
</tr>
<tr>
<td>CSPG3</td>
<td>1463</td>
<td>chondroitin sulfate proteoglycan 3 (neurocan)</td>
<td>3,86</td>
<td>chr19</td>
</tr>
<tr>
<td>CTDSP1</td>
<td>10217</td>
<td>CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like</td>
<td>2,40</td>
<td>chr3</td>
</tr>
<tr>
<td>CTGLF1</td>
<td>399753 // 399761</td>
<td>centaurin, gamma-like family, member 1 /// hypothetical gene supported by AK093334; AL833330; B021921</td>
<td>2,86</td>
<td>chr10</td>
</tr>
<tr>
<td>CTGLF1</td>
<td>399753 // 399761</td>
<td>centaurin, gamma-like family, member 1 /// hypothetical gene supported by AK093334; AL833330; B021921</td>
<td>2,44</td>
<td>chr10</td>
</tr>
<tr>
<td>CTNN1A</td>
<td>1495</td>
<td>Catenin (cadherin-associated protein), alpha 1, 102kDa</td>
<td>2,08</td>
<td>chr5</td>
</tr>
<tr>
<td>CTNNBP1</td>
<td>56998</td>
<td>catenin, beta interacting protein 1</td>
<td>3,94</td>
<td>chr1</td>
</tr>
<tr>
<td>CTNN2D</td>
<td>1501</td>
<td>catenin (cadherin-associated protein), delta 2 (neural plakophilin-related arm-repeat protein)</td>
<td>3,29</td>
<td>chr5</td>
</tr>
<tr>
<td>CUEDC1</td>
<td>404093</td>
<td>CUE domain containing 1</td>
<td>2,03</td>
<td>chr17</td>
</tr>
<tr>
<td>CXCL14</td>
<td>9547</td>
<td>chemokine (C-X-C motif) ligand 14</td>
<td>16,10</td>
<td>chr5</td>
</tr>
<tr>
<td>CXCC4</td>
<td>80319</td>
<td>CXCC finger 4</td>
<td>3,00</td>
<td>chr4</td>
</tr>
<tr>
<td>CYFIP2</td>
<td>26999</td>
<td>cytoplasmic FMR1 interacting protein 2 /// cytoplasmic FMR1 interacting protein 2</td>
<td>2,34</td>
<td>chr5</td>
</tr>
<tr>
<td>D2LIC</td>
<td>51626</td>
<td>dynein 2 light intermediate chain</td>
<td>2,17</td>
<td>chr2</td>
</tr>
<tr>
<td>DACH1</td>
<td>1602</td>
<td>dachshund homolog 1 (Drosophila)</td>
<td>27,40</td>
<td>chr13</td>
</tr>
<tr>
<td>DCHS1</td>
<td>8642</td>
<td>dachsous 1 (Drosophila)</td>
<td>2,11</td>
<td>chr11</td>
</tr>
<tr>
<td>DCT</td>
<td>1638</td>
<td>dopachrome tautomerase (dopachrome delta-isomerase, tyrosine-related protein 2)</td>
<td>17,25</td>
<td>chr13</td>
</tr>
<tr>
<td>DDX50</td>
<td>79009</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 50</td>
<td>2,13</td>
<td>chr10</td>
</tr>
<tr>
<td>DENND2A</td>
<td>27147</td>
<td>DENN/MADD domain containing 2A</td>
<td>3,97</td>
<td>chr7</td>
</tr>
<tr>
<td>DERA</td>
<td>51071</td>
<td>2-deoxyribose-5-phosphate aldolase homolog (C. elegans)</td>
<td>2,83</td>
<td>chr12</td>
</tr>
<tr>
<td>DGCR8</td>
<td>54487</td>
<td>DiGeorge syndrome critical region gene 8</td>
<td>2,06</td>
<td>chr22</td>
</tr>
<tr>
<td>DGKD</td>
<td>8527</td>
<td>diacylglycerol kinase, delta 130kDa</td>
<td>2,09</td>
<td>chr2</td>
</tr>
<tr>
<td>DHX32</td>
<td>55760</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 32</td>
<td>2,52</td>
<td>chr10</td>
</tr>
<tr>
<td>DHX57</td>
<td>90957</td>
<td>DEAH (Asp-Glu-Ala-Asp/His) box polypeptide 57</td>
<td>2,16</td>
<td>chr2</td>
</tr>
<tr>
<td>Dicer1</td>
<td>23405</td>
<td>Dicer1, Dcr-1 homolog (Drosophila)</td>
<td>2,11</td>
<td>chr14</td>
</tr>
<tr>
<td>DIO3</td>
<td>1735</td>
<td>deiodinase, iodothyronine, type III</td>
<td>2,97</td>
<td>chr14</td>
</tr>
<tr>
<td>DIP2A</td>
<td>23181</td>
<td>DIP2 disco-interacting protein 2 homolog A (Drosophila)</td>
<td>2,66</td>
<td>chr21</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>DKFZp313A2432</td>
<td>258010</td>
<td>hypothetical protein DKFZp313A2432</td>
<td>2.35</td>
<td>chr11</td>
</tr>
<tr>
<td>DKFZp434H0115</td>
<td>83538</td>
<td>hypothetical protein DKFZp434H0115</td>
<td>2.36</td>
<td>chr17</td>
</tr>
<tr>
<td>DKFZp451M2119</td>
<td>285023</td>
<td>Hypothetical protein DKFZp451M2119</td>
<td>3.08</td>
<td>chr2</td>
</tr>
<tr>
<td>DKFZp566N034</td>
<td>81615</td>
<td>hypothetical protein DKFZp566N034</td>
<td>2.62</td>
<td>chr2</td>
</tr>
<tr>
<td>DKFZp761N0912</td>
<td>57183</td>
<td>hypothetical protein DKFZp761N0912</td>
<td>10.12</td>
<td>(vide)</td>
</tr>
<tr>
<td>DKFZp761O2018</td>
<td>92293</td>
<td>hypothetical protein DKFZp761O2018</td>
<td>4.07</td>
<td>chr12</td>
</tr>
<tr>
<td>DKFZp762A217</td>
<td>160335</td>
<td>hypothetical protein DKFZp762A217</td>
<td>3.19</td>
<td>chr12</td>
</tr>
<tr>
<td>DLK1</td>
<td>8788</td>
<td>delta-like 1 homolog (Drosophila)</td>
<td>39.62</td>
<td>chr14</td>
</tr>
<tr>
<td>DMD</td>
<td>1756</td>
<td>dystrophin (muscular dystrophy, Duchenne and Becker types)</td>
<td>3.45</td>
<td>chrX</td>
</tr>
<tr>
<td>DMRT3</td>
<td>58524</td>
<td>doublesex and mab-3 related transcription factor 3</td>
<td>3.27</td>
<td>chr9</td>
</tr>
<tr>
<td>DML5C2</td>
<td>23312</td>
<td>Dmx-like 2</td>
<td>5.22</td>
<td>chr15</td>
</tr>
<tr>
<td>DNAJC12</td>
<td>56521</td>
<td>DnaJ (Hsp40) homolog, subfamily C, member 12</td>
<td>3.13</td>
<td>chr10</td>
</tr>
<tr>
<td>DNAL1I</td>
<td>7802</td>
<td>dynein, axonemal, light intermediate polypeptide 1</td>
<td>4.36</td>
<td>chr1</td>
</tr>
<tr>
<td>DNMT1</td>
<td>1759</td>
<td>dynamin 1</td>
<td>4.23</td>
<td>chr9</td>
</tr>
<tr>
<td>DOCK7</td>
<td>85440</td>
<td>Dedicator of cytokinesis 7</td>
<td>2.75</td>
<td>chr1</td>
</tr>
<tr>
<td>DPY19L2</td>
<td>283417</td>
<td>dpy-19-like 2 (C. elegans)</td>
<td>2.11</td>
<td>chr7</td>
</tr>
<tr>
<td>DPYS5L</td>
<td>56896</td>
<td>dihydropyrimidinase-like 5</td>
<td>3.84</td>
<td>chr2</td>
</tr>
<tr>
<td>DREV1</td>
<td>51108</td>
<td>DORA reverse strand protein 1</td>
<td>2.32</td>
<td>chr16</td>
</tr>
<tr>
<td>DSCR6</td>
<td>53820</td>
<td>Down syndrome critical region gene 6</td>
<td>2.65</td>
<td>chr21</td>
</tr>
<tr>
<td>DST</td>
<td>667</td>
<td>dystonin</td>
<td>4.69</td>
<td>chr6</td>
</tr>
<tr>
<td>DUSP4</td>
<td>1846</td>
<td>dual specificity phosphatase 4</td>
<td>7.87</td>
<td>chr8</td>
</tr>
<tr>
<td>ECHDC1</td>
<td>55862</td>
<td>Enoyl Coenzyme A hydratase domain containing 1</td>
<td>3.52</td>
<td>chr6</td>
</tr>
<tr>
<td>EFHD1</td>
<td>80303</td>
<td>EF-hand domain family, member D1</td>
<td>3.22</td>
<td>chr2</td>
</tr>
<tr>
<td>EFNA1</td>
<td>1942</td>
<td>ephrin-A1</td>
<td>2.08</td>
<td>chr1</td>
</tr>
<tr>
<td>EFNB2</td>
<td>1948</td>
<td>ephrin-B2</td>
<td>5.61</td>
<td>chr13</td>
</tr>
<tr>
<td>EFS</td>
<td>10278</td>
<td>embryonal Fyn-associated substrate</td>
<td>3.80</td>
<td>chr14</td>
</tr>
<tr>
<td>EIF2C3</td>
<td>192669</td>
<td>eukaryotic translation initiation factor 2C, 3</td>
<td>2.38</td>
<td>chr1</td>
</tr>
<tr>
<td>EIF2C4</td>
<td>192670</td>
<td>Eukaryotic translation initiation factor 2C, 4</td>
<td>2.87</td>
<td>chr1</td>
</tr>
<tr>
<td>ELAC1</td>
<td>55520</td>
<td>elaC homolog 1 (E. coli)</td>
<td>2.01</td>
<td>chr18</td>
</tr>
<tr>
<td>ELAVL4</td>
<td>1996</td>
<td>ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 (Hu antigen D)</td>
<td>4.59</td>
<td>chr1</td>
</tr>
<tr>
<td>ELOVL5</td>
<td>60481</td>
<td>ELOVL family member 5, elongation of long chain fatty acids (FEN1/Elo2, SUR4/Elo3-like, yeast)</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>EMLIN2</td>
<td>84034</td>
<td>elastin microfibril interactor 2 /// elastin microfibril interactor 2</td>
<td>2.47</td>
<td>chr18</td>
</tr>
<tr>
<td>EML1</td>
<td>2009</td>
<td>echinoderm microtubule associated protein like 1</td>
<td>2.27</td>
<td>chr14</td>
</tr>
<tr>
<td>EMP2</td>
<td>2013</td>
<td>epithelial membrane protein 2</td>
<td>3.91</td>
<td>chr16</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>EMX2</td>
<td>2018</td>
<td>empty spiracles homolog 2 (Drosophila)</td>
<td>10.30</td>
<td>chr10</td>
</tr>
<tr>
<td>EMX2OS</td>
<td>196047</td>
<td>empty spiracles homolog 2 (Drosophila) opposite strand</td>
<td>2.81</td>
<td>chr10</td>
</tr>
<tr>
<td>EPC1</td>
<td>80314</td>
<td>Enhancer of polycomb homolog 1 (Drosophila)</td>
<td>2.24</td>
<td>chr10</td>
</tr>
<tr>
<td>EPHA4</td>
<td>2043</td>
<td>EPH receptor A4</td>
<td>12.56</td>
<td>chr2</td>
</tr>
<tr>
<td>EPHB3</td>
<td>2049</td>
<td>EPH receptor B3</td>
<td>2.56</td>
<td>chr3</td>
</tr>
<tr>
<td>EVL</td>
<td>51466</td>
<td>Enah/Vasp-like</td>
<td>3.39</td>
<td>chr14</td>
</tr>
<tr>
<td>EYA1</td>
<td>2138</td>
<td>eyes absent homolog 1 (Drosophila)</td>
<td>3.91</td>
<td>chr8</td>
</tr>
<tr>
<td>EYA2</td>
<td>2139</td>
<td>eyes absent homolog 2 (Drosophila)</td>
<td>4.33</td>
<td>chr20</td>
</tr>
<tr>
<td>EYA4</td>
<td>2070</td>
<td>Eyes absent homolog 4 (Drosophila)</td>
<td>4.11</td>
<td>chr6</td>
</tr>
<tr>
<td>FAM13C1</td>
<td>220965</td>
<td>family with sequence similarity 13, member C1</td>
<td>2.78</td>
<td>chr10</td>
</tr>
<tr>
<td>FAM19A5</td>
<td>25817</td>
<td>family with sequence similarity 19 (chemokine (C-C motif)-like), member A5</td>
<td>2.06</td>
<td>chr22</td>
</tr>
<tr>
<td>FAM51A1</td>
<td>54960</td>
<td>Family with sequence similarity 51, member A1</td>
<td>2.03</td>
<td>chrX</td>
</tr>
<tr>
<td>FAM77D</td>
<td>286183</td>
<td>Family with sequence similarity 77, member D</td>
<td>5.59</td>
<td>chr8</td>
</tr>
<tr>
<td>FAM89A</td>
<td>375061</td>
<td>family with sequence similarity 89, member A</td>
<td>4.01</td>
<td>chr1</td>
</tr>
<tr>
<td>FANCA</td>
<td>2175</td>
<td>Fanconi anemia, complementation group A</td>
<td>2.35</td>
<td>chr16</td>
</tr>
<tr>
<td>FANK1</td>
<td>92656</td>
<td>fibronectin type III and ankyrin repeat domains 1</td>
<td>3.56</td>
<td>chr10</td>
</tr>
<tr>
<td>FARP1</td>
<td>10160</td>
<td>FERM, RhoGEF (ARHGGEF) and pleckstrin domain protein 1 (chondrocyte-derived)</td>
<td>2.75</td>
<td>chr13</td>
</tr>
<tr>
<td>FBXL14</td>
<td>144699</td>
<td>F-box and leucine-rich repeat protein 14</td>
<td>6.25</td>
<td>chr12</td>
</tr>
<tr>
<td>FBXO33</td>
<td>254170</td>
<td>F-box protein 33</td>
<td>2.04</td>
<td>chr14</td>
</tr>
<tr>
<td>FBXW8</td>
<td>26259</td>
<td>F-box and WD-40 domain protein 8</td>
<td>2.27</td>
<td>chr12</td>
</tr>
<tr>
<td>FGFR7</td>
<td>2252</td>
<td>Fibroblast growth factor 7 (keratinocyte growth factor)</td>
<td>2.25</td>
<td>(vide)</td>
</tr>
<tr>
<td>FGFR9</td>
<td>2254</td>
<td>fibroblast growth factor 9 (glia-activating factor)</td>
<td>21.83</td>
<td>chr13</td>
</tr>
<tr>
<td>FHOD3</td>
<td>80206</td>
<td>formin homology 2 domain containing 3</td>
<td>7.10</td>
<td>chr18</td>
</tr>
<tr>
<td>FJX1</td>
<td>24147</td>
<td>four jointed box 1 (Drosophila)</td>
<td>6.85</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ10081</td>
<td>55683</td>
<td>hypothetical protein FLJ10081</td>
<td>2.26</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ10099</td>
<td>55069</td>
<td>Hypothetical protein FLJ10099</td>
<td>2.31</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ10159</td>
<td>55084</td>
<td>hypothetical protein FLJ10159</td>
<td>3.28</td>
<td>chr6</td>
</tr>
<tr>
<td>FLJ10178</td>
<td>55086</td>
<td>hypothetical protein FLJ10178</td>
<td>3.09</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ10287</td>
<td>54482</td>
<td>hypothetical protein FLJ10287</td>
<td>3.29</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ10996</td>
<td>54520</td>
<td>hypothetical protein FLJ10996</td>
<td>2.19</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ12700</td>
<td>79970</td>
<td>hypothetical protein FLJ12700</td>
<td>2.18</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ13197</td>
<td>79667</td>
<td>hypothetical protein FLJ13197</td>
<td>2.52</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ16008</td>
<td>339761</td>
<td>FLJ16008 protein</td>
<td>3.85</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ20719</td>
<td>55672</td>
<td>hypothetical protein FLJ20719</td>
<td>4.93</td>
<td>chr1</td>
</tr>
</tbody>
</table>
Table S6 : Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change>2 ; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLJ21125</td>
<td>79680</td>
<td>hypothetical protein FLJ21125</td>
<td>2.04</td>
<td>chr22</td>
</tr>
<tr>
<td>FLJ21616</td>
<td>79618</td>
<td>Hypothetical protein FLJ21616</td>
<td>2.28</td>
<td>chr8</td>
</tr>
<tr>
<td>FLJ23191</td>
<td>79625</td>
<td>hypothetical protein FLJ23191</td>
<td>4.87</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ25476</td>
<td>149076</td>
<td>FLJ25476 protein</td>
<td>2.24</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ25694</td>
<td>283492</td>
<td>hypothetical protein FLJ25694</td>
<td>5.59</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ25715</td>
<td>284241</td>
<td>Hypothetical protein FLJ25715</td>
<td>2.12</td>
<td>chr18</td>
</tr>
<tr>
<td>FLJ30902</td>
<td>196515</td>
<td>AF-1 specific protein phosphatase</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ30901</td>
<td>150378</td>
<td>hypothetical protein FLJ30901</td>
<td>7.03</td>
<td>chr22</td>
</tr>
<tr>
<td>FLJ31438</td>
<td>130162</td>
<td>hypothetical protein FLJ31438</td>
<td>2.95</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ31818</td>
<td>154743</td>
<td>hypothetical protein FLJ31818</td>
<td>2.18</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ31951</td>
<td>153830</td>
<td>Hypothetical protein FLJ31951</td>
<td>3.92</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ34443</td>
<td>285464</td>
<td>hypothetical protein FLJ34443</td>
<td>2.90</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ36166</td>
<td>349152</td>
<td>Hypothetical protein FLJ36166</td>
<td>2.36</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ37440</td>
<td>129804</td>
<td>hypothetical protein FLJ37440</td>
<td>2.05</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ38379</td>
<td>285097</td>
<td>hypothetical protein FLJ38379</td>
<td>2.87</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ39155</td>
<td>133584</td>
<td>hypothetical protein FLJ39155</td>
<td>3.06</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ39653</td>
<td>202020</td>
<td>hypothetical protein FLJ39653</td>
<td>2.30</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ42393</td>
<td>401105</td>
<td>FLJ42393 protein</td>
<td>2.27</td>
<td>chr3</td>
</tr>
<tr>
<td>FLJ42957</td>
<td>400077</td>
<td>FLJ42957 protein</td>
<td>2.28</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ44216</td>
<td>375484</td>
<td>FLJ44216 protein</td>
<td>2.75</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ45187</td>
<td>387640</td>
<td>FLJ45187 protein</td>
<td>13.87</td>
<td>chr10</td>
</tr>
<tr>
<td>FLJ90757</td>
<td>440465</td>
<td>FLJ90757 protein</td>
<td>4.70</td>
<td>chr17</td>
</tr>
<tr>
<td>FLRT2</td>
<td>23768</td>
<td>fibronectin leucine rich transmembrane protein 2</td>
<td>6.72</td>
<td>chr14</td>
</tr>
<tr>
<td>FLRT3</td>
<td>23767</td>
<td>fibronectin leucine rich transmembrane protein 3</td>
<td>20.56</td>
<td>chr20</td>
</tr>
<tr>
<td>FNBP1</td>
<td>23048</td>
<td>Formin binding protein 1</td>
<td>3.16</td>
<td>chr9</td>
</tr>
<tr>
<td>FNBP4</td>
<td>23360</td>
<td>formin binding protein 4</td>
<td>2.24</td>
<td>chr11</td>
</tr>
<tr>
<td>FNDC5</td>
<td>252995</td>
<td>fibronectin type III domain containing 5</td>
<td>3.30</td>
<td>chr1</td>
</tr>
<tr>
<td>FOXG1B</td>
<td>2209</td>
<td>forkhead box G1B</td>
<td>14.70</td>
<td>chr14</td>
</tr>
<tr>
<td>FOXO3A</td>
<td>2309</td>
<td>forkhead box O3A</td>
<td>2.14</td>
<td>chr6</td>
</tr>
<tr>
<td>FRMD4A</td>
<td>1810 /// 55691</td>
<td>FERM domain containing 4A /// Down-regulator of transcription 1, TBP-binding (negative cofactor 2)</td>
<td>6.08</td>
<td>chr1</td>
</tr>
<tr>
<td>FRMD4B</td>
<td>23150</td>
<td>FERM domain containing 4B</td>
<td>2.36</td>
<td>chr3</td>
</tr>
<tr>
<td>FRZB</td>
<td>2487</td>
<td>frizzled-related protein</td>
<td>13.30</td>
<td>chr2</td>
</tr>
<tr>
<td>FSD1CL</td>
<td>405752</td>
<td>GTPase activating Rap/RanGAP domain-like 1</td>
<td>3.17</td>
<td>chr9</td>
</tr>
<tr>
<td>FSD1L</td>
<td>405752</td>
<td>FSD1-like</td>
<td>2.01</td>
<td>chr9</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>FST</td>
<td>10468</td>
<td>follistatin</td>
<td>3.11</td>
<td>chr5</td>
</tr>
<tr>
<td>GAB2</td>
<td>9846</td>
<td>GRB2-associated binding protein 2</td>
<td>2.33</td>
<td>chr11</td>
</tr>
<tr>
<td>GABRP</td>
<td>2568</td>
<td>gamma-aminobutyric acid (GABA) A receptor, pi</td>
<td>15.76</td>
<td>chr5</td>
</tr>
<tr>
<td>GAD1</td>
<td>2571</td>
<td>glutamate decarboxylase 1 (brain, 67kDa)</td>
<td>3.77</td>
<td>chr2</td>
</tr>
<tr>
<td>GALNT1</td>
<td>57452</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-like 1</td>
<td>3.56</td>
<td>chr14</td>
</tr>
<tr>
<td>GAPVD1</td>
<td>26130</td>
<td>GTPase activating protein and VPS9 domains 1</td>
<td>2.15</td>
<td>(vide)</td>
</tr>
<tr>
<td>GAS1</td>
<td>2619</td>
<td>growth arrest-specific 1</td>
<td>29.68</td>
<td>chr9</td>
</tr>
<tr>
<td>GAS2L3</td>
<td>283431</td>
<td>growth arrest-specific 2 like 3</td>
<td>2.33</td>
<td>chr12</td>
</tr>
<tr>
<td>GAS7</td>
<td>8522</td>
<td>growth arrest-specific 7</td>
<td>2.85</td>
<td>chr17</td>
</tr>
<tr>
<td>GATA3</td>
<td>2625</td>
<td>GATA binding protein 3</td>
<td>5.80</td>
<td>chr10</td>
</tr>
<tr>
<td>GDPD1</td>
<td>284161</td>
<td>Glycerophosphodiester phosphodiesterase domain containing 1</td>
<td>2.17</td>
<td>chr17</td>
</tr>
<tr>
<td>GLI3</td>
<td>2737</td>
<td>GLI-Kruppel family member GLI3 (Greig cephalopolysyndactyly syndrome)</td>
<td>4.08</td>
<td>chr7</td>
</tr>
<tr>
<td>GLT25D2</td>
<td>23127</td>
<td>glycosyltransferase 25 domain containing 2</td>
<td>11.19</td>
<td>chr1</td>
</tr>
<tr>
<td>GLUD1</td>
<td>2746</td>
<td>glutamate dehydrogenase 1</td>
<td>2.37</td>
<td>chrX</td>
</tr>
<tr>
<td>GNAZ</td>
<td>2781</td>
<td>guanine nucleotide binding protein (G protein), alpha z polypeptide</td>
<td>4.73</td>
<td>chr22</td>
</tr>
<tr>
<td>GNG2</td>
<td>54331</td>
<td>Guanine nucleotide binding protein (G protein), gamma 2</td>
<td>2.66</td>
<td>chr14</td>
</tr>
<tr>
<td>GOLGA8A</td>
<td>23015</td>
<td>golgi autoantigen, golgin subfamily a, 8A</td>
<td>6.17</td>
<td>chr15</td>
</tr>
<tr>
<td>GOLGA8A</td>
<td>23015 /// 440270</td>
<td>golgi autoantigen, golgin subfamily a, 8A /// golgi autoantigen, golgin subfamily a, 8B</td>
<td>4.71</td>
<td>chr15</td>
</tr>
<tr>
<td>GOLGA8B</td>
<td>440270</td>
<td>golgi autoantigen, golgin subfamily a, 8B</td>
<td>5.30</td>
<td>chr15</td>
</tr>
<tr>
<td>GPC6</td>
<td>10082</td>
<td>Glypican 6</td>
<td>3.22</td>
<td>chr13</td>
</tr>
<tr>
<td>GPM6A</td>
<td>2823</td>
<td>glycoprotein M6A</td>
<td>17.26</td>
<td>chr4</td>
</tr>
<tr>
<td>GPR153</td>
<td>387509</td>
<td>G protein-coupled receptor 153</td>
<td>2.69</td>
<td>chr1</td>
</tr>
<tr>
<td>GPR24</td>
<td>2847</td>
<td>G protein-coupled receptor 24</td>
<td>2.29</td>
<td>chr22</td>
</tr>
<tr>
<td>GPR56</td>
<td>9289</td>
<td>G protein-coupled receptor 56</td>
<td>10.06</td>
<td>chr16</td>
</tr>
<tr>
<td>GPRASP1</td>
<td>9737</td>
<td>G protein-coupled receptor associated sorting protein 1</td>
<td>3.08</td>
<td>chrX</td>
</tr>
<tr>
<td>GRAMD1B</td>
<td>57476</td>
<td>GRAM domain containing 1B</td>
<td>2.28</td>
<td>chr11</td>
</tr>
<tr>
<td>GRIA1</td>
<td>2890</td>
<td>glutamate receptor, ionotropic, AMPA 1</td>
<td>4.04</td>
<td>chr5</td>
</tr>
<tr>
<td>GRM3</td>
<td>2913</td>
<td>glutamate receptor, metabotropic 3</td>
<td>3.02</td>
<td>chr7</td>
</tr>
<tr>
<td>GSDML</td>
<td>55876</td>
<td>gasdermin-like</td>
<td>2.64</td>
<td>chr17</td>
</tr>
<tr>
<td>GSTA4</td>
<td>2941</td>
<td>glutathione S-transferase A4</td>
<td>3.57</td>
<td>chr6</td>
</tr>
<tr>
<td>GUCY1A3</td>
<td>2982</td>
<td>guanylate cyclase 1, soluble, alpha 3</td>
<td>8.68</td>
<td>chr4</td>
</tr>
<tr>
<td>H19</td>
<td>283120</td>
<td>H19, imprinted maternally expressed untranslated mRNA</td>
<td>28.54</td>
<td>chr11</td>
</tr>
<tr>
<td>H2AFY2</td>
<td>55506</td>
<td>H2A histone family, member Y2</td>
<td>3.19</td>
<td>chr10</td>
</tr>
<tr>
<td>H3F3B</td>
<td>3021</td>
<td>H3 histone, family 3B (H3.3B)</td>
<td>2.65</td>
<td>chr12</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change >2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDAC6</td>
<td>10013</td>
<td>histone deacetylase 6</td>
<td>2.43</td>
<td>chrX</td>
</tr>
<tr>
<td>HEL308</td>
<td>113510</td>
<td>DNA helicase HEL308</td>
<td>2.25</td>
<td>chr4</td>
</tr>
<tr>
<td>HES1</td>
<td>3280</td>
<td>hairy and enhancer of split 1, (Drosophila)</td>
<td>5.20</td>
<td>chr3</td>
</tr>
<tr>
<td>HES5</td>
<td>388585</td>
<td>hairy and enhancer of split 5 (Drosophila)</td>
<td>3.79</td>
<td>chr1</td>
</tr>
<tr>
<td>HHAT</td>
<td>55733</td>
<td>hedgehog acyltransferase</td>
<td>2.02</td>
<td>chr1</td>
</tr>
<tr>
<td>HIST1H2BD</td>
<td>3017</td>
<td>Histone 1, H2bd</td>
<td>2.88</td>
<td>chr6</td>
</tr>
<tr>
<td>HNPR</td>
<td>10236</td>
<td>heterogeneous nuclear ribonucleoprotein R</td>
<td>3.46</td>
<td>chr1</td>
</tr>
<tr>
<td>HOMER2</td>
<td>9455</td>
<td>Homer homolog 2 (Drosophila)</td>
<td>2.13</td>
<td>chr15</td>
</tr>
<tr>
<td>HOXA1</td>
<td>3198</td>
<td>homeo box A1</td>
<td>3.61</td>
<td>chr7</td>
</tr>
<tr>
<td>HOXA9</td>
<td>3205</td>
<td>homeo box A9</td>
<td>3.29</td>
<td>chr7</td>
</tr>
<tr>
<td>HSA277841</td>
<td>55421</td>
<td>ELG protein</td>
<td>2.31</td>
<td>chr17</td>
</tr>
<tr>
<td>HSF2</td>
<td>3298</td>
<td>heat shock transcription factor 2</td>
<td>2.95</td>
<td>chr6</td>
</tr>
<tr>
<td>HSPA5BP1</td>
<td>54972</td>
<td>heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) binding protein 1</td>
<td>2.91</td>
<td>chr11</td>
</tr>
<tr>
<td>HTR1E</td>
<td>3354</td>
<td>5-hydroxytryptamine (serotonin) receptor 1E</td>
<td>2.01</td>
<td>chr6</td>
</tr>
<tr>
<td>ID2</td>
<td>3398</td>
<td>inhibitor of DNA binding 2, dominant negative helix-loop-helix protein</td>
<td>6.35</td>
<td>chr2</td>
</tr>
<tr>
<td>ID2</td>
<td>3398 /// 84099</td>
<td>inhibitor of DNA binding 2, dominant negative helix-loop-helix protein /// inhibitor of DNA binding 2B, domain containing 3</td>
<td>5.95</td>
<td>chr2</td>
</tr>
<tr>
<td>ID4</td>
<td>3400</td>
<td>inhibitor of DNA binding 4, dominant negative helix-loop-helix protein</td>
<td>6.66</td>
<td>chr6</td>
</tr>
<tr>
<td>IFNGR1</td>
<td>3459</td>
<td>Interferon gamma receptor 1</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>IGSF11</td>
<td>152404</td>
<td>immunoglobulin superfamily, member 11</td>
<td>2.05</td>
<td>chr3</td>
</tr>
<tr>
<td>IGSF4</td>
<td>23705</td>
<td>Immunoglobulin superfamily, member 4</td>
<td>8.38</td>
<td>chr11</td>
</tr>
<tr>
<td>IL17D</td>
<td>53342</td>
<td>Interleukin 17D</td>
<td>2.19</td>
<td>chr13</td>
</tr>
<tr>
<td>INPP5E</td>
<td>56623</td>
<td>inositol polyphosphate-5-phosphatase, 72 kDa</td>
<td>2.21</td>
<td>chr9</td>
</tr>
<tr>
<td>INSM1</td>
<td>3642</td>
<td>insulinoma-associated 1</td>
<td>2.84</td>
<td>chr20</td>
</tr>
<tr>
<td>IQCE</td>
<td>23288</td>
<td>IQ motif containing E</td>
<td>2.16</td>
<td>chr7</td>
</tr>
<tr>
<td>ISL1</td>
<td>3670</td>
<td>ISL1 transcription factor, LIM/homeodomain, (islet-1)</td>
<td>4.91</td>
<td>chr5</td>
</tr>
<tr>
<td>ITGB8</td>
<td>3696</td>
<td>Integrin, beta 8</td>
<td>2.37</td>
<td>chr7</td>
</tr>
<tr>
<td>IVNS1ABP</td>
<td>10625</td>
<td>influenza virus NS1A binding protein</td>
<td>2.06</td>
<td>chr1</td>
</tr>
<tr>
<td>JAG1</td>
<td>182</td>
<td>Jagged 1 (Alagille syndrome)</td>
<td>3.09</td>
<td>chr20</td>
</tr>
<tr>
<td>JRK</td>
<td>8629</td>
<td>jerky homolog (mouse)</td>
<td>2.16</td>
<td>chr8</td>
</tr>
<tr>
<td>KALRN</td>
<td>8997</td>
<td>kalirin, RhoGEF kinase</td>
<td>2.89</td>
<td>chr3</td>
</tr>
<tr>
<td>KBTBD11</td>
<td>9920</td>
<td>kelch repeat and BTB (POZ) domain containing 11</td>
<td>2.36</td>
<td>chr8</td>
</tr>
<tr>
<td>KCNJ13</td>
<td>3769</td>
<td>potassium inwardly-rectifying channel, subfamily J, member 13</td>
<td>4.61</td>
<td>chr2</td>
</tr>
<tr>
<td>KCNJ2</td>
<td>3759</td>
<td>potassium inwardly-rectifying channel, subfamily J, member 2</td>
<td>2.38</td>
<td>chr17</td>
</tr>
<tr>
<td>KCNJ4</td>
<td>3761</td>
<td>potassium inwardly-rectifying channel, subfamily J, member 4</td>
<td>3.63</td>
<td>chr22</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCNK10</td>
<td>54207</td>
<td>potassium channel, subfamily K, member 10</td>
<td>6.54</td>
<td>chr14</td>
</tr>
<tr>
<td>KCNT2</td>
<td>343450</td>
<td>potassium channel, subfamily T, member 2</td>
<td>4.19</td>
<td>chr1</td>
</tr>
<tr>
<td>KCTD1</td>
<td>284252</td>
<td>potassium channel tetramerisation domain containing 1</td>
<td>2.13</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA0101</td>
<td>9768</td>
<td>KIAA0101 // KIAA0101</td>
<td>2.65</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA0500</td>
<td>57237</td>
<td>KIAA0500 protein</td>
<td>3.13</td>
<td>chr14</td>
</tr>
<tr>
<td>KIAA0515</td>
<td>84726</td>
<td>KIAA0515</td>
<td>2.11</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA0556</td>
<td>23240</td>
<td>KIAA0556 protein</td>
<td>2.03</td>
<td>chr16</td>
</tr>
<tr>
<td>KIAA0826</td>
<td>23045</td>
<td>KIAA0826</td>
<td>2.05</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA0889</td>
<td>25781</td>
<td>KIAA0889 protein</td>
<td>3.19</td>
<td>chr20</td>
</tr>
<tr>
<td>KIAA0895</td>
<td>23366</td>
<td>KIAA0895 protein</td>
<td>2.17</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0960</td>
<td>23249</td>
<td>KIAA0960 protein</td>
<td>2.17</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA1102</td>
<td>22998</td>
<td>KIAA1102 protein</td>
<td>4.18</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1217</td>
<td>56243</td>
<td>KIAA1217</td>
<td>3.05</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1276</td>
<td>27146</td>
<td>KIAA1276 protein</td>
<td>2.63</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1447</td>
<td>57597</td>
<td>KIAA1447 protein</td>
<td>4.03</td>
<td>chr17</td>
</tr>
<tr>
<td>KIAA1530</td>
<td>57654</td>
<td>KIAA1530 protein</td>
<td>3.20</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1641</td>
<td>57730</td>
<td>KIAA1641</td>
<td>5.13</td>
<td>(vide)</td>
</tr>
<tr>
<td>KIAA1713</td>
<td>80816</td>
<td>KIAA1713</td>
<td>6.29</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA1772</td>
<td>80000</td>
<td>KIAA1772</td>
<td>7.10</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA1841</td>
<td>84542</td>
<td>KIAA1841 protein</td>
<td>2.92</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1919</td>
<td>91749</td>
<td>KIAA1919</td>
<td>2.27</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA2022</td>
<td>340533</td>
<td>KIAA2022 protein</td>
<td>2.43</td>
<td>chrX</td>
</tr>
<tr>
<td>KIDINS220</td>
<td>57498</td>
<td>Kinase D-interacting substance of 220 kDa</td>
<td>2.05</td>
<td>chr2</td>
</tr>
<tr>
<td>KIF3A</td>
<td>11127</td>
<td>kinesin family member 3A</td>
<td>2.04</td>
<td>chr5</td>
</tr>
<tr>
<td>KLF11</td>
<td>8462</td>
<td>Kruppel-like factor 11</td>
<td>2.85</td>
<td>chr2</td>
</tr>
<tr>
<td>KLHDCA8A</td>
<td>55220</td>
<td>Kelch domain containing 8A</td>
<td>9.89</td>
<td>chr1</td>
</tr>
<tr>
<td>KLHL14</td>
<td>57565</td>
<td>kelch-like 14 (Drosophila)</td>
<td>7.04</td>
<td>chr18</td>
</tr>
<tr>
<td>KLHL22</td>
<td>84861</td>
<td>kelch-like 22 (Drosophila)</td>
<td>2.78</td>
<td>chr22</td>
</tr>
<tr>
<td>KLHL24</td>
<td>54800</td>
<td>kelch-like 24 (Drosophila)</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>L3MBTL</td>
<td>26013</td>
<td>l(3)mbt-like (Drosophila)</td>
<td>2.49</td>
<td>chr20</td>
</tr>
<tr>
<td>LASS5</td>
<td>91012</td>
<td>LAG1 longevity assurance homolog 5 (S. cerevisiae)</td>
<td>2.08</td>
<td>chr12</td>
</tr>
<tr>
<td>LDOC1L</td>
<td>84247</td>
<td>leucine zipper, down-regulated in cancer 1-like</td>
<td>2.23</td>
<td>chr22</td>
</tr>
<tr>
<td>LEAP-2</td>
<td>116842</td>
<td>liver-expressed antimicrobial peptide 2</td>
<td>2.23</td>
<td>chr5</td>
</tr>
<tr>
<td>LEF1</td>
<td>51176</td>
<td>lymphoid enhancer-binding factor 1</td>
<td>12.44</td>
<td>chr4</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>LEMD1</td>
<td>93273</td>
<td>LEM domain containing 1</td>
<td>3.95</td>
<td>chr1</td>
</tr>
<tr>
<td>LFNG</td>
<td>3955</td>
<td>Lunatic fringe homolog (Drosophila)</td>
<td>2.74</td>
<td>chr7</td>
</tr>
<tr>
<td>LG1</td>
<td>9211</td>
<td>Leucine-rich, glioma inactivated 1</td>
<td>8.42</td>
<td>chr10</td>
</tr>
<tr>
<td>LGR5</td>
<td>8549</td>
<td>Leucine-rich repeat-containing G protein-coupled receptor 5</td>
<td>6.45</td>
<td>chr12</td>
</tr>
<tr>
<td>LHX2</td>
<td>9355</td>
<td>LIM homeobox 2</td>
<td>135.71</td>
<td>chr9</td>
</tr>
<tr>
<td>LH9</td>
<td>56956</td>
<td>LIM homeobox 9</td>
<td>3.81</td>
<td>chr1</td>
</tr>
<tr>
<td>LIX1</td>
<td>167410</td>
<td>Lix1 homolog (mouse)</td>
<td>24.29</td>
<td>chr5</td>
</tr>
<tr>
<td>LKAP</td>
<td>9665</td>
<td>Limkain b1</td>
<td>2.03</td>
<td>chr16</td>
</tr>
<tr>
<td>LMO2</td>
<td>4005</td>
<td>LIM domain only 2 (rhombotin-like 1)</td>
<td>2.35</td>
<td>chr11</td>
</tr>
<tr>
<td>LMO3</td>
<td>55885</td>
<td>LIM domain only 3 (rhombotin-like 2)</td>
<td>26.62</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC112476</td>
<td>112476</td>
<td>Similar to lymphocyte antigen 6 complex, locus G5B; G5b protein; open reading frame 31</td>
<td>4.16</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC113386</td>
<td>113386</td>
<td>Similar to envelope protein</td>
<td>2.25</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC144997</td>
<td>144997</td>
<td>Hypothetical protein LOC144997</td>
<td>7.95</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC147670</td>
<td>147670</td>
<td>Hypothetical protein LOC147670</td>
<td>2.25</td>
<td>(vide)</td>
</tr>
<tr>
<td>LOC150759</td>
<td>150759</td>
<td>Hypothetical protein LOC150759</td>
<td>4.35</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC153682</td>
<td>153682</td>
<td>Hypothetical protein LOC153682</td>
<td>2.28</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC158563</td>
<td>158563</td>
<td>Hypothetical protein LOC158563</td>
<td>3.15</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC220930</td>
<td>220930</td>
<td>Hypothetical protein LOC220930</td>
<td>3.37</td>
<td>chr10</td>
</tr>
<tr>
<td>LOC221362</td>
<td>221362</td>
<td>Hypothetical protein LOC221362</td>
<td>2.68</td>
<td>chr6</td>
</tr>
<tr>
<td>LOC221981</td>
<td>221981</td>
<td>Hypothetical protein LOC221981</td>
<td>2.99</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC225526</td>
<td>225526</td>
<td>Hypothetical protein LOC225526</td>
<td>2.64</td>
<td>chr10</td>
</tr>
<tr>
<td>LOC228424</td>
<td>228424</td>
<td>Hypothetical protein LOC228424</td>
<td>2.93</td>
<td>chr18</td>
</tr>
<tr>
<td>LOC228426</td>
<td>228426</td>
<td>Hypothetical protein LOC228426</td>
<td>3.78</td>
<td>chr18</td>
</tr>
<tr>
<td>LOC2284356</td>
<td>2284356</td>
<td>Hypothetical protein LOC2284356</td>
<td>3.97</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC2284409</td>
<td>2284409</td>
<td>Hypothetical protein LOC2284409</td>
<td>2.65</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC228535</td>
<td>228535</td>
<td>Hypothetical protein LOC228535</td>
<td>3.18</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC2285989</td>
<td>2285989</td>
<td>Hypothetical protein LOC2285989</td>
<td>2.26</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC2286052</td>
<td>2286052</td>
<td>Hypothetical protein LOC2286052</td>
<td>2.19</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC2286334</td>
<td>2286334</td>
<td>Hypothetical protein LOC2286334</td>
<td>2.61</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC2286382</td>
<td>2286382</td>
<td>Hypothetical protein LOC2286382</td>
<td>2.95</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC338758</td>
<td>338758</td>
<td>Hypothetical protein LOC338758</td>
<td>3.78</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC339025</td>
<td>339025</td>
<td>Hypothetical protein LOC339025</td>
<td>2.12</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC339287</td>
<td>339287</td>
<td>Hypothetical protein LOC339287</td>
<td>2.25</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC340281</td>
<td>340281</td>
<td>Hypothetical protein LOC340281</td>
<td>2.55</td>
<td>chr7</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change > 2; α < 0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC346355</td>
<td>346355 /// 392617</td>
<td>similar to RIKEN cDNA A930017N06 gene /// similar to RIKEN cDNA A930017N06 gene</td>
<td>2.25</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC347475</td>
<td>347475</td>
<td>hypothetical gene supported by BC017958</td>
<td>2.57</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC348094</td>
<td>348094</td>
<td>hypothetical protein LOC348094</td>
<td>2.40</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC387790</td>
<td>387790</td>
<td>Hypothetical LOC387790</td>
<td>3.05</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC387978</td>
<td>387978</td>
<td>hypothetical gene supported by BX248251</td>
<td>2.08</td>
<td>chr14</td>
</tr>
<tr>
<td>LOC388279</td>
<td>388279</td>
<td>Hypothetical gene supported by AF275804</td>
<td>2.54</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC388969</td>
<td>388969</td>
<td>Hypothetical LOC388969</td>
<td>2.57</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC389765</td>
<td>389765</td>
<td>similar to KIF27C</td>
<td>2.91</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC390299</td>
<td>390299</td>
<td>Tetraspanin 11</td>
<td>3.03</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC390551</td>
<td>390551 /// 440232</td>
<td>similar to hecd domain and RLD 2 /// similar to hecd domain and RLD 2</td>
<td>2.49</td>
<td>chr15_random</td>
</tr>
<tr>
<td>LOC391269</td>
<td>391269</td>
<td>Similar to ankyrin repeat domain 20A</td>
<td>2.23</td>
<td>chr21</td>
</tr>
<tr>
<td>LOC391491</td>
<td>391491</td>
<td>Similar to guanidinoacetate methyltransferase; GAmt</td>
<td>2.74</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC399763</td>
<td>399763</td>
<td>similar to Line-1 reverse transcriptase homolog</td>
<td>3.22</td>
<td>chr10</td>
</tr>
<tr>
<td>LOC400043</td>
<td>400043</td>
<td>hypothetical gene supported by BC009385</td>
<td>6.24</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC400642</td>
<td>400642</td>
<td>hypothetical gene supported by BC041875; BX649894</td>
<td>2.53</td>
<td>chr18</td>
</tr>
<tr>
<td>LOC400685</td>
<td>400685</td>
<td>Hypothetical gene supported by BC045806</td>
<td>2.59</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC400960</td>
<td>400960</td>
<td>hypothetical gene supported by BC040598</td>
<td>2.23</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC401528</td>
<td>401528 /// 401530 /// 440896</td>
<td>hypothetical gene supported by BC032955 /// hypothetical gene supported by BC032955 /// hypothetical gene supported by BC032955</td>
<td>5.57</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC402485</td>
<td>402485</td>
<td>Hypothetical LOC401328</td>
<td>6.86</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC402530</td>
<td>401363 /// 402530</td>
<td>Hypothetical protein FLJ25037 /// Hypothetical LOC441242</td>
<td>2.48</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC439994</td>
<td>439994</td>
<td>hypothetical gene supported by AF064843; AK025716</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC440135</td>
<td>440135</td>
<td>LOC440135</td>
<td>2.22</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC440526</td>
<td>440526</td>
<td>LOC440526</td>
<td>2.16</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC440934</td>
<td>440934</td>
<td>Hypothetical gene supported by BC008048</td>
<td>7.62</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC440944</td>
<td>440944</td>
<td>Hypothetical gene supported by AK128358</td>
<td>2.50</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC441300</td>
<td>441300</td>
<td>LOC441300</td>
<td>2.83</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC441351</td>
<td>441351</td>
<td>Hypothetical gene supported by BX537900</td>
<td>4.46</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC492304</td>
<td>492304</td>
<td>putative insulin-like growth factor II associated protein</td>
<td>16.83</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC56757</td>
<td>56757</td>
<td>hypothetical protein LOC56757</td>
<td>3.05</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC901110</td>
<td>90110</td>
<td>hypothetical protein LOC90110</td>
<td>2.99</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC91316</td>
<td>91316</td>
<td>Similar to kx246h3.1 (immunoglobulin lambda-like polypeptide 1, pre-B-cell specific)</td>
<td>7.34</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC91461</td>
<td>91461</td>
<td>hypothetical protein BC007901</td>
<td>5.60</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC92162</td>
<td>92162</td>
<td>similar to RIKEN cDNA 2600017H02</td>
<td>6.69</td>
<td>chr17</td>
</tr>
<tr>
<td>LOC92312</td>
<td>92312</td>
<td>Hypothetical protein LOC92312</td>
<td>2.58</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>LOC92691</td>
<td>92691</td>
<td>hypothetical protein BC008804</td>
<td>7.23</td>
<td>chr2</td>
</tr>
<tr>
<td>LPL</td>
<td>4023</td>
<td>lipoprotein lipase</td>
<td>3.81</td>
<td>chr8</td>
</tr>
<tr>
<td>LRC2H</td>
<td>57631</td>
<td>leucine-rich repeats and calponin homology (CH) domain containing 2</td>
<td>2.07</td>
<td>chrX</td>
</tr>
<tr>
<td>LRC3H</td>
<td>84859</td>
<td>leucine-rich repeats and calponin homology (CH) domain containing 3</td>
<td>3.56</td>
<td>chr3</td>
</tr>
<tr>
<td>LRP2</td>
<td>4036</td>
<td>Low density lipoprotein-related protein 2</td>
<td>21.79</td>
<td>chr2</td>
</tr>
<tr>
<td>LRP4</td>
<td>4038</td>
<td>low density lipoprotein receptor-related protein 4</td>
<td>3.17</td>
<td>chr11</td>
</tr>
<tr>
<td>LRR3B</td>
<td>116135</td>
<td>leucine rich repeat containing 3B</td>
<td>2.35</td>
<td>chr3</td>
</tr>
<tr>
<td>LRR4C9</td>
<td>54839</td>
<td>leucine rich repeat containing 49</td>
<td>2.20</td>
<td>chr15</td>
</tr>
<tr>
<td>LRR4C4</td>
<td>57689</td>
<td>leucine rich repeat containing 4C</td>
<td>3.58</td>
<td>chr11</td>
</tr>
<tr>
<td>LRRN3</td>
<td>54674</td>
<td>leucine rich repeat neuronal 3</td>
<td>6.49</td>
<td>chr7</td>
</tr>
<tr>
<td>LSAMP</td>
<td>4045</td>
<td>limbic system-associated membrane protein</td>
<td>2.27</td>
<td>chr3</td>
</tr>
<tr>
<td>LSM8</td>
<td>51691</td>
<td>LSM8 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td>2.69</td>
<td>chr7</td>
</tr>
<tr>
<td>LUM</td>
<td>4060</td>
<td>lumican</td>
<td>16.09</td>
<td>chr12</td>
</tr>
<tr>
<td>LZIC</td>
<td>84328</td>
<td>Leucine zipper and CTNNBIP1 domain containing</td>
<td>2.15</td>
<td>chr1</td>
</tr>
<tr>
<td>MAB21L1</td>
<td>4081</td>
<td>mab-21-like 1 (C. elegans)</td>
<td>5.33</td>
<td>chr13</td>
</tr>
<tr>
<td>MAF</td>
<td>4094</td>
<td>v-maf musculoaponeurotic fibrosarcoma oncogene homolog (avian)</td>
<td>6.36</td>
<td>chr16</td>
</tr>
<tr>
<td>MAGI3</td>
<td>260425</td>
<td>membrane associated guanylate kinase, WW and PDZ domain containing 3</td>
<td>2.96</td>
<td>chr1</td>
</tr>
<tr>
<td>MAM3L</td>
<td>55534</td>
<td>Mastermind-like 3 (Drosophila)</td>
<td>2.68</td>
<td>chr4</td>
</tr>
<tr>
<td>MANA2A</td>
<td>4122</td>
<td>mannosidase, alpha, class 2A, member 2</td>
<td>2.72</td>
<td>chr15</td>
</tr>
<tr>
<td>MAP2</td>
<td>4133</td>
<td>Microtubule-associated protein 2</td>
<td>25.86</td>
<td>chr2</td>
</tr>
<tr>
<td>MAP2K1P1</td>
<td>8649</td>
<td>Mitogen-activated protein kinase kinase 1 interacting protein 1</td>
<td>2.40</td>
<td>chr4</td>
</tr>
<tr>
<td>MAP6</td>
<td>4135</td>
<td>microtubule-associated protein 6</td>
<td>4.48</td>
<td>chr11</td>
</tr>
<tr>
<td>MAPK10</td>
<td>5602</td>
<td>mitogen-activated protein kinase 10</td>
<td>9.24</td>
<td>chr4</td>
</tr>
<tr>
<td>MARCH6</td>
<td>10299</td>
<td>membrane-associated ring finger (C3HC4) 6</td>
<td>2.16</td>
<td>chr5</td>
</tr>
<tr>
<td>MASP2</td>
<td>10747</td>
<td>Mannan-binding lectin serine peptidase 2</td>
<td>6.08</td>
<td>chr1</td>
</tr>
<tr>
<td>MCART6</td>
<td>401612</td>
<td>Mitochondrial carrier triple repeat 6</td>
<td>3.04</td>
<td>chrX</td>
</tr>
<tr>
<td>MCF2L</td>
<td>23263</td>
<td>MCF.2 cell line derived transforming sequence-like</td>
<td>3.95</td>
<td>chr13</td>
</tr>
<tr>
<td>ME3</td>
<td>10873</td>
<td>malic enzyme 3, NADP(+) -dependent, mitochondrial</td>
<td>8.66</td>
<td>chr11</td>
</tr>
<tr>
<td>MECP2</td>
<td>4204</td>
<td>methyl CpG binding protein 2 (Rett syndrome)</td>
<td>2.09</td>
<td>chrX</td>
</tr>
<tr>
<td>MEIS1</td>
<td>4211</td>
<td>Meis1, myeloid ecotropic viral integration site 1 homolog (mouse)</td>
<td>8.07</td>
<td>chr2</td>
</tr>
<tr>
<td>MGAT3</td>
<td>4248</td>
<td>Mannosyl (beta-1,4-)glycoprotein beta-1,4-N-acetylglucosaminyltransferase</td>
<td>2.44</td>
<td>chr22</td>
</tr>
<tr>
<td>MGC12760</td>
<td>84809</td>
<td>hypothetical protein MGC12760 /// hypothetical protein MGC12760</td>
<td>3.31</td>
<td>chr1</td>
</tr>
<tr>
<td>MGC13057</td>
<td>84281</td>
<td>Hypothetical protein MGC13057</td>
<td>2.58</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC15407</td>
<td>112942</td>
<td>Similar to RIKEN cDNA 4931428D14 gene</td>
<td>2.54</td>
<td>chr2</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>MGC15875</td>
<td>85007</td>
<td>hypothetical protein MGC15875</td>
<td>2.82</td>
<td>chr5</td>
</tr>
<tr>
<td>MGC17839</td>
<td>219902</td>
<td>hypothetical protein MGC17839</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC21644</td>
<td>153768</td>
<td>hypothetical protein MGC21644</td>
<td>2.08</td>
<td>chr5</td>
</tr>
<tr>
<td>MGC25181</td>
<td>257054</td>
<td>hypothetical protein MGC25181</td>
<td>2.26</td>
<td>chr2_random</td>
</tr>
<tr>
<td>MGC2803</td>
<td>79002</td>
<td>hypothetical protein MGC2803</td>
<td>2.14</td>
<td>chr19</td>
</tr>
<tr>
<td>MGC3032</td>
<td>65998</td>
<td>hypothetical protein MGC3032</td>
<td>2.54</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC3121</td>
<td>78994</td>
<td>hypothetical protein MGC3121</td>
<td>2.11</td>
<td>chr16</td>
</tr>
<tr>
<td>MGC33212</td>
<td>255758</td>
<td>hypothetical protein MGC33212</td>
<td>2.44</td>
<td>chr3</td>
</tr>
<tr>
<td>MGC33302</td>
<td>256471</td>
<td>Hypothetical protein MGC33302</td>
<td>2.33</td>
<td>chr4</td>
</tr>
<tr>
<td>MGC35048</td>
<td>124152</td>
<td>hypothetical protein MGC35048</td>
<td>2.96</td>
<td>chr16</td>
</tr>
<tr>
<td>MGC35097</td>
<td>200942</td>
<td>hypothetical protein MGC35097</td>
<td>3.06</td>
<td>chr3</td>
</tr>
<tr>
<td>MGC35366</td>
<td>144193</td>
<td>hypothetical protein MGC35366</td>
<td>2.52</td>
<td>chr12</td>
</tr>
<tr>
<td>MGC40499</td>
<td>245812</td>
<td>hypothetical protein MGC40499</td>
<td>2.01</td>
<td>chr7</td>
</tr>
<tr>
<td>MGC4707</td>
<td>79096</td>
<td>MGC4707 protein</td>
<td>2.40</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC52110</td>
<td>493753</td>
<td>hypothetical protein MGC52110</td>
<td>2.02</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC5509</td>
<td>79074</td>
<td>Hypothetical protein MGC5509</td>
<td>3.05</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC5576</td>
<td>79022</td>
<td>hypothetical protein MGC5576</td>
<td>2.35</td>
<td>chr12</td>
</tr>
<tr>
<td>MID1</td>
<td>4281</td>
<td>Midline 1 (Opitz/BBB syndrome)</td>
<td>2.52</td>
<td>chrX</td>
</tr>
<tr>
<td>MLR1</td>
<td>254251</td>
<td>transcription factor MLR1</td>
<td>2.49</td>
<td>chr4</td>
</tr>
<tr>
<td>MMRN1</td>
<td>22915</td>
<td>multimerin 1</td>
<td>2.24</td>
<td>chr4</td>
</tr>
<tr>
<td>MON2</td>
<td>23041</td>
<td>MON2 homolog (yeast)</td>
<td>2.64</td>
<td>chr12</td>
</tr>
<tr>
<td>MORF4L2</td>
<td>9643</td>
<td>Mortality factor 4 like 2</td>
<td>2.04</td>
<td>chrX</td>
</tr>
<tr>
<td>MSR2B</td>
<td>22921</td>
<td>methionine sulfoxide reductase B2</td>
<td>2.15</td>
<td>chr10</td>
</tr>
<tr>
<td>MST1</td>
<td>4485</td>
<td>macrophage stimulating 1 (hepatic growth factor-like)</td>
<td>2.15</td>
<td>chr1</td>
</tr>
<tr>
<td>MTERFD3</td>
<td>80298</td>
<td>MTERF domain containing 3</td>
<td>2.20</td>
<td>chr12</td>
</tr>
<tr>
<td>MUM1L1</td>
<td>139221</td>
<td>melanoma associated antigen (mutated) 1-like 1</td>
<td>3.66</td>
<td>chrX</td>
</tr>
<tr>
<td>MUSTN1</td>
<td>389125</td>
<td>musculoskeletal, embryonic nuclear protein 1</td>
<td>2.37</td>
<td>chr3</td>
</tr>
<tr>
<td>MYST3</td>
<td>7994</td>
<td>MYST histone acetyltransferase (monocytic leukemia) 3</td>
<td>2.94</td>
<td>chr8</td>
</tr>
<tr>
<td>NAB1</td>
<td>4664</td>
<td>NGFI-A binding protein 1 (ERG1 binding protein 1)</td>
<td>2.65</td>
<td>chr2</td>
</tr>
<tr>
<td>NAB2</td>
<td>4665</td>
<td>NGFI-A binding protein 2 (ERG1 binding protein 2)</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>NAPE-PLD</td>
<td>222236</td>
<td>N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D</td>
<td>2.16</td>
<td>chr7</td>
</tr>
<tr>
<td>NCALD</td>
<td>83988</td>
<td>neurocalc delta // neurocalc delta</td>
<td>10.89</td>
<td>chr8</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>NCAM1</td>
<td>4638</td>
<td>neural cell adhesion molecule 1</td>
<td>13.84</td>
<td>chr11</td>
</tr>
<tr>
<td>NCOA6</td>
<td>23054</td>
<td>nuclear receptor coactivator 6</td>
<td>2.51</td>
<td>chr20</td>
</tr>
<tr>
<td>NCOR1</td>
<td>9611</td>
<td>Nuclear receptor co-repressor 1</td>
<td>2.05</td>
<td>chr17</td>
</tr>
<tr>
<td>NDN</td>
<td>4692</td>
<td>necdin homolog (mouse)</td>
<td>2.01</td>
<td>chr15</td>
</tr>
<tr>
<td>NEK3</td>
<td>4752</td>
<td>NIMA (never in mitosis gene a)-related kinase 3</td>
<td>2.55</td>
<td>chr13</td>
</tr>
<tr>
<td>NEK9</td>
<td>91754</td>
<td>NIMA (never in mitosis gene a)- related kinase 9</td>
<td>4.50</td>
<td>chr14</td>
</tr>
<tr>
<td>NEUROD1</td>
<td>4760</td>
<td>neurogenic differentiation 1</td>
<td>2.50</td>
<td>chr2</td>
</tr>
<tr>
<td>NFATC1</td>
<td>4772</td>
<td>nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1</td>
<td>2.57</td>
<td>chr18</td>
</tr>
<tr>
<td>NHLH2</td>
<td>4808</td>
<td>nescent helix loop helix 2</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>NHLRC2</td>
<td>374354</td>
<td>NHL repeat containing 2</td>
<td>2.24</td>
<td>chr10</td>
</tr>
<tr>
<td>NISCH</td>
<td>11188</td>
<td>nischarin</td>
<td>2.21</td>
<td>chr3</td>
</tr>
<tr>
<td>NKTR</td>
<td>4820</td>
<td>natural killer-tumor recognition sequence</td>
<td>2.73</td>
<td>chr3</td>
</tr>
<tr>
<td>NLGN1</td>
<td>22871</td>
<td>neureiligin 1</td>
<td>3.38</td>
<td>chr3</td>
</tr>
<tr>
<td>NME5</td>
<td>8382</td>
<td>non-metastatic cells 5, protein expressed in (nucleoside-diphosphate kinase)</td>
<td>2.77</td>
<td>chr5</td>
</tr>
<tr>
<td>NOPE</td>
<td>57722</td>
<td>likely ortholog of mouse neighbor of Punc E11</td>
<td>5.49</td>
<td>chr15</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>4851</td>
<td>Notch homolog 1, translocation-associated (Drosophila)</td>
<td>2.73</td>
<td>chr9</td>
</tr>
<tr>
<td>NPY2R</td>
<td>4887</td>
<td>neuropeptide Y receptor Y2</td>
<td>3.47</td>
<td>chr4</td>
</tr>
<tr>
<td>NR2E1</td>
<td>7101</td>
<td>nuclear receptor subfamily 2, group E, member 1</td>
<td>3.16</td>
<td>chr6</td>
</tr>
<tr>
<td>NR2F1</td>
<td>7025</td>
<td>Nuclear receptor subfamily 2, group F, member 1</td>
<td>8.52</td>
<td>chr5</td>
</tr>
<tr>
<td>NRCAM</td>
<td>4897</td>
<td>neuronal cell adhesion molecule</td>
<td>8.28</td>
<td>chr7</td>
</tr>
<tr>
<td>NRG1</td>
<td>3084</td>
<td>neuregulin 1</td>
<td>10.33</td>
<td>chr8</td>
</tr>
<tr>
<td>NTRK2</td>
<td>4915</td>
<td>neurotrophic tyrosine kinase, receptor, type 2</td>
<td>2.92</td>
<td>chr9</td>
</tr>
<tr>
<td>NUDT6</td>
<td>11162</td>
<td>nudix (nucleoside diphosphate linked moiety X)-type motif 6</td>
<td>2.77</td>
<td>chr4</td>
</tr>
<tr>
<td>OBSL1</td>
<td>23363</td>
<td>obscurin-like 1</td>
<td>2.53</td>
<td>chr2</td>
</tr>
<tr>
<td>ODZ4</td>
<td>26011</td>
<td>odz, odd Oz/ten-m homolog 4 (Drosophila)</td>
<td>3.54</td>
<td>chr11</td>
</tr>
<tr>
<td>OGT</td>
<td>8473</td>
<td>O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-N-acetylglucosamine:polypeptide-N-acetylglucosaminyl transferred)</td>
<td>2.02</td>
<td>chrX</td>
</tr>
<tr>
<td>OSBP1A</td>
<td>114883</td>
<td>Oxysterol binding protein-like 9</td>
<td>2.60</td>
<td>chr1</td>
</tr>
<tr>
<td>P18SRR</td>
<td>285672</td>
<td>p18 splicing regulatory protein</td>
<td>2.20</td>
<td>chr5</td>
</tr>
<tr>
<td>PAPD4</td>
<td>167153</td>
<td>PAP associated domain containing 4</td>
<td>2.34</td>
<td>chr5</td>
</tr>
<tr>
<td>PAPOLA</td>
<td>10914</td>
<td>poly(A) polymerase alpha</td>
<td>2.22</td>
<td>chr14</td>
</tr>
<tr>
<td>PARC</td>
<td>23113</td>
<td>p53-associated parkin-like cytoplasmic protein</td>
<td>2.04</td>
<td>chr6</td>
</tr>
<tr>
<td>PARD6G</td>
<td>84552</td>
<td>par-6 partitioning defective 6 homolog gamma (C. elegans)</td>
<td>2.10</td>
<td>chr18</td>
</tr>
<tr>
<td>PARP6</td>
<td>56965</td>
<td>poly (ADP-ribose) polymerase family, member 6</td>
<td>2.49</td>
<td>chr15</td>
</tr>
<tr>
<td>PAWR</td>
<td>5074</td>
<td>PRKC, apoptosis, WT1, regulator</td>
<td>2.01</td>
<td>chr20</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAX3</td>
<td>5077</td>
<td>paired box gene 3 (Waardenburg syndrome 1)</td>
<td>7.02</td>
<td>chr2</td>
</tr>
<tr>
<td>PAX6</td>
<td>5080</td>
<td>paired box gene 6 (aniridia, keratitis)</td>
<td>92.78</td>
<td>chr11</td>
</tr>
<tr>
<td>PCDH17</td>
<td>27253</td>
<td>Protocadherin 17</td>
<td>6.86</td>
<td>chr13</td>
</tr>
<tr>
<td>PCDH18</td>
<td>54510</td>
<td>protocadherin 18</td>
<td>2.59</td>
<td>chr4</td>
</tr>
<tr>
<td>PCDHB14</td>
<td>56122</td>
<td>protocadherin beta 14</td>
<td>2.58</td>
<td>chr5</td>
</tr>
<tr>
<td>PCM1D1</td>
<td>115294</td>
<td>Protein-L-isosaspartate (D-aspartate) O-methyltransferase domain containing 1</td>
<td>3.12</td>
<td>chr8</td>
</tr>
<tr>
<td>PCSK5</td>
<td>5125</td>
<td>Proprotein convertase subtilisin/kexin type 5</td>
<td>4.59</td>
<td>chr9</td>
</tr>
<tr>
<td>PEG10</td>
<td>23089</td>
<td>paternally expressed 10</td>
<td>2.75</td>
<td>chr7</td>
</tr>
<tr>
<td>PFAAP5</td>
<td>10443</td>
<td>Hypothetical gene CG012</td>
<td>4.32</td>
<td>chr13</td>
</tr>
<tr>
<td>PGM5</td>
<td>5239</td>
<td>phosphoglucomutase 5</td>
<td>3.61</td>
<td>chr9</td>
</tr>
<tr>
<td>PHF2</td>
<td>5253</td>
<td>PHD finger protein 2</td>
<td>2.74</td>
<td>chr9</td>
</tr>
<tr>
<td>PHTF1</td>
<td>10745</td>
<td>putative homeodomain transcription factor 1</td>
<td>2.09</td>
<td>chr1</td>
</tr>
<tr>
<td>PIA1</td>
<td>8554</td>
<td>protein inhibitor of activated STAT, 1</td>
<td>2.92</td>
<td>chr15</td>
</tr>
<tr>
<td>PIK3R1</td>
<td>5295</td>
<td>phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha)</td>
<td>3.61</td>
<td>chr5</td>
</tr>
<tr>
<td>PIK3R3</td>
<td>8503</td>
<td>phosphoinositide-3-kinase, regulatory subunit 3 (p55, gamma)</td>
<td>3.93</td>
<td>chr1</td>
</tr>
<tr>
<td>PIK4CA</td>
<td>5297</td>
<td>phosphatidylinositol 4-kinase, catalytic, alpha polypeptide</td>
<td>2.09</td>
<td>chr22</td>
</tr>
<tr>
<td>PIK4CA</td>
<td>220686 /// 5297</td>
<td>phosphatidylinositol 4-kinase, catalytic, alpha polypeptide /// hypothetical protein LOC220686</td>
<td>2.84</td>
<td>chr22</td>
</tr>
<tr>
<td>PITPNB</td>
<td>23760</td>
<td>Phosphatidylinositol transfer protein, beta</td>
<td>2.04</td>
<td>chr22</td>
</tr>
<tr>
<td>PKIA</td>
<td>5569</td>
<td>Protein kinase (cAMP-dependent, catalytic) inhibitor alpha</td>
<td>3.14</td>
<td>chr8</td>
</tr>
<tr>
<td>PKNOX2</td>
<td>63876</td>
<td>Pbx/knotted 1 homeobox 2</td>
<td>5.62</td>
<td>chr11</td>
</tr>
<tr>
<td>PLCE1</td>
<td>51196</td>
<td>phospholipase C, epsilon 1</td>
<td>2.01</td>
<td>chr10</td>
</tr>
<tr>
<td>PLEKHA1</td>
<td>59338</td>
<td>pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1</td>
<td>2.26</td>
<td>chr10</td>
</tr>
<tr>
<td>PLEKHG1</td>
<td>57480</td>
<td>pleckstrin homology domain containing, family G (with RhoGef domain) member 1</td>
<td>9.86</td>
<td>chr6</td>
</tr>
<tr>
<td>PLXNA1</td>
<td>5361</td>
<td>plexin A1</td>
<td>2.39</td>
<td>chr3</td>
</tr>
<tr>
<td>PLXNC1</td>
<td>10154</td>
<td>plexin C1</td>
<td>3.11</td>
<td>chr12</td>
</tr>
<tr>
<td>POLR2J1</td>
<td>246721</td>
<td>DNA directed RNA polymerase II polypeptide J-related gene</td>
<td>2.34</td>
<td>chr7</td>
</tr>
<tr>
<td>POMT1</td>
<td>10585</td>
<td>protein-O-mannosyltransferase 1</td>
<td>2.28</td>
<td>chr9</td>
</tr>
<tr>
<td>POU3F2</td>
<td>5454</td>
<td>POU domain, class 3, transcription factor 2</td>
<td>3.76</td>
<td>chr6</td>
</tr>
<tr>
<td>POU4F1</td>
<td>5457</td>
<td>POU domain, class 4, transcription factor 1</td>
<td>3.70</td>
<td>chr13</td>
</tr>
<tr>
<td>PPFIB1</td>
<td>440091 /// 8496</td>
<td>PTPRF interacting protein, binding protein 1 (liprin beta 1) /// similar to PTPRF interacting protein binding polypeptide</td>
<td>3.77</td>
<td>chr12</td>
</tr>
<tr>
<td>PPP2RSC</td>
<td>5527</td>
<td>protein phosphatase 2, regulatory subunit B (B56), gamma isoform</td>
<td>2.17</td>
<td>chr14</td>
</tr>
<tr>
<td>PPT2</td>
<td>80864 /// 9374</td>
<td>palmitoyl-protein thioesterase 2 /// EGF-like-domain, multiple 8</td>
<td>3.63</td>
<td>chr6</td>
</tr>
<tr>
<td>PREX1</td>
<td>57580</td>
<td>phosphatidylinositol 3,4,5-trisphosphate-dependent RAC exchanger 1</td>
<td>2.79</td>
<td>chr20</td>
</tr>
<tr>
<td>PRKD1</td>
<td>5587</td>
<td>protein kinase D1</td>
<td>2.52</td>
<td>chr14</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRKRA</td>
<td>8575</td>
<td>protein kinase, interferon-inducible double stranded RNA dependent activator</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>PROS1</td>
<td>5627</td>
<td>protein S (alpha)</td>
<td>5.53</td>
<td>chr3</td>
</tr>
<tr>
<td>PRR3</td>
<td>80742</td>
<td>proline rich 3</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>PSCD2</td>
<td>9266</td>
<td>Pleckstrin homology, Sec7 and coiled-coil domains 2 (cytohesin-2)</td>
<td>2.30</td>
<td>chr19</td>
</tr>
<tr>
<td>PSEN1</td>
<td>5663</td>
<td>Presenilin 1 (Alzheimer disease 3)</td>
<td>2.50</td>
<td>chr14</td>
</tr>
<tr>
<td>PTK2</td>
<td>5747</td>
<td>PTK2 protein tyrosine kinase 2</td>
<td>2.47</td>
<td>chr8</td>
</tr>
<tr>
<td>PTN</td>
<td>5764</td>
<td>pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1)</td>
<td>3.49</td>
<td>chr7</td>
</tr>
<tr>
<td>PTPN13</td>
<td>5783</td>
<td>Protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)-associated phosphatase)</td>
<td>2.57</td>
<td>chr4</td>
</tr>
<tr>
<td>PURG</td>
<td>29942</td>
<td>purine-rich element binding protein G</td>
<td>4.14</td>
<td>chr8</td>
</tr>
<tr>
<td>PVRL3</td>
<td>25945</td>
<td>Poliovirus receptor-related 3</td>
<td>2.81</td>
<td>chr3</td>
</tr>
<tr>
<td>PXMP3</td>
<td>5828</td>
<td>Peroxisomal membrane protein 3, 35kDa (Zellweger syndrome)</td>
<td>2.02</td>
<td>chr8</td>
</tr>
<tr>
<td>RAB6IP1</td>
<td>23258</td>
<td>RAB6 interacting protein 1</td>
<td>2.27</td>
<td>chr11</td>
</tr>
<tr>
<td>RABGAP1</td>
<td>23637</td>
<td>RAB GTPase activating protein 1</td>
<td>2.73</td>
<td>chr9</td>
</tr>
<tr>
<td>RABL2B</td>
<td>11158 /// 11159</td>
<td>RAB, member of RAS oncogene family-like 2B /// RAB, member of RAS oncogene family-like 2A</td>
<td>2.34</td>
<td>chr2</td>
</tr>
<tr>
<td>RA17</td>
<td>57178</td>
<td>retinoic acid induced 17</td>
<td>2.34</td>
<td>chr10</td>
</tr>
<tr>
<td>RALGDS</td>
<td>5900</td>
<td>ral guanine nucleotide dissociation stimulator</td>
<td>2.97</td>
<td>chr9</td>
</tr>
<tr>
<td>RANBP2L2</td>
<td>440872</td>
<td>Ran binding protein 2-like 2</td>
<td>2.63</td>
<td>chr2</td>
</tr>
<tr>
<td>RAP140</td>
<td>23272</td>
<td>retinoblastoma-associated protein 16</td>
<td>2.22</td>
<td>chr3</td>
</tr>
<tr>
<td>RASA2</td>
<td>5922</td>
<td>RAS p21 protein activator 2</td>
<td>2.88</td>
<td>chr3</td>
</tr>
<tr>
<td>RASA4 /// FLJ21</td>
<td>10156 /// 401331</td>
<td>RAS p21 protein activator 4 /// hypothetical protein FLJ21767</td>
<td>2.08</td>
<td>chr7</td>
</tr>
<tr>
<td>RASGRP1</td>
<td>10125</td>
<td>RAS guanyl releasing protein 1 (calcium and DAG-regulated)</td>
<td>3.62</td>
<td>chr15</td>
</tr>
<tr>
<td>RBM33</td>
<td>155435</td>
<td>RNA binding motif protein 33</td>
<td>2.38</td>
<td>chr7</td>
</tr>
<tr>
<td>RBM4B</td>
<td>83759</td>
<td>RNA binding motif protein 4B</td>
<td>2.49</td>
<td>chr11</td>
</tr>
<tr>
<td>RBM5</td>
<td>10181</td>
<td>RNA binding motif protein 5</td>
<td>2.63</td>
<td>chr3</td>
</tr>
<tr>
<td>RBMS1</td>
<td>5937</td>
<td>RNA binding motif, single stranded interacting protein 1</td>
<td>2.61</td>
<td>chr2</td>
</tr>
<tr>
<td>RCOR3</td>
<td>55758</td>
<td>REST corepressor 3</td>
<td>2.47</td>
<td>chr1</td>
</tr>
<tr>
<td>RELN</td>
<td>5649</td>
<td>reelin</td>
<td>15.67</td>
<td>chr7</td>
</tr>
<tr>
<td>RGS12</td>
<td>6002</td>
<td>regulator of G-protein signalling 12</td>
<td>2.04</td>
<td>chr4</td>
</tr>
<tr>
<td>ROHOU</td>
<td>58480</td>
<td>ras homolog gene family, member U</td>
<td>6.94</td>
<td>chr1</td>
</tr>
<tr>
<td>RNF144</td>
<td>9781</td>
<td>ring finger protein 144</td>
<td>2.53</td>
<td>chr2</td>
</tr>
<tr>
<td>RNF165</td>
<td>494470</td>
<td>ring finger protein 165</td>
<td>9.91</td>
<td>chr18</td>
</tr>
<tr>
<td>ROBO1</td>
<td>6091</td>
<td>Roundabout, axon guidance receptor, homolog 1 (Drosophila)</td>
<td>2.78</td>
<td>chr3</td>
</tr>
<tr>
<td>ROBO2</td>
<td>6092</td>
<td>Roundabout, axon guidance receptor, homolog 2 (Drosophila)</td>
<td>3.59</td>
<td>chr3</td>
</tr>
<tr>
<td>ROR2</td>
<td>4920</td>
<td>receptor tyrosine kinase-like orphan receptor 2</td>
<td>2.65</td>
<td>chr9</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP3-473B4.1</td>
<td>159091</td>
<td>Hypothetical protein BC017868</td>
<td>2.80</td>
<td>chrX</td>
</tr>
<tr>
<td>RPL28</td>
<td>6158</td>
<td>ribosomal protein L28</td>
<td>2.02</td>
<td>chr19</td>
</tr>
<tr>
<td>RPL31</td>
<td>6160</td>
<td>ribosomal protein L31</td>
<td>3.69</td>
<td>chr2</td>
</tr>
<tr>
<td>RPS15A</td>
<td>6210</td>
<td>Ribosomal protein S15a</td>
<td>2.67</td>
<td>chr16</td>
</tr>
<tr>
<td>RPS29</td>
<td>6235</td>
<td>Ribosomal protein S29</td>
<td>2.38</td>
<td>chr14</td>
</tr>
<tr>
<td>RRN3</td>
<td>54700</td>
<td>RRN3 RNA polymerase I transcription factor homolog (yeast)</td>
<td>2.13</td>
<td>chr16</td>
</tr>
<tr>
<td>RSN1</td>
<td>54665</td>
<td>round spermatid basic protein 1</td>
<td>2.23</td>
<td>chr1</td>
</tr>
<tr>
<td>RSP03</td>
<td>84870</td>
<td>R-spondin 3 homolog (Xenopus laevis)</td>
<td>5.79</td>
<td>chr6</td>
</tr>
<tr>
<td>RUTBC1</td>
<td>9905</td>
<td>RUN and TBC1 domain containing 1</td>
<td>2.40</td>
<td>chr17</td>
</tr>
<tr>
<td>SAPS2</td>
<td>9701</td>
<td>SAPS domain family, member 2</td>
<td>2.14</td>
<td>chr22</td>
</tr>
<tr>
<td>SBF2</td>
<td>81846</td>
<td>SET binding factor 2</td>
<td>2.11</td>
<td>chr11</td>
</tr>
<tr>
<td>SCC-112</td>
<td>23244</td>
<td>SCC-112 protein</td>
<td>2.34</td>
<td>chr4</td>
</tr>
<tr>
<td>SCFD1</td>
<td>23256</td>
<td>Sec1 family domain containing 1</td>
<td>2.07</td>
<td>chr14</td>
</tr>
<tr>
<td>SCMH1</td>
<td>22955</td>
<td>sex comb on midleg homolog 1 (Drosophila)</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>SCUBE2</td>
<td>57758</td>
<td>signal peptide, CUB domain, EGF-like 2</td>
<td>2.88</td>
<td>chr11</td>
</tr>
<tr>
<td>SDHAL2</td>
<td>255812</td>
<td>succinate dehydrogenase complex, subunit A, flavoprotein-like 2</td>
<td>3.76</td>
<td>chr3</td>
</tr>
<tr>
<td>SDK1</td>
<td>221935</td>
<td>sidekick homolog 1 (chicken)</td>
<td>2.89</td>
<td>chr7</td>
</tr>
<tr>
<td>SDK2</td>
<td>54549</td>
<td>sidekick homolog 2 (chicken)</td>
<td>13.25</td>
<td>chr17</td>
</tr>
<tr>
<td>SEC15L1</td>
<td>54536</td>
<td>SEC15-like 1 (S. cerevisiae)</td>
<td>2.41</td>
<td>chr10</td>
</tr>
<tr>
<td>SEC6L1</td>
<td>11336</td>
<td>SEC6-like 1 (S. cerevisiae)</td>
<td>2.53</td>
<td>chr5</td>
</tr>
<tr>
<td>SELENBP1</td>
<td>8991</td>
<td>selenium binding protein 1 /// selenium binding protein 1</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>SEMA3A</td>
<td>10371</td>
<td>sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3A</td>
<td>2.56</td>
<td>chr7</td>
</tr>
<tr>
<td>SEMA6D</td>
<td>80031</td>
<td>sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6D</td>
<td>4.35</td>
<td>chr15</td>
</tr>
<tr>
<td>SENP7</td>
<td>57337</td>
<td>SUMO1/sentrin specific peptidease 7</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>SERTAD4</td>
<td>56256</td>
<td>SERTA domain containing 4</td>
<td>2.68</td>
<td>chr1</td>
</tr>
<tr>
<td>SESN3</td>
<td>143686</td>
<td>Sestrin 3</td>
<td>5.17</td>
<td>chr11</td>
</tr>
<tr>
<td>SETBP1</td>
<td>26040</td>
<td>SET binding protein 1</td>
<td>3.15</td>
<td>chr18</td>
</tr>
<tr>
<td>SETD5</td>
<td>55209</td>
<td>SET domain containing 5</td>
<td>2.25</td>
<td>chr3</td>
</tr>
<tr>
<td>SETD6</td>
<td>79918</td>
<td>SET domain containing 6</td>
<td>2.02</td>
<td>chr16</td>
</tr>
<tr>
<td>SEZ6L</td>
<td>23544</td>
<td>Seizure related 6 homolog (mouse)-like</td>
<td>3.21</td>
<td>chr22</td>
</tr>
<tr>
<td>SFI1</td>
<td>9814</td>
<td>Sti1 homolog, spindle assembly associated (yeast)</td>
<td>2.49</td>
<td>chr22</td>
</tr>
<tr>
<td>SFRS14</td>
<td>10147</td>
<td>Splicing factor, arginine/serine-rich 14</td>
<td>2.20</td>
<td>chr19</td>
</tr>
<tr>
<td>SFRS2IP</td>
<td>9169</td>
<td>Splicing factor, arginine/serine-rich 2, interacting protein</td>
<td>3.45</td>
<td>chr12</td>
</tr>
<tr>
<td>SH3BGLR2</td>
<td>83699</td>
<td>SH3 domain binding glutamic acid-rich protein like 2</td>
<td>2.84</td>
<td>chr6</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SHANK3</td>
<td>85358</td>
<td>SH3 and multiple ankyrin repeat domains 3</td>
<td>2,51</td>
<td>chr22</td>
</tr>
<tr>
<td>SHC2</td>
<td>25759</td>
<td>SHC (Src homology 2 domain containing) transforming protein 2</td>
<td>2,99</td>
<td>chr19</td>
</tr>
<tr>
<td>SHRM</td>
<td>57619</td>
<td>Shroom</td>
<td>2,20</td>
<td>chr4</td>
</tr>
<tr>
<td>SIX3</td>
<td>6496</td>
<td>Sine oculis homeobox homolog 3 (Drosophila)</td>
<td>37,88</td>
<td>chr2</td>
</tr>
<tr>
<td>SIX6</td>
<td>4990</td>
<td>Sine oculis homeobox homolog 6 (Drosophila)</td>
<td>6,24</td>
<td>chr14</td>
</tr>
<tr>
<td>SLC1A14</td>
<td>151473</td>
<td>solute carrier family 16 (monocarboxylic acid transporters), member 14</td>
<td>3,79</td>
<td>chr2</td>
</tr>
<tr>
<td>SLC1A3</td>
<td>6507</td>
<td>solute carrier family 1 (glial high affinity glutamate transporter), member 3</td>
<td>3,22</td>
<td>chr5</td>
</tr>
<tr>
<td>SLC2A27</td>
<td>9481</td>
<td>solute carrier family 25, member 27</td>
<td>4,25</td>
<td>chr6</td>
</tr>
<tr>
<td>SLC30A1</td>
<td>7779</td>
<td>solute carrier family 30 (zinc transporter), member 1</td>
<td>2,12</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC35E2</td>
<td>9906</td>
<td>solute carrier family 35, member E2</td>
<td>3,24</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC4A7</td>
<td>9497</td>
<td>solute carrier family 4, sodium bicarbonate cotransporter, member 7</td>
<td>2,04</td>
<td>chr3</td>
</tr>
<tr>
<td>SLC5A3</td>
<td>6526</td>
<td>solute carrier family 5 (inositol transporters), member 3</td>
<td>4,29</td>
<td>chr21</td>
</tr>
<tr>
<td>SLC6A16</td>
<td>28968</td>
<td>Solute carrier family 6, member 16</td>
<td>7,77</td>
<td>chr19</td>
</tr>
<tr>
<td>SLC9A3</td>
<td>6550</td>
<td>Solute carrier family 9 (sodium/hydrogen exchanger), member 3</td>
<td>2,28</td>
<td>chr5</td>
</tr>
<tr>
<td>SLIT2</td>
<td>9353</td>
<td>slit homolog 2 (Drosophila)</td>
<td>7,63</td>
<td>chr4</td>
</tr>
<tr>
<td>SLITRK4</td>
<td>139065</td>
<td>SLIT and NTRK-like family, member 4</td>
<td>2,70</td>
<td>chrX</td>
</tr>
<tr>
<td>SLITRK6</td>
<td>84189</td>
<td>SLIT and NTRK-like family, member 6</td>
<td>6,19</td>
<td>chr13</td>
</tr>
<tr>
<td>SLN</td>
<td>6588</td>
<td>sarcophilin</td>
<td>4,50</td>
<td>chr11</td>
</tr>
<tr>
<td>SMAD5</td>
<td>4090</td>
<td>SMAD, mothers against DPP homolog 5 (Drosophila)</td>
<td>2,22</td>
<td>chr5</td>
</tr>
<tr>
<td>SNF8</td>
<td>11267</td>
<td>SNF8, ESCR-2 complex subunit, homolog (S. cerevisiae)</td>
<td>2,33</td>
<td>chr17</td>
</tr>
<tr>
<td>SNX1</td>
<td>6642</td>
<td>sorting nexin 1</td>
<td>2,14</td>
<td>chr15</td>
</tr>
<tr>
<td>SORCS1</td>
<td>114815</td>
<td>sortilin-related VPS10 domain containing receptor 1</td>
<td>3,02</td>
<td>chr10</td>
</tr>
<tr>
<td>SORCS2</td>
<td>57537</td>
<td>sortilin-related VPS10 domain containing receptor 2</td>
<td>3,39</td>
<td>chr4</td>
</tr>
<tr>
<td>SOSTDC1</td>
<td>25928</td>
<td>sclerostin domain containing 1</td>
<td>2,01</td>
<td>chr7</td>
</tr>
<tr>
<td>SOX1</td>
<td>6656</td>
<td>SRY (sex determining region Y)-box 1</td>
<td>8,01</td>
<td>chr13</td>
</tr>
<tr>
<td>SOX10</td>
<td>6663</td>
<td>SRY (sex determining region Y)-box 10</td>
<td>2,90</td>
<td>chr22</td>
</tr>
<tr>
<td>SOX5</td>
<td>6660</td>
<td>SRY (sex determining region Y)-box 5</td>
<td>28,58</td>
<td>chr12</td>
</tr>
<tr>
<td>SOX6</td>
<td>55553</td>
<td>SRY (sex determining region Y)-box 6</td>
<td>7,05</td>
<td>chr11</td>
</tr>
<tr>
<td>SPA17</td>
<td>53340</td>
<td>sperm autoantigenic protein 17</td>
<td>3,09</td>
<td>chr11</td>
</tr>
<tr>
<td>SPP1L3</td>
<td>121665</td>
<td>signal peptide peptidase 3</td>
<td>2,02</td>
<td>chr12</td>
</tr>
<tr>
<td>SRGA3P3</td>
<td>9901</td>
<td>SLIT-ROBO Rho GTPase activating protein 3</td>
<td>6,11</td>
<td>chr3</td>
</tr>
<tr>
<td>SRP54</td>
<td>6729</td>
<td>Signal recognition particle 54kDa</td>
<td>2,10</td>
<td>chr14</td>
</tr>
<tr>
<td>SSPO</td>
<td>23145</td>
<td>SCO-spondin homolog (Bos taurus)</td>
<td>2,06</td>
<td>chr7</td>
</tr>
<tr>
<td>SST</td>
<td>6750</td>
<td>somatostatin</td>
<td>5,09</td>
<td>chr3</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change>2 ; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST6GALNAC5</td>
<td>81849</td>
<td>ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminidase alpha-2,6-sialyltransferase 5</td>
<td>8,46</td>
<td>chr1</td>
</tr>
<tr>
<td>ST7L</td>
<td>54879</td>
<td>Suppression of tumorigenicity 7 like</td>
<td>7,03</td>
<td>chr1</td>
</tr>
<tr>
<td>ST8SIA2</td>
<td>8128</td>
<td>ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2</td>
<td>7,30</td>
<td>chr8</td>
</tr>
<tr>
<td>STMN2</td>
<td>11075</td>
<td>stathmin-like 2</td>
<td>12,77</td>
<td>chr8</td>
</tr>
<tr>
<td>STMN4</td>
<td>81551</td>
<td>stathmin-like 4 // stathmin-like 4</td>
<td>3,21</td>
<td>chr8</td>
</tr>
<tr>
<td>STOX1</td>
<td>219736</td>
<td>storkhead box 1</td>
<td>2,04</td>
<td>chr10</td>
</tr>
<tr>
<td>STT3B</td>
<td>201595</td>
<td>STT3, subunit of the oligosaccharyltransferase complex, homolog B (S. cerevisiae)</td>
<td>2,12</td>
<td>chr3</td>
</tr>
<tr>
<td>STX7</td>
<td>8417</td>
<td>Syntaxin 7</td>
<td>2,33</td>
<td>chr6</td>
</tr>
<tr>
<td>SUPT7L</td>
<td>9913</td>
<td>suppressor of Ty 7 (S. cerevisiae)-like</td>
<td>2,06</td>
<td>chr2</td>
</tr>
<tr>
<td>SVIL</td>
<td>6840</td>
<td>supervillin</td>
<td>2,59</td>
<td>chr10</td>
</tr>
<tr>
<td>SYT11</td>
<td>23208</td>
<td>synaptotagmin XI</td>
<td>3,88</td>
<td>chr1</td>
</tr>
<tr>
<td>TAGLN3</td>
<td>29114</td>
<td>transgelin 3</td>
<td>3,36</td>
<td>chr3</td>
</tr>
<tr>
<td>TAIP-2</td>
<td>80034</td>
<td>TGF-beta induced apoptosis protein 2</td>
<td>2,28</td>
<td>chr2</td>
</tr>
<tr>
<td>TBC1D3</td>
<td>414060 /// 84218</td>
<td>TBC1 domain family, member 3 // TBC1 domain family, member 3C</td>
<td>6,00</td>
<td>chr17_random</td>
</tr>
<tr>
<td>TBRG1</td>
<td>84897</td>
<td>transforming growth factor beta regulator 1</td>
<td>2,48</td>
<td>chr11</td>
</tr>
<tr>
<td>TDRD7</td>
<td>23424</td>
<td>tudor domain containing 7</td>
<td>3,05</td>
<td>chr9</td>
</tr>
<tr>
<td>TFAP2B</td>
<td>7021</td>
<td>transcription factor AP-2 beta (activating enhancer binding protein 2 beta)</td>
<td>13,06</td>
<td>chr6</td>
</tr>
<tr>
<td>THSD1</td>
<td>374500 /// 55901</td>
<td>thrombospondin, type I, domain containing 1 // thrombospondin, type I, domain containing 1 pseudogene</td>
<td>3,05</td>
<td>chr13</td>
</tr>
<tr>
<td>TLE4</td>
<td>7091</td>
<td>transducin-like enhancer of split 4 (E(sp1) homolog, Drosophila)</td>
<td>4,03</td>
<td>chr9</td>
</tr>
<tr>
<td>TMCC3</td>
<td>57458</td>
<td>Transmembrane and coiled-coil domain family 3</td>
<td>2,53</td>
<td>chr12</td>
</tr>
<tr>
<td>TMEFF2</td>
<td>23671</td>
<td>transmembrane protein with EGF-like and two follistatin-like domains 2</td>
<td>9,12</td>
<td>chr2</td>
</tr>
<tr>
<td>TMEM2</td>
<td>23670</td>
<td>transmembrane protein 2</td>
<td>2,97</td>
<td>chr9</td>
</tr>
<tr>
<td>TMEM20</td>
<td>159371</td>
<td>transmembrane protein 20</td>
<td>2,31</td>
<td>chr10</td>
</tr>
<tr>
<td>TMEM29</td>
<td>29057</td>
<td>transmembrane protein 29</td>
<td>2,03</td>
<td>chrX</td>
</tr>
<tr>
<td>TMEM46</td>
<td>387914</td>
<td>transmembrane protein 46</td>
<td>4,82</td>
<td>chr13</td>
</tr>
<tr>
<td>TMTC2</td>
<td>160335</td>
<td>Transmembrane and tetracopeptide repeat containing 2</td>
<td>2,11</td>
<td>chr12</td>
</tr>
<tr>
<td>TNFRSF19</td>
<td>55504</td>
<td>tumor necrosis factor receptor superfamily, member 19</td>
<td>8,90</td>
<td>chr9</td>
</tr>
<tr>
<td>TPBG</td>
<td>7162</td>
<td>trophoblast glycoprotein</td>
<td>6,71</td>
<td>chr6</td>
</tr>
<tr>
<td>TRO</td>
<td>7216</td>
<td>trophinin /// trophinin</td>
<td>2,25</td>
<td>chrX</td>
</tr>
<tr>
<td>TRPM3</td>
<td>80036</td>
<td>transient receptor potential cation channel, subfamily M, member 3</td>
<td>3,58</td>
<td>chr9</td>
</tr>
<tr>
<td>TRPM8</td>
<td>79054</td>
<td>transient receptor potential cation channel, subfamily M, member 8</td>
<td>2,24</td>
<td>chr2</td>
</tr>
<tr>
<td>TSGA14</td>
<td>95681</td>
<td>testis specific, 14</td>
<td>3,15</td>
<td>chr7</td>
</tr>
<tr>
<td>TSPAN14</td>
<td>81619</td>
<td>tetraspanin 14</td>
<td>2,32</td>
<td>chr10</td>
</tr>
<tr>
<td>TSPAN3</td>
<td>10099</td>
<td>Tetraspanin 3</td>
<td>2,18</td>
<td>chr15</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>TSPYL2</td>
<td>64061</td>
<td>TSPY-like 2</td>
<td>2.03</td>
<td>chrX</td>
</tr>
<tr>
<td>TSPYL4</td>
<td>23270</td>
<td>TSPY-like 4</td>
<td>2.30</td>
<td>chr6</td>
</tr>
<tr>
<td>TTBK2</td>
<td>146057</td>
<td>tau tubulin kinase 2</td>
<td>2.27</td>
<td>chr15</td>
</tr>
<tr>
<td>TTC10</td>
<td>8100</td>
<td>tetratricopeptide repeat domain 10</td>
<td>2.70</td>
<td>chr13</td>
</tr>
<tr>
<td>TTC12</td>
<td>54970</td>
<td>tetratricopeptide repeat domain 12</td>
<td>2.99</td>
<td>chr11</td>
</tr>
<tr>
<td>TTC14</td>
<td>151613</td>
<td>Tetratricopeptide repeat domain 14</td>
<td>2.11</td>
<td>chr3</td>
</tr>
<tr>
<td>TTC17</td>
<td>55761</td>
<td>tetratricopeptide repeat domain 17</td>
<td>2.90</td>
<td>chr11</td>
</tr>
<tr>
<td>TTYH1</td>
<td>57348</td>
<td>tweeety homolog 1 (Drosophila)</td>
<td>2.45</td>
<td>chr19</td>
</tr>
<tr>
<td>UBE2E3</td>
<td>10477</td>
<td>Ubiquitin-conjugating enzyme E2E 3 (UBC4/5 homolog, yeast)</td>
<td>2.28</td>
<td>chr2</td>
</tr>
<tr>
<td>UBE2R2</td>
<td>54926</td>
<td>ubiquitin-conjugating enzyme E2R 2</td>
<td>2.65</td>
<td>chr9</td>
</tr>
<tr>
<td>UCP2</td>
<td>7351</td>
<td>uncoupling protein 2 (mitochondrial, proton carrier)</td>
<td>2.13</td>
<td>chr11</td>
</tr>
<tr>
<td>UHRF1</td>
<td>29128</td>
<td>ubiquitin-like, containing PHD and RING finger domains, 1</td>
<td>2.29</td>
<td>chr12</td>
</tr>
<tr>
<td>USP49</td>
<td>25862</td>
<td>Ubiquitin specific peptidase 49</td>
<td>3.11</td>
<td>chr6</td>
</tr>
<tr>
<td>VASH1</td>
<td>22846</td>
<td>vasohibin 1</td>
<td>2.51</td>
<td>chr14</td>
</tr>
<tr>
<td>VGLL4</td>
<td>9686</td>
<td>vestigial like 4 (Drosophila)</td>
<td>2.40</td>
<td>chr3</td>
</tr>
<tr>
<td>VTCN1</td>
<td>79679</td>
<td>V-set domain containing T cell activation inhibitor 1</td>
<td>5.12</td>
<td>chr1</td>
</tr>
<tr>
<td>WASF1</td>
<td>8936</td>
<td>WAS protein family, member 1</td>
<td>2.05</td>
<td>chr6</td>
</tr>
<tr>
<td>WASF3</td>
<td>10810</td>
<td>WAS protein family, member 3</td>
<td>4.31</td>
<td>chr13</td>
</tr>
<tr>
<td>WDR19</td>
<td>57728</td>
<td>WD repeat domain 19</td>
<td>2.60</td>
<td>chr4</td>
</tr>
<tr>
<td>WDR61</td>
<td>80349</td>
<td>WD repeat domain 61</td>
<td>2.14</td>
<td>chr15</td>
</tr>
<tr>
<td>WDTC1</td>
<td>23038</td>
<td>WD and tetratricopeptide repeats 1</td>
<td>2.17</td>
<td>chr1</td>
</tr>
<tr>
<td>WDTC2</td>
<td>9742</td>
<td>WD and tetraticopeptide repeats 2</td>
<td>2.08</td>
<td>chr16</td>
</tr>
<tr>
<td>WFIKKK1</td>
<td>117166</td>
<td>WAP, follistatin/kazal, immunoglobulin, kunitz and netrin domain containing 1</td>
<td>2.98</td>
<td>chr16</td>
</tr>
<tr>
<td>WNT2B</td>
<td>7482</td>
<td>wingless-type MMTV integration site family, member 2B</td>
<td>3.80</td>
<td>chr1</td>
</tr>
<tr>
<td>WNT5A</td>
<td>7474</td>
<td>wingless-type MMTV integration site family, member 5A</td>
<td>5.15</td>
<td>chr3</td>
</tr>
<tr>
<td>WSB1</td>
<td>26118</td>
<td>WD repeat and SOCS box-containing 1</td>
<td>7.05</td>
<td>chr17</td>
</tr>
<tr>
<td>WWOX</td>
<td>51741</td>
<td>B-box and SPRY domain containing</td>
<td>2.51</td>
<td>chr16</td>
</tr>
<tr>
<td>YAF2</td>
<td>10138</td>
<td>YY1 associated factor 2</td>
<td>4.72</td>
<td>chr12</td>
</tr>
<tr>
<td>YEAT52</td>
<td>55689</td>
<td>YEATS domain containing 2</td>
<td>3.40</td>
<td>chr3</td>
</tr>
<tr>
<td>ZBTB10</td>
<td>65986</td>
<td>Zinc finger and BTB domain containing 10</td>
<td>2.33</td>
<td>chr8</td>
</tr>
<tr>
<td>ZBTB16</td>
<td>7704</td>
<td>zinc finger and BTB domain containing 16</td>
<td>12.49</td>
<td>chr11</td>
</tr>
<tr>
<td>ZBTB33</td>
<td>10009</td>
<td>zinc finger and BTB domain containing 33</td>
<td>2.01</td>
<td>chrX</td>
</tr>
<tr>
<td>ZC3H12B</td>
<td>340554</td>
<td>zinc finger CCCH-type containing 12B</td>
<td>2.18</td>
<td>chrX</td>
</tr>
<tr>
<td>ZC3H12C</td>
<td>85463</td>
<td>zinc finger CCCH-type containing 12C</td>
<td>2.07</td>
<td>chr11</td>
</tr>
</tbody>
</table>
Table S6: Genes overexpressed in NPC compared to hES and not modulated in MPC compared to hES (Fold change >2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZC3H8</td>
<td>84524</td>
<td>Zinc finger CCCH-type containing 8</td>
<td>2.17</td>
<td>chr2</td>
</tr>
<tr>
<td>ZCSL3</td>
<td>120526</td>
<td>Zinc finger, CSL-type containing 3</td>
<td>2.67</td>
<td>chr11</td>
</tr>
<tr>
<td>ZFP90</td>
<td>146198</td>
<td>Zinc finger protein 90 homolog (mouse)</td>
<td>3.17</td>
<td>chr16</td>
</tr>
<tr>
<td>ZFR</td>
<td>51663</td>
<td>Zinc finger RNA binding protein</td>
<td>2.01</td>
<td>chr5</td>
</tr>
<tr>
<td>ZFVE16</td>
<td>9765</td>
<td>Zinc finger, FYVE domain containing 16</td>
<td>4.24</td>
<td>chr5</td>
</tr>
<tr>
<td>ZIC1</td>
<td>7545</td>
<td>Zic family member 1 (odd-paired homolog, Drosophila)</td>
<td>24.39</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF117</td>
<td>7670</td>
<td>Zinc finger protein 117 (HPF9)</td>
<td>5.39</td>
<td>chr7</td>
</tr>
<tr>
<td>ZNF161</td>
<td>7716</td>
<td>zinc finger protein 161</td>
<td>2.75</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF177</td>
<td>7730</td>
<td>zinc finger protein 177</td>
<td>2.53</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF193</td>
<td>7746</td>
<td>zinc finger protein 193</td>
<td>2.42</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF218</td>
<td>128553</td>
<td>Zinc finger protein 218</td>
<td>2.30</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF264</td>
<td>9422</td>
<td>zinc finger protein 264</td>
<td>2.17</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF266</td>
<td>10781</td>
<td>zinc finger protein 266</td>
<td>2.46</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF274</td>
<td>10782</td>
<td>zinc finger protein 274</td>
<td>2.12</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF297B</td>
<td>23099</td>
<td>zinc finger protein 297B</td>
<td>2.24</td>
<td>chr9</td>
</tr>
<tr>
<td>ZNF334</td>
<td>55713</td>
<td>zinc finger protein 334</td>
<td>2.12</td>
<td>chr20</td>
</tr>
<tr>
<td>ZNF346</td>
<td>23567</td>
<td>zinc finger protein 346</td>
<td>3.63</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF354B</td>
<td>117608</td>
<td>Zinc finger protein 354B</td>
<td>2.27</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF37B</td>
<td>256112</td>
<td>zinc finger protein 37b (Kox 21)</td>
<td>2.25</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF390</td>
<td>222696</td>
<td>zinc finger protein 390</td>
<td>2.16</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF42</td>
<td>7593</td>
<td>Zinc finger protein 42 (myeloid-specific retinoic acid-responsive)</td>
<td>2.01</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF452</td>
<td>114821</td>
<td>zinc finger protein 452</td>
<td>2.01</td>
<td>(vide)</td>
</tr>
<tr>
<td>ZNF471</td>
<td>57573</td>
<td>Zinc finger protein 471</td>
<td>2.20</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF510</td>
<td>22869</td>
<td>Zinc finger protein 510</td>
<td>2.15</td>
<td>chr9</td>
</tr>
<tr>
<td>ZNF514</td>
<td>84874</td>
<td>zinc finger protein 514</td>
<td>3.44</td>
<td>chr2</td>
</tr>
<tr>
<td>ZNF521</td>
<td>25925</td>
<td>zinc finger protein 521</td>
<td>13.21</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF533</td>
<td>151126</td>
<td>zinc finger protein 533</td>
<td>4.31</td>
<td>chr2</td>
</tr>
<tr>
<td>ZNF580</td>
<td>51157</td>
<td>zinc finger protein 580</td>
<td>2.39</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF618</td>
<td>114991</td>
<td>Zinc finger protein 618</td>
<td>2.82</td>
<td>chr9</td>
</tr>
<tr>
<td>ZNF621</td>
<td>285268</td>
<td>zinc finger protein 621</td>
<td>2.13</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNF629</td>
<td>23361</td>
<td>zinc finger protein 629</td>
<td>2.66</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF641</td>
<td>121274</td>
<td>zinc finger protein 641</td>
<td>3.75</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF664</td>
<td>144348</td>
<td>zinc finger protein 664</td>
<td>4.39</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF709</td>
<td>163051</td>
<td>zinc finger protein 709</td>
<td>2.86</td>
<td>chr19</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>ZNF83</td>
<td>55769</td>
<td>Zinc finger protein 83 (HPF1)</td>
<td>3.79</td>
<td>chr19</td>
</tr>
<tr>
<td>myosin, light polypeptide kinase</td>
<td>4.39</td>
<td>chr6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secreted protein, acidic, cysteine-rich (osteonectin)</td>
<td>2.25</td>
<td>chr16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>MPC_down</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>AFG3L1</td>
<td>172</td>
<td>AFG3 ATPase family gene 3-like 1 (yeast)</td>
<td>2.26</td>
<td>3.66</td>
</tr>
<tr>
<td>AGPAT4</td>
<td>56895</td>
<td>1-acylglycerol-3-phosphate O-acyltransferase 4 (lysophosphatidic acid acyltransferase)</td>
<td>3.89</td>
<td>2.37</td>
</tr>
<tr>
<td>AGTPBP1</td>
<td>23287</td>
<td>ATP/GTP binding protein 1</td>
<td>3.32</td>
<td>5.09</td>
</tr>
<tr>
<td>AKAP13</td>
<td>11214</td>
<td>A kinase (PRKA) anchor protein 13</td>
<td>2.53</td>
<td>2.67</td>
</tr>
<tr>
<td>AMPH</td>
<td>273</td>
<td>amphiphysin (Stiff-Man syndrome with breast cancer 128kDa autoantigen)</td>
<td>2.77</td>
<td>2.91</td>
</tr>
<tr>
<td>ANAPC7</td>
<td>51434</td>
<td>anaphase promoting complex subunit 7</td>
<td>2.70</td>
<td>2.60</td>
</tr>
<tr>
<td>ANKH1D /// MAS</td>
<td>404734</td>
<td>ankyrin repeat and KH domain containing 1 /// MASK-4E-BP3 alternate reading frame</td>
<td>2.18</td>
<td>2.16</td>
</tr>
<tr>
<td>ANKR1D10</td>
<td>55608</td>
<td>Ankyrin repeat domain 10</td>
<td>2.05</td>
<td>9.14</td>
</tr>
<tr>
<td>API5</td>
<td>8539</td>
<td>Apoptosis inhibitor 5</td>
<td>2.93</td>
<td>2.49</td>
</tr>
<tr>
<td>ARHGAP28</td>
<td>79822</td>
<td>Rho GTPase activating protein 28</td>
<td>2.76</td>
<td>5.70</td>
</tr>
<tr>
<td>ARHgef7</td>
<td>8874</td>
<td>Rho guanine nucleotide exchange factor (GEF) 7</td>
<td>2.59</td>
<td>3.83</td>
</tr>
<tr>
<td>ARID1B</td>
<td>57492</td>
<td>AT rich interactive domain 1B (SWI1-like)</td>
<td>2.02</td>
<td>3.16</td>
</tr>
<tr>
<td>ARID2</td>
<td>196528</td>
<td>AT rich interactive domain 2 (ARID, RFX-like)</td>
<td>2.53</td>
<td>3.78</td>
</tr>
<tr>
<td>ARMc8</td>
<td>25852</td>
<td>armadillo repeat containing 8</td>
<td>2.52</td>
<td>2.79</td>
</tr>
<tr>
<td>ATP11a</td>
<td>23250</td>
<td>ATPase, Class VI, type 11A</td>
<td>2.28</td>
<td>2.66</td>
</tr>
<tr>
<td>ATP1a2</td>
<td>477</td>
<td>ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide</td>
<td>2.48</td>
<td>8.72</td>
</tr>
<tr>
<td>ATRX</td>
<td>546</td>
<td>Alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog, S. cerevisiae)</td>
<td>2.13</td>
<td>6.07</td>
</tr>
<tr>
<td>Bcl2L11</td>
<td>10018</td>
<td>BCL2-like 11 (apoptosis facilitator)</td>
<td>3.19</td>
<td>9.23</td>
</tr>
<tr>
<td>Birc6</td>
<td>57448</td>
<td>Splicing factor, arginine/serine-rich 12</td>
<td>2.11</td>
<td>2.37</td>
</tr>
<tr>
<td>BMP7</td>
<td>655</td>
<td>Bone morphogenetic protein 7 (osteogenic protein 1)</td>
<td>2.09</td>
<td>4.44</td>
</tr>
<tr>
<td>BRUNOL5</td>
<td>60680</td>
<td>bruno-like 5, RNA binding protein (Drosophila)</td>
<td>3.57</td>
<td>6.41</td>
</tr>
<tr>
<td>BST2</td>
<td>684</td>
<td>bone marrow stromal cell antigen 2</td>
<td>2.18</td>
<td>13.21</td>
</tr>
<tr>
<td>BTBD3</td>
<td>22903</td>
<td>BTB (POZ) domain containing 3</td>
<td>2.86</td>
<td>2.36</td>
</tr>
<tr>
<td>C1orf104</td>
<td>284618</td>
<td>Chromosome 1 open reading frame 104</td>
<td>2.31</td>
<td>3.02</td>
</tr>
<tr>
<td>C1orf112</td>
<td>55732</td>
<td>Chromosome 1 open reading frame 112</td>
<td>2.03</td>
<td>4.43</td>
</tr>
<tr>
<td>C1QBp</td>
<td>708</td>
<td>Complement component 1, q subcomponent binding protein</td>
<td>2.30</td>
<td>5.06</td>
</tr>
<tr>
<td>C20orf12</td>
<td>55184</td>
<td>Chromosome 20 open reading frame 12</td>
<td>2.05</td>
<td>3.39</td>
</tr>
<tr>
<td>C21orf66</td>
<td>94104</td>
<td>Chromosome 21 open reading frame 66</td>
<td>4.60</td>
<td>3.56</td>
</tr>
<tr>
<td>C6orf111</td>
<td>25957</td>
<td>chromosome 6 open reading frame 111</td>
<td>3.14</td>
<td>3.93</td>
</tr>
<tr>
<td>C6orf166</td>
<td>55122</td>
<td>Chromosome 6 open reading frame 166</td>
<td>2.56</td>
<td>2.31</td>
</tr>
<tr>
<td>C6orf49</td>
<td>29964</td>
<td>Chromosome 6 open reading frame 49</td>
<td>3.34</td>
<td>5.50</td>
</tr>
<tr>
<td>C6orf84</td>
<td>22832</td>
<td>chromosome 6 open reading frame 84</td>
<td>2.27</td>
<td>2.02</td>
</tr>
<tr>
<td>C9orf72</td>
<td>203228</td>
<td>chromosome 9 open reading frame 72</td>
<td>2.90</td>
<td>3.91</td>
</tr>
<tr>
<td>CA2</td>
<td>760</td>
<td>carbonic anhydrase II</td>
<td>2.38</td>
<td>12.39</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>MPC_down</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>CALML4</td>
<td>91860</td>
<td>calmodulin-like 4</td>
<td>2.34</td>
<td>2.05</td>
</tr>
<tr>
<td>CAMTA1</td>
<td>23261</td>
<td>calmodulin binding transcription activator 1</td>
<td>3.03</td>
<td>2.05</td>
</tr>
<tr>
<td>CAST1</td>
<td>26059</td>
<td>CAZ-associated structural protein</td>
<td>2.17</td>
<td>3.19</td>
</tr>
<tr>
<td>CBR4</td>
<td>84869</td>
<td>carbonic reductase 4</td>
<td>2.28</td>
<td>4.76</td>
</tr>
<tr>
<td>CBX5</td>
<td>23468</td>
<td>Chromobox homolog 5 (HP1 alpha homolog, Drosophila)</td>
<td>2.23</td>
<td>2.76</td>
</tr>
<tr>
<td>CCA1R1</td>
<td>55749</td>
<td>Cell division cycle and apoptosis regulator 1</td>
<td>2.07</td>
<td>3.12</td>
</tr>
<tr>
<td>CDC14</td>
<td>64770</td>
<td>coiled-coil domain containing 14</td>
<td>2.04</td>
<td>2.16</td>
</tr>
<tr>
<td>CDKN1C</td>
<td>1028</td>
<td>Cyclin-dependent kinase inhibitor 1C (p57, Kip2)</td>
<td>3.14</td>
<td>2.83</td>
</tr>
<tr>
<td>CDON</td>
<td>50937</td>
<td>Cdon homolog (mouse)</td>
<td>3.91</td>
<td>6.95</td>
</tr>
<tr>
<td>CENSG2</td>
<td>116987</td>
<td>Centaurin, gamma 2</td>
<td>2.01</td>
<td>2.77</td>
</tr>
<tr>
<td>Cep152</td>
<td>22995</td>
<td>KIAA0912 protein</td>
<td>2.03</td>
<td>3.56</td>
</tr>
<tr>
<td>CEP68</td>
<td>23177</td>
<td>Centrosomal protein 68kDa</td>
<td>2.54</td>
<td>2.49</td>
</tr>
<tr>
<td>CHD1L</td>
<td>9557</td>
<td>Chromodomain helicase DNA binding protein 1-like</td>
<td>2.83</td>
<td>3.07</td>
</tr>
<tr>
<td>CHD7</td>
<td>55636</td>
<td>chromodomain helicase DNA binding protein 7</td>
<td>5.92</td>
<td>5.99</td>
</tr>
<tr>
<td>CHKB /// CPT1B</td>
<td>1120</td>
<td>choline kinase beta /// carnitine palmitoyltransferase 1B (muscle)</td>
<td>3.33</td>
<td>2.45</td>
</tr>
<tr>
<td>CLCN4</td>
<td>1183</td>
<td>Chloride channel 4</td>
<td>2.43</td>
<td>2.66</td>
</tr>
<tr>
<td>CLGN</td>
<td>1047</td>
<td>calmegin</td>
<td>6.29</td>
<td>3.12</td>
</tr>
<tr>
<td>CNNM3</td>
<td>26505</td>
<td>Cyclin M3</td>
<td>2.43</td>
<td>4.25</td>
</tr>
<tr>
<td>CNOT7</td>
<td>29883</td>
<td>CCR4-NOT transcription complex, subunit 7</td>
<td>2.28</td>
<td>2.44</td>
</tr>
<tr>
<td>COL9A1</td>
<td>1297</td>
<td>collagen, type IX, alpha 1</td>
<td>3.10</td>
<td>4.24</td>
</tr>
<tr>
<td>COPG2</td>
<td>26958</td>
<td>Coatomer protein complex, subunit gamma 2</td>
<td>6.24</td>
<td>2.62</td>
</tr>
<tr>
<td>CPXM</td>
<td>56265</td>
<td>carboxypeptidase X (M14 family)</td>
<td>2.40</td>
<td>4.77</td>
</tr>
<tr>
<td>CRLF3</td>
<td>51379</td>
<td>Cytokine receptor-like factor 3</td>
<td>5.71</td>
<td>2.78</td>
</tr>
<tr>
<td>CTNNA2</td>
<td>1496</td>
<td>catenin (cadherin-associated protein), alpha 2</td>
<td>7.17</td>
<td>3.17</td>
</tr>
<tr>
<td>CTNBP2</td>
<td>83992</td>
<td>Cortactin binding protein 2</td>
<td>2.30</td>
<td>3.52</td>
</tr>
<tr>
<td>CUGBP2</td>
<td>10659</td>
<td>CUG triplet repeat, RNA binding protein 2</td>
<td>3.44</td>
<td>7.20</td>
</tr>
<tr>
<td>CUL1</td>
<td>8454</td>
<td>Cullin</td>
<td>2.13</td>
<td>5.56</td>
</tr>
<tr>
<td>CUL3</td>
<td>8452</td>
<td>Cullin 3</td>
<td>3.04</td>
<td>2.10</td>
</tr>
<tr>
<td>CXCR4</td>
<td>7852</td>
<td>chemokine (C-X-C motif) receptor 4</td>
<td>4.95</td>
<td>13.89</td>
</tr>
<tr>
<td>DCX</td>
<td>1641</td>
<td>doublecortex; lissencephaly, X-linked (doublecortex)</td>
<td>3.86</td>
<td>2.51</td>
</tr>
<tr>
<td>DDX17</td>
<td>10521</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 17</td>
<td>2.13</td>
<td>3.06</td>
</tr>
<tr>
<td>DKFZp434P055</td>
<td>91531</td>
<td>hypothetical protein DKFZp434P055</td>
<td>2.42</td>
<td>4.60</td>
</tr>
<tr>
<td>DKFZP761M151</td>
<td>54492</td>
<td>hypothetical protein DKFZP761M151</td>
<td>2.22</td>
<td>2.83</td>
</tr>
<tr>
<td>DLL1</td>
<td>28514</td>
<td>delta-like 1 (Drosophila)</td>
<td>24.34</td>
<td>2.48</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>MPC_down</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>DNCH2</td>
<td>79659</td>
<td>dynein, cytoplasmic, heavy polypeptide 2</td>
<td>2.28</td>
<td>2.71</td>
</tr>
<tr>
<td>DOCK3</td>
<td>1795</td>
<td>dedicator of cytokinesis 3</td>
<td>2.46</td>
<td>2.22</td>
</tr>
<tr>
<td>DOT1L</td>
<td>84444</td>
<td>DOT1-like, histone H3 methyltransferase (S. cerevisiae)</td>
<td>2.79</td>
<td>2.17</td>
</tr>
<tr>
<td>DSC2</td>
<td>1824</td>
<td>desmocollin 2</td>
<td>4.07</td>
<td>18.30</td>
</tr>
<tr>
<td>DTX4</td>
<td>23220</td>
<td>deltex 4 homolog (Drosophila)</td>
<td>4.18</td>
<td>2.25</td>
</tr>
<tr>
<td>EFHC1</td>
<td>114327</td>
<td>EF-hand domain (C-terminal) containing 1</td>
<td>3.83</td>
<td>2.26</td>
</tr>
<tr>
<td>EFNA5</td>
<td>1946</td>
<td>Ephrin-A5</td>
<td>10.87</td>
<td>3.06</td>
</tr>
<tr>
<td>EFNB3</td>
<td>1949</td>
<td>ephrin-B3</td>
<td>3.08</td>
<td>2.29</td>
</tr>
<tr>
<td>EIF4G3</td>
<td>8672</td>
<td>Eukaryotic translation initiation factor 4 gamma, 3</td>
<td>2.64</td>
<td>2.36</td>
</tr>
<tr>
<td>EIF5</td>
<td>1983</td>
<td>Eukaryotic translation initiation factor 5</td>
<td>2.08</td>
<td>2.34</td>
</tr>
<tr>
<td>ELAVL1</td>
<td>1994</td>
<td>ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu antigen R)</td>
<td>3.31</td>
<td>2.03</td>
</tr>
<tr>
<td>EMID2</td>
<td>136227</td>
<td>EMI domain containing 2</td>
<td>2.55</td>
<td>5.51</td>
</tr>
<tr>
<td>ENO3</td>
<td>2027</td>
<td>enolase 3 (beta, muscle)</td>
<td>3.30</td>
<td>3.56</td>
</tr>
<tr>
<td>ENOSF1</td>
<td>55556</td>
<td>enolase superfamily member 1</td>
<td>2.13</td>
<td>2.85</td>
</tr>
<tr>
<td>ENPP2</td>
<td>5168</td>
<td>ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin)</td>
<td>2.43</td>
<td>3.22</td>
</tr>
<tr>
<td>EP400</td>
<td>57634</td>
<td>E1A binding protein p400</td>
<td>2.38</td>
<td>2.39</td>
</tr>
<tr>
<td>EPB41</td>
<td>2035</td>
<td>Erythocyte membrane protein band 4.1 (elliptocytosis 1, RH-linked)</td>
<td>2.55</td>
<td>8.93</td>
</tr>
<tr>
<td>EPB41L5</td>
<td>57669</td>
<td>erythrocyte membrane protein band 4.1 like 5</td>
<td>4.25</td>
<td>9.76</td>
</tr>
<tr>
<td>EPH47</td>
<td>2045</td>
<td>EPH receptor A7</td>
<td>7.42</td>
<td>5.60</td>
</tr>
<tr>
<td>ESRRG</td>
<td>2104</td>
<td>estrogen-related receptor gamma</td>
<td>2.58</td>
<td>2.43</td>
</tr>
<tr>
<td>EWSR1</td>
<td>2130</td>
<td>Ewing sarcoma breakpoint region 1</td>
<td>3.64</td>
<td>2.96</td>
</tr>
<tr>
<td>FABP7</td>
<td>2173</td>
<td>fatty acid binding protein 7, brain</td>
<td>7.66</td>
<td>12.13</td>
</tr>
<tr>
<td>FAM64A</td>
<td>54478</td>
<td>Family with sequence similarity 64, member A</td>
<td>2.03</td>
<td>11.88</td>
</tr>
<tr>
<td>FAM7A2</td>
<td>89839</td>
<td>Family with sequence similarity 7, member A2</td>
<td>2.31</td>
<td>2.05</td>
</tr>
<tr>
<td>FIGN</td>
<td>55137</td>
<td>Fidgetin</td>
<td>4.91</td>
<td>3.25</td>
</tr>
<tr>
<td>FILIP1</td>
<td>27145</td>
<td>filamin A interacting protein 1</td>
<td>3.28</td>
<td>6.89</td>
</tr>
<tr>
<td>FLJ10154</td>
<td>55082</td>
<td>Hypothetical protein FLJ10154</td>
<td>4.51</td>
<td>2.39</td>
</tr>
<tr>
<td>FLJ10213</td>
<td>55096</td>
<td>hypothetical protein FLJ10213</td>
<td>2.20</td>
<td>2.62</td>
</tr>
<tr>
<td>FLJ13089</td>
<td>80018</td>
<td>hypothetical protein FLJ13089</td>
<td>2.41</td>
<td>2.14</td>
</tr>
<tr>
<td>FLJ21865</td>
<td>64772</td>
<td>endo-beta-N-acetylglucosaminidase</td>
<td>2.32</td>
<td>2.23</td>
</tr>
<tr>
<td>FLJ23342</td>
<td>79684</td>
<td>Hypothetical protein FLJ23342</td>
<td>2.60</td>
<td>3.02</td>
</tr>
<tr>
<td>FLJ25076</td>
<td>134111</td>
<td>similar to CG4502-PA</td>
<td>2.40</td>
<td>4.90</td>
</tr>
<tr>
<td>FLJ25967</td>
<td>440823</td>
<td>hypothetical gene supported by AK098833</td>
<td>2.71</td>
<td>27.57</td>
</tr>
<tr>
<td>FLJ34208</td>
<td>401106</td>
<td>Hypothetical gene supported by AK091527</td>
<td>2.15</td>
<td>2.22</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>MPC_down</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>FNBP1L</td>
<td>54874</td>
<td>Formin binding protein 1-like</td>
<td>2.21</td>
<td>4.18</td>
</tr>
<tr>
<td>FUBP1</td>
<td>8880</td>
<td>Far upstream element (FUSE) binding protein 1</td>
<td>2.47</td>
<td>3.27</td>
</tr>
<tr>
<td>FXYD6</td>
<td>53826</td>
<td>FXYD domain containing ion transport regulator 6</td>
<td>2.91</td>
<td>9.99</td>
</tr>
<tr>
<td>FZD3</td>
<td>7976</td>
<td>Frizzled homolog 3 (Drosophila)</td>
<td>3.20</td>
<td>11.16</td>
</tr>
<tr>
<td>GGA2</td>
<td>23062</td>
<td>Golgi associated, gamma adaptin ear containing, ARF binding protein 2</td>
<td>2.26</td>
<td>5.26</td>
</tr>
<tr>
<td>GKA1</td>
<td>80318</td>
<td>G kinase anchoring protein 1</td>
<td>3.06</td>
<td>3.42</td>
</tr>
<tr>
<td>GLCCI1</td>
<td>113263</td>
<td>Glucocorticoid induced transcript 1</td>
<td>2.40</td>
<td>3.81</td>
</tr>
<tr>
<td>GNAS</td>
<td>2778</td>
<td>GNAS complex locus</td>
<td>2.01</td>
<td>6.61</td>
</tr>
<tr>
<td>GPC3</td>
<td>2719</td>
<td>Glypican 3</td>
<td>9.11</td>
<td>4.73</td>
</tr>
<tr>
<td>GPR23</td>
<td>2846</td>
<td>G protein-coupled receptor 23</td>
<td>2.36</td>
<td>3.28</td>
</tr>
<tr>
<td>GREG1</td>
<td>9687</td>
<td>GREG1 protein</td>
<td>4.39</td>
<td>2.61</td>
</tr>
<tr>
<td>GRHL1</td>
<td>29841</td>
<td>Grainyhead-like 1 (Drosophila)</td>
<td>2.15</td>
<td>3.76</td>
</tr>
<tr>
<td>H1F0</td>
<td>3005</td>
<td>H1 histone family, member 0</td>
<td>3.22</td>
<td>2.54</td>
</tr>
<tr>
<td>H1FX</td>
<td>8971</td>
<td>H1 histone family, member X</td>
<td>2.56</td>
<td>2.50</td>
</tr>
<tr>
<td>H2AFV</td>
<td>94239</td>
<td>H2A histone family, member V</td>
<td>2.99</td>
<td>2.01</td>
</tr>
<tr>
<td>HIC2</td>
<td>23119</td>
<td>Hypermethylated in cancer 2</td>
<td>2.01</td>
<td>7.88</td>
</tr>
<tr>
<td>HNRPA0</td>
<td>10949</td>
<td>Heterogeneous nuclear ribonucleoprotein A0</td>
<td>2.32</td>
<td>2.65</td>
</tr>
<tr>
<td>HNRPA1</td>
<td>3178</td>
<td>Heterogeneous nuclear ribonucleoprotein A1</td>
<td>2.02</td>
<td>4.63</td>
</tr>
<tr>
<td>HNRPA3</td>
<td>220988</td>
<td>Heterogeneous nuclear ribonucleoprotein A3</td>
<td>2.37</td>
<td>3.44</td>
</tr>
<tr>
<td>HNRPC</td>
<td>3183</td>
<td>Heterogeneous nuclear ribonucleoprotein C (C1/C2)</td>
<td>2.87</td>
<td>2.84</td>
</tr>
<tr>
<td>HNRPD</td>
<td>3184</td>
<td>Heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 3)</td>
<td>2.64</td>
<td>5.95</td>
</tr>
<tr>
<td>HB2</td>
<td>11103</td>
<td>HIV-1 rev binding protein 2</td>
<td>2.13</td>
<td>2.28</td>
</tr>
<tr>
<td>HS6ST2</td>
<td>90161</td>
<td>Heparan sulfate 6-O-sulfotransferase 2</td>
<td>3.89</td>
<td>5.56</td>
</tr>
<tr>
<td>HSPC065</td>
<td>29070</td>
<td>HSPC065 protein</td>
<td>2.05</td>
<td>2.38</td>
</tr>
<tr>
<td>HUNK</td>
<td>30811</td>
<td>Hormonally upregulated Neu-associated kinase</td>
<td>2.65</td>
<td>4.91</td>
</tr>
<tr>
<td>IMP1L</td>
<td>196294</td>
<td>IMP1 inner mitochondrial membrane peptidase-like (S. cerevisiae)</td>
<td>2.15</td>
<td>2.58</td>
</tr>
<tr>
<td>ING3</td>
<td>54556</td>
<td>Inhibitor of growth family, member 3</td>
<td>2.11</td>
<td>2.98</td>
</tr>
<tr>
<td>IPO9</td>
<td>55705</td>
<td>Importin 9</td>
<td>2.55</td>
<td>2.28</td>
</tr>
<tr>
<td>IRS4</td>
<td>8471</td>
<td>Insulin receptor substrate 4</td>
<td>7.48</td>
<td>10.72</td>
</tr>
<tr>
<td>KIAA0582</td>
<td>23177</td>
<td>KIAA0582</td>
<td>2.21</td>
<td>3.47</td>
</tr>
<tr>
<td>KIAA0841</td>
<td>23354</td>
<td>KIAA0841</td>
<td>3.12</td>
<td>2.08</td>
</tr>
<tr>
<td>KIAA1524</td>
<td>57650</td>
<td>KIAA1524</td>
<td>2.62</td>
<td>4.73</td>
</tr>
<tr>
<td>KIAA1545</td>
<td>57666</td>
<td>KIAA1545 protein</td>
<td>2.26</td>
<td>2.81</td>
</tr>
<tr>
<td>KIAA1909</td>
<td>153478</td>
<td>KIAA1909 protein</td>
<td>2.27</td>
<td>6.79</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>MPC_down</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>KIF5C</td>
<td>3800</td>
<td>Kinesin family member 5C</td>
<td>2.34</td>
<td>147.77</td>
</tr>
<tr>
<td>LAMA1</td>
<td>284217</td>
<td>laminin, alpha 1</td>
<td>2.36</td>
<td>21.06</td>
</tr>
<tr>
<td>LASS6</td>
<td>253782</td>
<td>LAG1 longevity assurance homolog 6 (S. cerevisiae)</td>
<td>2.60</td>
<td>3.09</td>
</tr>
<tr>
<td>LOC115648</td>
<td>115648</td>
<td>similar to hypothetical protein FLJ13659</td>
<td>3.51</td>
<td>3.98</td>
</tr>
<tr>
<td>LOC115648</td>
<td>115648</td>
<td>similar to hypothetical protein FLJ13659</td>
<td>4.20</td>
<td>3.98</td>
</tr>
<tr>
<td>LOC132241</td>
<td>132241</td>
<td>hypothetical protein LOC132241</td>
<td>2.01</td>
<td>2.10</td>
</tr>
<tr>
<td>LOC145786</td>
<td>145786</td>
<td>hypothetical protein LOC145786</td>
<td>72.07</td>
<td>6.72</td>
</tr>
<tr>
<td>LOC153561</td>
<td>153561</td>
<td>Hypothetical protein LOC153561</td>
<td>4.43</td>
<td>11.34</td>
</tr>
<tr>
<td>LOC283481</td>
<td>283481</td>
<td>hypothetical protein LOC283481</td>
<td>2.87</td>
<td>2.60</td>
</tr>
<tr>
<td>LOC388889</td>
<td>388889</td>
<td>Hypothetical LOC388889</td>
<td>3.20</td>
<td>3.63</td>
</tr>
<tr>
<td>LOC389295</td>
<td>389295</td>
<td>Hypothetical protein LOC153561</td>
<td>8.12</td>
<td>5.02</td>
</tr>
<tr>
<td>LOC40282</td>
<td>440282</td>
<td>Hypothetical protein LOC145783</td>
<td>3.62</td>
<td>2.44</td>
</tr>
<tr>
<td>LOC40996</td>
<td>440996</td>
<td>Hypothetical gene supported by BC053580</td>
<td>3.68</td>
<td>2.45</td>
</tr>
<tr>
<td>LOC441241</td>
<td>441241</td>
<td>chaperonin containing TCP1, subunit 6A (zeta 1)-like</td>
<td></td>
<td>chaperonin containing TCP1, subunit 6A (zeta 1)-like</td>
</tr>
<tr>
<td>LOC641522</td>
<td>641522</td>
<td>ADP-ribosylation factor-like 17 pseudogene 1</td>
<td>2.01</td>
<td>3.38</td>
</tr>
<tr>
<td>LOC94431</td>
<td>94431</td>
<td>similar to RNA polymerase I transcription factor RNP3</td>
<td>2.77</td>
<td>2.23</td>
</tr>
<tr>
<td>LPHN3</td>
<td>23284</td>
<td>latrophilin 3</td>
<td>6.67</td>
<td>7.21</td>
</tr>
<tr>
<td>MAP3K1</td>
<td>4214</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>2.42</td>
<td>3.76</td>
</tr>
<tr>
<td>MDC1</td>
<td>9656</td>
<td>mediator of DNA damage checkpoint 1</td>
<td>2.30</td>
<td>3.50</td>
</tr>
<tr>
<td>MDM4</td>
<td>4194</td>
<td>Mdm4, transformed 3T3 cell double minute 4, p53 binding protein (mouse)</td>
<td>2.66</td>
<td>2.37</td>
</tr>
<tr>
<td>MED6</td>
<td>10001</td>
<td>mediator of RNA polymerase II transcription, subunit 6 homolog (yeast)</td>
<td>2.15</td>
<td>2.26</td>
</tr>
<tr>
<td>METAP2</td>
<td>10988</td>
<td>Methionyl aminopeptidase 2</td>
<td>2.94</td>
<td>3.16</td>
</tr>
<tr>
<td>MGC22265</td>
<td>349035</td>
<td>(clone CB1) mRNA fragment /// Hypothetical protein MGC22265</td>
<td>2.37</td>
<td>9.90</td>
</tr>
<tr>
<td>MGC33926</td>
<td>130733</td>
<td>hypothetical protein MGC33926</td>
<td>3.27</td>
<td>3.41</td>
</tr>
<tr>
<td>MGSE5</td>
<td>10724</td>
<td>meningoic expressed antigen 5 (hyaluronidase)</td>
<td>3.74</td>
<td>3.18</td>
</tr>
<tr>
<td>ML3</td>
<td>58008</td>
<td>myeloid/lymphoid or mixed-lineage leukemia 3</td>
<td>2.24</td>
<td>2.37</td>
</tr>
<tr>
<td>MLT10</td>
<td>8028</td>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); transloc</td>
<td>2.59</td>
<td>3.11</td>
</tr>
<tr>
<td>MLT14</td>
<td>4301</td>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); transloc</td>
<td>4.22</td>
<td>4.34</td>
</tr>
<tr>
<td>MOBKL2B</td>
<td>79817</td>
<td>MOB1, Mps One Binder kinase activator-like 2B (yeast)</td>
<td>2.08</td>
<td>17.80</td>
</tr>
<tr>
<td>MPHOSPH9</td>
<td>10198</td>
<td>M-phase phosphoprotein 9</td>
<td>2.36</td>
<td>2.97</td>
</tr>
<tr>
<td>MRPS6</td>
<td>64968</td>
<td>Mitochondrial ribosomal protein S6</td>
<td>2.84</td>
<td>4.16</td>
</tr>
<tr>
<td>MSH5</td>
<td>4439</td>
<td>mutS homolog 5 (E. coli)</td>
<td>2.77</td>
<td>2.25</td>
</tr>
<tr>
<td>MTERF2</td>
<td>130916</td>
<td>MTERF domain containing 2</td>
<td>2.25</td>
<td>3.08</td>
</tr>
<tr>
<td>MYEF2</td>
<td>50804</td>
<td>myelin expression factor 2</td>
<td>2.04</td>
<td>3.20</td>
</tr>
</tbody>
</table>
Table S7: Genes overexpressed in NPC compared to hES and down-regulated in MPC compared to hES (FC>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>MPC_down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAALAD2</td>
<td>10003</td>
<td>N-acetylated alpha-linked acidic dipeptidase 2</td>
<td>2.66</td>
<td>2.87</td>
<td>chr11</td>
</tr>
<tr>
<td>NAG6</td>
<td>64753</td>
<td>hypothetical protein DKFzP434G156</td>
<td>2.52</td>
<td>3.25</td>
<td>chr7</td>
</tr>
<tr>
<td>NASP</td>
<td>4678</td>
<td>Nuclear autoantigenic sperm protein (histone-binding)</td>
<td>2.41</td>
<td>33.83</td>
<td>chr1</td>
</tr>
<tr>
<td>NBLA04196</td>
<td>64921</td>
<td>Putative protein product of NbI04196</td>
<td>2.86</td>
<td>2.95</td>
<td>chr7</td>
</tr>
<tr>
<td>NCOA5</td>
<td>57727</td>
<td>Nuclear receptor coactivator 5</td>
<td>2.49</td>
<td>2.49</td>
<td>chr20</td>
</tr>
<tr>
<td>NEBL</td>
<td>10529</td>
<td>nebulette</td>
<td>4.19</td>
<td>8.36</td>
<td>chr10</td>
</tr>
<tr>
<td>NELL2</td>
<td>4753</td>
<td>NEL-like 2 (chicken) /// NEL-like 2 (chicken)</td>
<td>3.91</td>
<td>69.31</td>
<td>chr12</td>
</tr>
<tr>
<td>NEO1</td>
<td>4756</td>
<td>neogenin homolog 1 (chicken)</td>
<td>2.57</td>
<td>2.53</td>
<td>chr15</td>
</tr>
<tr>
<td>NOL7</td>
<td>51406</td>
<td>Nucleolar protein 7, 27kDa</td>
<td>2.36</td>
<td>2.15</td>
<td>chr6</td>
</tr>
<tr>
<td>NOVA1</td>
<td>4857</td>
<td>neuro-oncological ventral antigen 1</td>
<td>2.89</td>
<td>2.65</td>
<td>chr14</td>
</tr>
<tr>
<td>NR2C2</td>
<td>7182</td>
<td>Nuclear receptor subfamily 2, group C, member 2</td>
<td>2.19</td>
<td>2.25</td>
<td>chr3</td>
</tr>
<tr>
<td>NUSN6</td>
<td>221078</td>
<td>NOL1/NOP2/Sun domain family, member 6</td>
<td>6.89</td>
<td>2.16</td>
<td>chr10</td>
</tr>
<tr>
<td>NUDT5</td>
<td>11164</td>
<td>Nudix (nucleoside diphosphate linked moiety X)-type motif 5</td>
<td>2.43</td>
<td>2.44</td>
<td>chr10</td>
</tr>
<tr>
<td>NUPL1</td>
<td>9818</td>
<td>Nucleoporin like 1</td>
<td>2.59</td>
<td>2.48</td>
<td>chr13</td>
</tr>
<tr>
<td>OTX2</td>
<td>5015</td>
<td>orthodenticle homolog 2 (Drosophila)</td>
<td>2.24</td>
<td>109.06</td>
<td>chr14</td>
</tr>
<tr>
<td>OVOS2</td>
<td>144203</td>
<td>ovostatin 2</td>
<td>2.70</td>
<td>14.87</td>
<td>chr12</td>
</tr>
<tr>
<td>PABPN1</td>
<td>8106</td>
<td>poly(A) binding protein, nuclear 1</td>
<td>4.03</td>
<td>3.57</td>
<td>chr14</td>
</tr>
<tr>
<td>PAN3</td>
<td>255967</td>
<td>PABP1-dependent poly A-specific ribonuclease subunit PAN3</td>
<td>2.12</td>
<td>4.92</td>
<td>chr13</td>
</tr>
<tr>
<td>PAQR8</td>
<td>85315</td>
<td>progestin and adipoQ receptor family member VIII</td>
<td>2.76</td>
<td>4.28</td>
<td>chr6</td>
</tr>
<tr>
<td>PCBP2</td>
<td>5094</td>
<td>Poly(c) binding protein 2</td>
<td>2.28</td>
<td>2.19</td>
<td>chr12</td>
</tr>
<tr>
<td>PCGF3</td>
<td>10336</td>
<td>Polycomb group ring finger 3</td>
<td>2.57</td>
<td>2.49</td>
<td>chr4</td>
</tr>
<tr>
<td>PCM1</td>
<td>5108</td>
<td>Pericentriolar material 1</td>
<td>2.91</td>
<td>2.32</td>
<td>chr8</td>
</tr>
<tr>
<td>PDE7A</td>
<td>5150</td>
<td>phosphodiesterase 7A</td>
<td>2.00</td>
<td>7.01</td>
<td>chr8</td>
</tr>
<tr>
<td>PGAP1</td>
<td>80055</td>
<td>GPI deacylase</td>
<td>6.04</td>
<td>3.02</td>
<td>chr2</td>
</tr>
<tr>
<td>PHF10</td>
<td>55274</td>
<td>PHD finger protein 10</td>
<td>2.31</td>
<td>2.83</td>
<td>chr6</td>
</tr>
<tr>
<td>PHF21B</td>
<td>112885</td>
<td>PHD finger protein 21B</td>
<td>2.15</td>
<td>8.54</td>
<td>chr22</td>
</tr>
<tr>
<td>PIK3C2A</td>
<td>5286</td>
<td>Phosphoinositide-3-kinase, class 2, alpha polypeptide</td>
<td>2.80</td>
<td>2.33</td>
<td>chr11</td>
</tr>
<tr>
<td>PILRB</td>
<td>29990</td>
<td>paired immunoglobulin-like type 2 receptor beta</td>
<td>2.31</td>
<td>3.19</td>
<td>chr7</td>
</tr>
<tr>
<td>PKP4</td>
<td>8502</td>
<td>Plakophilin 4</td>
<td>2.36</td>
<td>2.54</td>
<td>chr2</td>
</tr>
<tr>
<td>PLC3</td>
<td>23007</td>
<td>phospholipase C-like 3</td>
<td>2.01</td>
<td>8.50</td>
<td>chr3</td>
</tr>
<tr>
<td>PLEKHA5</td>
<td>54477</td>
<td>Pleckstrin homology domain containing, family A member 5</td>
<td>2.21</td>
<td>8.88</td>
<td>chr12</td>
</tr>
<tr>
<td>PMS2L1 // PMSL1</td>
<td>5379</td>
<td>postmeiotic segregation increased 2-like 1 /// postmeiotic segregation increased 2-like</td>
<td>2.13</td>
<td>2.16</td>
<td>chr7</td>
</tr>
<tr>
<td>PPM1L</td>
<td>151742</td>
<td>Protein phosphatase 1 (formerly 2C)-like</td>
<td>2.71</td>
<td>3.64</td>
<td>chr3</td>
</tr>
<tr>
<td>PPOX</td>
<td>5498</td>
<td>protoporphyrinogen oxidase</td>
<td>3.33</td>
<td>2.60</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>NPC_up</td>
<td>MPC_down</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PPP3CA</td>
<td>5530</td>
<td>Protein phosphatase 3 (formerly 2B), catalytic subunit, alpha isoform (calcineurin A alpha)</td>
<td>2.06</td>
<td>2.69</td>
<td>chr4</td>
</tr>
<tr>
<td>PRKAA2</td>
<td>5563</td>
<td>Protein kinase, AMP-activated, alpha 2 catalytic subunit</td>
<td>2.74</td>
<td>3.58</td>
<td>chr1</td>
</tr>
<tr>
<td>PRO2852</td>
<td>114224</td>
<td>hypothetical protein PRO2852</td>
<td>2.03</td>
<td>2.69</td>
<td>chr9</td>
</tr>
<tr>
<td>PRPF40A</td>
<td>55660</td>
<td>PRP40 pre-mRNA processing factor 40 homolog A (yeast)</td>
<td>2.56</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>PRTG</td>
<td>283659</td>
<td>Progenin homolog (Gallus gallus)</td>
<td>38.57</td>
<td>9.91</td>
<td>chr15</td>
</tr>
<tr>
<td>PSME4</td>
<td>23198</td>
<td>Proteasome (prosome, macropain) activator subunit 4</td>
<td>2.16</td>
<td>2.83</td>
<td>chr2</td>
</tr>
<tr>
<td>PTBP2</td>
<td>58155</td>
<td>Polypyrimidine tract binding protein 2</td>
<td>2.41</td>
<td>4.28</td>
<td>chr1</td>
</tr>
<tr>
<td>PTPN5</td>
<td>84867</td>
<td>protein tyrosine phosphatase, non-receptor type 5 (striatum-enriched)</td>
<td>3.51</td>
<td>5.93</td>
<td>chr11</td>
</tr>
<tr>
<td>PTPRD</td>
<td>5789</td>
<td>Protein tyrosine phosphatase, receptor type, D</td>
<td>4.30</td>
<td>15.44</td>
<td>chr9</td>
</tr>
<tr>
<td>PTPRG</td>
<td>5793</td>
<td>Protein tyrosine phosphatase, receptor type, G</td>
<td>2.25</td>
<td>2.86</td>
<td>chr3</td>
</tr>
<tr>
<td>PUM2</td>
<td>23369</td>
<td>Pumilio homolog 2 (Drosophila)</td>
<td>3.87</td>
<td>2.88</td>
<td>chr2</td>
</tr>
<tr>
<td>PUNC</td>
<td>9543</td>
<td>putative neuronal cell adhesion molecule</td>
<td>4.01</td>
<td>9.73</td>
<td>chr15</td>
</tr>
<tr>
<td>RAB6B</td>
<td>51560</td>
<td>RAB6B, member RAS oncogene family</td>
<td>2.51</td>
<td>2.41</td>
<td>chr3</td>
</tr>
<tr>
<td>RAF1</td>
<td>5894</td>
<td>V-raf-1 murine leukemia viral oncogene homolog 1</td>
<td>2.34</td>
<td>2.51</td>
<td>chr3</td>
</tr>
<tr>
<td>RBBP6</td>
<td>5930</td>
<td>retinoblastoma binding protein 6</td>
<td>2.47</td>
<td>3.00</td>
<td>chr16</td>
</tr>
<tr>
<td>RBM25</td>
<td>58517</td>
<td>RNA binding motif protein 26</td>
<td>2.10</td>
<td>3.43</td>
<td>chr14</td>
</tr>
<tr>
<td>RBM6</td>
<td>10180</td>
<td>RNA binding motif protein 6</td>
<td>3.28</td>
<td>3.27</td>
<td>chr3</td>
</tr>
<tr>
<td>RCBTB2</td>
<td>1102</td>
<td>regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein</td>
<td>2.95</td>
<td>2.16</td>
<td>chr13</td>
</tr>
<tr>
<td>RERE</td>
<td>473</td>
<td>Arginine-glutamic acid dipeptide (RE) repeats</td>
<td>2.11</td>
<td>2.68</td>
<td>chr1</td>
</tr>
<tr>
<td>RFC3</td>
<td>5983</td>
<td>Replication factor C (activator 1) 3, 38kDa</td>
<td>2.37</td>
<td>5.20</td>
<td>chr13</td>
</tr>
<tr>
<td>RFX3</td>
<td>5991</td>
<td>Regulatory factor X, 3 (influences HLA class II expression)</td>
<td>2.83</td>
<td>2.83</td>
<td>chr9</td>
</tr>
<tr>
<td>RNF130</td>
<td>55819</td>
<td>Ring finger protein 130</td>
<td>3.33</td>
<td>3.52</td>
<td>chr5</td>
</tr>
<tr>
<td>RNF175</td>
<td>285533</td>
<td>ring finger protein 175</td>
<td>3.51</td>
<td>7.07</td>
<td>chr4</td>
</tr>
<tr>
<td>RPS6KA5</td>
<td>9252</td>
<td>ribosomal protein S6 kinase, 90kDa, polypeptide 5</td>
<td>2.11</td>
<td>2.03</td>
<td>chr14</td>
</tr>
<tr>
<td>RTN1</td>
<td>6252</td>
<td>reticulin 1</td>
<td>6.98</td>
<td>3.45</td>
<td>chr14</td>
</tr>
<tr>
<td>SEMA3F</td>
<td>6405</td>
<td>sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semahomolog)</td>
<td>2.29</td>
<td>6.60</td>
<td>chr3</td>
</tr>
<tr>
<td>SENP6</td>
<td>26054</td>
<td>SUMO1/sentrin specific peptidase 6</td>
<td>2.82</td>
<td>3.15</td>
<td>chr6</td>
</tr>
<tr>
<td>SFPQ</td>
<td>6421</td>
<td>Splicing factor proline/glutamine-rich (polypyrimidine tract binding protein associated)</td>
<td>3.94</td>
<td>3.61</td>
<td>chr1</td>
</tr>
<tr>
<td>SFRP2</td>
<td>6423</td>
<td>secreted frizzled-related protein 2</td>
<td>5.36</td>
<td>113.98</td>
<td>chr4</td>
</tr>
<tr>
<td>SFRS1</td>
<td>6426</td>
<td>Splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate splicing factor)</td>
<td>2.65</td>
<td>4.65</td>
<td>chr17</td>
</tr>
<tr>
<td>SFRS4</td>
<td>6429</td>
<td>Splicing factor, arginine/serine-rich 4</td>
<td>2.26</td>
<td>2.19</td>
<td>chr1</td>
</tr>
<tr>
<td>SILV</td>
<td>6490</td>
<td>silver homolog (mouse)</td>
<td>3.28</td>
<td>30.56</td>
<td>chr12</td>
</tr>
<tr>
<td>SIPA1L2</td>
<td>57568</td>
<td>signal-induced proliferation-associated 1 like 2</td>
<td>3.19</td>
<td>3.70</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC1A2</td>
<td>6506</td>
<td>solute carrier family 1 (glial high affinity glutamate transporter), member 2</td>
<td>3.01</td>
<td>2.30</td>
<td>chr11</td>
</tr>
</tbody>
</table>

Table S7: Genes overexpressed in NPC compared to hES and down-regulated in MPC compared to hES (FC>2; α<0.05)
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>MPC_down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC25A37</td>
<td>51312</td>
<td>solute carrier family 25, member 37</td>
<td>3,10</td>
<td>2,15</td>
<td>chr8</td>
</tr>
<tr>
<td>SLC35F1</td>
<td>222553</td>
<td>solute carrier family 35, member F1</td>
<td>2,10</td>
<td>9,40</td>
<td>chr6</td>
</tr>
<tr>
<td>SLITRK5</td>
<td>26050</td>
<td>SLIT and NTRK-like family, member 5</td>
<td>3,43</td>
<td>2,12</td>
<td>chr13</td>
</tr>
<tr>
<td>SMARCC1</td>
<td>6599</td>
<td>SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 1</td>
<td>3,05</td>
<td>7,65</td>
<td>chr3</td>
</tr>
<tr>
<td>SMARCE1</td>
<td>6605</td>
<td>SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily E, member 1</td>
<td>2,05</td>
<td>2,85</td>
<td>chr17</td>
</tr>
<tr>
<td>SMU1</td>
<td>55234</td>
<td>Smu-1 suppressor of mec-8 and unc-52 homolog (C. elegans)</td>
<td>2,41</td>
<td>2,44</td>
<td>chr9</td>
</tr>
<tr>
<td>SNCA</td>
<td>6622</td>
<td>synuclein, alpha (non A4 component of amyloid precursor) /// synuclein, alpha (non A4 component of amyloid precursor)</td>
<td>2,70</td>
<td>3,47</td>
<td>chr4</td>
</tr>
<tr>
<td>SNRPA1</td>
<td>6627</td>
<td>Small nuclear ribonucleoprotein polypeptide A'</td>
<td>2,47</td>
<td>4,71</td>
<td>chr15</td>
</tr>
<tr>
<td>SOX11</td>
<td>6664</td>
<td>SRY (sex determining region Y)-box 11</td>
<td>8,85</td>
<td>3,41</td>
<td>chr2</td>
</tr>
<tr>
<td>SOX3</td>
<td>6658</td>
<td>SRY (sex determining region Y)-box 3</td>
<td>3,38</td>
<td>5,34</td>
<td>chrX</td>
</tr>
<tr>
<td>SP8</td>
<td>221833</td>
<td>Sp8 transcription factor</td>
<td>16,95</td>
<td>3,32</td>
<td>chr7</td>
</tr>
<tr>
<td>SFON1</td>
<td>10418</td>
<td>spondin 1, extracellular matrix protein</td>
<td>9,34</td>
<td>2,51</td>
<td>chr11</td>
</tr>
<tr>
<td>SPSB4</td>
<td>92369</td>
<td>sperimentyl receptor domain and SOCS box containing 4</td>
<td>2,16</td>
<td>3,46</td>
<td>chr3</td>
</tr>
<tr>
<td>SREBF1</td>
<td>6720</td>
<td>Sterol regulatory element binding transcription factor 1</td>
<td>2,06</td>
<td>2,48</td>
<td>chr17</td>
</tr>
<tr>
<td>SSBP2</td>
<td>23635</td>
<td>Single-stranded DNA binding protein 2</td>
<td>7,89</td>
<td>2,52</td>
<td>chr5</td>
</tr>
<tr>
<td>SUV420H1</td>
<td>51111</td>
<td>Suppressor of variegation 4-20 homolog 1 (Drosophila)</td>
<td>2,41</td>
<td>4,63</td>
<td>chr11</td>
</tr>
<tr>
<td>SYT17</td>
<td>51760</td>
<td>Synaptotagmin XVII</td>
<td>3,76</td>
<td>3,45</td>
<td>chr16</td>
</tr>
<tr>
<td>TAF15</td>
<td>8148</td>
<td>TAF15 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 68kDa</td>
<td>2,84</td>
<td>3,92</td>
<td>chr17</td>
</tr>
<tr>
<td>TARDBP</td>
<td>23435</td>
<td>TAR DNA binding protein /// TAR DNA binding protein</td>
<td>2,19</td>
<td>2,33</td>
<td>chr1</td>
</tr>
<tr>
<td>TBC1D8</td>
<td>11138</td>
<td>TBC1 domain family, member 8 (with GRAM domain)</td>
<td>2,20</td>
<td>5,48</td>
<td>chr2</td>
</tr>
<tr>
<td>TCF12</td>
<td>6938</td>
<td>Transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)</td>
<td>2,55</td>
<td>2,38</td>
<td>chr15</td>
</tr>
<tr>
<td>TEX10</td>
<td>54881</td>
<td>Timpl expressed sequence 10</td>
<td>2,17</td>
<td>3,46</td>
<td>chr9</td>
</tr>
<tr>
<td>TFDP2</td>
<td>7029</td>
<td>Transcription factor Dp-2 (E2F dimerization partner 2)</td>
<td>2,21</td>
<td>9,05</td>
<td>chr3</td>
</tr>
<tr>
<td>TGFB3</td>
<td>7049</td>
<td>transforming growth factor, beta receptor III (betaglycan, 300kDa)</td>
<td>5,34</td>
<td>2,04</td>
<td>chr1</td>
</tr>
<tr>
<td>TIA1</td>
<td>7072</td>
<td>TIA1 cytotoxic granule-associated RNA binding protein</td>
<td>2,69</td>
<td>2,51</td>
<td>chr2</td>
</tr>
<tr>
<td>TIAM1</td>
<td>7074</td>
<td>T-cell lymphoma invasion and metastasis 1</td>
<td>3,51</td>
<td>2,46</td>
<td>chr21</td>
</tr>
<tr>
<td>TIGA1</td>
<td>114915</td>
<td>TIGA1</td>
<td>2,74</td>
<td>2,55</td>
<td>chr5</td>
</tr>
<tr>
<td>TMCC1</td>
<td>23023</td>
<td>transmembrane and coiled-coil domain family 1</td>
<td>2,08</td>
<td>2,61</td>
<td>chr3</td>
</tr>
<tr>
<td>TMEM118</td>
<td>84900</td>
<td>Transmembrane protein 118</td>
<td>3,17</td>
<td>5,24</td>
<td>chr12</td>
</tr>
<tr>
<td>TMSL8</td>
<td>11013</td>
<td>thymosin-like 8</td>
<td>2,67</td>
<td>6,34</td>
<td>chrX</td>
</tr>
<tr>
<td>TRA2A</td>
<td>29896</td>
<td>Transformer-2 alpha</td>
<td>4,88</td>
<td>2,33</td>
<td>chr7</td>
</tr>
<tr>
<td>TRIB2</td>
<td>28951</td>
<td>tribbles homolog 2 (Drosophila)</td>
<td>2,63</td>
<td>3,03</td>
<td>chr2</td>
</tr>
<tr>
<td>TRIM45</td>
<td>80263</td>
<td>Tripartite motif-containing 45</td>
<td>2,69</td>
<td>5,32</td>
<td>chr1</td>
</tr>
<tr>
<td>TSPAN18</td>
<td>90139</td>
<td>tetraspanin 18</td>
<td>3,72</td>
<td>2,29</td>
<td>chr11</td>
</tr>
</tbody>
</table>
Table S7: Genes overexpressed in NPC compared to hES and down-regulated in MPC compared to hES (FC>2 ; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>NPC_up</th>
<th>MPC_down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U2AF1</td>
<td>7307</td>
<td>U2(RNU2) small nuclear RNA auxiliary factor 1</td>
<td>2.01</td>
<td>3.61</td>
<td>chr15</td>
</tr>
<tr>
<td>UBE2I</td>
<td>7329</td>
<td>Ubiquitin-conjugating enzyme E2I (UBC9 homolog, yeast)</td>
<td>2.47</td>
<td>2.80</td>
<td>chr16</td>
</tr>
<tr>
<td>UBE3B</td>
<td>89910</td>
<td>ubiquitin protein ligase E3B</td>
<td>2.05</td>
<td>2.10</td>
<td>chr12</td>
</tr>
<tr>
<td>UBE3C</td>
<td>9690</td>
<td>Ubiquitin protein ligase E3C</td>
<td>2.38</td>
<td>3.73</td>
<td>chr7</td>
</tr>
<tr>
<td>USP13</td>
<td>8975</td>
<td>Ubiquitin specific peptidase 13 (isopeptidase T-3)</td>
<td>3.56</td>
<td>3.14</td>
<td>chr5</td>
</tr>
<tr>
<td>USP34</td>
<td>9736</td>
<td>Ubiquitin specific peptidase 34</td>
<td>2.80</td>
<td>2.22</td>
<td>chr2</td>
</tr>
<tr>
<td>VprBP</td>
<td>9730</td>
<td>Vpr-binding protein</td>
<td>2.07</td>
<td>2.21</td>
<td>chr3</td>
</tr>
<tr>
<td>WDR27</td>
<td>253769</td>
<td>CDNA FLJ46815 fis, clone TRACH3036897 /// WD repeat domain 27</td>
<td>2.37</td>
<td>2.95</td>
<td>chr6</td>
</tr>
<tr>
<td>WDR33</td>
<td>55339</td>
<td>WD repeat domain 33</td>
<td>2.76</td>
<td>3.29</td>
<td>chr2</td>
</tr>
<tr>
<td>WDR42A</td>
<td>50717</td>
<td>WD repeat domain 42A</td>
<td>2.05</td>
<td>5.14</td>
<td>chr1</td>
</tr>
<tr>
<td>WHSC1</td>
<td>7468</td>
<td>Wolf-Hirschhorn syndrome candidate 1</td>
<td>5.42</td>
<td>2.16</td>
<td>chr4</td>
</tr>
<tr>
<td>WHSC1l1</td>
<td>54904</td>
<td>Wolf-Hirschhorn syndrome candidate 1-like 1</td>
<td>2.23</td>
<td>2.17</td>
<td>chr8</td>
</tr>
<tr>
<td>XPR1</td>
<td>9213</td>
<td>Xenotropic and polytropic retrovirus receptor</td>
<td>2.32</td>
<td>2.62</td>
<td>chr1</td>
</tr>
<tr>
<td>YPEL1</td>
<td>29799</td>
<td>yippee-like 1 (Drosophila)</td>
<td>2.76</td>
<td>2.30</td>
<td>chr22</td>
</tr>
<tr>
<td>ZCCHC11</td>
<td>23318</td>
<td>Zinc finger, CCHC domain containing 11</td>
<td>3.81</td>
<td>2.69</td>
<td>chr1</td>
</tr>
<tr>
<td>ZFAND3</td>
<td>60685</td>
<td>Zinc finger, AN1-type domain 3</td>
<td>2.77</td>
<td>2.19</td>
<td>chr6</td>
</tr>
<tr>
<td>ZNF124</td>
<td>7678</td>
<td>zinc finger protein 124 (HZF-16)</td>
<td>3.45</td>
<td>5.80</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF131</td>
<td>7690</td>
<td>Zinc finger protein 131 (clone pHZ-10)</td>
<td>2.04</td>
<td>3.80</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF141</td>
<td>7700</td>
<td>Zinc finger protein 141 (clone pHZ-44)</td>
<td>2.37</td>
<td>2.58</td>
<td>chr4</td>
</tr>
<tr>
<td>ZNF22</td>
<td>7570</td>
<td>zinc finger protein 22 (KOX 15)</td>
<td>2.16</td>
<td>2.79</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF302</td>
<td>55900</td>
<td>zinc finger protein 302</td>
<td>2.20</td>
<td>2.77</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF395</td>
<td>55893</td>
<td>zinc finger protein 395</td>
<td>2.17</td>
<td>2.17</td>
<td>chr8</td>
</tr>
<tr>
<td>ZNF44</td>
<td>51710</td>
<td>Zinc finger protein 44 (KOX 7)</td>
<td>3.06</td>
<td>2.11</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF447</td>
<td>65982</td>
<td>zinc finger protein 447</td>
<td>3.12</td>
<td>2.54</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF514</td>
<td>9849</td>
<td>Zinc finger protein 514</td>
<td>2.33</td>
<td>6.44</td>
<td>(vide)</td>
</tr>
<tr>
<td>ZNF519</td>
<td>162655</td>
<td>zinc finger protein 519</td>
<td>4.03</td>
<td>8.99</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF544</td>
<td>27300</td>
<td>Zinc finger protein 544</td>
<td>3.33</td>
<td>5.14</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF606</td>
<td>80095</td>
<td>zinc finger protein 606</td>
<td>2.25</td>
<td>2.32</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF608</td>
<td>57507</td>
<td>zinc finger protein 608</td>
<td>2.55</td>
<td>3.16</td>
<td>chr5</td>
</tr>
<tr>
<td>ZNF708</td>
<td>7562</td>
<td>Zinc finger protein 708 (KOX8)</td>
<td>2.32</td>
<td>4.08</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF84</td>
<td>7637</td>
<td>Zinc finger protein 84 (HPF2)</td>
<td>4.42</td>
<td>2.88</td>
<td>chr12</td>
</tr>
<tr>
<td>ZNF91</td>
<td>7644</td>
<td>Zinc finger protein 91 (HPF7, HTF10)</td>
<td>2.89</td>
<td>3.68</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNRF1</td>
<td>84937</td>
<td>zinc and ring finger 1</td>
<td>2.10</td>
<td>2.07</td>
<td>chr16</td>
</tr>
<tr>
<td>ZRF1</td>
<td>27000</td>
<td>Zuotin related factor 1</td>
<td>2.93</td>
<td>3.84</td>
<td>chr7</td>
</tr>
</tbody>
</table>
Table S8: Genes up-regulated in MPC compared to hES and not modulated in NPC compared to hES (FC>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC_up</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sept-06</td>
<td>23157 ///</td>
<td>septin 6 /// cytokine-like nuclear factor n-pac</td>
<td>2.66</td>
<td>chrX</td>
</tr>
<tr>
<td></td>
<td>84656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39326</td>
<td>Septin 7</td>
<td>2.10</td>
<td>chr7</td>
</tr>
<tr>
<td></td>
<td>40787</td>
<td>Septin 11</td>
<td>73.88</td>
<td>chr4</td>
</tr>
<tr>
<td>AADACL1</td>
<td>57552</td>
<td>arylacetamide deacetylase-like 1</td>
<td>4.26</td>
<td>chr3</td>
</tr>
<tr>
<td>ABHD2</td>
<td>25890</td>
<td>ABI gene family, member 3 (NESH) binding protein</td>
<td>5.82</td>
<td>chr15</td>
</tr>
<tr>
<td>ABI1</td>
<td>10006</td>
<td>abi-interactor 1</td>
<td>2.24</td>
<td>chr10</td>
</tr>
<tr>
<td>ABI3BP</td>
<td>40787</td>
<td>ABI gene family, member 3 (NESH) binding protein</td>
<td>2.32</td>
<td>chr15</td>
</tr>
<tr>
<td>ABLIM3</td>
<td>22885</td>
<td>actin binding LIM protein family, member 3</td>
<td>2.00</td>
<td>chr5</td>
</tr>
<tr>
<td>ACBD3</td>
<td>64746</td>
<td>acyl-Coenzyme A binding domain containing 3</td>
<td>2.33</td>
<td>chr1</td>
</tr>
<tr>
<td>ACP2</td>
<td>53</td>
<td>acid phosphatase 2, lysosomal</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>ACSL4</td>
<td>2182</td>
<td>acyl-CoA synthetase long-chain family member 4</td>
<td>3.23</td>
<td>chrX</td>
</tr>
<tr>
<td>ACSS2</td>
<td>55902</td>
<td>acyl-CoA synthetase short-chain family member 2</td>
<td>2.59</td>
<td>chr20</td>
</tr>
<tr>
<td>ACTG2</td>
<td>72</td>
<td>actin, gamma 2, smooth muscle, enteric</td>
<td>92.67</td>
<td>chr2</td>
</tr>
<tr>
<td>ACTN1</td>
<td>87</td>
<td>actinin, alpha 1</td>
<td>5.49</td>
<td>chr14</td>
</tr>
<tr>
<td>ACTN4</td>
<td>81</td>
<td>actinin, alpha 4</td>
<td>3.50</td>
<td>chr19</td>
</tr>
<tr>
<td>ACTR10</td>
<td>55860</td>
<td>actin-related protein 10 homolog (S. cerevisiae)</td>
<td>2.52</td>
<td>chr14</td>
</tr>
<tr>
<td>ACTR1A</td>
<td>10121</td>
<td>ARP1 actin-related protein 1 homolog A, centrinactin alpha (yeast)</td>
<td>2.60</td>
<td>chr10</td>
</tr>
<tr>
<td>ACTR2</td>
<td>10097</td>
<td>ARP2 actin-related protein 2 homolog (yeast)</td>
<td>4.01</td>
<td>chr2</td>
</tr>
<tr>
<td>ACTR3</td>
<td>10096</td>
<td>ARP3 actin-related protein 3 homolog (yeast)</td>
<td>3.56</td>
<td>chr2</td>
</tr>
<tr>
<td>ACVR1</td>
<td>90</td>
<td>activin A receptor, type I</td>
<td>2.11</td>
<td>chr2</td>
</tr>
<tr>
<td>ADA</td>
<td>100</td>
<td>adenosine deaminase</td>
<td>2.90</td>
<td>chr20</td>
</tr>
<tr>
<td>ADAM10</td>
<td>102</td>
<td>ADAM metallopeptidase domain 10</td>
<td>2.14</td>
<td>chr15</td>
</tr>
<tr>
<td>ADAM9</td>
<td>8754</td>
<td>ADAM metallopeptidase domain 9 (meltrin gamma)</td>
<td>18.84</td>
<td>chr8</td>
</tr>
<tr>
<td>ADAMTS5</td>
<td>11096</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif, 5 (aggrecanase-2)</td>
<td>9.73</td>
<td>vide</td>
</tr>
<tr>
<td>ADCY9</td>
<td>115</td>
<td>adenylate cyclase 9</td>
<td>2.59</td>
<td>chr16</td>
</tr>
<tr>
<td>ADD1</td>
<td>118</td>
<td>adducin 1 (alpha)</td>
<td>6.50</td>
<td>chr4</td>
</tr>
<tr>
<td>ADK</td>
<td>132</td>
<td>adenosine kinase</td>
<td>4.23</td>
<td>chr10</td>
</tr>
<tr>
<td>AEBP1</td>
<td>165</td>
<td>AE binding protein 1</td>
<td>3.30</td>
<td>chr7</td>
</tr>
<tr>
<td>AFAP</td>
<td>60312</td>
<td>actin filament associated protein</td>
<td>6.64</td>
<td>chr4</td>
</tr>
<tr>
<td>AGA</td>
<td>175</td>
<td>aspartylglucosaminidase</td>
<td>3.03</td>
<td>chr4</td>
</tr>
<tr>
<td>AGTR1</td>
<td>185</td>
<td>angiotensin II receptor, type 1</td>
<td>6.52</td>
<td>chr3</td>
</tr>
<tr>
<td>AHR</td>
<td>196</td>
<td>aryl hydrocarbon receptor</td>
<td>8.35</td>
<td>chr7</td>
</tr>
<tr>
<td>AK1</td>
<td>203</td>
<td>adenylate kinase 1</td>
<td>5.98</td>
<td>chr9</td>
</tr>
<tr>
<td>AK5</td>
<td>26289</td>
<td>adenylate kinase 5</td>
<td>4.34</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>AKAP12</td>
<td>9590</td>
<td>A kinase (PRKA) anchor protein (gravin) 12</td>
<td>3.01</td>
<td>chr6</td>
</tr>
<tr>
<td>AKAP2</td>
<td>11217 /// 445815</td>
<td>A kinase (PRKA) anchor protein 2 /// PALM2-AKAP2 protein</td>
<td>2.80</td>
<td>chr9</td>
</tr>
<tr>
<td>AKT1</td>
<td>207</td>
<td>v-akt murine thymoma viral oncogene homolog 1</td>
<td>3.57</td>
<td>chr14</td>
</tr>
<tr>
<td>ALDH1L2</td>
<td>160428</td>
<td>aldehyde dehydrogenase 1 family, member L2</td>
<td>15.17</td>
<td>chr12</td>
</tr>
<tr>
<td>ALG14</td>
<td>199857</td>
<td>asparagine-linked glycosylatation 14 homolog (yeast)</td>
<td>2.56</td>
<td>chr1</td>
</tr>
<tr>
<td>ALS2</td>
<td>57679</td>
<td>amyotrophic lateral sclerosis 2 (juvenile)</td>
<td>2.48</td>
<td>chr2</td>
</tr>
<tr>
<td>ALS2CR3</td>
<td>66008</td>
<td>amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 3</td>
<td>4.36</td>
<td>chr2</td>
</tr>
<tr>
<td>ALS2CR7</td>
<td>65061</td>
<td>amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 7</td>
<td>5.16</td>
<td>chr2</td>
</tr>
<tr>
<td>AMFR</td>
<td>267</td>
<td>autocrine motility factor receptor</td>
<td>3.63</td>
<td>chr16</td>
</tr>
<tr>
<td>AMPD2</td>
<td>271</td>
<td>adenosine monophosphate deaminase 2 (isoform L)</td>
<td>2.02</td>
<td>chr1</td>
</tr>
<tr>
<td>ANAPC13</td>
<td>25847</td>
<td>anaphase promoting complex subunit 13</td>
<td>2.48</td>
<td>chr3</td>
</tr>
<tr>
<td>ANKH</td>
<td>56172</td>
<td>ankylosis, progressive homolog (mouse)</td>
<td>2.33</td>
<td>chr5</td>
</tr>
<tr>
<td>ANKRA2</td>
<td>57763</td>
<td>ankyrin repeat, family A (RFXANK-like), 2</td>
<td>2.58</td>
<td>chr5</td>
</tr>
<tr>
<td>ANKR1D1</td>
<td>27063</td>
<td>ankyrin repeat domain 1 (cardiac muscle)</td>
<td>9.51</td>
<td>chr10</td>
</tr>
<tr>
<td>ANKR2D5</td>
<td>25959</td>
<td>ankyrin repeat domain 25</td>
<td>2.08</td>
<td>chr19</td>
</tr>
<tr>
<td>ANKR2D8</td>
<td>23243</td>
<td>ankyrin repeat domain 28</td>
<td>6.26</td>
<td>chr3</td>
</tr>
<tr>
<td>ANKR4D4</td>
<td>91526</td>
<td>Ankyrin repeat domain 44</td>
<td>4.98</td>
<td>chr2</td>
</tr>
<tr>
<td>ANTXR1</td>
<td>84168</td>
<td>anthrax toxin receptor 1</td>
<td>4.37</td>
<td>chr2</td>
</tr>
<tr>
<td>ANXA1</td>
<td>301</td>
<td>annexin A1</td>
<td>50.64</td>
<td>chr9</td>
</tr>
<tr>
<td>ANXA11</td>
<td>311</td>
<td>annexin A11</td>
<td>2.15</td>
<td>chr10</td>
</tr>
<tr>
<td>ANXA2</td>
<td>302</td>
<td>annexin A2</td>
<td>7.32</td>
<td>chr9</td>
</tr>
<tr>
<td>ANXA2P1</td>
<td>303</td>
<td>annexin A2 pseudogene 1</td>
<td>3.65</td>
<td>chr4</td>
</tr>
<tr>
<td>ANXA2P2</td>
<td>304</td>
<td>annexin A2 pseudogene 2</td>
<td>7.03</td>
<td>chr9</td>
</tr>
<tr>
<td>ANXA5</td>
<td>308</td>
<td>annexin A5</td>
<td>2.64</td>
<td>chr4</td>
</tr>
<tr>
<td>ANXA6</td>
<td>309</td>
<td>annexin A6</td>
<td>7.19</td>
<td>chr5</td>
</tr>
<tr>
<td>AOF1</td>
<td>221656</td>
<td>amine oxidase (flavin containing) domain 1</td>
<td>2.47</td>
<td>chr6</td>
</tr>
<tr>
<td>AP1M1</td>
<td>8907</td>
<td>adaptor-related protein complex 1, mu 1 subunit</td>
<td>2.57</td>
<td>chr19</td>
</tr>
<tr>
<td>AP1S1</td>
<td>1174</td>
<td>adaptor-related protein complex 1, sigma 1 subunit</td>
<td>2.71</td>
<td>chr7</td>
</tr>
<tr>
<td>AP2M1</td>
<td>1173</td>
<td>adaptor-related protein complex 2, mu 1 subunit</td>
<td>2.55</td>
<td>chr3</td>
</tr>
<tr>
<td>APOBEC3C</td>
<td>27350</td>
<td>apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3C</td>
<td>3.18</td>
<td>chr22</td>
</tr>
<tr>
<td>ARAF</td>
<td>369</td>
<td>v-raf murine sarcoma 3611 viral oncogene homolog</td>
<td>2.20</td>
<td>chrX</td>
</tr>
<tr>
<td>ARF4L</td>
<td>379</td>
<td>ADP-ribosylation factor 4-like</td>
<td>2.70</td>
<td>chr17</td>
</tr>
<tr>
<td>ARFGAP1</td>
<td>55738</td>
<td>ADP-ribosylation factor GTPase activating protein 1</td>
<td>2.63</td>
<td>chr20</td>
</tr>
<tr>
<td>ARFGAP3</td>
<td>26286</td>
<td>ADP-ribosylation factor GTPase activating protein 3</td>
<td>4.76</td>
<td>chr22</td>
</tr>
<tr>
<td>ARHGAP1</td>
<td>392</td>
<td>Rho GTPase activating protein 1</td>
<td>2.35</td>
<td>chr11</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ARHGAP18</td>
<td>93663</td>
<td>Rho GTPase activating protein 18</td>
<td>4,52</td>
<td>chr6</td>
</tr>
<tr>
<td>ARHGAP23</td>
<td>57636</td>
<td>Rho GTPase activating protein 23</td>
<td>4,45</td>
<td>chr17</td>
</tr>
<tr>
<td>ARHDIA</td>
<td>396</td>
<td>Rho GDP dissociation inhibitor (GDI) alpha // Rho GDP dissociation inhibitor (GDI) alpha</td>
<td>3,69</td>
<td>chr17_random</td>
</tr>
<tr>
<td>ARHGEF12</td>
<td>23365</td>
<td>Rho guanine nucleotide exchange factor (GEF) 12</td>
<td>3,21</td>
<td>chr11</td>
</tr>
<tr>
<td>ARL1</td>
<td>400</td>
<td>ADP-ribosylation factor-like 1</td>
<td>2,71</td>
<td>chr12</td>
</tr>
<tr>
<td>ARL2BP</td>
<td>23568</td>
<td>ADP-ribosylation factor-like 2 binding protein</td>
<td>3,01</td>
<td>chr16</td>
</tr>
<tr>
<td>ARPC1B</td>
<td>10095</td>
<td>actin related protein 2/3 complex, subunit 1B, 41kDa</td>
<td>2,24</td>
<td>chr7</td>
</tr>
<tr>
<td>ARPC2</td>
<td>10109</td>
<td>actin related protein 2/3 complex, subunit 2, 34kDa</td>
<td>2,13</td>
<td>chr2</td>
</tr>
<tr>
<td>ARPC5</td>
<td>10092</td>
<td>actin related protein 2/3 complex, subunit 5, 16kDa</td>
<td>3,48</td>
<td>chr1</td>
</tr>
<tr>
<td>ARSB</td>
<td>411</td>
<td>arylsulfatase B</td>
<td>3,20</td>
<td>chr5</td>
</tr>
<tr>
<td>ARSJ</td>
<td>79642</td>
<td>arylsulfatase J</td>
<td>70,99</td>
<td>chr4</td>
</tr>
<tr>
<td>ART5</td>
<td>51752</td>
<td>type 1 tumor necrosis factor receptor shedding aminopeptidase regulator</td>
<td>3,05</td>
<td>chr5</td>
</tr>
<tr>
<td>ASAH1</td>
<td>427</td>
<td>N-acylphosphosine amidohydrolase (acid ceramidase) 1</td>
<td>2,03</td>
<td>chr8</td>
</tr>
<tr>
<td>ASAM</td>
<td>79827</td>
<td>Adipocyte-specific adhesion molecule</td>
<td>5,27</td>
<td>chr11</td>
</tr>
<tr>
<td>ASB8</td>
<td>140461</td>
<td>ankyrin repeat and SOCS box-containing 8</td>
<td>4,22</td>
<td>chr12</td>
</tr>
<tr>
<td>ATG4A</td>
<td>115201</td>
<td>ATG4 autophagy related 4 homolog A (S. cerevisiae)</td>
<td>3,34</td>
<td>chrX</td>
</tr>
<tr>
<td>ATG7</td>
<td>10533</td>
<td>ATG7 autophagy related 7 homolog (S. cerevisiae)</td>
<td>2,99</td>
<td>chr3</td>
</tr>
<tr>
<td>ATM</td>
<td>472</td>
<td>ataxia telangiectasia mutated (includes complementation groups A, C and D)</td>
<td>2,49</td>
<td>chr11</td>
</tr>
<tr>
<td>ATP10A</td>
<td>57194</td>
<td>ATPase, Class V, type 10A</td>
<td>2,95</td>
<td>chr15</td>
</tr>
<tr>
<td>ATP11B</td>
<td>23200</td>
<td>ATPase, Class VI, type 11B</td>
<td>4,34</td>
<td>chr3</td>
</tr>
<tr>
<td>ATP13A3</td>
<td>79572</td>
<td>ATPase type 13A3</td>
<td>4,08</td>
<td>chr3</td>
</tr>
<tr>
<td>ATP2A2</td>
<td>488</td>
<td>ATPase, Ca++ transporting, cardiac muscle, slow twitch 2</td>
<td>2,04</td>
<td>chr12</td>
</tr>
<tr>
<td>ATP5E</td>
<td>514</td>
<td>ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit</td>
<td>2,17</td>
<td>chr20</td>
</tr>
<tr>
<td>ATP6AP2</td>
<td>10159</td>
<td>ATPase, H+ transporting, lysosomal accessory protein 2</td>
<td>2,17</td>
<td>chrX</td>
</tr>
<tr>
<td>ATP6VO1</td>
<td>9114</td>
<td>ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d isoform 1</td>
<td>2,09</td>
<td>chr16</td>
</tr>
<tr>
<td>ATP6VOE</td>
<td>8992</td>
<td>ATPase, H+ transporting, lysosomal 9kDa, V0 subunit e</td>
<td>3,70</td>
<td>chr5</td>
</tr>
<tr>
<td>ATP8B1</td>
<td>5205</td>
<td>ATPase, Class I, type 8B, member 1</td>
<td>24,44</td>
<td>chr18</td>
</tr>
<tr>
<td>ATXN1</td>
<td>6310</td>
<td>ataxin 1</td>
<td>10,66</td>
<td>chr6</td>
</tr>
<tr>
<td>AVO3</td>
<td>253260</td>
<td>TORC2-specific protein AVO3</td>
<td>2,26</td>
<td>chr5</td>
</tr>
<tr>
<td>AZI2</td>
<td>64343</td>
<td>5-azacytidine induced 2</td>
<td>3,19</td>
<td>chr3</td>
</tr>
<tr>
<td>B2M</td>
<td>567</td>
<td>beta-2-microglobulin</td>
<td>7,86</td>
<td>chr15</td>
</tr>
<tr>
<td>B4GALT1</td>
<td>2683</td>
<td>UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide</td>
<td>2,38</td>
<td>chr9</td>
</tr>
<tr>
<td>bA16L21.2.1</td>
<td>548645</td>
<td>DnaJ-like protein</td>
<td>2,04</td>
<td>chr9</td>
</tr>
<tr>
<td>BACE2</td>
<td>25825</td>
<td>beta-site APP-cleaving enzyme</td>
<td>4,07</td>
<td>chr21</td>
</tr>
<tr>
<td>BACH1</td>
<td>571</td>
<td>BTB and CNC homology 1, basic leucine zipper transcription factor 1</td>
<td>4,61</td>
<td>chr21</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>BAG3</td>
<td>9531</td>
<td>BCL2-associated athanogene 3</td>
<td>4.88</td>
<td>chr10</td>
</tr>
<tr>
<td>BAZ1A</td>
<td>11177</td>
<td>bromodomain adjacent to zinc finger domain, 1A</td>
<td>2.35</td>
<td>chr14</td>
</tr>
<tr>
<td>BBX</td>
<td>56987</td>
<td>Bobby sox homolog (Drosophila)</td>
<td>2.15</td>
<td>chr3</td>
</tr>
<tr>
<td>BC002942</td>
<td>91289</td>
<td>hypothetical protein BC002942</td>
<td>4.19</td>
<td>chr22</td>
</tr>
<tr>
<td>BCAP29</td>
<td>55973</td>
<td>B-cell receptor-associated protein 29</td>
<td>3.69</td>
<td>chr7</td>
</tr>
<tr>
<td>BCA1T</td>
<td>586</td>
<td>branched chain aminotransferase 1, cytosolic</td>
<td>2.15</td>
<td>chr7</td>
</tr>
<tr>
<td>BCL10</td>
<td>8915</td>
<td>B-cell CLL/lymphoma 10</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>BCL2L13</td>
<td>23786</td>
<td>BCL2-like 13 (apoptosis facilitator)</td>
<td>2.47</td>
<td>chr22</td>
</tr>
<tr>
<td>BCL2L2</td>
<td>599</td>
<td>BCL2-like 2</td>
<td>2.53</td>
<td>chr14</td>
</tr>
<tr>
<td>BCL3</td>
<td>602</td>
<td>B-cell CLL/lymphoma 3</td>
<td>3.22</td>
<td>chr19</td>
</tr>
<tr>
<td>BCL6</td>
<td>604</td>
<td>B-cell CLL/lymphoma 6 (zinc finger protein 51) /// B-cell CLL/lymphoma 6 (zinc finger protein 51)</td>
<td>4.77</td>
<td>chr3</td>
</tr>
<tr>
<td>BDKRB1</td>
<td>623</td>
<td>bradykinin receptor B1</td>
<td>4.87</td>
<td>chr14</td>
</tr>
<tr>
<td>BDKRB2</td>
<td>624</td>
<td>bradykinin receptor B2</td>
<td>2.23</td>
<td>chr14</td>
</tr>
<tr>
<td>BDNF</td>
<td>627</td>
<td>brain-derived neurotrophic factor</td>
<td>25.72</td>
<td>chr11</td>
</tr>
<tr>
<td>BET1L</td>
<td>51272</td>
<td>blocked early in transport 1 homolog (S. cerevisiae)-like</td>
<td>2.02</td>
<td>chr11</td>
</tr>
<tr>
<td>BGN</td>
<td>633</td>
<td>biglycan</td>
<td>23.88</td>
<td>chrX</td>
</tr>
<tr>
<td>BGN</td>
<td>10194 /// 633</td>
<td>biglycan /// serologically defined colon cancer antigen 33</td>
<td>39.55</td>
<td>chrX</td>
</tr>
<tr>
<td>BHLHB2</td>
<td>8553</td>
<td>basic helix-loop-helix domain containing, class B, 2</td>
<td>6.35</td>
<td>chr3</td>
</tr>
<tr>
<td>BHLHB3</td>
<td>79365</td>
<td>basic helix-loop-helix domain containing, class B, 3</td>
<td>4.59</td>
<td>chr12</td>
</tr>
<tr>
<td>BIC</td>
<td>1146114</td>
<td>bic transcript</td>
<td>2.42</td>
<td>chr21</td>
</tr>
<tr>
<td>BICD2</td>
<td>23299</td>
<td>bicaudal D homolog 2 (Drosophila)</td>
<td>3.05</td>
<td>chr9</td>
</tr>
<tr>
<td>BIRC2</td>
<td>329</td>
<td>baculoviral IAP repeat-containing 2</td>
<td>2.55</td>
<td>chr11</td>
</tr>
<tr>
<td>BIRC4</td>
<td>331</td>
<td>baculoviral IAP repeat-containing 4</td>
<td>2.01</td>
<td>chrX</td>
</tr>
<tr>
<td>BIVM</td>
<td>54841</td>
<td>basic, immunoglobulin-like variable motif containing</td>
<td>2.86</td>
<td>chr13</td>
</tr>
<tr>
<td>Bles03</td>
<td>83638</td>
<td>basophilic leukemia expressed protein BLES03</td>
<td>2.16</td>
<td>chr11</td>
</tr>
<tr>
<td>BLZF1</td>
<td>8548</td>
<td>basic leucine zipper nuclear factor 1 (JEM-1)</td>
<td>3.21</td>
<td>chr1</td>
</tr>
<tr>
<td>BMP1</td>
<td>649</td>
<td>bone morphogenetic protein 1</td>
<td>6.18</td>
<td>chr8</td>
</tr>
<tr>
<td>BNIPI2</td>
<td>663</td>
<td>BCL2 adenovirus E1B 19kDa interacting protein 2</td>
<td>2.71</td>
<td>chr15</td>
</tr>
<tr>
<td>BPGM</td>
<td>669</td>
<td>2,3-bisphosphoglycerate mutase /// 2,3-bisphosphoglycerate mutase</td>
<td>3.32</td>
<td>chr7</td>
</tr>
<tr>
<td>BPNT1</td>
<td>10380</td>
<td>3’(2’), 5’-bisphosphate nucleotidase 1</td>
<td>2.40</td>
<td>chr1</td>
</tr>
<tr>
<td>BRP44L</td>
<td>51660</td>
<td>brain protein 44-like</td>
<td>2.70</td>
<td>chr6</td>
</tr>
<tr>
<td>BTB6D</td>
<td>90135</td>
<td>BTB (POZ) domain containing 6</td>
<td>4.67</td>
<td>chr14</td>
</tr>
<tr>
<td>BTN2A1</td>
<td>11120</td>
<td>butyrophilin, subfamily 2, member A1</td>
<td>2.04</td>
<td>chr6</td>
</tr>
<tr>
<td>BTN3A1</td>
<td>11119</td>
<td>butyrophilin, subfamily 3, member A1</td>
<td>2.23</td>
<td>chr6</td>
</tr>
<tr>
<td>BTN3A2</td>
<td>11118</td>
<td>butyrophilin, subfamily 3, member A2</td>
<td>3.77</td>
<td>chr6</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>BTN3A3</td>
<td>10384</td>
<td>butyrophilin, subfamily 3, member A3</td>
<td>5,21</td>
<td>chr6</td>
</tr>
<tr>
<td>BTN3A2</td>
<td>11118</td>
<td>butyrophilin, subfamily 3, member A2</td>
<td>6,10</td>
<td>chr6</td>
</tr>
<tr>
<td>B2RP</td>
<td>706</td>
<td>benzodiazapine receptor (peripheral)</td>
<td>9,01</td>
<td>chr22</td>
</tr>
<tr>
<td>C10orf11</td>
<td>11067</td>
<td>chromosome 10 open reading frame 10</td>
<td>9,04</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf88</td>
<td>80007</td>
<td>chromosome 10 open reading frame 88</td>
<td>3,76</td>
<td>chr10</td>
</tr>
<tr>
<td>C10orf97</td>
<td>80013</td>
<td>chromosome 10 open reading frame 97</td>
<td>2,62</td>
<td>chr10</td>
</tr>
<tr>
<td>C11orf17</td>
<td>56672</td>
<td>chromosome 11 open reading frame 17</td>
<td>2,94</td>
<td>chr11</td>
</tr>
<tr>
<td>C11orf24</td>
<td>53838</td>
<td>chromosome 11 open reading frame 24</td>
<td>2,57</td>
<td>chr11</td>
</tr>
<tr>
<td>C11orf41</td>
<td>25758</td>
<td>chromosome 11 open reading frame 41</td>
<td>3,95</td>
<td>chr11</td>
</tr>
<tr>
<td>C13orf1</td>
<td>57213</td>
<td>chromosome 13 open reading frame 1</td>
<td>2,52</td>
<td>chr13</td>
</tr>
<tr>
<td>C13orf12</td>
<td>51371</td>
<td>chromosome 13 open reading frame 12</td>
<td>4,45</td>
<td>chr13</td>
</tr>
<tr>
<td>C14orf125</td>
<td>25938</td>
<td>chromosome 14 open reading frame 125</td>
<td>2,98</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf139</td>
<td>79666</td>
<td>chromosome 14 open reading frame 139</td>
<td>16,45</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf149</td>
<td>112849</td>
<td>chromosome 14 open reading frame 149</td>
<td>4,64</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf24</td>
<td>283635</td>
<td>chromosome 14 open reading frame 24</td>
<td>4,17</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf28</td>
<td>122525</td>
<td>chromosome 14 open reading frame 28</td>
<td>4,52</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf34</td>
<td>55673</td>
<td>chromosome 14 open reading frame 34</td>
<td>2,07</td>
<td>chr17</td>
</tr>
<tr>
<td>C14orf37</td>
<td>145407</td>
<td>chromosome 14 open reading frame 37</td>
<td>2,65</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf43</td>
<td>91748</td>
<td>chromosome 14 open reading frame 43</td>
<td>2,47</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf44</td>
<td>145483</td>
<td>Chromosome 14 open reading frame 44</td>
<td>2,01</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf45</td>
<td>80127</td>
<td>chromosome 14 open reading frame 45</td>
<td>5,28</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf78</td>
<td>113146</td>
<td>chromosome 14 open reading frame 78</td>
<td>8,90</td>
<td>chr14</td>
</tr>
<tr>
<td>C14orf92</td>
<td>9878</td>
<td>chromosome 14 open reading frame 92</td>
<td>2,32</td>
<td>chr4</td>
</tr>
<tr>
<td>C16orf30</td>
<td>79652</td>
<td>chromosome 16 open reading frame 30</td>
<td>2,19</td>
<td>chr16</td>
</tr>
<tr>
<td>C18orf10</td>
<td>25941</td>
<td>Chromosome 18 open reading frame 10</td>
<td>2,06</td>
<td>chr18</td>
</tr>
<tr>
<td>C18orf4</td>
<td>92126</td>
<td>chromosome 18 open reading frame 4</td>
<td>3,23</td>
<td>chr18</td>
</tr>
<tr>
<td>C19orf10</td>
<td>56005</td>
<td>chromosome 19 open reading frame 10</td>
<td>4,24</td>
<td>chr19</td>
</tr>
<tr>
<td>C1orf119</td>
<td>56900</td>
<td>chromosome 1 open reading frame 119</td>
<td>2,93</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf144</td>
<td>26099</td>
<td>chromosome 1 open reading frame 144</td>
<td>8,89</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf22</td>
<td>80267</td>
<td>chromosome 1 open reading frame 22</td>
<td>6,25</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf24</td>
<td>116496</td>
<td>chromosome 1 open reading frame 24</td>
<td>3,10</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf53</td>
<td>388722</td>
<td>chromosome 1 open reading frame 53</td>
<td>2,25</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf71</td>
<td>163882</td>
<td>chromosome 1 open reading frame 71</td>
<td>3,06</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf78</td>
<td>55194</td>
<td>chromosome 1 open reading frame 78</td>
<td>2,33</td>
<td>chr1</td>
</tr>
<tr>
<td>C1orf91</td>
<td>56063</td>
<td>chromosome 1 open reading frame 91</td>
<td>2,42</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>C2orf100</td>
<td>84969</td>
<td>chromosome 20 open reading frame 100</td>
<td>2.46</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf117</td>
<td>140710</td>
<td>chromosome 20 open reading frame 117</td>
<td>2.41</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf118</td>
<td>10616</td>
<td>chromosome 20 open reading frame 18</td>
<td>2.16</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf22</td>
<td>26090</td>
<td>chromosome 20 open reading frame 22</td>
<td>2.43</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf29</td>
<td>55317</td>
<td>chromosome 20 open reading frame 29</td>
<td>2.43</td>
<td>chr20</td>
</tr>
<tr>
<td>C2orf7</td>
<td>56911</td>
<td>chromosome 21 open reading frame 7</td>
<td>24.00</td>
<td>chr21</td>
</tr>
<tr>
<td>C2orf86</td>
<td>257103</td>
<td>chromosome 21 open reading frame 86</td>
<td>2.11</td>
<td>chr21</td>
</tr>
<tr>
<td>C2orf10</td>
<td>91752</td>
<td>chromosome 2 open reading frame 10</td>
<td>4.29</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf17</td>
<td>79137</td>
<td>chromosome 2 open reading frame 17</td>
<td>3.82</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf18</td>
<td>54978</td>
<td>chromosome 2 open reading frame 18</td>
<td>3.27</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf27</td>
<td>29798</td>
<td>chromosome 2 open reading frame 27</td>
<td>6.46</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf30</td>
<td>27248</td>
<td>chromosome 2 open reading frame 30</td>
<td>3.50</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf32</td>
<td>25927</td>
<td>chromosome 2 open reading frame 32</td>
<td>13.68</td>
<td>chr2</td>
</tr>
<tr>
<td>C2orf7</td>
<td>84279</td>
<td>chromosome 2 open reading frame 7</td>
<td>2.50</td>
<td>chr2</td>
</tr>
<tr>
<td>C5orf14</td>
<td>79770</td>
<td>chromosome 5 open reading frame 14</td>
<td>2.56</td>
<td>chr5</td>
</tr>
<tr>
<td>C5orf3</td>
<td>10827</td>
<td>chromosome 5 open reading frame 3</td>
<td>4.97</td>
<td>chr5</td>
</tr>
<tr>
<td>C6orf188</td>
<td>254228</td>
<td>chromosome 6 open reading frame 188</td>
<td>2.10</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf48</td>
<td>50854</td>
<td>chromosome 6 open reading frame 48</td>
<td>2.22</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf65</td>
<td>221336</td>
<td>chromosome 6 open reading frame 65</td>
<td>4.70</td>
<td>chr6</td>
</tr>
<tr>
<td>C6orf72</td>
<td>116254</td>
<td>chromosome 6 open reading frame 72</td>
<td>2.34</td>
<td>chr6</td>
</tr>
<tr>
<td>C7orf10</td>
<td>79783</td>
<td>chromosome 7 open reading frame 10</td>
<td>3.44</td>
<td>chr7</td>
</tr>
<tr>
<td>C7orf25</td>
<td>79020</td>
<td>chromosome 7 open reading frame 25</td>
<td>2.09</td>
<td>chr7</td>
</tr>
<tr>
<td>C9orf10</td>
<td>23196</td>
<td>chromosome 9 open reading frame 10</td>
<td>5.77</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf150</td>
<td>286343</td>
<td>chromosome 9 open reading frame 150</td>
<td>6.47</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf19</td>
<td>152007</td>
<td>chromosome 9 open reading frame 19</td>
<td>2.43</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf3</td>
<td>84909</td>
<td>chromosome 9 open reading frame 3</td>
<td>3.37</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf88</td>
<td>64855</td>
<td>chromosome 9 open reading frame 88</td>
<td>6.54</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf89</td>
<td>84270</td>
<td>chromosome 9 open reading frame 89</td>
<td>2.09</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf94</td>
<td>206938</td>
<td>chromosome 9 open reading frame 94</td>
<td>6.26</td>
<td>chr9</td>
</tr>
<tr>
<td>C9orf95</td>
<td>54981</td>
<td>chromosome 9 open reading frame 95</td>
<td>3.37</td>
<td>chr9</td>
</tr>
<tr>
<td>CA12</td>
<td>771</td>
<td>carbonic anhydrase XII</td>
<td>11.03</td>
<td>chr15</td>
</tr>
<tr>
<td>CALCOCO1</td>
<td>57658</td>
<td>calcium binding and coiled-coil domain 1</td>
<td>3.05</td>
<td>chr12</td>
</tr>
<tr>
<td>CAMTA2</td>
<td>23125</td>
<td>calmodulin binding transcription activator 2</td>
<td>3.19</td>
<td>chr17</td>
</tr>
<tr>
<td>CANT1</td>
<td>124583</td>
<td>calcium activated nucleotidase 1</td>
<td>2.11</td>
<td>chr17</td>
</tr>
<tr>
<td>CAP1</td>
<td>10487</td>
<td>CAP, adenylate cyclase-associated protein 1 (yeast)</td>
<td>2.51</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>CAPN7</td>
<td>23473</td>
<td>calpain 7</td>
<td>3.02</td>
<td>chr3</td>
</tr>
<tr>
<td>CAPNS1</td>
<td>826</td>
<td>calpain, small subunit 1 // calpain, small subunit 1</td>
<td>3.94</td>
<td>chr19</td>
</tr>
<tr>
<td>CASC4</td>
<td>113201</td>
<td>cancer susceptibility candidate 4</td>
<td>3.50</td>
<td>chr15</td>
</tr>
<tr>
<td>CAPS4</td>
<td>837</td>
<td>caspase 4, apoptosis-related cysteine peptidase</td>
<td>3.52</td>
<td>chr11</td>
</tr>
<tr>
<td>CAPS7</td>
<td>840</td>
<td>caspase 7, apoptosis-related cysteine peptidase</td>
<td>3.07</td>
<td>chr10</td>
</tr>
<tr>
<td>CAPS8</td>
<td>841</td>
<td>caspase 8, apoptosis-related cysteine peptidase</td>
<td>4.36</td>
<td>chr2</td>
</tr>
<tr>
<td>CAV1</td>
<td>857</td>
<td>caveolin 1, caveoleae protein, 22kDa</td>
<td>27.31</td>
<td>chr7</td>
</tr>
<tr>
<td>CAV2</td>
<td>858</td>
<td>caveolin 2</td>
<td>46.79</td>
<td>chr7</td>
</tr>
<tr>
<td>CBX4</td>
<td>8535</td>
<td>chromobox homolog 4 (Pc class homolog, Drosophila)</td>
<td>6.13</td>
<td>chr17</td>
</tr>
<tr>
<td>CBX6</td>
<td>23466</td>
<td>Chromobox homolog 6</td>
<td>3.65</td>
<td>chr22</td>
</tr>
<tr>
<td>CCBE1</td>
<td>147372</td>
<td>collagen and calcium binding EGF domains 1</td>
<td>2.79</td>
<td>chr18</td>
</tr>
<tr>
<td>CCDC6</td>
<td>8030</td>
<td>coiled-coil domain containing 6</td>
<td>2.23</td>
<td>chr10</td>
</tr>
<tr>
<td>CCDC75</td>
<td>253635</td>
<td>Coiled-coil domain containing 75</td>
<td>2.67</td>
<td>chr2</td>
</tr>
<tr>
<td>CCND1</td>
<td>595</td>
<td>cyclin D1</td>
<td>6.46</td>
<td>chr11</td>
</tr>
<tr>
<td>CCND3</td>
<td>896</td>
<td>cyclin D3</td>
<td>2.20</td>
<td>chr6</td>
</tr>
<tr>
<td>CPG1</td>
<td>9236</td>
<td>cell cycle progression 1</td>
<td>9.01</td>
<td>chr15</td>
</tr>
<tr>
<td>CD109</td>
<td>135228</td>
<td>CD109 antigen (Gov platelet alloantigens)</td>
<td>10.06</td>
<td>chr6</td>
</tr>
<tr>
<td>CD151</td>
<td>977</td>
<td>CD151 antigen</td>
<td>6.14</td>
<td>chr11</td>
</tr>
<tr>
<td>CD248</td>
<td>57124</td>
<td>CD248 antigen, endosialin</td>
<td>12.50</td>
<td>chr11</td>
</tr>
<tr>
<td>CD274</td>
<td>29126</td>
<td>CD274 antigen</td>
<td>40.81</td>
<td>chr9</td>
</tr>
<tr>
<td>CD44</td>
<td>960</td>
<td>CD44 antigen (homing function and Indian blood group system)</td>
<td>111.41</td>
<td>chr11</td>
</tr>
<tr>
<td>CD58</td>
<td>965</td>
<td>CD58 antigen, lymphocyte function-associated antigen 3</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>CD59</td>
<td>966</td>
<td>CD59 antigen p18-20 (antigen identified by monoclonal antibodies 16.3AS, EJ16, EJ30, EL32 and G3F)</td>
<td>15.10</td>
<td>chr11</td>
</tr>
<tr>
<td>CDA08</td>
<td>81533</td>
<td>T-cell immunomodulatory protein</td>
<td>3.36</td>
<td>chr16</td>
</tr>
<tr>
<td>CDC27</td>
<td>996</td>
<td>Cell division cycle 27</td>
<td>2.65</td>
<td>chr17</td>
</tr>
<tr>
<td>CDC42</td>
<td>998</td>
<td>cell division cycle 42 (GTP binding protein, 25kDa)</td>
<td>2.39</td>
<td>chr1</td>
</tr>
<tr>
<td>CDC42BPA</td>
<td>8476</td>
<td>CDC42 binding protein kinase alpha (DMPK-like)</td>
<td>2.33</td>
<td>chr1</td>
</tr>
<tr>
<td>CDC42EP5</td>
<td>148170</td>
<td>CDC42 effector protein (Rho GTPase binding) 5</td>
<td>26.82</td>
<td>chr19</td>
</tr>
<tr>
<td>CDGAP</td>
<td>57514</td>
<td>Cdc42 GTPase-activating protein</td>
<td>2.48</td>
<td>chr3</td>
</tr>
<tr>
<td>CDHI3</td>
<td>1012</td>
<td>cadherin 13, H-cadherin (heart)</td>
<td>14.00</td>
<td>chr16</td>
</tr>
<tr>
<td>CDKN1A</td>
<td>1026</td>
<td>cyclin-dependent kinase inhibitor 1A (p21, Cip1)</td>
<td>55.11</td>
<td>chr6</td>
</tr>
<tr>
<td>CDKN2A</td>
<td>1029</td>
<td>cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)</td>
<td>22.27</td>
<td>chr9</td>
</tr>
<tr>
<td>CDKN2B</td>
<td>1030</td>
<td>cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)</td>
<td>45.10</td>
<td>chr9</td>
</tr>
<tr>
<td>CDKN2C</td>
<td>1031</td>
<td>cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)</td>
<td>6.71</td>
<td>chr1</td>
</tr>
<tr>
<td>CEBPD</td>
<td>1052</td>
<td>CCAAT/enhancer binding protein (C/EBP), delta</td>
<td>5.63</td>
<td>chr8</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CEECAM1</td>
<td>51148</td>
<td>cerebral endothelial cell adhesion molecule 1</td>
<td>6.20</td>
<td>chr9</td>
</tr>
<tr>
<td>CES2</td>
<td>8824</td>
<td>carboxylesterase 2 (intestine, liver)</td>
<td>2.29</td>
<td>chr16</td>
</tr>
<tr>
<td>CFH</td>
<td>3075</td>
<td>complement factor H</td>
<td>6.49</td>
<td>chr1</td>
</tr>
<tr>
<td>CFH</td>
<td>3075 // 3078</td>
<td>complement factor H // complement factor H-related 1</td>
<td>10.31</td>
<td>chr1</td>
</tr>
<tr>
<td>CFL1</td>
<td>1072</td>
<td>coflin 1 (non-muscle)</td>
<td>2.23</td>
<td>chr1</td>
</tr>
<tr>
<td>CFL2</td>
<td>1073</td>
<td>coflin 2 (muscle)</td>
<td>13.08</td>
<td>chr14</td>
</tr>
<tr>
<td>CFLAR</td>
<td>8837</td>
<td>CASP8 and FADD-like apoptosis regulator</td>
<td>3.61</td>
<td>chr2</td>
</tr>
<tr>
<td>CGI-116</td>
<td>51019</td>
<td>CGI-116 protein</td>
<td>3.64</td>
<td>chr12</td>
</tr>
<tr>
<td>CHD3</td>
<td>1107</td>
<td>chromodomain helicase DNA binding protein 3</td>
<td>3.27</td>
<td>chr17</td>
</tr>
<tr>
<td>CHD1</td>
<td>66005</td>
<td>Chitinase domain containing 1</td>
<td>3.05</td>
<td>chr11</td>
</tr>
<tr>
<td>CHM</td>
<td>1121</td>
<td>choroideremia (Rab escort protein 1)</td>
<td>2.13</td>
<td>chrX</td>
</tr>
<tr>
<td>CHMP1B</td>
<td>57132</td>
<td>chromatin modifying protein 1B</td>
<td>2.19</td>
<td>chr18</td>
</tr>
<tr>
<td>CHMP5</td>
<td>51510</td>
<td>chromatin modifying protein 5</td>
<td>2.35</td>
<td>chr9</td>
</tr>
<tr>
<td>CHPF</td>
<td>79586</td>
<td>chondroitin polymerizing factor</td>
<td>2.40</td>
<td>chr2</td>
</tr>
<tr>
<td>CHST3</td>
<td>9469</td>
<td>carbohydrate (chondroitin 6) sulfotransferase 3</td>
<td>3.32</td>
<td>chr10</td>
</tr>
<tr>
<td>CIB1</td>
<td>10519</td>
<td>calcium and integrin binding 1 (calmyrin)</td>
<td>3.77</td>
<td>chr15</td>
</tr>
<tr>
<td>CITED2</td>
<td>10370</td>
<td>Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2</td>
<td>3.77</td>
<td>chr6</td>
</tr>
<tr>
<td>CKAP4</td>
<td>10970</td>
<td>cytoskeleton-associated protein 4</td>
<td>4.50</td>
<td>chr12</td>
</tr>
<tr>
<td>CKIP-1</td>
<td>51177</td>
<td>CK2 interacting protein 1; HQ0024c protein</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>CLCN3</td>
<td>1182</td>
<td>chloride channel 3</td>
<td>2.07</td>
<td>chr4</td>
</tr>
<tr>
<td>CLDN1</td>
<td>9076</td>
<td>claudin 1</td>
<td>10.12</td>
<td>chr3</td>
</tr>
<tr>
<td>CLN5</td>
<td>1203</td>
<td>ceroid-lipofuscinosis, neuronal 5</td>
<td>4.59</td>
<td>chr13</td>
</tr>
<tr>
<td>CLSTN2</td>
<td>64084</td>
<td>calsyntenin 2</td>
<td>2.86</td>
<td>chr3</td>
</tr>
<tr>
<td>CLTB</td>
<td>1212</td>
<td>clathrin, light polypeptide (Lcb) // clathrin, light polypeptide (Lcb)</td>
<td>2.22</td>
<td>chr5</td>
</tr>
<tr>
<td>CNN1</td>
<td>1264</td>
<td>calponin 1, basic, smooth muscle</td>
<td>12.00</td>
<td>chr19</td>
</tr>
<tr>
<td>CNN2</td>
<td>1265</td>
<td>calponin 2</td>
<td>3.51</td>
<td>chr19</td>
</tr>
<tr>
<td>CNN3</td>
<td>1266</td>
<td>calponin 3, acidic</td>
<td>2.21</td>
<td>chr1</td>
</tr>
<tr>
<td>CNTNAP1</td>
<td>8506</td>
<td>contactin associated protein 1</td>
<td>3.78</td>
<td>chr17</td>
</tr>
<tr>
<td>COBLL1</td>
<td>22837</td>
<td>COBL-like 1</td>
<td>3.42</td>
<td>chr2</td>
</tr>
<tr>
<td>COG1</td>
<td>9382</td>
<td>component of oligomeric golgi complex 1</td>
<td>2.27</td>
<td>chr17</td>
</tr>
<tr>
<td>COG5</td>
<td>10466</td>
<td>component of oligomeric golgi complex 5</td>
<td>3.88</td>
<td>chr7</td>
</tr>
<tr>
<td>COG6</td>
<td>57511</td>
<td>component of oligomeric golgi complex 6</td>
<td>4.62</td>
<td>chr13</td>
</tr>
<tr>
<td>COL25A1</td>
<td>84570</td>
<td>collagen, type XXV, alpha 1</td>
<td>2.08</td>
<td>chr4</td>
</tr>
<tr>
<td>COL4A1</td>
<td>1282</td>
<td>collagen, type IV, alpha 1</td>
<td>18.41</td>
<td>chr13</td>
</tr>
<tr>
<td>COL6A1</td>
<td>1291</td>
<td>collagen, type VI, alpha 1</td>
<td>3.20</td>
<td>chr21</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>COL6A2</td>
<td>1292</td>
<td>collagen, type VI, alpha 2</td>
<td>51.34</td>
<td>chr21</td>
</tr>
<tr>
<td>COL8A1</td>
<td>1295</td>
<td>Collagen, type VIII, alpha 1</td>
<td>291.36</td>
<td>chr3</td>
</tr>
<tr>
<td>COMMDD8</td>
<td>54951</td>
<td>COMM domain containing 8</td>
<td>3.62</td>
<td>chr4</td>
</tr>
<tr>
<td>COMT</td>
<td>1312</td>
<td>catechol-O-methyltransferase</td>
<td>5.97</td>
<td>chr22</td>
</tr>
<tr>
<td>COPA</td>
<td>1314</td>
<td>coatomer protein complex, subunit alpha</td>
<td>2.51</td>
<td>chr1</td>
</tr>
<tr>
<td>COPB</td>
<td>1315</td>
<td>coatomer protein complex, subunit beta</td>
<td>3.08</td>
<td>chr11</td>
</tr>
<tr>
<td>COPB2</td>
<td>9276</td>
<td>coatomer protein complex, subunit beta 2 (beta prime)</td>
<td>2.27</td>
<td>chr3</td>
</tr>
<tr>
<td>COPE</td>
<td>11316</td>
<td>coatomer protein complex, subunit epsilon</td>
<td>2.19</td>
<td>chr19</td>
</tr>
<tr>
<td>COPG</td>
<td>22820</td>
<td>coatomer protein complex, subunit gamma</td>
<td>2.74</td>
<td>chr3</td>
</tr>
<tr>
<td>COPZ1</td>
<td>22818</td>
<td>coatomer protein complex, subunit zeta 1</td>
<td>2.20</td>
<td>chr12</td>
</tr>
<tr>
<td>COPZ2</td>
<td>51226</td>
<td>coatomer protein complex, subunit zeta 2</td>
<td>20.86</td>
<td>chr17</td>
</tr>
<tr>
<td>COTL1</td>
<td>23406</td>
<td>coactosin-like 1 (Dictyostelium)</td>
<td>2.66</td>
<td>chr16</td>
</tr>
<tr>
<td>CPA4</td>
<td>51200</td>
<td>carboxypeptidase A4</td>
<td>9.29</td>
<td>chr7</td>
</tr>
<tr>
<td>CPEB2</td>
<td>132864</td>
<td>cytoplasmic polyadenylation element binding protein 2</td>
<td>8.67</td>
<td>chr4</td>
</tr>
<tr>
<td>CPEB4</td>
<td>80315</td>
<td>cytoplasmic polyadenylation element binding protein 4</td>
<td>2.96</td>
<td>chr5</td>
</tr>
<tr>
<td>CRAT</td>
<td>1384</td>
<td>carnitine acetyltransferase</td>
<td>3.90</td>
<td>chr9</td>
</tr>
<tr>
<td>CREB3</td>
<td>10488</td>
<td>cAMP responsive element binding protein 3</td>
<td>4.52</td>
<td>chr9</td>
</tr>
<tr>
<td>CREB3L1</td>
<td>90993</td>
<td>cAMP responsive element binding protein 3-like 1</td>
<td>13.03</td>
<td>chr11</td>
</tr>
<tr>
<td>CREB3L2</td>
<td>64764</td>
<td>cAMP responsive element binding protein 3-like 2</td>
<td>3.27</td>
<td>chr7</td>
</tr>
<tr>
<td>CRI1</td>
<td>23741</td>
<td>CREBBP/EP300 inhibitor 1 // CREBBP/EP300 inhibitor 1</td>
<td>2.73</td>
<td>chr15</td>
</tr>
<tr>
<td>CRIM1</td>
<td>51232</td>
<td>cysteine rich transmembrane BMP regulator 1 (chordin-like)</td>
<td>22.12</td>
<td>chr2</td>
</tr>
<tr>
<td>CRYL1</td>
<td>51084</td>
<td>crystallin, lambda 1</td>
<td>2.12</td>
<td>chr13</td>
</tr>
<tr>
<td>CSGlca-T</td>
<td>54480</td>
<td>chondroitin sulfate glucuronyltransferase</td>
<td>7.26</td>
<td>chr7</td>
</tr>
<tr>
<td>CSNK1D</td>
<td>1453</td>
<td>casein kinase 1, delta</td>
<td>2.07</td>
<td>chr17</td>
</tr>
<tr>
<td>CSNK1G1</td>
<td>53944</td>
<td>casein kinase 1, gamma 1</td>
<td>2.41</td>
<td>chr15</td>
</tr>
<tr>
<td>CSPG4</td>
<td>1464</td>
<td>Chondroitin sulfate proteoglycan 4 (melanoma-associated)</td>
<td>13.86</td>
<td>chr15</td>
</tr>
<tr>
<td>CSRP1</td>
<td>1465</td>
<td>cysteine and glycin-rich protein 1</td>
<td>14.42</td>
<td>chr1</td>
</tr>
<tr>
<td>CSS3</td>
<td>337876</td>
<td>chondroitin sulfate synthase 3</td>
<td>24.41</td>
<td>chr5</td>
</tr>
<tr>
<td>CTS3</td>
<td>1471</td>
<td>cystatin C (amyloid angiopathy and cerebral hemorrhage)</td>
<td>6.45</td>
<td>chr20</td>
</tr>
<tr>
<td>CTBS</td>
<td>1486</td>
<td>chitobiase, di-N-acetyl-</td>
<td>10.27</td>
<td>chr1</td>
</tr>
<tr>
<td>CTGF</td>
<td>1490</td>
<td>connective tissue growth factor</td>
<td>20.66</td>
<td>chr6</td>
</tr>
<tr>
<td>CTSB</td>
<td>1508</td>
<td>cathepsin B</td>
<td>17.12</td>
<td>chr8</td>
</tr>
<tr>
<td>CUEDC2</td>
<td>79004</td>
<td>CUE domain containing 2</td>
<td>2.04</td>
<td>chr10</td>
</tr>
<tr>
<td>CUL4B</td>
<td>8450</td>
<td>cullin 4B</td>
<td>2.80</td>
<td>chr10</td>
</tr>
<tr>
<td>CUL5</td>
<td>8065</td>
<td>cullin 5</td>
<td>2.16</td>
<td>chr11</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>CXCL1</td>
<td>2919</td>
<td>chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)</td>
<td>3.08</td>
<td>chr4</td>
</tr>
<tr>
<td>CXorf6</td>
<td>10046</td>
<td>chromosome X open reading frame 6</td>
<td>2.22</td>
<td>chrX</td>
</tr>
<tr>
<td>CXX1</td>
<td>8933</td>
<td>CAAX box 1</td>
<td>6.79</td>
<td>chrX</td>
</tr>
<tr>
<td>CYB5R1</td>
<td>51706</td>
<td>cytochrome b5 reductase 1</td>
<td>5.37</td>
<td>chr1</td>
</tr>
<tr>
<td>CYB5R3</td>
<td>1727</td>
<td>cytochrome b5 reductase 3</td>
<td>4.06</td>
<td>chr22</td>
</tr>
<tr>
<td>CYBASC3</td>
<td>220002</td>
<td>cytochrome b, ascorbate dependent 3</td>
<td>3.34</td>
<td>chr11</td>
</tr>
<tr>
<td>CYBRD1</td>
<td>79901</td>
<td>cytochrome b reductase 1</td>
<td>31.09</td>
<td>chr2</td>
</tr>
<tr>
<td>CYLD</td>
<td>1540</td>
<td>cylindromatosis (turban tumor syndrome)</td>
<td>4.52</td>
<td>chr16</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>1545</td>
<td>cytochrome P450, family 1, subfamily B, polypeptide 1</td>
<td>8.47</td>
<td>chr2</td>
</tr>
<tr>
<td>CYP2U1</td>
<td>113612</td>
<td>cytochrome P450, family 2, subfamily U, polypeptide 1</td>
<td>3.83</td>
<td>chr4</td>
</tr>
<tr>
<td>CYR61</td>
<td>3491</td>
<td>cysteine-rich, angiogenic inducer, 61</td>
<td>11.63</td>
<td>chr1</td>
</tr>
<tr>
<td>DAAM2</td>
<td>23500</td>
<td>dishevelled associated activator of morphogenesis 2</td>
<td>4.30</td>
<td>chr6</td>
</tr>
<tr>
<td>DAP</td>
<td>1611</td>
<td>death-associated protein</td>
<td>6.45</td>
<td>chr5</td>
</tr>
<tr>
<td>DAZAP2</td>
<td>9802</td>
<td>DAZ associated protein 2</td>
<td>4.86</td>
<td>chr12</td>
</tr>
<tr>
<td>DAZAP2</td>
<td>401029 // 9802</td>
<td>DAZ associated protein 2 /// similar to DAZ-associated protein 2 (Deleted in azoospermia-associated protein)</td>
<td>3.35</td>
<td>chr12</td>
</tr>
<tr>
<td>DBNL</td>
<td>28988</td>
<td>drebrin-like</td>
<td>2.02</td>
<td>chr7</td>
</tr>
<tr>
<td>DCBLD1</td>
<td>285761</td>
<td>discoidin, CUB and LCCL domain containing 1</td>
<td>6.28</td>
<td>chr6</td>
</tr>
<tr>
<td>DCTD</td>
<td>1635</td>
<td>dCMP deaminase</td>
<td>2.57</td>
<td>chr4</td>
</tr>
<tr>
<td>DDAH1</td>
<td>23576</td>
<td>dimethylarginine dimethylaminohydrolase 1</td>
<td>3.91</td>
<td>chr1</td>
</tr>
<tr>
<td>DDIT3</td>
<td>1649</td>
<td>DNA-damage-inducible transcript 3</td>
<td>3.99</td>
<td>chr12</td>
</tr>
<tr>
<td>DECR1</td>
<td>1666</td>
<td>2,4-diienoyl CoA reductase 1, mitochondrial</td>
<td>2.43</td>
<td>chr8</td>
</tr>
<tr>
<td>DEGS1</td>
<td>8560</td>
<td>degenerative spermatocyte homolog 1, lipid desaturase (Drosophila)</td>
<td>2.49</td>
<td>chr1</td>
</tr>
<tr>
<td>DGKA</td>
<td>1606</td>
<td>diacylglycerol kinase, alpha 80kDa</td>
<td>5.45</td>
<td>chr12</td>
</tr>
<tr>
<td>DHRS1</td>
<td>115817</td>
<td>dehydrogenase/reductase (SDR family) member 1</td>
<td>2.31</td>
<td>chr14</td>
</tr>
<tr>
<td>DIO2</td>
<td>1734</td>
<td>Deiodinase, iodothyronine, type II</td>
<td>14.77</td>
<td>chr14</td>
</tr>
<tr>
<td>DKFZp434C0328</td>
<td>54762</td>
<td>hypothetical protein DKFZp434C0328</td>
<td>3.29</td>
<td>chr3</td>
</tr>
<tr>
<td>DKFZp434K2435</td>
<td>84216</td>
<td>hypothetical protein DKFZp434K2435</td>
<td>4.09</td>
<td>chr12</td>
</tr>
<tr>
<td>DKFZp434L142</td>
<td>51313</td>
<td>hypothetical protein DKFZp434L142</td>
<td>11.72</td>
<td>chr4</td>
</tr>
<tr>
<td>DKFZp564D166</td>
<td>26115</td>
<td>putative ankyrin-repeat containing protein</td>
<td>3.49</td>
<td>chr17</td>
</tr>
<tr>
<td>DKFZp564J0123</td>
<td>25915</td>
<td>nuclear protein E3-3</td>
<td>2.15</td>
<td>chr3</td>
</tr>
<tr>
<td>DKFZp564K142</td>
<td>84061</td>
<td>implantation-associated protein</td>
<td>2.46</td>
<td>chrX_random</td>
</tr>
<tr>
<td>DKFZp586D0919</td>
<td>25895</td>
<td>hepatocellular carcinoma-associated antigen HCA557a</td>
<td>3.18</td>
<td>chr12</td>
</tr>
<tr>
<td>DKFZp686K1613</td>
<td>388957</td>
<td>Similar to BMP2 inducible kinase</td>
<td>3.12</td>
<td>chr2</td>
</tr>
<tr>
<td>DKFZ761B107</td>
<td>91050</td>
<td>Hypothetical protein DKFZ761B107 /// Similar to DKFZp434L187 protein</td>
<td>2.03</td>
<td>chr4</td>
</tr>
<tr>
<td>DKFZ761D112</td>
<td>84257</td>
<td>hypothetical protein DKFZ761D112</td>
<td>2.33</td>
<td>chr8</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>DKK3</td>
<td>27122</td>
<td>dickkopf homolog 3 (Xenopus laevis)</td>
<td>19.69</td>
<td>chr11</td>
</tr>
<tr>
<td>DLG1</td>
<td>1739</td>
<td>discs, large homolog 1 (Drosophila)</td>
<td>3.05</td>
<td>chr3</td>
</tr>
<tr>
<td>DMN</td>
<td>23336</td>
<td>desmuslin</td>
<td>7.70</td>
<td>chr15</td>
</tr>
<tr>
<td>DNAJB12</td>
<td>54788</td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 12</td>
<td>2.60</td>
<td>chr10</td>
</tr>
<tr>
<td>DNAJB14</td>
<td>79982</td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 14</td>
<td>2.74</td>
<td>chr4</td>
</tr>
<tr>
<td>DNAJB4</td>
<td>11080</td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 4</td>
<td>7.82</td>
<td>chr1</td>
</tr>
<tr>
<td>DNAJB9</td>
<td>4189</td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 9</td>
<td>3.73</td>
<td>chr7</td>
</tr>
<tr>
<td>DNAJC13</td>
<td>23317</td>
<td>DnaJ (Hsp40) homolog, subfamily C, member 13</td>
<td>2.71</td>
<td>chr3</td>
</tr>
<tr>
<td>DNAJC3</td>
<td>5611</td>
<td>Hypothetical protein LOC144871</td>
<td>4.16</td>
<td>chr13</td>
</tr>
<tr>
<td>DAPTP6</td>
<td>26010</td>
<td>DNA polymerase-activated protein 6</td>
<td>2.23</td>
<td>chr2</td>
</tr>
<tr>
<td>DNASE1L1</td>
<td>1774</td>
<td>deoxyribonuclease I-like 1</td>
<td>7.70</td>
<td>chrX</td>
</tr>
<tr>
<td>DNAK2</td>
<td>1783</td>
<td>dynein, cytoplasmic, light intermediate polypeptide 2</td>
<td>2.08</td>
<td>chr16</td>
</tr>
<tr>
<td>DOCK10</td>
<td>55619</td>
<td>dedicator of cytokinesis 10</td>
<td>9.82</td>
<td>chr2</td>
</tr>
<tr>
<td>DOCK2</td>
<td>1794</td>
<td>Dedicator of cytokinesis 2</td>
<td>16.79</td>
<td>chr5</td>
</tr>
<tr>
<td>DPF3</td>
<td>8110</td>
<td>D4, zinc and double PHD fingers, family 3</td>
<td>6.47</td>
<td>chr14</td>
</tr>
<tr>
<td>DPP8</td>
<td>54878</td>
<td>Dipeptidyl-peptidase 8</td>
<td>2.27</td>
<td>chr15</td>
</tr>
<tr>
<td>DPY19L4</td>
<td>286148</td>
<td>dpy-19-like 4 (C. elegans)</td>
<td>2.64</td>
<td>chr8</td>
</tr>
<tr>
<td>DRAp1</td>
<td>10589</td>
<td>DR1-associated protein 1 (negative cofactor 2 alpha)</td>
<td>2.70</td>
<td>chr11</td>
</tr>
<tr>
<td>DSP</td>
<td>1832</td>
<td>desmoplakin</td>
<td>3.83</td>
<td>chr6</td>
</tr>
<tr>
<td>DUSP1</td>
<td>1843</td>
<td>dual specificity phosphatase 1</td>
<td>9.65</td>
<td>chr5</td>
</tr>
<tr>
<td>DUSP10</td>
<td>11221</td>
<td>dual specificity phosphatase 10</td>
<td>3.51</td>
<td>chr1</td>
</tr>
<tr>
<td>DUSP14</td>
<td>11072</td>
<td>dual specificity phosphatase 14</td>
<td>2.33</td>
<td>chr17</td>
</tr>
<tr>
<td>DUSP18</td>
<td>150290</td>
<td>dual specificity phosphatase 18</td>
<td>2.04</td>
<td>chr22</td>
</tr>
<tr>
<td>DYM</td>
<td>54808</td>
<td>Dymeclin</td>
<td>2.10</td>
<td>chr18</td>
</tr>
<tr>
<td>DYLK4</td>
<td>8798</td>
<td>dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 4</td>
<td>3.97</td>
<td>chr12</td>
</tr>
<tr>
<td>DYSF</td>
<td>8291</td>
<td>dysferlin, limb girdle muscular dystrophy 2B (autosomal recessive)</td>
<td>2.48</td>
<td>chr2</td>
</tr>
<tr>
<td>EBI2</td>
<td>1880</td>
<td>Epstein-Barr virus induced gene 2 (lymphocyte-specific G protein-coupled receptor)</td>
<td>2.06</td>
<td>chr13</td>
</tr>
<tr>
<td>ECE1</td>
<td>1889</td>
<td>Endothelin converting enzyme 1</td>
<td>2.38</td>
<td>chr1</td>
</tr>
<tr>
<td>ECM1</td>
<td>1893</td>
<td>extracellular matrix protein 1</td>
<td>8.48</td>
<td>chr1</td>
</tr>
<tr>
<td>ECM2</td>
<td>1842</td>
<td>extracellular matrix protein 2, female organ and adipocyte specific</td>
<td>2.46</td>
<td>chr9</td>
</tr>
<tr>
<td>EDEM1</td>
<td>9695</td>
<td>ER degradation enhancer, mannosidase alpha-like 1</td>
<td>4.99</td>
<td>chr3</td>
</tr>
<tr>
<td>EDIL3</td>
<td>10085</td>
<td>EGF-like repeats and discoidin I-like domains 3</td>
<td>6.80</td>
<td>chr5</td>
</tr>
<tr>
<td>EDN1</td>
<td>1906</td>
<td>endothelin 1</td>
<td>3.78</td>
<td>chr6</td>
</tr>
<tr>
<td>EEA1</td>
<td>8411</td>
<td>early endosome antigen 1, 162KD</td>
<td>2.68</td>
<td>chr12</td>
</tr>
<tr>
<td>EEF1D</td>
<td>1936</td>
<td>Eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)</td>
<td>2.69</td>
<td>chr8</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>EFHA2</td>
<td>286097</td>
<td>EF-hand domain family, member A2</td>
<td>5.77</td>
<td>chr8</td>
</tr>
<tr>
<td>EHD1</td>
<td>10938</td>
<td>EH-domain containing 1</td>
<td>4.00</td>
<td>chr12</td>
</tr>
<tr>
<td>EHD2</td>
<td>30846</td>
<td>EH-domain containing 2</td>
<td>24.04</td>
<td>chr1</td>
</tr>
<tr>
<td>EHD3</td>
<td>30845</td>
<td>EH-domain containing 3</td>
<td>4.30</td>
<td>chr2</td>
</tr>
<tr>
<td>ELF5A2</td>
<td>56648</td>
<td>eukaryotic translation initiation factor 5A2</td>
<td>4.68</td>
<td>chr3</td>
</tr>
<tr>
<td>ELF1</td>
<td>1997</td>
<td>E74-like factor 1 (ets domain transcription factor)</td>
<td>2.32</td>
<td>chr13</td>
</tr>
<tr>
<td>ELF4</td>
<td>2000</td>
<td>E74-like factor 4 (ets domain transcription factor)</td>
<td>12.20</td>
<td>chrX</td>
</tr>
<tr>
<td>ELK3</td>
<td>2004</td>
<td>ELK3, ETS-domain protein (SRF accessory protein 2)</td>
<td>10.83</td>
<td>chr12</td>
</tr>
<tr>
<td>ELMOD2</td>
<td>255520</td>
<td>ELMO domain containing 2</td>
<td>2.78</td>
<td>chr4</td>
</tr>
<tr>
<td>ELOVL1</td>
<td>64834</td>
<td>elongation of very long chain fatty acids (FEN1/El02, SUR4/El03, yeast)-like 1</td>
<td>5.70</td>
<td>chr1</td>
</tr>
<tr>
<td>ELTD1</td>
<td>64123</td>
<td>EGF, latrophilin and seven transmembrane domain containing 1</td>
<td>4.27</td>
<td>chr1</td>
</tr>
<tr>
<td>EMILIN1</td>
<td>11117</td>
<td>elastin microfilbr interfacer 1</td>
<td>12.99</td>
<td>chr2</td>
</tr>
<tr>
<td>EMP3</td>
<td>2014</td>
<td>epithelial membrane protein 3</td>
<td>14.12</td>
<td>chr12</td>
</tr>
<tr>
<td>ENG</td>
<td>2022</td>
<td>endoglin (Osler-Rendu-Weber syndrome 1)</td>
<td>3.87</td>
<td>chr9</td>
</tr>
<tr>
<td>ENTPD5</td>
<td>957</td>
<td>Ectonucleoside triphosphate diphosphohydrolase 5</td>
<td>2.93</td>
<td>chr14</td>
</tr>
<tr>
<td>EPB41L1</td>
<td>2036</td>
<td>Erythrocyte membrane protein band 4.1-like 1</td>
<td>4.95</td>
<td>chr5</td>
</tr>
<tr>
<td>EPB41L3</td>
<td>23136</td>
<td>erythrocyte membrane protein band 4.1-like 3</td>
<td>6.18</td>
<td>chr18</td>
</tr>
<tr>
<td>EPHA2</td>
<td>1969</td>
<td>EPH receptor A2</td>
<td>4.81</td>
<td>chr1</td>
</tr>
<tr>
<td>EPHA5</td>
<td>2044</td>
<td>EPH receptor A5</td>
<td>6.44</td>
<td>chr4</td>
</tr>
<tr>
<td>EPIM</td>
<td>2054</td>
<td>epimorphin</td>
<td>2.12</td>
<td>chr12</td>
</tr>
<tr>
<td>EPLIN</td>
<td>51474</td>
<td>epithelial protein lost in neoplasm beta</td>
<td>6.59</td>
<td>chr12</td>
</tr>
<tr>
<td>EPRS</td>
<td>2058</td>
<td>glutamyl-prolyl-tRNA synthetase</td>
<td>2.44</td>
<td>chr1</td>
</tr>
<tr>
<td>EPS15L1</td>
<td>58513</td>
<td>epidermal growth factor receptor pathway substrate 15-like 1</td>
<td>2.32</td>
<td>chr19</td>
</tr>
<tr>
<td>ERBB2/IP</td>
<td>55914</td>
<td>erb2 interacting protein</td>
<td>4.29</td>
<td>chr5</td>
</tr>
<tr>
<td>ERO1L</td>
<td>30001</td>
<td>ERO1-like (S. cerevisiae)</td>
<td>2.78</td>
<td>chr14</td>
</tr>
<tr>
<td>ERRF1</td>
<td>54206</td>
<td>ERBB receptor feedback inhibitor 1</td>
<td>3.50</td>
<td>chr4</td>
</tr>
<tr>
<td>ETHE1</td>
<td>23474</td>
<td>ethylnalonic encephalopathy 1</td>
<td>3.35</td>
<td>chr19</td>
</tr>
<tr>
<td>ETS1</td>
<td>2113</td>
<td>v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)</td>
<td>2.07</td>
<td>chr11</td>
</tr>
<tr>
<td>ETV5</td>
<td>2119</td>
<td>ets variant gene 5 (ets-related molecule)</td>
<td>2.34</td>
<td>chr3</td>
</tr>
<tr>
<td>ETV6</td>
<td>2120</td>
<td>ets variant gene 6 (TEL oncogene)</td>
<td>2.17</td>
<td>chr12</td>
</tr>
<tr>
<td>EVC</td>
<td>2121</td>
<td>Ellis van Creveld syndrome</td>
<td>3.60</td>
<td>chr4</td>
</tr>
<tr>
<td>EVI5</td>
<td>7813</td>
<td>ecotropic viral integration site 5</td>
<td>8.09</td>
<td>chr1</td>
</tr>
<tr>
<td>EXT2</td>
<td>2132</td>
<td>exostoses (multiple) 2</td>
<td>2.27</td>
<td>chr11</td>
</tr>
<tr>
<td>F25965</td>
<td>55957</td>
<td>protein F25965</td>
<td>3.09</td>
<td>chr19</td>
</tr>
<tr>
<td>F2R</td>
<td>2149</td>
<td>coagulation factor II (thrombin) receptor</td>
<td>7.70</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>FAM14A</td>
<td>83982</td>
<td>family with sequence similarity 14, member A</td>
<td>2.10</td>
<td>chr14</td>
</tr>
<tr>
<td>FAM18B</td>
<td>51030</td>
<td>family with sequence similarity 18, member B</td>
<td>3.53</td>
<td>chr16</td>
</tr>
<tr>
<td>FAM38A</td>
<td>9780</td>
<td>family with sequence similarity 38, member A</td>
<td>3.85</td>
<td>chr16</td>
</tr>
<tr>
<td>FAM43A</td>
<td>131583</td>
<td>family with sequence similarity 43, member A</td>
<td>2.78</td>
<td>chr3</td>
</tr>
<tr>
<td>FAM54B</td>
<td>56181</td>
<td>family with sequence similarity 54, member B</td>
<td>2.01</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM55C</td>
<td>91775</td>
<td>family with sequence similarity 55, member A</td>
<td>7.99</td>
<td>chr3</td>
</tr>
<tr>
<td>FAM65A</td>
<td>79567</td>
<td>family with sequence similarity 65, member A</td>
<td>2.40</td>
<td>chr16</td>
</tr>
<tr>
<td>FAM73A</td>
<td>374986</td>
<td>family with sequence similarity 73, member A</td>
<td>3.98</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM79A</td>
<td>127262</td>
<td>family with sequence similarity 79, member A</td>
<td>2.26</td>
<td>chr1</td>
</tr>
<tr>
<td>FAM8A1</td>
<td>51439</td>
<td>family with sequence similarity 8, member A</td>
<td>3.51</td>
<td>chr6</td>
</tr>
<tr>
<td>FAM91A1</td>
<td>157769</td>
<td>family with sequence similarity 91, member A</td>
<td>2.12</td>
<td>chr8</td>
</tr>
<tr>
<td>FAP</td>
<td>2191</td>
<td>fibroblast activation protein, alpha</td>
<td>50.54</td>
<td>chr2</td>
</tr>
<tr>
<td>FAS</td>
<td>355</td>
<td>Fas (TNF receptor superfamily, member 6)</td>
<td>12.93</td>
<td>chr10</td>
</tr>
<tr>
<td>FAT4</td>
<td>79633</td>
<td>FAT tumor suppressor homolog 4 (Drosophila)</td>
<td>2.38</td>
<td>chr4</td>
</tr>
<tr>
<td>FBLIM1</td>
<td>54751</td>
<td>filamin binding LIM protein 1</td>
<td>3.76</td>
<td>chr1</td>
</tr>
<tr>
<td>FBLN2</td>
<td>2199</td>
<td>filamin 2</td>
<td>5.51</td>
<td>chr3</td>
</tr>
<tr>
<td>FBLN5</td>
<td>10516</td>
<td>filamin 5</td>
<td>4.89</td>
<td>chr14</td>
</tr>
<tr>
<td>FBXL2</td>
<td>25827</td>
<td>F-box and leucine-rich repeat protein 2</td>
<td>2.70</td>
<td>chr3</td>
</tr>
<tr>
<td>FBXL3</td>
<td>26224</td>
<td>F-box and leucine-rich repeat protein 3</td>
<td>3.82</td>
<td>chr13</td>
</tr>
<tr>
<td>FBXL5</td>
<td>26234</td>
<td>F-box and leucine-rich repeat protein 5</td>
<td>3.24</td>
<td>chr4</td>
</tr>
<tr>
<td>FBXO3</td>
<td>26273</td>
<td>F-box protein 3</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>FBXO32</td>
<td>114907</td>
<td>F-box protein 32</td>
<td>4.52</td>
<td>chr8</td>
</tr>
<tr>
<td>FBXO6</td>
<td>26270</td>
<td>F-box protein 6</td>
<td>2.71</td>
<td>chr1</td>
</tr>
<tr>
<td>FBXO8</td>
<td>26269</td>
<td>F-box protein 8</td>
<td>3.50</td>
<td>chr4</td>
</tr>
<tr>
<td>FCGRT</td>
<td>2217</td>
<td>Fc fragment of IgG, receptor, transporter, alpha</td>
<td>2.18</td>
<td>chr19</td>
</tr>
<tr>
<td>FER1L3</td>
<td>26509</td>
<td>fer-1-like 3, myoferlin (C. elegans)</td>
<td>125.57</td>
<td>chr10</td>
</tr>
<tr>
<td>FGF1</td>
<td>2246</td>
<td>fibroblast growth factor 1 (acidic)</td>
<td>4.58</td>
<td>chr5</td>
</tr>
<tr>
<td>FGF5</td>
<td>2250</td>
<td>fibroblast growth factor 5</td>
<td>2.61</td>
<td>chr4</td>
</tr>
<tr>
<td>FGFR1OP2</td>
<td>26127</td>
<td>FGFR1 oncogene partner 2</td>
<td>4.33</td>
<td>chr12</td>
</tr>
<tr>
<td>FHL1</td>
<td>2273</td>
<td>four and a half LIM domains 1</td>
<td>4.26</td>
<td>chrX</td>
</tr>
<tr>
<td>FHL2</td>
<td>2274</td>
<td>four and a half LIM domains 2</td>
<td>6.90</td>
<td>chr2</td>
</tr>
<tr>
<td>FHL3</td>
<td>2275</td>
<td>four and a half LIM domains 3</td>
<td>2.28</td>
<td>chr1</td>
</tr>
<tr>
<td>FKBP14</td>
<td>55033</td>
<td>FK506 binding protein 14, 22 kDa</td>
<td>10.09</td>
<td>chr7</td>
</tr>
<tr>
<td>FLI1</td>
<td>2313</td>
<td>Friend leukemia virus integration 1</td>
<td>17.02</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ10260</td>
<td>55106</td>
<td>likely ortholog of mouse schlafen 3</td>
<td>2.48</td>
<td>chr17</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>FLJ10808</td>
<td>55236</td>
<td>hypothetical protein FLJ10808</td>
<td>3.01</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ10980</td>
<td>56204</td>
<td>hypothetical protein FLJ10980</td>
<td>3.23</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ11259</td>
<td>55332</td>
<td>hypothetical protein FLJ11259</td>
<td>7.14</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ11273</td>
<td>54664</td>
<td>hypothetical protein FLJ11273</td>
<td>2.96</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ12649</td>
<td>79649</td>
<td>hypothetical protein FLJ12649</td>
<td>2.23</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ12681</td>
<td>64788</td>
<td>hypothetical protein FLJ12681</td>
<td>3.33</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ13391</td>
<td>84141</td>
<td>hypothetical protein FLJ13391</td>
<td>7.47</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ13448</td>
<td>80219</td>
<td>hypothetical protein FLJ13448</td>
<td>2.20</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ13710</td>
<td>79875</td>
<td>hypothetical protein FLJ13710</td>
<td>5.47</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ13855</td>
<td>65264</td>
<td>hypothetical protein FLJ13855</td>
<td>2.93</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ13868</td>
<td>64755</td>
<td>hypothetical protein FLJ13868</td>
<td>2.43</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ14213</td>
<td>79899</td>
<td>hypothetical protein FLJ14213</td>
<td>4.97</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ14800</td>
<td>84926</td>
<td>hypothetical protein FLJ14800</td>
<td>2.20</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ20186</td>
<td>54849</td>
<td>hypothetical protein FLJ20186</td>
<td>2.31</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ20254</td>
<td>54867</td>
<td>Hypothetical protein FLJ20254</td>
<td>3.45</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ20294</td>
<td>55626</td>
<td>Hypothetical protein FLJ20294</td>
<td>2.25</td>
<td>chr6</td>
</tr>
<tr>
<td>FLJ20298</td>
<td>54885</td>
<td>FLJ20298 protein</td>
<td>11.01</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ20481</td>
<td>54947</td>
<td>hypothetical protein FLJ20481</td>
<td>11.80</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ20507</td>
<td>55654</td>
<td>hypothetical protein FLJ20507</td>
<td>2.58</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ20920</td>
<td>80221</td>
<td>hypothetical protein FLJ20920</td>
<td>3.25</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ21075</td>
<td>80099</td>
<td>hypothetical protein FLJ21075</td>
<td>2.23</td>
<td>chr7</td>
</tr>
<tr>
<td>FLJ21159</td>
<td>79884</td>
<td>ASAP</td>
<td>2.55</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ21657</td>
<td>64417</td>
<td>hypothetical protein FLJ21657</td>
<td>2.99</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ22028</td>
<td>79912</td>
<td>hypothetical protein FLJ22028</td>
<td>3.38</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ22222</td>
<td>79701</td>
<td>hypothetical protein FLJ22222</td>
<td>2.66</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ22833</td>
<td>64859</td>
<td>hypothetical protein FLJ22833</td>
<td>29.06</td>
<td>chr2</td>
</tr>
<tr>
<td>FLJ22965</td>
<td>63932</td>
<td>hypothetical protein FLJ22965</td>
<td>2.02</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ23514</td>
<td>60494</td>
<td>hypothetical protein FLJ23514</td>
<td>2.32</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ23867</td>
<td>200058</td>
<td>hypothetical protein FLJ23867</td>
<td>2.65</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ30594</td>
<td>150622</td>
<td>hypothetical locus FLJ30594</td>
<td>3.70</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ30596</td>
<td>133686</td>
<td>hypothetical protein FLJ30596</td>
<td>2.77</td>
<td>chr5</td>
</tr>
<tr>
<td>FLJ31033</td>
<td>91351</td>
<td>hypothetical protein FLJ31033</td>
<td>2.62</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ34236</td>
<td>283373</td>
<td>hypothetical protein FLJ34236</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>FLJ34922</td>
<td>91607</td>
<td>likely ortholog of mouse schlafen 8/9</td>
<td>3.11</td>
<td>chr17</td>
</tr>
<tr>
<td>FLJ36748</td>
<td>134265</td>
<td>hypothetical protein FLJ36748</td>
<td>2.42</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>FLJ38101</td>
<td>255919</td>
<td>hypothetical protein FLJ38101</td>
<td>2.28</td>
<td>chr16</td>
</tr>
<tr>
<td>FLJ38725</td>
<td>144811</td>
<td>hypothetical protein FLJ38725</td>
<td>7.54</td>
<td>chr13</td>
</tr>
<tr>
<td>FLJ39370</td>
<td>132720</td>
<td>hypothetical protein FLJ39370</td>
<td>6.14</td>
<td>chr4</td>
</tr>
<tr>
<td>FLJ39441</td>
<td>144108</td>
<td>hypothetical protein FLJ39441</td>
<td>2.18</td>
<td>chr11</td>
</tr>
<tr>
<td>FLJ43339</td>
<td>388115</td>
<td>FLJ43339 protein</td>
<td>4.21</td>
<td>chr15</td>
</tr>
<tr>
<td>FLJ44635</td>
<td>392490</td>
<td>TPT1-like protein</td>
<td>2.26</td>
<td>chrX</td>
</tr>
<tr>
<td>FLJ90166</td>
<td>164284</td>
<td>hypothetical protein FLJ90166</td>
<td>7.80</td>
<td>chr20</td>
</tr>
<tr>
<td>FLNA</td>
<td>2316</td>
<td>filamin A, alpha (actin binding protein 280)</td>
<td>6.93</td>
<td>chrX</td>
</tr>
<tr>
<td>FLNC</td>
<td>2318</td>
<td>filamin C, gamma (actin binding protein 280)</td>
<td>9.72</td>
<td>chr7</td>
</tr>
<tr>
<td>FLYWCH1</td>
<td>84256</td>
<td>FLYWCH-type zinc finger 1</td>
<td>3.14</td>
<td>chr16</td>
</tr>
<tr>
<td>FMN2</td>
<td>56776</td>
<td>formin 2</td>
<td>6.91</td>
<td>chr1</td>
</tr>
<tr>
<td>FN1</td>
<td>2335</td>
<td>fibronectin 1</td>
<td>178.10</td>
<td>chr2</td>
</tr>
<tr>
<td>FNDC3B</td>
<td>64778</td>
<td>fibronectin type III domain containing 3B</td>
<td>7.30</td>
<td>chr3</td>
</tr>
<tr>
<td>FOSL1</td>
<td>8061</td>
<td>FOS-like antigen 1</td>
<td>3.19</td>
<td>chr11</td>
</tr>
<tr>
<td>FOXD1</td>
<td>2297</td>
<td>forkhead box D1</td>
<td>25.91</td>
<td>chr5</td>
</tr>
<tr>
<td>FOXF1</td>
<td>2294</td>
<td>forkhead box F1</td>
<td>8.38</td>
<td>chr16</td>
</tr>
<tr>
<td>FOXF2</td>
<td>2295</td>
<td>forkhead box F2</td>
<td>3.12</td>
<td>chr6</td>
</tr>
<tr>
<td>FOXJ2</td>
<td>55810</td>
<td>forkhead box J2</td>
<td>2.42</td>
<td>chr12</td>
</tr>
<tr>
<td>FOXL1</td>
<td>2300</td>
<td>Forkhead box L1</td>
<td>6.23</td>
<td>chr16</td>
</tr>
<tr>
<td>FREC</td>
<td>23413</td>
<td>Frequenin homolog (Drosophila)</td>
<td>2.16</td>
<td>chr9</td>
</tr>
<tr>
<td>FRS2</td>
<td>10818</td>
<td>Fibroblast growth factor receptor substrate 2</td>
<td>2.35</td>
<td>chr12</td>
</tr>
<tr>
<td>FSTL1</td>
<td>11167</td>
<td>follistatin-like 1</td>
<td>4.78</td>
<td>chr3</td>
</tr>
<tr>
<td>FSTL3</td>
<td>10272</td>
<td>follistatin-like 3 (secreted glycoprotein)</td>
<td>6.37</td>
<td>chr19</td>
</tr>
<tr>
<td>FTH1</td>
<td>2495</td>
<td>ferritin, heavy polypeptide 1</td>
<td>2.38</td>
<td>chr11</td>
</tr>
<tr>
<td>FTL</td>
<td>2512</td>
<td>Ferritin, light polypeptide</td>
<td>2.50</td>
<td>chrX</td>
</tr>
<tr>
<td>FUT6</td>
<td>2528</td>
<td>Fucosyltransferase 6 (alpha (1,3) fucosyltransferase)</td>
<td>2.79</td>
<td>chr16</td>
</tr>
<tr>
<td>FVT1</td>
<td>2531</td>
<td>Follicular lymphoma variant translocation 1</td>
<td>3.31</td>
<td>chr18</td>
</tr>
<tr>
<td>FYCO1</td>
<td>79443</td>
<td>FYVE and coiled-coil domain containing 1</td>
<td>3.80</td>
<td>chr3</td>
</tr>
<tr>
<td>FZD6</td>
<td>8323</td>
<td>frizzled homolog 6 (Drosophila)</td>
<td>5.16</td>
<td>chr8</td>
</tr>
<tr>
<td>GABARAP</td>
<td>11337</td>
<td>GABA(A) receptor-associated protein</td>
<td>2.04</td>
<td>chr17</td>
</tr>
<tr>
<td>GABRB1</td>
<td>2560</td>
<td>gamma-aminobutyric acid (GABA) A receptor, beta 1</td>
<td>2.41</td>
<td>chr4</td>
</tr>
<tr>
<td>GADD45A</td>
<td>1647</td>
<td>growth arrest and DNA-damage-inducible, alpha</td>
<td>11.34</td>
<td>chr1</td>
</tr>
<tr>
<td>GADD45B</td>
<td>4616</td>
<td>growth arrest and DNA-damage-inducible, beta</td>
<td>13.14</td>
<td>chr19</td>
</tr>
<tr>
<td>GALNACT-2</td>
<td>55454</td>
<td>chondroitin sulfate GalNAcT-2</td>
<td>6.52</td>
<td>chr10</td>
</tr>
<tr>
<td>GALNT2</td>
<td>2590</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2)</td>
<td>6.45</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>GALNT4</td>
<td>8693</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 4 (GalNAc-T4)</td>
<td>3.36</td>
<td>chr12</td>
</tr>
<tr>
<td>GALNT5</td>
<td>11227</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 5 (GalNAc-T5)</td>
<td>6.70</td>
<td>chr2</td>
</tr>
<tr>
<td>GANAB</td>
<td>23193</td>
<td>glucosidase, alpha; neutral AB</td>
<td>2.08</td>
<td>chr11</td>
</tr>
<tr>
<td>GAS2L1</td>
<td>10634</td>
<td>growth arrest-specific 2 like 1</td>
<td>3.98</td>
<td>chr22</td>
</tr>
<tr>
<td>GATA2</td>
<td>2624</td>
<td>GATA binding protein 2</td>
<td>5.09</td>
<td>chr3</td>
</tr>
<tr>
<td>GATA6</td>
<td>2627</td>
<td>GATA binding protein 6</td>
<td>9.85</td>
<td>chr18</td>
</tr>
<tr>
<td>GBA</td>
<td>2629</td>
<td>Glucosidase, beta; acid (includes glucosylceramidase)</td>
<td>4.52</td>
<td>chr1</td>
</tr>
<tr>
<td>GBA</td>
<td>2629 // 2630</td>
<td>glucosidase, beta; acid (includes glucosylceramidase) /// glucosidase, beta; acid, pseudogene</td>
<td>2.77</td>
<td>chr1</td>
</tr>
<tr>
<td>GBE1</td>
<td>2632</td>
<td>glucan (1,4-alpha-), branching enzyme 1 (glycogen branching enzyme, Andersen disease, glycogen storage disease type III)</td>
<td>5.34</td>
<td>chr3</td>
</tr>
<tr>
<td>GBP1</td>
<td>2633</td>
<td>guanylate binding protein 1, interferon-inducible, 67kDa</td>
<td>28.18</td>
<td>chr1</td>
</tr>
<tr>
<td>GBP2</td>
<td>2634</td>
<td>guanylate binding protein 2, interferon-inducible /// guanylate binding protein 2, interferon-inducible</td>
<td>3.60</td>
<td>chr1</td>
</tr>
<tr>
<td>GBP3</td>
<td>2635</td>
<td>guanylate binding protein 3</td>
<td>34.83</td>
<td>chr1</td>
</tr>
<tr>
<td>GDF15</td>
<td>9518</td>
<td>growth differentiation factor 15</td>
<td>17.75</td>
<td>chr19</td>
</tr>
<tr>
<td>GEM</td>
<td>2669</td>
<td>GTP binding protein overexpressed in skeletal muscle</td>
<td>4.85</td>
<td>chr8</td>
</tr>
<tr>
<td>GHR</td>
<td>2690</td>
<td>growth hormone receptor</td>
<td>2.30</td>
<td>chr5</td>
</tr>
<tr>
<td>GGT2</td>
<td>9815</td>
<td>G protein-coupled receptor kinase interactor 2</td>
<td>3.76</td>
<td>chr12</td>
</tr>
<tr>
<td>GLIPR1</td>
<td>11010</td>
<td>GLI pathogenesis-related 1 (glioma)</td>
<td>110.49</td>
<td>chr12</td>
</tr>
<tr>
<td>GLIS1</td>
<td>148979</td>
<td>GLIS family zinc finger 1</td>
<td>2.87</td>
<td>chr1</td>
</tr>
<tr>
<td>GLRX</td>
<td>2745</td>
<td>glutaredoxin (thioltransferase)</td>
<td>2.97</td>
<td>chr14</td>
</tr>
<tr>
<td>GLRX2</td>
<td>51022</td>
<td>glutaredoxin 2</td>
<td>3.23</td>
<td>chr1</td>
</tr>
<tr>
<td>GLT8D1</td>
<td>55830</td>
<td>glycosyltransferase 8 domain containing 1</td>
<td>2.60</td>
<td>chr3</td>
</tr>
<tr>
<td>GLT8D2</td>
<td>83468</td>
<td>glycosyltransferase 8 domain containing 2</td>
<td>12.49</td>
<td>chr12</td>
</tr>
<tr>
<td>GLTP</td>
<td>51228</td>
<td>glycolipid transfer protein</td>
<td>2.84</td>
<td>chr12</td>
</tr>
<tr>
<td>GlyBP</td>
<td>9731</td>
<td>glycine-, glutamate-, thienylcyclohexylpiperidine-binding protein</td>
<td>3.62</td>
<td>chr1</td>
</tr>
<tr>
<td>GNA11</td>
<td>2767</td>
<td>G protein, alpha 11 (Gq class)</td>
<td>2.96</td>
<td>chr19</td>
</tr>
<tr>
<td>GNA11</td>
<td>2770</td>
<td>guanine nucleotide binding protein (G protein), alpha 11 (Gq class)</td>
<td>2.56</td>
<td>chr19</td>
</tr>
<tr>
<td>GNA12</td>
<td>2771</td>
<td>guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1</td>
<td>2.96</td>
<td>chr3</td>
</tr>
<tr>
<td>GNAO1</td>
<td>2775</td>
<td>guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O</td>
<td>2.19</td>
<td>chr16</td>
</tr>
<tr>
<td>GNB4</td>
<td>59345</td>
<td>guanine nucleotide binding protein (G protein), beta polypeptide 4</td>
<td>2.63</td>
<td>chr3</td>
</tr>
<tr>
<td>GNG11</td>
<td>2791</td>
<td>guanine nucleotide binding protein (G protein), gamma 11</td>
<td>4.07</td>
<td>chr7</td>
</tr>
<tr>
<td>GNPDA2</td>
<td>132789</td>
<td>glucosamine-6-phosphate deaminase 2</td>
<td>4.78</td>
<td>chr4</td>
</tr>
<tr>
<td>GNS</td>
<td>2799</td>
<td>glucosamine (N-acetyl)-6-sulfatase (Sanfilippo disease IIID)</td>
<td>6.57</td>
<td>chr12</td>
</tr>
<tr>
<td>GOLGA2</td>
<td>2801</td>
<td>golgi autoantigen, golgin subfamily a, 2</td>
<td>2.99</td>
<td>chr9</td>
</tr>
<tr>
<td>GOLGA3</td>
<td>2802</td>
<td>golgi autoantigen, golgin subfamily a, 3</td>
<td>3.30</td>
<td>chr12</td>
</tr>
<tr>
<td>GOLGB1</td>
<td>2804</td>
<td>Golgi autoantigen, golgin subfamily b, macrogolgin (with transmembrane signal), 1</td>
<td>2.12</td>
<td>chr3</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>GOLPH4</td>
<td>27333</td>
<td>golgi phosphoprotein 4</td>
<td>3.03</td>
<td>chr3</td>
</tr>
<tr>
<td>GOLT1B</td>
<td>51026</td>
<td>golgi transport 1 homolog B (S. cerevisiae)</td>
<td>7.34</td>
<td>chr12</td>
</tr>
<tr>
<td>GIRK1</td>
<td>9527</td>
<td>golgi SNAP receptor complex member 1</td>
<td>2.31</td>
<td>chr17</td>
</tr>
<tr>
<td>GPR124</td>
<td>25960</td>
<td>G protein-coupled receptor 124</td>
<td>6.41</td>
<td>chr8</td>
</tr>
<tr>
<td>GPR126</td>
<td>57211</td>
<td>G protein-coupled receptor 126</td>
<td>3.17</td>
<td>chr6</td>
</tr>
<tr>
<td>GPR155</td>
<td>151556</td>
<td>G protein-coupled receptor 155</td>
<td>5.24</td>
<td>chr2</td>
</tr>
<tr>
<td>GPRC5A</td>
<td>9052</td>
<td>G protein-coupled receptor, family C, group 5, member A</td>
<td>17.86</td>
<td>chr12</td>
</tr>
<tr>
<td>GRN</td>
<td>2896</td>
<td>granulin</td>
<td>2.32</td>
<td>chr17</td>
</tr>
<tr>
<td>GSN</td>
<td>2934</td>
<td>gelsolin (amyloidosis, Finnish type)</td>
<td>5.06</td>
<td>chr9</td>
</tr>
<tr>
<td>GSTK1</td>
<td>373156</td>
<td>glutathione S-transferase kappa 1</td>
<td>2.08</td>
<td>chr7</td>
</tr>
<tr>
<td>GSTM2</td>
<td>2946</td>
<td>glutathione S-transferase M2 (muscle)</td>
<td>2.11</td>
<td>chr1</td>
</tr>
<tr>
<td>GTF2H1</td>
<td>2965</td>
<td>general transcription factor IIH, polypeptide 1, 62kDa</td>
<td>2.29</td>
<td>chr11</td>
</tr>
<tr>
<td>GTPBP5</td>
<td>26164</td>
<td>GTP binding protein 5 (putative)</td>
<td>2.86</td>
<td>chr20</td>
</tr>
<tr>
<td>GU1K1</td>
<td>2987</td>
<td>guanylate kinase 1 / guanylate kinase 1</td>
<td>2.41</td>
<td>chr1</td>
</tr>
<tr>
<td>H6PD</td>
<td>9563</td>
<td>hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase)</td>
<td>4.63</td>
<td>chr1</td>
</tr>
<tr>
<td>HBEFG</td>
<td>1839</td>
<td>heparin-binding EGF-like growth factor</td>
<td>11.83</td>
<td>chr5</td>
</tr>
<tr>
<td>HBP1</td>
<td>26959</td>
<td>HMG-box transcription factor 1</td>
<td>2.71</td>
<td>chr7</td>
</tr>
<tr>
<td>HCF2C</td>
<td>29915</td>
<td>host cell factor C2</td>
<td>3.62</td>
<td>chr12</td>
</tr>
<tr>
<td>HDLBP</td>
<td>3069</td>
<td>high density lipoprotein binding protein (vigilin)</td>
<td>3.06</td>
<td>chr2</td>
</tr>
<tr>
<td>HECTD2</td>
<td>143279</td>
<td>HECT domain containing 2</td>
<td>2.37</td>
<td>chr10</td>
</tr>
<tr>
<td>HERC4</td>
<td>26091</td>
<td>hect domain and RLD 4</td>
<td>2.76</td>
<td>chr10</td>
</tr>
<tr>
<td>HERPUD1</td>
<td>9709</td>
<td>homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1</td>
<td>9.52</td>
<td>chr16</td>
</tr>
<tr>
<td>HIF1A</td>
<td>3091</td>
<td>hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)</td>
<td>2.04</td>
<td>chr14</td>
</tr>
<tr>
<td>HIST1H2BC</td>
<td>8347</td>
<td>histone 1, H2bc</td>
<td>2.42</td>
<td>chr6</td>
</tr>
<tr>
<td>HIST1H4H</td>
<td>8365</td>
<td>histone 1, H4h</td>
<td>2.57</td>
<td>chr6</td>
</tr>
<tr>
<td>HIVEP3</td>
<td>59269</td>
<td>Human immunodeficiency virus type I enhancer binding protein 3</td>
<td>2.40</td>
<td>chr1</td>
</tr>
<tr>
<td>HLA-B</td>
<td>3106</td>
<td>major histocompatibility complex, class I, B</td>
<td>2.92</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-C</td>
<td>3107</td>
<td>major histocompatibility complex, class I, C</td>
<td>2.61</td>
<td>chr6</td>
</tr>
<tr>
<td>HLA-E</td>
<td>3133</td>
<td>major histocompatibility complex, class I, E</td>
<td>5.94</td>
<td>chr6</td>
</tr>
<tr>
<td>HLX1</td>
<td>3142</td>
<td>H2.0-like homeo box 1 (Drosophila)</td>
<td>2.35</td>
<td>chr1</td>
</tr>
<tr>
<td>HNRPLL</td>
<td>92906</td>
<td>heterogeneous nuclear ribonucleoprotein L-like</td>
<td>2.32</td>
<td>chr2</td>
</tr>
<tr>
<td>HNRPU2</td>
<td>221092</td>
<td>heterogeneous nuclear ribonucleoprotein U-like 2</td>
<td>2.01</td>
<td>chr11</td>
</tr>
<tr>
<td>HOM-TES-103</td>
<td>25900</td>
<td>HOM-TES-103 tumor antigen-like</td>
<td>2.52</td>
<td>chr12</td>
</tr>
<tr>
<td>HOOK3</td>
<td>84376</td>
<td>Hook homolog 3 (Drosophila)</td>
<td>2.95</td>
<td>chr8</td>
</tr>
<tr>
<td>HOXB7</td>
<td>3217</td>
<td>homeo box B7</td>
<td>2.76</td>
<td>chr17</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>HPCAL1</td>
<td>3241</td>
<td>hippocalcin-like 1</td>
<td>3.08</td>
<td>chr2</td>
</tr>
<tr>
<td>HHR1</td>
<td>3269</td>
<td>histamine receptor H1</td>
<td>9.88</td>
<td>chr3</td>
</tr>
<tr>
<td>HSPB8</td>
<td>26353</td>
<td>heat shock 22kDa protein</td>
<td>9.67</td>
<td>chr12</td>
</tr>
<tr>
<td>HSPG2</td>
<td>3339</td>
<td>heparan sulfate proteoglycan 2 (perlecan)</td>
<td>4.94</td>
<td>chr12</td>
</tr>
<tr>
<td>HT008</td>
<td>55852</td>
<td>uncharacterized hypothalamus protein HT008</td>
<td>2.11</td>
<td>chr17</td>
</tr>
<tr>
<td>HTRA1</td>
<td>5654</td>
<td>HtrA serine peptidase 1</td>
<td>7.83</td>
<td>chr10</td>
</tr>
<tr>
<td>IBDRC1</td>
<td>154214</td>
<td>IBR domain containing 1</td>
<td>3.31</td>
<td>chr6</td>
</tr>
<tr>
<td>ICHTHYN</td>
<td>348938</td>
<td>ichthyin protein</td>
<td>7.55</td>
<td>chr5</td>
</tr>
<tr>
<td>ICK</td>
<td>22858</td>
<td>intestinal cell (MAK-like) kinase</td>
<td>2.16</td>
<td>chr6</td>
</tr>
<tr>
<td>IDS</td>
<td>3423</td>
<td>iduronate 2-sulfatase (Hunter syndrome)</td>
<td>6.12</td>
<td>chrX</td>
</tr>
<tr>
<td>IER3</td>
<td>8870</td>
<td>immediate early response 3</td>
<td>22.38</td>
<td>chr6</td>
</tr>
<tr>
<td>IER3IP1</td>
<td>51124</td>
<td>immediate early response 3 interacting protein 1</td>
<td>2.60</td>
<td>chr18</td>
</tr>
<tr>
<td>IER5</td>
<td>51278</td>
<td>immediate early response 5</td>
<td>5.96</td>
<td>chr1</td>
</tr>
<tr>
<td>IFIT2</td>
<td>3433</td>
<td>interferon-induced protein with tetratricopeptide repeats 2</td>
<td>2.94</td>
<td>chr10</td>
</tr>
<tr>
<td>IFIT3</td>
<td>3437</td>
<td>interferon-induced protein with tetratricopeptide repeats 3</td>
<td>3.61</td>
<td>chr10</td>
</tr>
<tr>
<td>IFIT5</td>
<td>24138</td>
<td>interferon-induced protein with tetratricopeptide repeats 5</td>
<td>4.05</td>
<td>chr10</td>
</tr>
<tr>
<td>IFNAR1</td>
<td>3454</td>
<td>interferon (alpha, beta and omega) receptor 1</td>
<td>4.25</td>
<td>chr21</td>
</tr>
<tr>
<td>IFNGR2</td>
<td>3460</td>
<td>interferon gamma receptor 2 (interferon gamma transducer 1)</td>
<td>2.13</td>
<td>chr21</td>
</tr>
<tr>
<td>IFT20</td>
<td>90410</td>
<td>intraflagellar transport protein IFT20</td>
<td>3.44</td>
<td>chr17</td>
</tr>
<tr>
<td>IGBP4</td>
<td>3487</td>
<td>insulin-like growth factor binding protein 4</td>
<td>4.71</td>
<td>chr17</td>
</tr>
<tr>
<td>IKBKE</td>
<td>9641</td>
<td>inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon</td>
<td>2.48</td>
<td>chr1</td>
</tr>
<tr>
<td>IL10RB</td>
<td>3588</td>
<td>interleukin 10 receptor, beta</td>
<td>6.65</td>
<td>chr21</td>
</tr>
<tr>
<td>IL11</td>
<td>3589</td>
<td>interleukin 11</td>
<td>5.73</td>
<td>chr19</td>
</tr>
<tr>
<td>IL13RA1</td>
<td>3597</td>
<td>interleukin 13 receptor, alpha 1</td>
<td>11.07</td>
<td>chrX</td>
</tr>
<tr>
<td>IL15</td>
<td>3600</td>
<td>interleukin 15</td>
<td>3.11</td>
<td>chr4</td>
</tr>
<tr>
<td>IL1RAP</td>
<td>3556</td>
<td>interleukin 1 receptor accessory protein</td>
<td>2.59</td>
<td>chr3</td>
</tr>
<tr>
<td>IL6</td>
<td>3569</td>
<td>interleukin 6 (interferon, beta 2)</td>
<td>3.36</td>
<td>chr7</td>
</tr>
<tr>
<td>IL7R</td>
<td>3575</td>
<td>interleukin 7 receptor</td>
<td>9.35</td>
<td>chr5</td>
</tr>
<tr>
<td>IL8</td>
<td>3576</td>
<td>interleukin 8</td>
<td>14.71</td>
<td>chr4</td>
</tr>
<tr>
<td>ILK</td>
<td>3611</td>
<td>integrin-linked kinase</td>
<td>3.30</td>
<td>chr11</td>
</tr>
<tr>
<td>IMPAD1</td>
<td>54928</td>
<td>inositol monophosphatase domain containing 1</td>
<td>4.98</td>
<td>chr8</td>
</tr>
<tr>
<td>IMPDH1</td>
<td>3614</td>
<td>IMP (inosine monophosphate) dehydrogenase 1</td>
<td>2.30</td>
<td>chr7</td>
</tr>
<tr>
<td>INHBA</td>
<td>3624</td>
<td>inhibin, beta A (activin A, activin AB alpha polypeptide)</td>
<td>113.49</td>
<td>chr7</td>
</tr>
<tr>
<td>NPP4B</td>
<td>8821</td>
<td>inositol polyphosphate-4-phosphatase, type II, 105kDa</td>
<td>7.24</td>
<td>chr4</td>
</tr>
<tr>
<td>NPP5A</td>
<td>3632</td>
<td>inositol polyphosphate-5-phosphatase, 40kDa</td>
<td>2.00</td>
<td>chr10</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>IQWD1</td>
<td>55827</td>
<td>IQ motif and WD repeats 1</td>
<td>3.48</td>
<td>chr1</td>
</tr>
<tr>
<td>IRAK2</td>
<td>3656</td>
<td>interleukin-1 receptor-associated kinase 2</td>
<td>4.82</td>
<td>chr3</td>
</tr>
<tr>
<td>IFN2BP2</td>
<td>359948</td>
<td>interferon regulatory factor 2 binding protein 2</td>
<td>3.69</td>
<td>chr1</td>
</tr>
<tr>
<td>ISGF3G</td>
<td>10379</td>
<td>interferon-stimulated transcription factor 3, gamma 48kDa</td>
<td>2.21</td>
<td>chr14</td>
</tr>
<tr>
<td>ITGA11</td>
<td>22801</td>
<td>integrin, alpha 11</td>
<td>12.78</td>
<td>chr15</td>
</tr>
<tr>
<td>ITGA2</td>
<td>3673</td>
<td>integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)</td>
<td>8.92</td>
<td>chr5</td>
</tr>
<tr>
<td>ITGA3</td>
<td>3675</td>
<td>integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 receptor)</td>
<td>6.45</td>
<td>chr17</td>
</tr>
<tr>
<td>ITGA5</td>
<td>3678</td>
<td>integrin, alpha 5 (fibronectin receptor, alpha polypeptide)</td>
<td>14.20</td>
<td>chr12</td>
</tr>
<tr>
<td>ITGB1</td>
<td>3688</td>
<td>integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)</td>
<td>8.89</td>
<td>chr10</td>
</tr>
<tr>
<td>ITGB1BP1</td>
<td>9270</td>
<td>integrin beta 1 binding protein 1</td>
<td>3.04</td>
<td>chr2</td>
</tr>
<tr>
<td>ITGB3</td>
<td>3690</td>
<td>integrin, beta 3 (platelet glycoprotein Illa, antigen CD61)</td>
<td>3.21</td>
<td>chr17</td>
</tr>
<tr>
<td>ITM2B</td>
<td>9445</td>
<td>integral membrane protein 2B</td>
<td>2.02</td>
<td>chr13</td>
</tr>
<tr>
<td>ITPR2</td>
<td>3709</td>
<td>Family with sequence similarity 20, member C</td>
<td>2.21</td>
<td>chr12</td>
</tr>
<tr>
<td>JAK1</td>
<td>3716 /// 391045</td>
<td>Janus kinase 1 (a protein tyrosine kinase) // similar to Solute carrier family 2, facilitated glucose transport</td>
<td>9.31</td>
<td>chr1</td>
</tr>
<tr>
<td>JAK2</td>
<td>3717</td>
<td>Janus kinase 2 (a protein tyrosine kinase)</td>
<td>2.41</td>
<td>chr9</td>
</tr>
<tr>
<td>JRLK</td>
<td>8690</td>
<td>jerky homolog-like (mouse)</td>
<td>2.56</td>
<td>chr11</td>
</tr>
<tr>
<td>JUN</td>
<td>3725</td>
<td>v-jun sarcoma virus 17 oncogene homolog (avian)</td>
<td>5.16</td>
<td>chr1</td>
</tr>
<tr>
<td>JUND</td>
<td>3727</td>
<td>jun D proto-oncogene</td>
<td>2.01</td>
<td>chr19</td>
</tr>
<tr>
<td>KATNAL1</td>
<td>84056</td>
<td>katanin p60 subunit A-like 1</td>
<td>3.79</td>
<td>chr13</td>
</tr>
<tr>
<td>KCNG1</td>
<td>3755</td>
<td>potassium voltage-gated channel, subfamily G, member 1</td>
<td>3.92</td>
<td>chr20</td>
</tr>
<tr>
<td>KCNMA1</td>
<td>3778</td>
<td>potassium large conductance calcium-activated channel, subfamily M, alpha member 1</td>
<td>18.21</td>
<td>chr10</td>
</tr>
<tr>
<td>KCTD10</td>
<td>83892</td>
<td>potassium channel tetramerisation domain containing 10</td>
<td>3.83</td>
<td>chr12</td>
</tr>
<tr>
<td>KCTD11</td>
<td>147040</td>
<td>potassium channel tetramerisation domain containing 11</td>
<td>2.09</td>
<td>chr17</td>
</tr>
<tr>
<td>KCTD18</td>
<td>130535</td>
<td>potassium channel tetramerisation domain containing 18</td>
<td>4.78</td>
<td>chr2</td>
</tr>
<tr>
<td>KCTD9</td>
<td>54793</td>
<td>potassium channel tetramerisation domain containing 9</td>
<td>2.44</td>
<td>chr9</td>
</tr>
<tr>
<td>KDEL1R2</td>
<td>11014</td>
<td>KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2</td>
<td>4.73</td>
<td>chr7</td>
</tr>
<tr>
<td>KDEL3R3</td>
<td>11015</td>
<td>KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3</td>
<td>43.78</td>
<td>chr22</td>
</tr>
<tr>
<td>KIAA0063</td>
<td>9929</td>
<td>KIAA0063 gene product</td>
<td>2.75</td>
<td>chr22</td>
</tr>
<tr>
<td>KIAA0090</td>
<td>23065</td>
<td>KIAA0090</td>
<td>2.14</td>
<td>chr1</td>
</tr>
<tr>
<td>KIAA0143</td>
<td>23167</td>
<td>KIAA0143 protein</td>
<td>2.03</td>
<td>chr8</td>
</tr>
<tr>
<td>KIAA0256</td>
<td>9728</td>
<td>KIAA0256 gene product</td>
<td>2.42</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA0268</td>
<td>77 // 375056 // 4</td>
<td>C219-reactive peptide // AAAP6077 // similar to C219-reactive peptide</td>
<td>2.32</td>
<td>chr1_random</td>
</tr>
<tr>
<td>KIAA0310</td>
<td>9919</td>
<td>KIAA0310</td>
<td>2.07</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA0372</td>
<td>9652</td>
<td>KIAA0372</td>
<td>4.17</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA0427</td>
<td>9811</td>
<td>KIAA0427</td>
<td>4.02</td>
<td>chr18</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>KIAA0470</td>
<td>9859</td>
<td>KIAA0470</td>
<td>2.15</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA0527</td>
<td>26032</td>
<td>KIAA0527 protein</td>
<td>2.69</td>
<td>chr3</td>
</tr>
<tr>
<td>KIAA0543</td>
<td>23145</td>
<td>likely ortholog of mouse SCO-spondin</td>
<td>2.03</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA0652</td>
<td>9776</td>
<td>KIAA0652 gene product</td>
<td>3.19</td>
<td>chr11</td>
</tr>
<tr>
<td>KIAA0692</td>
<td>23141</td>
<td>KIAA0692 protein</td>
<td>2.19</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA0776</td>
<td>23376</td>
<td>KIAA0776</td>
<td>2.88</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA0802</td>
<td>23255</td>
<td>KIAA0802</td>
<td>2.25</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA1040</td>
<td>23041</td>
<td>KIAA1040 protein</td>
<td>2.82</td>
<td>chr12</td>
</tr>
<tr>
<td>KIAA1055</td>
<td>23102</td>
<td>KIAA1055 protein</td>
<td>2.42</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA1181</td>
<td>57222</td>
<td>endoplasmic reticulum-golgi intermediate compartment 32 kDa protein</td>
<td>6.03</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA1199</td>
<td>57214</td>
<td>KIAA1199</td>
<td>90.25</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA1432</td>
<td>57589</td>
<td>KIAA1432</td>
<td>4.51</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA1458</td>
<td>57606</td>
<td>KIAA1458 protein</td>
<td>2.67</td>
<td>chr4</td>
</tr>
<tr>
<td>KIAA1462</td>
<td>57608</td>
<td>KIAA1462</td>
<td>4.78</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1539</td>
<td>80256</td>
<td>KIAA1539</td>
<td>4.18</td>
<td>chr9</td>
</tr>
<tr>
<td>KIAA1600</td>
<td>57700</td>
<td>KIAA1600</td>
<td>4.24</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1632</td>
<td>57724</td>
<td>KIAA1632</td>
<td>3.06</td>
<td>chr18</td>
</tr>
<tr>
<td>KIAA1715</td>
<td>80856</td>
<td>KIAA1715</td>
<td>5.84</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1754</td>
<td>85450</td>
<td>KIAA1754</td>
<td>2.75</td>
<td>chr10</td>
</tr>
<tr>
<td>KIAA1912</td>
<td>114800</td>
<td>KIAA1912 protein</td>
<td>6.59</td>
<td>chr2</td>
</tr>
<tr>
<td>KIAA1913</td>
<td>114801</td>
<td>KIAA1913</td>
<td>2.60</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1949</td>
<td>170954</td>
<td>KIAA1949</td>
<td>7.66</td>
<td>chr6</td>
</tr>
<tr>
<td>KIAA1961</td>
<td>96459</td>
<td>KIAA1961 gene</td>
<td>2.24</td>
<td>chr5</td>
</tr>
<tr>
<td>KIAA1971</td>
<td>123720</td>
<td>similar to junction-mediating and regulatory protein p300 JMY</td>
<td>2.72</td>
<td>chr15</td>
</tr>
<tr>
<td>KIAA1972</td>
<td>89970</td>
<td>KIAA1972 protein</td>
<td>2.26</td>
<td>chr16</td>
</tr>
<tr>
<td>KIF5B</td>
<td>3799</td>
<td>kinesin family member 5B</td>
<td>3.38</td>
<td>chr10</td>
</tr>
<tr>
<td>KITLG</td>
<td>4254</td>
<td>KIT ligand</td>
<td>12.81</td>
<td>chr12</td>
</tr>
<tr>
<td>KLF10</td>
<td>7071</td>
<td>Kruppel-like factor 10</td>
<td>2.88</td>
<td>chr8</td>
</tr>
<tr>
<td>KLF2</td>
<td>10365</td>
<td>Kruppel-like factor 2 (lung)</td>
<td>2.68</td>
<td>chr19</td>
</tr>
<tr>
<td>KLF9</td>
<td>687</td>
<td>Kruppel-like factor 9</td>
<td>11.19</td>
<td>chr9</td>
</tr>
<tr>
<td>KLHL20</td>
<td>27252</td>
<td>kelch-like 20 (Drosophila)</td>
<td>2.41</td>
<td>chr1</td>
</tr>
<tr>
<td>KLHL9</td>
<td>55958</td>
<td>kelch-like 9 (Drosophila)</td>
<td>3.53</td>
<td>chr9</td>
</tr>
<tr>
<td>KRT10</td>
<td>3858</td>
<td>keratin 10 (epidermolytic hyperkeratosis; keratosis palmaris et plantaris)</td>
<td>2.53</td>
<td>chr17</td>
</tr>
<tr>
<td>KRTAP2-1</td>
<td>81872</td>
<td>keratin associated protein 2-1</td>
<td>10.76</td>
<td>chr17_random</td>
</tr>
<tr>
<td>LAMA4</td>
<td>3910</td>
<td>laminin, alpha 4</td>
<td>8.96</td>
<td>chr6</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number (Avadis)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>LAMB1</td>
<td>3912</td>
<td>laminin, beta 1</td>
<td>3.05</td>
<td>chr7</td>
</tr>
<tr>
<td>LAMC1</td>
<td>3915</td>
<td>laminin, gamma 1 (formerly LAMB2)</td>
<td>4.84</td>
<td>chr1</td>
</tr>
<tr>
<td>LAR4P5</td>
<td>55323</td>
<td>La ribonucleoprotein domain family, member 6</td>
<td>7.55</td>
<td>chr15</td>
</tr>
<tr>
<td>LASP1</td>
<td>3927</td>
<td>LIM and SH3 protein 1</td>
<td>3.61</td>
<td>chr17</td>
</tr>
<tr>
<td>LATS2</td>
<td>26524</td>
<td>LAT5, large tumor suppressor, homolog 2 (Drosophila)</td>
<td>2.71</td>
<td>chr13</td>
</tr>
<tr>
<td>LDB3</td>
<td>11155</td>
<td>LIM domain binding 3</td>
<td>14.73</td>
<td>chr10</td>
</tr>
<tr>
<td>LENC4</td>
<td>79143</td>
<td>leukocyte receptor cluster (LRC) member 4</td>
<td>2.11</td>
<td>chr19</td>
</tr>
<tr>
<td>LEPR</td>
<td>3953 /// 54741</td>
<td>leptin receptor /// leptin receptor overlapping transcript</td>
<td>3.49</td>
<td>chr1</td>
</tr>
<tr>
<td>LEPRE1</td>
<td>64175</td>
<td>leucine proline-enriched proteoglycan (leprecan) 1</td>
<td>4.05</td>
<td>chr1</td>
</tr>
<tr>
<td>LEPREL2</td>
<td>10536</td>
<td>leprecan-like 2</td>
<td>2.51</td>
<td>chr12</td>
</tr>
<tr>
<td>LGALS3</td>
<td>3958 /// 81625</td>
<td>lectin, galactoside-binding, soluble, 3 (galectin 3) /// galectin-3 internal gene</td>
<td>10.80</td>
<td>chr14</td>
</tr>
<tr>
<td>LGALS3BP</td>
<td>3959</td>
<td>lectin, galactoside-binding, soluble, 3 binding protein</td>
<td>7.85</td>
<td>chr17</td>
</tr>
<tr>
<td>LGMN</td>
<td>5641</td>
<td>legumain</td>
<td>2.55</td>
<td>chr13</td>
</tr>
<tr>
<td>LHFPP</td>
<td>10186</td>
<td>lipoma HMGIC fusion partner</td>
<td>8.04</td>
<td>chr13</td>
</tr>
<tr>
<td>LHX8</td>
<td>431707</td>
<td>LIM homeobox 8</td>
<td>8.89</td>
<td>chr1</td>
</tr>
<tr>
<td>LIF</td>
<td>3976</td>
<td>leukemia inhibitory factor (cholinergic differentiation factor)</td>
<td>8.10</td>
<td>chr22</td>
</tr>
<tr>
<td>LIG4</td>
<td>3981</td>
<td>ligase IV, DNA, ATP-dependent</td>
<td>3.28</td>
<td>chr13</td>
</tr>
<tr>
<td>LIM51</td>
<td>3987</td>
<td>LIM and senescent cell antigen-like domains 1</td>
<td>3.84</td>
<td>chr2</td>
</tr>
<tr>
<td>LIM53</td>
<td>96626</td>
<td>LIM and senescent cell antigen-like domains 3</td>
<td>7.42</td>
<td>chr2</td>
</tr>
<tr>
<td>LMAN1</td>
<td>3998</td>
<td>lectin, mannose-binding, 1</td>
<td>3.18</td>
<td>chr18</td>
</tr>
<tr>
<td>LMBRD2</td>
<td>92255</td>
<td>LMBR1 domain containing 2</td>
<td>3.11</td>
<td>chr5</td>
</tr>
<tr>
<td>LMCD1</td>
<td>29995</td>
<td>LIM and cysteine-rich domains 1</td>
<td>11.48</td>
<td>chr3</td>
</tr>
<tr>
<td>LMNA</td>
<td>4000</td>
<td>lamin A/C</td>
<td>11.58</td>
<td>chr1</td>
</tr>
<tr>
<td>LMO7</td>
<td>4008</td>
<td>LIM domain 7</td>
<td>22.68</td>
<td>chr13</td>
</tr>
<tr>
<td>LMD01</td>
<td>25802</td>
<td>leiomodin 1 (smooth muscle)</td>
<td>9.05</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC126917</td>
<td>126917</td>
<td>hypothetical protein LOC126917</td>
<td>3.01</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC133308</td>
<td>133308</td>
<td>hypothetical protein BC009732</td>
<td>2.30</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC134147</td>
<td>134147</td>
<td>similar to mouse 2310016A09Rik gene</td>
<td>2.24</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC143903</td>
<td>143903</td>
<td>laylin</td>
<td>19.22</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC144363</td>
<td>144363</td>
<td>hypothetical protein LOC144363</td>
<td>3.55</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC144871</td>
<td>144871</td>
<td>hypothetical protein LOC144871</td>
<td>3.58</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC149478</td>
<td>149478</td>
<td>Hypothetical protein LOC149478</td>
<td>2.32</td>
<td>chr1</td>
</tr>
<tr>
<td>LOC162073</td>
<td>162073</td>
<td>Hypothetical protein LOC162073</td>
<td>10.19</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC168850</td>
<td>168850</td>
<td>hypothetical protein LOC168850</td>
<td>3.81</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC196463</td>
<td>196463</td>
<td>Hypothetical protein LOC196463</td>
<td>2.79</td>
<td>chr12</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>LOC203411</td>
<td>203411</td>
<td>hypothetical protein LOC203411</td>
<td>2.87</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC203427</td>
<td>203427</td>
<td>similar to solute carrier family 25 , member 16</td>
<td>5.18</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC222070</td>
<td>222070</td>
<td>hypothetical protein LOC222070</td>
<td>2.14</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC253981</td>
<td>253981</td>
<td>hypothetical protein LOC253981</td>
<td>2.35</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC255783</td>
<td>255783</td>
<td>hypothetical protein LOC255783</td>
<td>6.04</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC283219</td>
<td>283219</td>
<td>hypothetical protein LOC283219</td>
<td>4.57</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC283480</td>
<td>283480</td>
<td>Hypothetical protein LOC283480</td>
<td>3.34</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC283537</td>
<td>283537</td>
<td>hypothetical protein LOC283537</td>
<td>5.46</td>
<td>chr13</td>
</tr>
<tr>
<td>LOC283687</td>
<td>283687</td>
<td>hypothetical protein LOC283687</td>
<td>2.61</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC283824</td>
<td>283824</td>
<td>hypothetical protein LOC283824</td>
<td>4.06</td>
<td>chr16</td>
</tr>
<tr>
<td>LOC284454</td>
<td>284454</td>
<td>hypothetical protein LOC284454</td>
<td>3.16</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC285550</td>
<td>285550</td>
<td>hypothetical protein LOC285550</td>
<td>3.21</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC286144</td>
<td>286144</td>
<td>Hypothetical protein LOC286144</td>
<td>2.83</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC286167</td>
<td>286167</td>
<td>hypothetical protein LOC286167</td>
<td>6.83</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC286437</td>
<td>286437</td>
<td>hypothetical protein LOC286437</td>
<td>2.02</td>
<td>chrX</td>
</tr>
<tr>
<td>LOC338620</td>
<td>338620</td>
<td>hypothetical protein LOC338620</td>
<td>7.74</td>
<td>chr10</td>
</tr>
<tr>
<td>LOC339005</td>
<td>339005</td>
<td>hypothetical protein LOC339005</td>
<td>2.68</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC340061</td>
<td>340061</td>
<td>hypothetical protein LOC340061</td>
<td>9.37</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC346887</td>
<td>346887</td>
<td>similar to solute carrier family 16 (monocarboxylic acid transporters), member 14</td>
<td>2.12</td>
<td>chr8</td>
</tr>
<tr>
<td>LOC374395</td>
<td>374395</td>
<td>similar to RIKEN cDNA 1810059G22</td>
<td>2.00</td>
<td>chr11</td>
</tr>
<tr>
<td>LOC387882</td>
<td>387882</td>
<td>hypothetical protein</td>
<td>12.25</td>
<td>chr12</td>
</tr>
<tr>
<td>LOC388114</td>
<td>388114</td>
<td>Hypothetical LOC388114</td>
<td>2.51</td>
<td>chr15</td>
</tr>
<tr>
<td>LOC389129</td>
<td>389129</td>
<td>similar to CG9996-PA</td>
<td>10.22</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC400843</td>
<td>400843</td>
<td>hypothetical protein LOC400843</td>
<td>4.40</td>
<td>chr20</td>
</tr>
<tr>
<td>LOC401093</td>
<td>401093</td>
<td>hypothetical protein LOC401093</td>
<td>4.14</td>
<td>chr3</td>
</tr>
<tr>
<td>LOC401115</td>
<td>401115</td>
<td>hypothetical gene supported by BC038466; BC062790</td>
<td>2.14</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC401212</td>
<td>401212</td>
<td>hypothetical gene supported by BX640700</td>
<td>2.71</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC40536</td>
<td>440536</td>
<td>hypothetical gene supported by AK098812</td>
<td>3.65</td>
<td>chr19</td>
</tr>
<tr>
<td>LOC40885</td>
<td>440885</td>
<td>LOC40885</td>
<td>5.28</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC40886</td>
<td>440886</td>
<td>Similar to lymphocyte-specific protein 1</td>
<td>8.46</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC440928</td>
<td>440928</td>
<td>hypothetical gene supported by AK096649</td>
<td>4.77</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC441212</td>
<td>441212</td>
<td>PNAS-1</td>
<td>2.18</td>
<td>chr7</td>
</tr>
<tr>
<td>LOC441461</td>
<td>441461</td>
<td>hypothetical gene supported by BC030123</td>
<td>12.72</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC492311</td>
<td>492311</td>
<td>similar to bovine IgA regulatory protein</td>
<td>2.31</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC493869</td>
<td>493869</td>
<td>similar to RIKEN cDNA 2310016C16</td>
<td>3.01</td>
<td>chr5</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>LOC51315</td>
<td>51315</td>
<td>hypothetical protein LOC51315</td>
<td>3,50</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC51334</td>
<td>51334</td>
<td>mesenchymal stem cell protein DSC54</td>
<td>14,29</td>
<td>chr5</td>
</tr>
<tr>
<td>LOC554202</td>
<td>554202</td>
<td>hypothetical LOC554202</td>
<td>2,23</td>
<td>chr9</td>
</tr>
<tr>
<td>LOC92689</td>
<td>92689</td>
<td>hypothetical protein BC001096</td>
<td>39,06</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC93344</td>
<td>93344</td>
<td>hypothetical protein BC004921</td>
<td>9,80</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC96610</td>
<td>96610</td>
<td>Hypothetical protein similar to KIAA0187 gene product</td>
<td>3,16</td>
<td>chr9</td>
</tr>
<tr>
<td>LOX</td>
<td>4015</td>
<td>lysyl oxidase</td>
<td>388,97</td>
<td>chr5</td>
</tr>
<tr>
<td>LOXL4</td>
<td>84171</td>
<td>lysyl oxidase-like 4</td>
<td>2,54</td>
<td>chr10</td>
</tr>
<tr>
<td>LPP</td>
<td>4026</td>
<td>LIM domain containing preferred translocation partner in lipoma</td>
<td>4,68</td>
<td>chr3</td>
</tr>
<tr>
<td>LRAP</td>
<td>64167</td>
<td>Leukocyte-derived arginine aminopeptidase</td>
<td>4,38</td>
<td>chr5</td>
</tr>
<tr>
<td>LRIG3</td>
<td>121227</td>
<td>leucine-rich repeats and immunoglobulin-like domains 3</td>
<td>3,72</td>
<td>chr12</td>
</tr>
<tr>
<td>LRP1</td>
<td>4035</td>
<td>low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)</td>
<td>4,26</td>
<td>chr12</td>
</tr>
<tr>
<td>LRP10</td>
<td>26020</td>
<td>low density lipoprotein receptor-related protein 10</td>
<td>15,41</td>
<td>chr14</td>
</tr>
<tr>
<td>LRP11</td>
<td>84918</td>
<td>low density lipoprotein receptor-related protein 11</td>
<td>3,70</td>
<td>chr6</td>
</tr>
<tr>
<td>LRRC15</td>
<td>131578</td>
<td>leucine rich repeat containing 15</td>
<td>2,69</td>
<td>chr3</td>
</tr>
<tr>
<td>LRRC35</td>
<td>219899</td>
<td>Leucine rich repeat containing 35</td>
<td>2,02</td>
<td>chr11</td>
</tr>
<tr>
<td>LRRC41</td>
<td>10489</td>
<td>leucine rich repeat containing 41</td>
<td>2,31</td>
<td>chr6</td>
</tr>
<tr>
<td>LRRC8C</td>
<td>84230</td>
<td>leucine rich repeat containing 8 family, member C</td>
<td>3,01</td>
<td>chr1</td>
</tr>
<tr>
<td>LRRFIP1</td>
<td>9208</td>
<td>leucine rich repeat (in FLII) interacting protein 1</td>
<td>2,48</td>
<td>chr2</td>
</tr>
<tr>
<td>LTB40H</td>
<td>22949</td>
<td>leukotriene B4 12-hydroxydehydrogenase</td>
<td>2,20</td>
<td>chr9</td>
</tr>
<tr>
<td>LTBP2</td>
<td>4053</td>
<td>latent transforming growth factor beta binding protein 2</td>
<td>13,08</td>
<td>chr14</td>
</tr>
<tr>
<td>LTBP3</td>
<td>4054</td>
<td>latent transforming growth factor beta binding protein 3</td>
<td>9,77</td>
<td>chr11</td>
</tr>
<tr>
<td>LXN</td>
<td>56925</td>
<td>latexin</td>
<td>4,64</td>
<td>chr3</td>
</tr>
<tr>
<td>LYN6</td>
<td>23643</td>
<td>lymphocyte antigen 96</td>
<td>3,86</td>
<td>chr8</td>
</tr>
<tr>
<td>LYPD1</td>
<td>116372</td>
<td>LY6/PLAUR domain containing 1</td>
<td>7,27</td>
<td>chr2</td>
</tr>
<tr>
<td>LYPLA3</td>
<td>23659</td>
<td>lysophospholipase 3 (lysosomal phospholipase A2)</td>
<td>2,15</td>
<td>chr16</td>
</tr>
<tr>
<td>LYSMD3</td>
<td>116068</td>
<td>LysM, putative peptidoglycan-binding, domain containing 3</td>
<td>2,57</td>
<td>chr5</td>
</tr>
<tr>
<td>LYST</td>
<td>1130</td>
<td>lysosomal trafficking regulator</td>
<td>6,29</td>
<td>chr1</td>
</tr>
<tr>
<td>LZTR2</td>
<td>89866</td>
<td>leucine zipper transcription regulator 2</td>
<td>3,05</td>
<td>chr1</td>
</tr>
<tr>
<td>LZTS1</td>
<td>11178</td>
<td>leucine zipper, putative tumor suppressor 1</td>
<td>3,77</td>
<td>chr8</td>
</tr>
<tr>
<td>M6PRBP1</td>
<td>10226</td>
<td>mannose-6-phosphate receptor binding protein 1</td>
<td>3,61</td>
<td>chr19</td>
</tr>
<tr>
<td>MAFF</td>
<td>23764</td>
<td>v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)</td>
<td>13,02</td>
<td>chr22</td>
</tr>
<tr>
<td>MAGED1</td>
<td>9500</td>
<td>melanoma antigen family D, 1</td>
<td>2,62</td>
<td>chrX</td>
</tr>
<tr>
<td>MAGED2</td>
<td>10916</td>
<td>melanoma antigen family D, 2</td>
<td>2,62</td>
<td>chrX</td>
</tr>
<tr>
<td>MAN1B1</td>
<td>11253</td>
<td>mannosidase, alpha, class 1B, member 1</td>
<td>2,03</td>
<td>chr9</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC ↑</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>MAN2B2</td>
<td>23324</td>
<td>mannosidase, alpha, class 2B, member 2</td>
<td>12.03</td>
<td>chr4</td>
</tr>
<tr>
<td>MANEA</td>
<td>79694</td>
<td>mannosidase, endo-alpha</td>
<td>2.28</td>
<td>chr6</td>
</tr>
<tr>
<td>MAP1A</td>
<td>4130</td>
<td>microtubule-associated protein 1A</td>
<td>16.47</td>
<td>chr15</td>
</tr>
<tr>
<td>MAP1B</td>
<td>4131</td>
<td>microtubule-associated protein 1B</td>
<td>6.41</td>
<td>chr5</td>
</tr>
<tr>
<td>MAP4K5</td>
<td>11183</td>
<td>mitogen-activated protein kinase kinase kinase 5</td>
<td>3.18</td>
<td>chr14</td>
</tr>
<tr>
<td>MAPKBP1</td>
<td>23005</td>
<td>mitogen activated protein kinase binding protein 1</td>
<td>2.06</td>
<td>chr15</td>
</tr>
<tr>
<td>MARCH4</td>
<td>57574</td>
<td>membrane-associated ring finger (C3HC4) 4</td>
<td>2.94</td>
<td>chr2</td>
</tr>
<tr>
<td>MARVELD1</td>
<td>83742</td>
<td>MARVEL domain containing 1</td>
<td>3.21</td>
<td>chr10</td>
</tr>
<tr>
<td>MAWBP</td>
<td>64081</td>
<td>MAWD binding protein</td>
<td>2.62</td>
<td>chr10</td>
</tr>
<tr>
<td>MAX</td>
<td>4149</td>
<td>MYC associated factor X</td>
<td>2.35</td>
<td>chr14</td>
</tr>
<tr>
<td>MBD5</td>
<td>55777</td>
<td>methyl-CpG binding domain protein 5</td>
<td>3.24</td>
<td>chr2</td>
</tr>
<tr>
<td>MBNL1</td>
<td>4154</td>
<td>muscleblind-like (Drosophila)</td>
<td>22.48</td>
<td>chr3</td>
</tr>
<tr>
<td>MBTPS1</td>
<td>8720</td>
<td>membrane-bound transcription factor peptidase, site 1</td>
<td>2.51</td>
<td>chr16</td>
</tr>
<tr>
<td>MCAM</td>
<td>4162</td>
<td>melanoma cell adhesion molecule</td>
<td>5.47</td>
<td>chr11</td>
</tr>
<tr>
<td>MCFD2</td>
<td>90411</td>
<td>multiple coagulation factor deficiency 2</td>
<td>2.98</td>
<td>chr2</td>
</tr>
<tr>
<td>MDM2</td>
<td>4193</td>
<td>Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse)</td>
<td>2.82</td>
<td>chr12</td>
</tr>
<tr>
<td>MED8</td>
<td>112950</td>
<td>mediator of RNA polymerase II transcription, subunit B homolog (yeast)</td>
<td>3.65</td>
<td>chr1</td>
</tr>
<tr>
<td>MEF2D</td>
<td>4209</td>
<td>MADS box transcription enhancer factor 2, polypeptide D (myocyte enhancer factor 2D)</td>
<td>2.11</td>
<td>chr1</td>
</tr>
<tr>
<td>MET</td>
<td>4233</td>
<td>met proto-oncogene (hepatocyte growth factor receptor)</td>
<td>6.83</td>
<td>chr7</td>
</tr>
<tr>
<td>MFAP5</td>
<td>8076</td>
<td>microfibrillar associated protein 5</td>
<td>13.66</td>
<td>chr12</td>
</tr>
<tr>
<td>MFI2</td>
<td>4241</td>
<td>antigen p97 (melanoma associated) identified by monoclonal antibodies 133.2 and 96.5</td>
<td>3.08</td>
<td>chr3</td>
</tr>
<tr>
<td>MFSD1</td>
<td>64747</td>
<td>major facilitator superfamily domain containing 1</td>
<td>5.41</td>
<td>chr3</td>
</tr>
<tr>
<td>MGAT1</td>
<td>4245</td>
<td>mannosyl (alpha-1,3-)glycoprotein beta-1,2-N-acetylgalosaminyltransferase</td>
<td>2.68</td>
<td>chr5</td>
</tr>
<tr>
<td>MGAT2</td>
<td>4247</td>
<td>mannosyl (alpha-1,6-)glycoprotein beta-1,2-N-acetylgalosaminyltransferase</td>
<td>3.34</td>
<td>chr14</td>
</tr>
<tr>
<td>MGC14376</td>
<td>84981</td>
<td>hypothetical protein MGC14376</td>
<td>14.20</td>
<td>chr17</td>
</tr>
<tr>
<td>MGC15429</td>
<td>84836</td>
<td>hypothetical protein MGC15429</td>
<td>2.72</td>
<td>chr3</td>
</tr>
<tr>
<td>MGC15476</td>
<td>147906</td>
<td>thymus expressed gene 3-like</td>
<td>2.75</td>
<td>chr19</td>
</tr>
<tr>
<td>MGC15523</td>
<td>124565</td>
<td>hypothetical protein MGC15523</td>
<td>3.26</td>
<td>chr17</td>
</tr>
<tr>
<td>MGC16121</td>
<td>84848</td>
<td>Hypothetical protein MGC16121</td>
<td>2.74</td>
<td>chrX</td>
</tr>
<tr>
<td>MGC17330</td>
<td>113791</td>
<td>HGFL gene /// HGFL gene</td>
<td>3.20</td>
<td>chr22</td>
</tr>
<tr>
<td>MGC17337</td>
<td>91283</td>
<td>similar to RIKEN cDNA 5730528L13 gene</td>
<td>2.30</td>
<td>chr9</td>
</tr>
<tr>
<td>MGC17943</td>
<td>90488</td>
<td>hypothetical protein MGC17943</td>
<td>15.82</td>
<td>chr12</td>
</tr>
<tr>
<td>MGC20235</td>
<td>113277</td>
<td>hypothetical protein MGC20235</td>
<td>3.86</td>
<td>chr17</td>
</tr>
<tr>
<td>MGC23985</td>
<td>389336</td>
<td>similar to AVLY472</td>
<td>8.56</td>
<td>chr5</td>
</tr>
<tr>
<td>MGC26963</td>
<td>166929</td>
<td>hypothetical protein MGC26963</td>
<td>49.90</td>
<td>chr4</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>MGC3123</td>
<td>79089</td>
<td>hypothetical protein MGC3123</td>
<td>2.23</td>
<td>chr17</td>
</tr>
<tr>
<td>MGC34646</td>
<td>157807</td>
<td>hypothetical protein MGC34646</td>
<td>10.17</td>
<td>chr8</td>
</tr>
<tr>
<td>MGC34830</td>
<td>120196</td>
<td>hypothetical protein MGC34830</td>
<td>4.48</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC4677</td>
<td>112597</td>
<td>hypothetical protein MGC4677</td>
<td>34.47</td>
<td>chr2</td>
</tr>
<tr>
<td>MGC5370</td>
<td>84825</td>
<td>hypothetical protein MGC5370</td>
<td>3.31</td>
<td>chr12</td>
</tr>
<tr>
<td>MGC5508</td>
<td>79073</td>
<td>hypothetical protein MGC5508</td>
<td>2.29</td>
<td>chr11</td>
</tr>
<tr>
<td>MGC5618</td>
<td>79099</td>
<td>hypothetical protein MGC5618</td>
<td>2.25</td>
<td>chr6</td>
</tr>
<tr>
<td>MGG3</td>
<td>11343</td>
<td>monoglyceride lipase /// monoglyceride lipase</td>
<td>10.84</td>
<td>chr3</td>
</tr>
<tr>
<td>MICA</td>
<td>4276 /// 4277</td>
<td>MHC class I polypeptide-related sequence A /// MHC class I polypeptide-related sequence B</td>
<td>8.37</td>
<td>chr6</td>
</tr>
<tr>
<td>MICA</td>
<td>4276</td>
<td>MHC class I polypeptide-related sequence A</td>
<td>7.74</td>
<td>chr6</td>
</tr>
<tr>
<td>MICAL2</td>
<td>9645</td>
<td>microtubule associated monooxygenase, calponin and LIM domain containing 2</td>
<td>127.34</td>
<td>chr11</td>
</tr>
<tr>
<td>MINA</td>
<td>84864</td>
<td>MYC induced nuclear antigen</td>
<td>2.01</td>
<td>chr3</td>
</tr>
<tr>
<td>MIRN21</td>
<td>406991</td>
<td>microRNA 21</td>
<td>7.85</td>
<td>chr9</td>
</tr>
<tr>
<td>MKRN2</td>
<td>23609</td>
<td>makorin, ring finger protein, 2</td>
<td>2.93</td>
<td>chr3</td>
</tr>
<tr>
<td>MLLT11</td>
<td>10962</td>
<td>myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 11 /// myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 11</td>
<td>2.34</td>
<td>chr1</td>
</tr>
<tr>
<td>MLPH</td>
<td>79083</td>
<td>melanophilin</td>
<td>8.12</td>
<td>chr2</td>
</tr>
<tr>
<td>MLXIP</td>
<td>22877</td>
<td>MLX interacting protein</td>
<td>2.75</td>
<td>chr12</td>
</tr>
<tr>
<td>MME</td>
<td>4311</td>
<td>membrane metallo-endopeptidase (neutral endopeptidase, enkephalinase, CALLA, CD10)</td>
<td>7.11</td>
<td>chr3</td>
</tr>
<tr>
<td>MMP1</td>
<td>4312</td>
<td>matrix metallopeptidase 1 (interstitial collagenase)</td>
<td>114.26</td>
<td>chr11</td>
</tr>
<tr>
<td>MMP14</td>
<td>4323</td>
<td>matrix metallopeptidase 14 (membrane-inserted)</td>
<td>2.53</td>
<td>chr14</td>
</tr>
<tr>
<td>MMP16</td>
<td>4325</td>
<td>matrix metallopeptidase 16 (membrane-inserted)</td>
<td>3.45</td>
<td>chr8</td>
</tr>
<tr>
<td>MMP19</td>
<td>4327</td>
<td>matrix metallopeptidase 19</td>
<td>2.74</td>
<td>chr12</td>
</tr>
<tr>
<td>MMP2</td>
<td>4313</td>
<td>matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)</td>
<td>20.82</td>
<td>chr16</td>
</tr>
<tr>
<td>MOBKL2A</td>
<td>126308</td>
<td>MOB1, Mps One Binder kinase activator-like 2A (yeast)</td>
<td>6.42</td>
<td>chr19</td>
</tr>
<tr>
<td>MOCS2</td>
<td>4338</td>
<td>molybdenum cofactor synthesis 2</td>
<td>2.85</td>
<td>chr5</td>
</tr>
<tr>
<td>MONDOA</td>
<td>22877</td>
<td>MondoA</td>
<td>2.16</td>
<td>chr12</td>
</tr>
<tr>
<td>MOSPD1</td>
<td>56180</td>
<td>motile sperm domain containing 1</td>
<td>2.48</td>
<td>chrX</td>
</tr>
<tr>
<td>MOSPD2</td>
<td>158747</td>
<td>motile sperm domain containing 2</td>
<td>2.23</td>
<td>chrX</td>
</tr>
<tr>
<td>MRAS</td>
<td>22808</td>
<td>muscle RAS oncogene homolog</td>
<td>5.80</td>
<td>chr3</td>
</tr>
<tr>
<td>MRCL3</td>
<td>10627</td>
<td>myosin regulatory light chain MRCL3</td>
<td>2.21</td>
<td>chr18</td>
</tr>
<tr>
<td>MRCL3</td>
<td>103910 /// 10627</td>
<td>myosin regulatory light chain MRCL3 /// myosin regulatory light chain MRLC2</td>
<td>2.50</td>
<td>chr18</td>
</tr>
<tr>
<td>MRLC2</td>
<td>103910</td>
<td>myosin regulatory light chain MRLC2</td>
<td>2.26</td>
<td>chr18</td>
</tr>
<tr>
<td>MRV1</td>
<td>10335</td>
<td>Murine retrovirus integration site 1 homolog</td>
<td>3.75</td>
<td>chr11</td>
</tr>
<tr>
<td>MSN</td>
<td>4478</td>
<td>moesin</td>
<td>4.80</td>
<td>chr5</td>
</tr>
<tr>
<td>MTCBP-1</td>
<td>55256</td>
<td>membrane-type 1 matrix metalloproteinase cytoplasmic tail binding protein-1</td>
<td>2.21</td>
<td>chr2</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>MTMR6</td>
<td>9107</td>
<td>myotubularin related protein 6</td>
<td>4,36</td>
<td>chr13</td>
</tr>
<tr>
<td>MVP</td>
<td>9961</td>
<td>major vault protein</td>
<td>18,90</td>
<td>chr16</td>
</tr>
<tr>
<td>MYH9</td>
<td>4627</td>
<td>myosin, heavy polypeptide 9, non-muscle</td>
<td>6,41</td>
<td>chr22</td>
</tr>
<tr>
<td>MYL9</td>
<td>10398</td>
<td>myosin, light polypeptide 9, regulatory</td>
<td>21,07</td>
<td>chr20</td>
</tr>
<tr>
<td>MYLK</td>
<td>4638</td>
<td>myosin, light polypeptide kinase</td>
<td>19,76</td>
<td>chr3</td>
</tr>
<tr>
<td>MYO1C</td>
<td>4641</td>
<td>myosin IC</td>
<td>4,16</td>
<td>chr17</td>
</tr>
<tr>
<td>MYO5A</td>
<td>4644</td>
<td>myosin VA (heavy polypeptide 12, myoxin)</td>
<td>2,29</td>
<td>chr15</td>
</tr>
<tr>
<td>MYOCD</td>
<td>93649</td>
<td>myocardin</td>
<td>25,49</td>
<td>chr17</td>
</tr>
<tr>
<td>NAGK</td>
<td>55577</td>
<td>N-acetylglucosamine kinase /// N-acetylglucosamine kinase</td>
<td>2,55</td>
<td>chr2</td>
</tr>
<tr>
<td>NAP5</td>
<td>344148</td>
<td>Nck-associated protein 5</td>
<td>4,32</td>
<td>chr2</td>
</tr>
<tr>
<td>NAPA</td>
<td>8775</td>
<td>N-ethylmaleimide-sensitive factor attachment protein, alpha</td>
<td>3,08</td>
<td>chr19</td>
</tr>
<tr>
<td>NBL1</td>
<td>4681</td>
<td>neuroblastoma, suppression of tumorigenicity 1</td>
<td>3,22</td>
<td>chr1</td>
</tr>
<tr>
<td>NBR1</td>
<td>4077</td>
<td>neighbor of BRCA1 gene 1</td>
<td>2,15</td>
<td>chr17</td>
</tr>
<tr>
<td>NCOA3</td>
<td>8202</td>
<td>nuclear receptor coactivator 3</td>
<td>2,43</td>
<td>chr20</td>
</tr>
<tr>
<td>NCOA7</td>
<td>135112</td>
<td>nuclear receptor coactivator 7</td>
<td>7,07</td>
<td>chr6</td>
</tr>
<tr>
<td>NCSTN</td>
<td>23385</td>
<td>nicastrin</td>
<td>2,37</td>
<td>chr1</td>
</tr>
<tr>
<td>NDEL1</td>
<td>81565</td>
<td>nudE nuclear distribution gene E homolog like 1 (A. nidulans) /// nudE nuclear distribution gene E homolog like 1 (A. nidulans)</td>
<td>3,19</td>
<td>chr17</td>
</tr>
<tr>
<td>NDFIP1</td>
<td>80762</td>
<td>Nedd4 family interacting protein 1</td>
<td>3,72</td>
<td>chr5</td>
</tr>
<tr>
<td>NDFIP2</td>
<td>54602</td>
<td>Nedd4 family interacting protein 2</td>
<td>4,80</td>
<td>chr13</td>
</tr>
<tr>
<td>NDP52</td>
<td>10241</td>
<td>nuclear domain 10 protein</td>
<td>2,54</td>
<td>chr17</td>
</tr>
<tr>
<td>NDUF51</td>
<td>4719</td>
<td>NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase)</td>
<td>2,29</td>
<td>chr2</td>
</tr>
<tr>
<td>NECAP2</td>
<td>55707</td>
<td>NECAP endocytosis associated 2</td>
<td>2,18</td>
<td>chr1</td>
</tr>
<tr>
<td>NEDD4</td>
<td>4734</td>
<td>neural precursor cell expressed, developmentally down-regulated 4</td>
<td>15,69</td>
<td>chr15</td>
</tr>
<tr>
<td>NEGR1</td>
<td>257194</td>
<td>neuronal growth regulator 1</td>
<td>7,89</td>
<td>chr1</td>
</tr>
<tr>
<td>NEK6</td>
<td>10783</td>
<td>NIMA (never in mitosis gene a)-related kinase 6</td>
<td>6,67</td>
<td>chr9</td>
</tr>
<tr>
<td>NEK7</td>
<td>140609</td>
<td>NIMA (never in mitosis gene a)-related kinase 7</td>
<td>19,50</td>
<td>chr1</td>
</tr>
<tr>
<td>NF1</td>
<td>4763</td>
<td>Neurofibromin 1 (neurofibromatosis, von Recklinghausen disease, Watson disease)</td>
<td>2,22</td>
<td>chr17</td>
</tr>
<tr>
<td>NF2</td>
<td>4771</td>
<td>neurofibromin 2 (bilateral acoustic neuroma)</td>
<td>3,06</td>
<td>chr22</td>
</tr>
<tr>
<td>NFE2L2</td>
<td>4780</td>
<td>nuclear factor (erythroid-derived 2)-like 2</td>
<td>3,06</td>
<td>chr2</td>
</tr>
<tr>
<td>NFIC</td>
<td>4782</td>
<td>nuclear factor 1/C (CCAAT-binding transcription factor)</td>
<td>4,04</td>
<td>chr19</td>
</tr>
<tr>
<td>NFKB1</td>
<td>4790</td>
<td>nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)</td>
<td>4,13</td>
<td>chr4</td>
</tr>
<tr>
<td>NFKBI</td>
<td>64332</td>
<td>nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta</td>
<td>5,86</td>
<td>chr3</td>
</tr>
<tr>
<td>NGFB</td>
<td>4803</td>
<td>nerve growth factor, beta polypeptide</td>
<td>2,34</td>
<td>chr1</td>
</tr>
<tr>
<td>NIPSNAP3A</td>
<td>25934</td>
<td>nipsnap homolog 3A (C. elegans) /// nipsnap homolog 3A (C. elegans)</td>
<td>5,15</td>
<td>chr9</td>
</tr>
<tr>
<td>NKIRAS1</td>
<td>28512</td>
<td>NFKB inhibitor interacting Ras-like 1</td>
<td>2,40</td>
<td>chr3</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>NKIRAS2</td>
<td>28511</td>
<td>NFKB inhibitor interacting Ras-like 2</td>
<td>2.35</td>
<td>chr17</td>
</tr>
<tr>
<td>NKX3-1</td>
<td>4824</td>
<td>NK3 transcription factor related, locus 1 (Drosophila)</td>
<td>2.35</td>
<td>chr8</td>
</tr>
<tr>
<td>NNMNT</td>
<td>4837</td>
<td>nicotinamide N-methyltransferase</td>
<td>261.83</td>
<td>chr11</td>
</tr>
<tr>
<td>NNT</td>
<td>23530</td>
<td>nicotinamide nucleotide transhydrogenase</td>
<td>3.92</td>
<td>chr5</td>
</tr>
<tr>
<td>NOD27</td>
<td>84166</td>
<td>nucleotide-binding oligomerization domains 27</td>
<td>2.94</td>
<td>chr16</td>
</tr>
<tr>
<td>NOL3</td>
<td>8996</td>
<td>nucleolar protein 3 (apoptosis repressor with CARD domain)</td>
<td>2.25</td>
<td>chr16</td>
</tr>
<tr>
<td>NPA3L3</td>
<td>57185</td>
<td>NIPA-like domain containing 3</td>
<td>9.52</td>
<td>chr1</td>
</tr>
<tr>
<td>NPAS2</td>
<td>4862</td>
<td>neuronal PAS domain protein 2</td>
<td>3.09</td>
<td>chr2</td>
</tr>
<tr>
<td>NQO1</td>
<td>1728</td>
<td>NAD(P)H dehydrogenase, quinone 1</td>
<td>6.69</td>
<td>chr16</td>
</tr>
<tr>
<td>NR3C1</td>
<td>2908</td>
<td>nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)</td>
<td>7.55</td>
<td>chr5</td>
</tr>
<tr>
<td>NRXN3</td>
<td>9369</td>
<td>neurexin 3</td>
<td>3.03</td>
<td>chr14</td>
</tr>
<tr>
<td>NS3TP2</td>
<td>65983</td>
<td>HCV NS3-transactivated protein 2</td>
<td>2.89</td>
<td>chr5</td>
</tr>
<tr>
<td>NS5ATP13TP2</td>
<td>220323</td>
<td>NS5ATP13TP2 protein</td>
<td>5.13</td>
<td>chr11</td>
</tr>
<tr>
<td>NSF</td>
<td>4905</td>
<td>N-ethylmaleimide-sensitive factor</td>
<td>2.57</td>
<td>chr17</td>
</tr>
<tr>
<td>NT5E</td>
<td>4907</td>
<td>5'-nucleotidase, ecto (CD73)</td>
<td>83.19</td>
<td>chr6</td>
</tr>
<tr>
<td>NTN4</td>
<td>59277</td>
<td>netrin 4</td>
<td>68.83</td>
<td>chr12</td>
</tr>
<tr>
<td>NUCB1</td>
<td>4924</td>
<td>nucleobindin 1</td>
<td>2.67</td>
<td>chr19</td>
</tr>
<tr>
<td>NUCB2</td>
<td>4925</td>
<td>nucleobindin 2</td>
<td>4.76</td>
<td>chr11</td>
</tr>
<tr>
<td>NUDT4</td>
<td>11163</td>
<td>Nudix (nucleoside diphosphate linked moiety X)-type motif 4 pseudogene 2</td>
<td>4.85</td>
<td>chr5</td>
</tr>
<tr>
<td>NUMB</td>
<td>8650</td>
<td>numb homolog (Drosophila)</td>
<td>2.52</td>
<td>chr14</td>
</tr>
<tr>
<td>OACT2</td>
<td>129642</td>
<td>O-acyltransferase (membrane bound) domain containing 2</td>
<td>2.58</td>
<td>chr2</td>
</tr>
<tr>
<td>OCR1L</td>
<td>4952</td>
<td>oculocerebellaud syndrome of Lowe</td>
<td>2.34</td>
<td>chrX</td>
</tr>
<tr>
<td>OGFRL1</td>
<td>79627</td>
<td>opioid growth factor receptor-like 1</td>
<td>2.63</td>
<td>chr6</td>
</tr>
<tr>
<td>ORMDL1</td>
<td>94101</td>
<td>ORM1-like 1 (S. cerevisiae)</td>
<td>2.79</td>
<td>chr2</td>
</tr>
<tr>
<td>OS9</td>
<td>10956</td>
<td>amplified in osteosarcoma</td>
<td>4.49</td>
<td>chr12</td>
</tr>
<tr>
<td>OSAP</td>
<td>84709</td>
<td>ovary-specific acidic protein</td>
<td>11.35</td>
<td>chr4</td>
</tr>
<tr>
<td>OSMR</td>
<td>9180</td>
<td>Oncostatin M receptor</td>
<td>49.48</td>
<td>chr5</td>
</tr>
<tr>
<td>OSTF1</td>
<td>26578</td>
<td>osteoclast stimulating factor 1</td>
<td>2.21</td>
<td>chr9</td>
</tr>
<tr>
<td>OXTR</td>
<td>5021</td>
<td>oxytocin receptor</td>
<td>94.66</td>
<td>chr3</td>
</tr>
<tr>
<td>P4HA1</td>
<td>5033</td>
<td>procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide I</td>
<td>5.06</td>
<td>chr10</td>
</tr>
<tr>
<td>P4HA2</td>
<td>8974</td>
<td>procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide II</td>
<td>21.34</td>
<td>chr5</td>
</tr>
<tr>
<td>P4HA3</td>
<td>283208</td>
<td>procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide III</td>
<td>3.18</td>
<td>chr11</td>
</tr>
<tr>
<td>P4HB</td>
<td>5034</td>
<td>procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), beta polypeptide (protein disulfide isomerase 1)</td>
<td>3.93</td>
<td>chr17</td>
</tr>
<tr>
<td>PACS1</td>
<td>55690</td>
<td>phosphofurin acidic cluster sorting protein 1</td>
<td>2.20</td>
<td>chr11</td>
</tr>
<tr>
<td>PAEP</td>
<td>5047</td>
<td>progestagen-associated endometrial protein (placental protein 14, pregnancy-associated endometrial)</td>
<td>3.72</td>
<td>chr19</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PAK2</td>
<td>5062</td>
<td>p21 (CDKN1A)-activated kinase 2</td>
<td>2.34</td>
<td>chr3</td>
</tr>
<tr>
<td>PALM2</td>
<td>114299</td>
<td>paralemmin 2</td>
<td>2.50</td>
<td>chr9</td>
</tr>
<tr>
<td>PALM2-AKAP2</td>
<td>445815</td>
<td>PALM2-AKAP2 protein</td>
<td>2.95</td>
<td>chr9</td>
</tr>
<tr>
<td>PAM</td>
<td>5066</td>
<td>peptidylglycine alpha-amidating monoxygenase</td>
<td>4.53</td>
<td>chr5</td>
</tr>
<tr>
<td>PANX1</td>
<td>24145</td>
<td>Pannexin 1</td>
<td>2.46</td>
<td>chr11</td>
</tr>
<tr>
<td>PBX1P</td>
<td>57326</td>
<td>pre-B-cell leukemia transcription factor interacting protein 1</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>PCDHG3</td>
<td>56105 /// 56106</td>
<td>protocadherin gamma subfamily C, 3 /// protocadherin gamma subfamily C, 3 /// protocadherin gamma subfamily C, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCGF1</td>
<td>84759</td>
<td>polycomb group ring finger 1</td>
<td>2.08</td>
<td>chr2</td>
</tr>
<tr>
<td>PCOLCE</td>
<td>5118</td>
<td>procollagen C-endopeptidase enhancer</td>
<td>7.16</td>
<td>chr7</td>
</tr>
<tr>
<td>PCSK7</td>
<td>9159</td>
<td>Proprotein convertase subtilisin/kexin type 7</td>
<td>10.70</td>
<td>chr11</td>
</tr>
<tr>
<td>PCYOX1</td>
<td>51449</td>
<td>prenylcysteine oxidase 1</td>
<td>2.05</td>
<td>chr2</td>
</tr>
<tr>
<td>PCYT1A</td>
<td>5130</td>
<td>Phosphate cytidylyltransferase 1, choline, alpha</td>
<td>3.18</td>
<td>chr3</td>
</tr>
<tr>
<td>PDCD6</td>
<td>10016 /// 57491</td>
<td>programmed cell death 6/// aryl-hydrocarbon receptor repressor</td>
<td>8.20</td>
<td>chr5</td>
</tr>
<tr>
<td>PDE1C</td>
<td>5137</td>
<td>phosphodiesterase 1C, calmodulin-dependent 70kDa</td>
<td>3.29</td>
<td>chr7</td>
</tr>
<tr>
<td>PDE4B</td>
<td>5142</td>
<td>phosphodiesterase 4B, CAMP-specific (phosphodiesterase E4 dunce homolog, Drosophila)</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>PDE4DIP</td>
<td>9659</td>
<td>phosphodiesterase 4D interacting protein (myomegalin)</td>
<td>5.79</td>
<td>chr1</td>
</tr>
<tr>
<td>PDE5A</td>
<td>8654</td>
<td>phosphodiesterase 5A, cGMP-specific</td>
<td>2.11</td>
<td>chr4</td>
</tr>
<tr>
<td>PDE7B</td>
<td>27115</td>
<td>phosphodiesterase 7B</td>
<td>2.68</td>
<td>chr6</td>
</tr>
<tr>
<td>PDE8A</td>
<td>5151</td>
<td>phosphodiesterase 8A</td>
<td>5.18</td>
<td>chr15</td>
</tr>
<tr>
<td>PDGFRL</td>
<td>5157</td>
<td>platelet-derived growth factor receptor-like</td>
<td>5.77</td>
<td>chr8</td>
</tr>
<tr>
<td>PDK2</td>
<td>5164</td>
<td>pyruvate dehydrogenase kinase, isoenzyme 2</td>
<td>2.17</td>
<td>chr17</td>
</tr>
<tr>
<td>PDLIM2</td>
<td>64236</td>
<td>PDZ and LIM domain 2 (mystique)</td>
<td>2.68</td>
<td>chr8</td>
</tr>
<tr>
<td>PDLIM3</td>
<td>27295</td>
<td>PDZ and LIM domain 3</td>
<td>6.40</td>
<td>chr4</td>
</tr>
<tr>
<td>PDLIM4</td>
<td>8572</td>
<td>PDZ and LIM domain 4</td>
<td>5.04</td>
<td>chr5</td>
</tr>
<tr>
<td>PDLIM5</td>
<td>10611</td>
<td>PDZ and LIM domain 5</td>
<td>7.12</td>
<td>chr4</td>
</tr>
<tr>
<td>PDLIM7</td>
<td>9260</td>
<td>PDZ and LIM domain 7 (enigma)</td>
<td>7.69</td>
<td>chr5</td>
</tr>
<tr>
<td>PEA15</td>
<td>8682</td>
<td>phosphopeptide enriched in astrocytes 15</td>
<td>6.19</td>
<td>chr1</td>
</tr>
<tr>
<td>PEAR1</td>
<td>375033</td>
<td>platelet endothelial aggregation receptor 1</td>
<td>9.29</td>
<td>chr1</td>
</tr>
<tr>
<td>PEX10</td>
<td>5192</td>
<td>Peroxisome biogenesis factor 10</td>
<td>3.21</td>
<td>chr1</td>
</tr>
<tr>
<td>PEX11B</td>
<td>8799</td>
<td>Peroxisomal biogenesis factor 11B</td>
<td>2.81</td>
<td>chr1</td>
</tr>
<tr>
<td>PGCP</td>
<td>10404</td>
<td>plasma glutamate carboxypeptidase</td>
<td>5.60</td>
<td>chr8</td>
</tr>
<tr>
<td>PGM3</td>
<td>5238</td>
<td>phosphoglucomutase 3</td>
<td>3.07</td>
<td>chr6</td>
</tr>
<tr>
<td>PGRMC2</td>
<td>10424</td>
<td>progesterone receptor membrane component 2</td>
<td>2.08</td>
<td>chr4</td>
</tr>
<tr>
<td>PHC3</td>
<td>80012</td>
<td>polyhomeotic like 3 (Drosophila)</td>
<td>2.09</td>
<td>chr3</td>
</tr>
<tr>
<td>PHLDA2</td>
<td>7262</td>
<td>pleckstrin homology-like domain, family A, member 2</td>
<td>15.10</td>
<td>chr11</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PHLD3</td>
<td>23612</td>
<td>pleckstrin homology-like domain, family A, member 3</td>
<td>4.83</td>
<td>chr 1</td>
</tr>
<tr>
<td>PHLD2</td>
<td>90102</td>
<td>pleckstrin homology-like domain, family B, member 2</td>
<td>14.96</td>
<td>chr 3</td>
</tr>
<tr>
<td>PHTF2</td>
<td>57157</td>
<td>putative homeodomain transcription factor 2</td>
<td>2.69</td>
<td>chr 7</td>
</tr>
<tr>
<td>PICALM</td>
<td>8301</td>
<td>phosphatidylinositol binding clathrin assembly protein</td>
<td>4.52</td>
<td>chr 11</td>
</tr>
<tr>
<td>PGX</td>
<td>54965</td>
<td>phosphatidylinositol glycan, class X</td>
<td>2.28</td>
<td>chr 3</td>
</tr>
<tr>
<td>PIK4CB</td>
<td>5298</td>
<td>phosphatidylinositol 4-kinase, catalytic, beta polypeptide</td>
<td>3.53</td>
<td>chr 1</td>
</tr>
<tr>
<td>PIP5K1C</td>
<td>23396</td>
<td>phosphatidylinositol-4-phosphate 5-kinase, type I, gamma</td>
<td>2.21</td>
<td>chr 19</td>
</tr>
<tr>
<td>PITRM1</td>
<td>10531</td>
<td>ptilysin metalloproteinase 1</td>
<td>2.67</td>
<td>chr 10</td>
</tr>
<tr>
<td>PJA2</td>
<td>9867</td>
<td>praja 2, RING-H2 motif containing</td>
<td>3.02</td>
<td>chr 5</td>
</tr>
<tr>
<td>PKIG</td>
<td>11142</td>
<td>protein kinase (cAMP-dependent, catalytic) inhibitor gamma</td>
<td>2.08</td>
<td>chr 20</td>
</tr>
<tr>
<td>PLA2G4A</td>
<td>5321</td>
<td>phospholipase A2, group IVA (cytosolic, calcium-dependent)</td>
<td>3.38</td>
<td>chr 1</td>
</tr>
<tr>
<td>PLAU</td>
<td>5328</td>
<td>plasminogen activator, urokinase</td>
<td>16.09</td>
<td>chr 10</td>
</tr>
<tr>
<td>PLAUR</td>
<td>5329</td>
<td>plasminogen activator, urokinase receptor</td>
<td>18.67</td>
<td>chr 19</td>
</tr>
<tr>
<td>PLD1</td>
<td>5337</td>
<td>phospholipase D1, phosphatidycholine-specific</td>
<td>4.36</td>
<td>chr 3</td>
</tr>
<tr>
<td>PLD3</td>
<td>23646</td>
<td>phospholipase D family, member 3</td>
<td>3.91</td>
<td>chr 19</td>
</tr>
<tr>
<td>PLDN</td>
<td>26258</td>
<td>paladin homolog (mouse)</td>
<td>2.39</td>
<td>chr 15</td>
</tr>
<tr>
<td>PLEC1</td>
<td>5339</td>
<td>plectin 1, intermediate filament binding protein 500kDa</td>
<td>2.66</td>
<td>chr 8</td>
</tr>
<tr>
<td>PLEKHA2</td>
<td>59339</td>
<td>pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 2</td>
<td>18.71</td>
<td>chr 8</td>
</tr>
<tr>
<td>PLEKHA3</td>
<td>65977</td>
<td>pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 3</td>
<td>2.58</td>
<td>chr 2</td>
</tr>
<tr>
<td>PLEKHC1</td>
<td>10979</td>
<td>pleckstrin homology domain containing, family C (with FERM domain) member 1</td>
<td>2.27</td>
<td>chr 14</td>
</tr>
<tr>
<td>PLK2</td>
<td>10769</td>
<td>polo-like kinase 2 (Drosophila)</td>
<td>18.51</td>
<td>chr 5</td>
</tr>
<tr>
<td>PLK3</td>
<td>1263</td>
<td>polo-like kinase 3 (Drosophila)</td>
<td>2.02</td>
<td>chr 1</td>
</tr>
<tr>
<td>PLOD1</td>
<td>5351</td>
<td>procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1</td>
<td>9.76</td>
<td>chr 1</td>
</tr>
<tr>
<td>PLOD2</td>
<td>5352</td>
<td>procollagen-lysine 2, oxoglutarate 5-dioxygenase 2</td>
<td>10.14</td>
<td>chr 3</td>
</tr>
<tr>
<td>PLOD3</td>
<td>8965</td>
<td>procollagen-lysine 2, oxoglutarate 5-dioxygenase 3</td>
<td>3.27</td>
<td>chr 7</td>
</tr>
<tr>
<td>PLP2</td>
<td>5355</td>
<td>proteolipid protein 2 (colonic epithelium-enriched)</td>
<td>20.06</td>
<td>chr X</td>
</tr>
<tr>
<td>PLSCR3</td>
<td>254863 /// 57048</td>
<td>phospholipid scramblase 3 /// hypothetical protein MGC40107</td>
<td>3.10</td>
<td>chr 17</td>
</tr>
<tr>
<td>PLSCR4</td>
<td>57088</td>
<td>phospholipid scramblase 4</td>
<td>2.86</td>
<td>chr 3</td>
</tr>
<tr>
<td>PLXNA3</td>
<td>55558</td>
<td>plexin A3</td>
<td>2.83</td>
<td>chr X</td>
</tr>
<tr>
<td>PLXND1</td>
<td>23129</td>
<td>plexin D1</td>
<td>3.22</td>
<td>chr 3</td>
</tr>
<tr>
<td>PME-1</td>
<td>51400</td>
<td>protein phosphatase methylesterase-1</td>
<td>3.23</td>
<td>chr 11</td>
</tr>
<tr>
<td>PMM1</td>
<td>5372</td>
<td>phosphomannomutase 1</td>
<td>3.75</td>
<td>chr 22</td>
</tr>
<tr>
<td>POLH</td>
<td>5429</td>
<td>Polymerase (DNA directed), eta</td>
<td>3.42</td>
<td>chr 6</td>
</tr>
<tr>
<td>POLK</td>
<td>51426</td>
<td>polymerase (DNA directed) kappa</td>
<td>3.54</td>
<td>chr 5</td>
</tr>
<tr>
<td>POLR3GL</td>
<td>84265</td>
<td>polymerase (RNA) III (DNA directed) polypeptide G (32kD) like</td>
<td>6.75</td>
<td>chr 1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>POPDC3</td>
<td>64208</td>
<td>popeye domain containing 3</td>
<td>4.44</td>
<td>chr6</td>
</tr>
<tr>
<td>PORMIN</td>
<td>114908</td>
<td>pro-oncrosis receptor inducing membrane injury gene</td>
<td>2.81</td>
<td>chr11</td>
</tr>
<tr>
<td>PPAPDC1A</td>
<td>196051</td>
<td>phosphatidic acid phosphatase type 2 domain containing 1A</td>
<td>14.97</td>
<td>chr10</td>
</tr>
<tr>
<td>PPARA</td>
<td>5465</td>
<td>peroxisome proliferative activated receptor, alpha</td>
<td>2.14</td>
<td>chr22</td>
</tr>
<tr>
<td>PPARD</td>
<td>5467</td>
<td>peroxisome proliferative activated receptor, delta</td>
<td>2.94</td>
<td>chr6</td>
</tr>
<tr>
<td>PPARG</td>
<td>5468</td>
<td>Peroxisome proliferative activated receptor, gamma</td>
<td>2.00</td>
<td>chr3</td>
</tr>
<tr>
<td>PPFBP1</td>
<td>8496</td>
<td>PTPRF interacting protein, binding protein 1 (liprin beta 1)</td>
<td>5.22</td>
<td>chr12</td>
</tr>
<tr>
<td>PPIC</td>
<td>5480</td>
<td>peptidylprolyl isomerase C (cyclophilin C)</td>
<td>4.59</td>
<td>chr5</td>
</tr>
<tr>
<td>PPM1K</td>
<td>152926</td>
<td>protein phosphatase 1K (PP2C domain containing)</td>
<td>2.38</td>
<td>chr4</td>
</tr>
<tr>
<td>PP1R12A</td>
<td>4659</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 12A</td>
<td>2.00</td>
<td>chr12</td>
</tr>
<tr>
<td>PP1R12B</td>
<td>4660</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 12B</td>
<td>2.04</td>
<td>chr1</td>
</tr>
<tr>
<td>PP1R15A</td>
<td>23645</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 15A</td>
<td>3.29</td>
<td>chr19</td>
</tr>
<tr>
<td>PP1R2</td>
<td>5504</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 2</td>
<td>2.07</td>
<td>chr5</td>
</tr>
<tr>
<td>PP1R3C</td>
<td>5507</td>
<td>protein phosphatase 1, regulatory (inhibitor) subunit 3C</td>
<td>6.33</td>
<td>chr10</td>
</tr>
<tr>
<td>PPS3CB</td>
<td>5532</td>
<td>protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform (calcineurin A beta)</td>
<td>2.37</td>
<td>chr10</td>
</tr>
<tr>
<td>PPS3CC</td>
<td>5533</td>
<td>protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform (calcineurin A gamma)</td>
<td>6.33</td>
<td>chr8</td>
</tr>
<tr>
<td>PRAF2</td>
<td>11230</td>
<td>PRA1 domain family, member 2</td>
<td>5.78</td>
<td>chrX</td>
</tr>
<tr>
<td>PRB1</td>
<td>440083 /// 5542</td>
<td>proline-rich protein BstNI subfamily 1 /// proline-rich protein BstNI subfamily 2</td>
<td>2.66</td>
<td>chr12</td>
</tr>
<tr>
<td>PRDM2</td>
<td>7799</td>
<td>PR domain containing 2, with ZNF domain</td>
<td>2.02</td>
<td>chr1</td>
</tr>
<tr>
<td>PRG1</td>
<td>5552</td>
<td>proteoglycan 1, secretory granule</td>
<td>268.53</td>
<td>chr10</td>
</tr>
<tr>
<td>PRICKLE2</td>
<td>166336</td>
<td>prickle-like 2 (Drosophila)</td>
<td>5.66</td>
<td>chr3</td>
</tr>
<tr>
<td>PRKACB</td>
<td>5567</td>
<td>protein kinase, cAMP-dependent, catalytic, beta</td>
<td>2.71</td>
<td>chr1</td>
</tr>
<tr>
<td>PRKAG1</td>
<td>5571</td>
<td>protein kinase, AMP-activated, gamma 1 non-catalytic subunit</td>
<td>2.55</td>
<td>chr12</td>
</tr>
<tr>
<td>PRKAG2</td>
<td>51422</td>
<td>protein kinase, AMP-activated, gamma 2 non-catalytic subunit</td>
<td>6.38</td>
<td>chr7</td>
</tr>
<tr>
<td>PRKCDDBP</td>
<td>112464</td>
<td>protein kinase C, delta binding protein</td>
<td>5.23</td>
<td>chr11</td>
</tr>
<tr>
<td>PRKCE</td>
<td>5581</td>
<td>protein kinase C, epsilon</td>
<td>4.13</td>
<td>chr2</td>
</tr>
<tr>
<td>PRKCH</td>
<td>5589</td>
<td>protein kinase C substrate 80K-H</td>
<td>2.24</td>
<td>chr19</td>
</tr>
<tr>
<td>PRNP</td>
<td>5621</td>
<td>prion protein (p27-30) (Creutzfeld-Jakob disease, Gerstmann-Strausler-Scheinker syndrome, fatal familial insomnia)</td>
<td>8.86</td>
<td>chr20</td>
</tr>
<tr>
<td>PRO1073</td>
<td>29005</td>
<td>PRO1073 protein</td>
<td>3.57</td>
<td>chr11</td>
</tr>
<tr>
<td>PRO1855</td>
<td>55379</td>
<td>hypothetical protein PRO1855</td>
<td>2.19</td>
<td>chr17</td>
</tr>
<tr>
<td>PRRG1</td>
<td>5638</td>
<td>proline rich Gla (G-carboxyglutamic acid) 1</td>
<td>3.54</td>
<td>chrX</td>
</tr>
<tr>
<td>PRSS12</td>
<td>8492</td>
<td>Protease, serine, 12 (neurotrypsin, motopsin)</td>
<td>8.46</td>
<td>chr4</td>
</tr>
<tr>
<td>PSCD3</td>
<td>9285</td>
<td>pleckstrin homology, Sec7 and coiled-coil domains 3</td>
<td>2.71</td>
<td>chr7</td>
</tr>
<tr>
<td>PSMB2</td>
<td>5690</td>
<td>proteasome (prosome, macropain) subunit, beta type, 2</td>
<td>2.58</td>
<td>chr1</td>
</tr>
<tr>
<td>PSTITP2</td>
<td>9050</td>
<td>proline-serine-threonine phosphatase interacting protein 2</td>
<td>3.08</td>
<td>chr18</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>PTGER2</td>
<td>5732</td>
<td>prostaglandin E receptor 2 (subtype EP2), 53kDa</td>
<td>2.68</td>
<td>chr14</td>
</tr>
<tr>
<td>PTGER4</td>
<td>5734</td>
<td>prostaglandin E receptor 4 (subtype EP4)</td>
<td>4.84</td>
<td>chr5</td>
</tr>
<tr>
<td>PTGFR</td>
<td>5737</td>
<td>prostaglandin F receptor (FP)</td>
<td>2.67</td>
<td>chr1</td>
</tr>
<tr>
<td>PTGFRN</td>
<td>5738</td>
<td>prostaglandin F2 receptor negative regulator</td>
<td>3.47</td>
<td>chr1</td>
</tr>
<tr>
<td>PTGS2</td>
<td>5743</td>
<td>prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)</td>
<td>8.89</td>
<td>chr1</td>
</tr>
<tr>
<td>PTHLH</td>
<td>5744</td>
<td>parathyroid hormone-like hormone /// parathyroid hormone-like hormone</td>
<td>8.74</td>
<td>chr12</td>
</tr>
<tr>
<td>PTK9</td>
<td>5756</td>
<td>PTK9 protein tyrosine kinase 9</td>
<td>4.53</td>
<td>chr12</td>
</tr>
<tr>
<td>PTP4A1</td>
<td>7803</td>
<td>protein tyrosine phosphatase type IVA, member 1</td>
<td>3.48</td>
<td>chr6</td>
</tr>
<tr>
<td>PTP4A2</td>
<td>8073</td>
<td>protein tyrosine phosphatase type IVA, member 2</td>
<td>2.64</td>
<td>chr1</td>
</tr>
<tr>
<td>PTPLA</td>
<td>9200</td>
<td>protein tyrosine phosphatase-like (proline instead of catalytic arginine), member a</td>
<td>2.53</td>
<td>chr10</td>
</tr>
<tr>
<td>PTPN11</td>
<td>5781</td>
<td>protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1)</td>
<td>3.00</td>
<td>chr12</td>
</tr>
<tr>
<td>PTPN9</td>
<td>5780</td>
<td>protein tyrosine phosphatase, non-receptor type 9</td>
<td>2.21</td>
<td>chr15</td>
</tr>
<tr>
<td>PTPNS1</td>
<td>140885</td>
<td>protein tyrosine phosphatase, non-receptor type substrate 1</td>
<td>2.90</td>
<td>chr20</td>
</tr>
<tr>
<td>PTRF</td>
<td>284119</td>
<td>polymerase I and transcript release factor</td>
<td>22.23</td>
<td>chr17</td>
</tr>
<tr>
<td>PTX1</td>
<td>51290</td>
<td>PTX1 protein</td>
<td>2.21</td>
<td>chr12</td>
</tr>
<tr>
<td>PVR</td>
<td>5817</td>
<td>poxivirus receptor</td>
<td>3.52</td>
<td>chr19</td>
</tr>
<tr>
<td>PXDN</td>
<td>7837</td>
<td>peroxidin homolog (Drosophila)</td>
<td>3.26</td>
<td>chr2</td>
</tr>
<tr>
<td>PXK</td>
<td>54899</td>
<td>PX domain containing serine/threonine kinase</td>
<td>5.67</td>
<td>chr3</td>
</tr>
<tr>
<td>PXN</td>
<td>5829</td>
<td>paxillin</td>
<td>2.21</td>
<td>chr12</td>
</tr>
<tr>
<td>PYCR1</td>
<td>5831</td>
<td>pyrroline-5-carboxylate reductase 1</td>
<td>2.10</td>
<td>chr17</td>
</tr>
<tr>
<td>PYGB</td>
<td>5834</td>
<td>phosphorylase, glycogen; brain</td>
<td>3.06</td>
<td>chr20</td>
</tr>
<tr>
<td>QIL1</td>
<td>125988</td>
<td>QIL1 protein</td>
<td>2.87</td>
<td>chr19</td>
</tr>
<tr>
<td>QSCN6</td>
<td>5768</td>
<td>quiescin Q6</td>
<td>5.39</td>
<td>chr1</td>
</tr>
<tr>
<td>RAB11FIP2</td>
<td>22841</td>
<td>RAB11 family interacting protein 2 (class I)</td>
<td>2.07</td>
<td>chr10</td>
</tr>
<tr>
<td>RAB11FIP5</td>
<td>26056</td>
<td>RAB11 family interacting protein 5 (class I)</td>
<td>4.01</td>
<td>chr2</td>
</tr>
<tr>
<td>RAB18</td>
<td>22931</td>
<td>RAB18, member RAS oncogene family</td>
<td>2.36</td>
<td>chr10</td>
</tr>
<tr>
<td>RAB2</td>
<td>5862</td>
<td>RAB2, member RAS oncogene family</td>
<td>2.97</td>
<td>chr8</td>
</tr>
<tr>
<td>RAB23</td>
<td>51715</td>
<td>RAB23, member RAS oncogene family</td>
<td>4.32</td>
<td>chr6</td>
</tr>
<tr>
<td>RAB27A</td>
<td>5873</td>
<td>RAB27A, member RAS oncogene family</td>
<td>4.20</td>
<td>chr15</td>
</tr>
<tr>
<td>RAB32</td>
<td>10981</td>
<td>RAB32, member RAS oncogene family</td>
<td>15.55</td>
<td>chr6</td>
</tr>
<tr>
<td>RAB33A</td>
<td>9363</td>
<td>RAB33A, member RAS oncogene family</td>
<td>2.53</td>
<td>chrX</td>
</tr>
<tr>
<td>RAB33GAP1</td>
<td>22930</td>
<td>RAB3 GTPase activating protein subunit 1 (catalytic)</td>
<td>2.33</td>
<td>chr2</td>
</tr>
<tr>
<td>RAB6A</td>
<td>5870 // 84084</td>
<td>RAB6A, member RAS oncogene family /// RAB6C, member RAS oncogene family</td>
<td>2.01</td>
<td>chr2</td>
</tr>
<tr>
<td>RAB6IP2</td>
<td>23085</td>
<td>RAB6 interacting protein 2</td>
<td>2.73</td>
<td>chr12</td>
</tr>
<tr>
<td>RAB9B</td>
<td>51209</td>
<td>RAB9B, member RAS oncogene family</td>
<td>2.03</td>
<td>chrX</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>RABGEF1</td>
<td>27342</td>
<td>RAB guanine nucleotide exchange factor (GEF) 1</td>
<td>2.80</td>
<td>chr7</td>
</tr>
<tr>
<td>RAFTLIN</td>
<td>23180</td>
<td>raft-linking protein</td>
<td>42.35</td>
<td>chr3</td>
</tr>
<tr>
<td>RAGE</td>
<td>5891</td>
<td>renal tumor antigen</td>
<td>7.59</td>
<td>chr14</td>
</tr>
<tr>
<td>RAI14</td>
<td>26064</td>
<td>retinoic acid induced 1</td>
<td>3.36</td>
<td>chr5</td>
</tr>
<tr>
<td>RALB</td>
<td>5899</td>
<td>v-ral simian leukemia viral oncogene homolog B (ras related; GTP binding protein)</td>
<td>3.79</td>
<td>chr2</td>
</tr>
<tr>
<td>RaLP</td>
<td>399694</td>
<td>ral-like protein</td>
<td>3.49</td>
<td>chr15</td>
</tr>
<tr>
<td>RAP1A</td>
<td>5906</td>
<td>RAP1A, member of RAS oncogene family</td>
<td>2.74</td>
<td>chr1</td>
</tr>
<tr>
<td>RAP1GDS1</td>
<td>5910</td>
<td>RAP1, GTP-DG dissociation stimulator 1</td>
<td>3.76</td>
<td>chr4</td>
</tr>
<tr>
<td>RAP2C</td>
<td>57826</td>
<td>RAP2C, member of RAS oncogene family</td>
<td>2.01</td>
<td>chrX</td>
</tr>
<tr>
<td>RAPH1</td>
<td>65059</td>
<td>Ras association (RalGDS/AF-6) and pleckstrin homology domains 1</td>
<td>5.11</td>
<td>chr2</td>
</tr>
<tr>
<td>RASA1</td>
<td>5921</td>
<td>Ras p21 protein activator (GTPase activating protein) 1</td>
<td>2.72</td>
<td>chr5</td>
</tr>
<tr>
<td>RASSF4</td>
<td>83937</td>
<td>Ras association (RalGDS/AF-6) domain family 4</td>
<td>2.07</td>
<td>chr10</td>
</tr>
<tr>
<td>RASSF8</td>
<td>11228</td>
<td>Ras association (RalGDS/AF-6) domain family 8</td>
<td>2.01</td>
<td>chr12</td>
</tr>
<tr>
<td>RB1</td>
<td>5925</td>
<td>retinoblastoma 1 (including osteosarcoma)</td>
<td>2.97</td>
<td>chr13</td>
</tr>
<tr>
<td>RBL2</td>
<td>5934</td>
<td>retinoblastoma-like 2 (p130)</td>
<td>3.17</td>
<td>chr16</td>
</tr>
<tr>
<td>RBM18</td>
<td>92400</td>
<td>RNA binding motif protein 16</td>
<td>3.58</td>
<td>chr9</td>
</tr>
<tr>
<td>RBM9</td>
<td>23543</td>
<td>RNA binding motif protein 9</td>
<td>3.26</td>
<td>chr22</td>
</tr>
<tr>
<td>RBMS2</td>
<td>5939</td>
<td>RNA binding motif, single stranded interacting protein 2</td>
<td>3.74</td>
<td>chr12</td>
</tr>
<tr>
<td>RECK</td>
<td>8434</td>
<td>reversion-inducing-cysteine-rich protein with kazal motifs</td>
<td>7.09</td>
<td>chr9</td>
</tr>
<tr>
<td>RECQL</td>
<td>5965</td>
<td>RecQ protein-like (DNA helicase Q1-like)</td>
<td>3.08</td>
<td>chr12</td>
</tr>
<tr>
<td>REEP3</td>
<td>221035</td>
<td>Receptor accessory protein 3</td>
<td>4.45</td>
<td>chr10</td>
</tr>
<tr>
<td>RELA</td>
<td>5970</td>
<td>v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene expression</td>
<td>2.84</td>
<td>chr11</td>
</tr>
<tr>
<td>RFK</td>
<td>55312</td>
<td>riboflavin kinase</td>
<td>2.94</td>
<td>chr9</td>
</tr>
<tr>
<td>RGMB</td>
<td>285704</td>
<td>RGM domain family, member B</td>
<td>5.25</td>
<td>chr5</td>
</tr>
<tr>
<td>RGNEF</td>
<td>64283</td>
<td>Rho-guanine nucleotide exchange factor</td>
<td>3.79</td>
<td>chr5</td>
</tr>
<tr>
<td>RGS10</td>
<td>6001</td>
<td>regulator of G-protein signalling 10</td>
<td>2.66</td>
<td>chr10</td>
</tr>
<tr>
<td>RHBDL7</td>
<td>57414</td>
<td>rhomboid, veinlet-like 7 (Drosophila)</td>
<td>2.65</td>
<td>chr7</td>
</tr>
<tr>
<td>RHOB</td>
<td>388</td>
<td>ras homolog gene family, member B</td>
<td>2.95</td>
<td>chr2</td>
</tr>
<tr>
<td>RHOCC</td>
<td>389</td>
<td>ras homolog gene family, member C</td>
<td>10.36</td>
<td>chr1</td>
</tr>
<tr>
<td>RHOG</td>
<td>391</td>
<td>ras homolog gene family, member G (rho G)</td>
<td>2.44</td>
<td>chr11</td>
</tr>
<tr>
<td>RHOCJ</td>
<td>57381</td>
<td>ras homolog gene family, member J</td>
<td>13.07</td>
<td>chr14</td>
</tr>
<tr>
<td>RHOCQ</td>
<td>23433</td>
<td>ras homolog gene family, member Q</td>
<td>2.45</td>
<td>chr2</td>
</tr>
<tr>
<td>RHOQ</td>
<td>23433 /// 284988</td>
<td>ras homolog gene family, member Q /// similar to ARHQ protein</td>
<td>3.10</td>
<td>chr2</td>
</tr>
<tr>
<td>RIG</td>
<td>10530</td>
<td>regulated in glioma</td>
<td>4.17</td>
<td>chr11</td>
</tr>
<tr>
<td>RIOK3</td>
<td>8780</td>
<td>RIO kinase 3 (yeast) /// RIO kinase 3 (yeast)</td>
<td>2.29</td>
<td>chr18</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>RIPK1</td>
<td>8737</td>
<td>receptor (TNFRSF)-interacting serine-threonine kinase 1</td>
<td>3.05</td>
<td>chr6</td>
</tr>
<tr>
<td>RNASE4</td>
<td>6038</td>
<td>ribonuclease, RNase A family, 4</td>
<td>10.14</td>
<td>chr14</td>
</tr>
<tr>
<td>RND3</td>
<td>390</td>
<td>Rho family GTPase 3</td>
<td>7.69</td>
<td>chr2</td>
</tr>
<tr>
<td>RNF11</td>
<td>26994</td>
<td>ring finger protein 11</td>
<td>2.28</td>
<td>chr1</td>
</tr>
<tr>
<td>RNF14</td>
<td>9604</td>
<td>ring finger protein 14</td>
<td>3.12</td>
<td>chr5</td>
</tr>
<tr>
<td>RNF150</td>
<td>57484</td>
<td>ring finger protein 150</td>
<td>2.03</td>
<td>chr4</td>
</tr>
<tr>
<td>RNF185</td>
<td>91445</td>
<td>ring finger protein 185</td>
<td>2.60</td>
<td>chr22</td>
</tr>
<tr>
<td>RNF6</td>
<td>6049</td>
<td>ring finger protein (C3H2C3 type) 6</td>
<td>3.18</td>
<td>chr13</td>
</tr>
<tr>
<td>RNH1</td>
<td>6050</td>
<td>ribonuclease/angiogenin inhibitor 1</td>
<td>3.39</td>
<td>chr11</td>
</tr>
<tr>
<td>RP11-378J18.4</td>
<td>375056</td>
<td>C219-reactive peptide</td>
<td>2.95</td>
<td>chr1</td>
</tr>
<tr>
<td>RP2</td>
<td>6102</td>
<td>retinitis pigmentosa 2 (X-linked recessive)</td>
<td>3.03</td>
<td>chrX</td>
</tr>
<tr>
<td>RPL23AP7</td>
<td>118433</td>
<td>ribosomal protein L23a pseudogene 7</td>
<td>3.44</td>
<td>chr1</td>
</tr>
<tr>
<td>RPS6KA2</td>
<td>6196</td>
<td>ribosomal protein S6 kinase, 90kDa, polypeptide 2</td>
<td>4.06</td>
<td>chr6</td>
</tr>
<tr>
<td>Rrad</td>
<td>6236</td>
<td>Ras-related associated with diabetes</td>
<td>2.65</td>
<td>chr16</td>
</tr>
<tr>
<td>RRAGB</td>
<td>10325</td>
<td>Ras-related GTP binding B</td>
<td>2.23</td>
<td>chrX</td>
</tr>
<tr>
<td>RRAS</td>
<td>6237</td>
<td>related RAS viral (v-ras) oncogene homolog</td>
<td>16.59</td>
<td>chr19</td>
</tr>
<tr>
<td>RSN</td>
<td>6249</td>
<td>restin (Reed-Steinberg cell-expressed intermediate filament-associated protein)</td>
<td>5.89</td>
<td>chr12</td>
</tr>
<tr>
<td>RTN4</td>
<td>57142</td>
<td>reticulin 4</td>
<td>2.24</td>
<td>chr2</td>
</tr>
<tr>
<td>RUNX2</td>
<td>860</td>
<td>runt-related transcription factor 2</td>
<td>10.68</td>
<td>chr6</td>
</tr>
<tr>
<td>RUSC2</td>
<td>9853</td>
<td>RUN and SH3 domain containing 2</td>
<td>3.56</td>
<td>chr9</td>
</tr>
<tr>
<td>RXRb</td>
<td>6257</td>
<td>retinoid X receptor, beta</td>
<td>2.65</td>
<td>chr6</td>
</tr>
<tr>
<td>S100A11</td>
<td>6282</td>
<td>S100 calcium binding protein A11 (calgizzarin)</td>
<td>11.04</td>
<td>chr1</td>
</tr>
<tr>
<td>S100A13</td>
<td>6284</td>
<td>S100 calcium binding protein A13</td>
<td>2.75</td>
<td>chr1</td>
</tr>
<tr>
<td>S100A16</td>
<td>140576</td>
<td>S100 calcium binding protein A16</td>
<td>14.87</td>
<td>chr1</td>
</tr>
<tr>
<td>SAC5</td>
<td>26278</td>
<td>spastic ataxia of Charlevoix-Saguenay (sacsin)</td>
<td>2.33</td>
<td>chr13</td>
</tr>
<tr>
<td>SAMD4</td>
<td>23034</td>
<td>sterile alpha motif domain containing 4</td>
<td>5.95</td>
<td>chr14</td>
</tr>
<tr>
<td>SAMD9</td>
<td>54809</td>
<td>sterile alpha motif domain containing 9</td>
<td>6.51</td>
<td>chr7</td>
</tr>
<tr>
<td>SAR1B</td>
<td>51128</td>
<td>SAR1 gene homolog B (S. cerevisiae)</td>
<td>3.44</td>
<td>chr5</td>
</tr>
<tr>
<td>SAT</td>
<td>6303</td>
<td>Spermidine/spermine N1-acetyltransferase</td>
<td>6.26</td>
<td>chrX</td>
</tr>
<tr>
<td>SATB2</td>
<td>23314</td>
<td>SATB family member 2</td>
<td>2.94</td>
<td>chr2</td>
</tr>
<tr>
<td>SATL1</td>
<td>340562</td>
<td>Spermidine/spermine N1-acetyl transferase-like 1</td>
<td>4.19</td>
<td>chrX</td>
</tr>
<tr>
<td>SBDS</td>
<td>51119</td>
<td>Shwachman-Bodian-Diamond syndrome</td>
<td>3.63</td>
<td>chr7</td>
</tr>
<tr>
<td>SBDS /// SBDSP</td>
<td>155370 /// 51119</td>
<td>Shwachman-Bodian-Diamond syndrome /// Shwachman-Bodian-Diamond syndrome pseudogene</td>
<td>3.67</td>
<td>chr7</td>
</tr>
<tr>
<td>SC65</td>
<td>10609</td>
<td>synaptosomal complex protein SC65</td>
<td>5.32</td>
<td>chr17</td>
</tr>
<tr>
<td>SCAP2</td>
<td>8935</td>
<td>src family associated phosphoprotein 2</td>
<td>2.24</td>
<td>chr7</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SCARB2</td>
<td>950</td>
<td>scavenger receptor class B, member 2</td>
<td>3.11</td>
<td>chr4</td>
</tr>
<tr>
<td>SCARF2</td>
<td>91179</td>
<td>scavenger receptor class F, member 2</td>
<td>3.06</td>
<td>chr22</td>
</tr>
<tr>
<td>SCFD2</td>
<td>152579</td>
<td>sec1 family domain containing 2</td>
<td>2.52</td>
<td>chr4</td>
</tr>
<tr>
<td>SCG2</td>
<td>7857</td>
<td>secretogranin II (chromogranin C)</td>
<td>17.83</td>
<td>chr2</td>
</tr>
<tr>
<td>SCN9A</td>
<td>6335</td>
<td>sodium channel, voltage-gated, type IX, alpha</td>
<td>2.32</td>
<td>chr2</td>
</tr>
<tr>
<td>SCOC</td>
<td>60592</td>
<td>short coiled-coil protein</td>
<td>2.51</td>
<td>chr4</td>
</tr>
<tr>
<td>SCRN3</td>
<td>79634</td>
<td>secernin 3</td>
<td>2.23</td>
<td>chr2</td>
</tr>
<tr>
<td>SDC3</td>
<td>9672</td>
<td>syndecan 3 (N-syndecan)</td>
<td>3.71</td>
<td>chr1</td>
</tr>
<tr>
<td>SDF4</td>
<td>51150</td>
<td>stromal cell derived factor 4</td>
<td>3.46</td>
<td>chr1</td>
</tr>
<tr>
<td>DSL</td>
<td>113675</td>
<td>serine dehydratase-like</td>
<td>2.61</td>
<td>chr12</td>
</tr>
<tr>
<td>SEC14L1</td>
<td>6397</td>
<td>SEC14-like 1 (S. cerevisiae)</td>
<td>2.54</td>
<td>chr17</td>
</tr>
<tr>
<td>SEC22L1</td>
<td>9554</td>
<td>SEC22 vesicle trafficking protein-like 1 (S. cerevisiae)</td>
<td>12.92</td>
<td>chr1</td>
</tr>
<tr>
<td>SEC23A</td>
<td>10484</td>
<td>Sec23 homolog A (S. cerevisiae)</td>
<td>5.11</td>
<td>chr14</td>
</tr>
<tr>
<td>SEC24A</td>
<td>10802</td>
<td>SEC24 related gene family, member A (S. cerevisiae)</td>
<td>2.31</td>
<td>chr5</td>
</tr>
<tr>
<td>SEC31L1</td>
<td>22872</td>
<td>SEC31-like 1 (S. cerevisiae)</td>
<td>3.56</td>
<td>chr4</td>
</tr>
<tr>
<td>SEC61A1</td>
<td>29927</td>
<td>Sec61 alpha 1 subunit (S. cerevisiae)</td>
<td>3.65</td>
<td>chr3</td>
</tr>
<tr>
<td>SEL1</td>
<td>6400</td>
<td>sel-1 suppressor of lin-12-like (C. elegans)</td>
<td>8.09</td>
<td>chr14</td>
</tr>
<tr>
<td>SELM</td>
<td>140606</td>
<td>selenoprotein M</td>
<td>9.68</td>
<td>chr22</td>
</tr>
<tr>
<td>SELPLG</td>
<td>6404</td>
<td>selectin P ligand</td>
<td>2.08</td>
<td>chr12</td>
</tr>
<tr>
<td>SERINC1</td>
<td>57515</td>
<td>serine incorporator 1</td>
<td>4.99</td>
<td>chr6</td>
</tr>
<tr>
<td>SERPINE8</td>
<td>8710</td>
<td>serpin peptidase inhibitor, clade B (ovalbumin), member 7</td>
<td>14.00</td>
<td>chr18</td>
</tr>
<tr>
<td>SERPINE8</td>
<td>5271</td>
<td>serpin peptidase inhibitor, clade B (ovalbumin), member 8</td>
<td>2.86</td>
<td>chr18</td>
</tr>
<tr>
<td>SERPINE1</td>
<td>5054</td>
<td>serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1</td>
<td>201.36</td>
<td>chr7</td>
</tr>
<tr>
<td>SERTAD1</td>
<td>29950</td>
<td>SERTA domain containing 1</td>
<td>2.14</td>
<td>chr19</td>
</tr>
<tr>
<td>SEZ6L2</td>
<td>26470</td>
<td>seizure related 6 homolog (mouse)-like 2</td>
<td>2.28</td>
<td>chr16</td>
</tr>
<tr>
<td>SFT2D2</td>
<td>375035</td>
<td>SFT2 domain containing 2</td>
<td>2.44</td>
<td>chr1</td>
</tr>
<tr>
<td>SFXN3</td>
<td>81855</td>
<td>sideroflexin 3 /// sideroflexin 3</td>
<td>7.99</td>
<td>chr10</td>
</tr>
<tr>
<td>SGCB</td>
<td>6443</td>
<td>sarcoglycan, beta (43kDa dystrophin-associated glycoprotein)</td>
<td>2.43</td>
<td>chr4</td>
</tr>
<tr>
<td>SGCD</td>
<td>6444</td>
<td>sarcoglycan, delta (35kDa dystrophin-associated glycoprotein)</td>
<td>2.03</td>
<td>chr5</td>
</tr>
<tr>
<td>SGI1</td>
<td>84251</td>
<td>SH3-domain GRB2-like (endophilin) interacting protein 1</td>
<td>6.24</td>
<td>chr1</td>
</tr>
<tr>
<td>SGPP1</td>
<td>81537</td>
<td>sphingosine-1-phosphate phosphatase 1</td>
<td>3.12</td>
<td>chr14</td>
</tr>
<tr>
<td>SH3BGLR</td>
<td>6451</td>
<td>SH3 domain binding glutamic acid-rich protein like</td>
<td>2.87</td>
<td>chrX</td>
</tr>
<tr>
<td>SH3BGR1</td>
<td>83442</td>
<td>SH3 domain binding glutamic acid-rich protein like 3 /// SH3 domain binding glutamic acid-rich protein like 3</td>
<td>8.11</td>
<td>chr1</td>
</tr>
<tr>
<td>SH3GLB1</td>
<td>51100</td>
<td>SH3-domain GRB2-like endophilin B</td>
<td>3.88</td>
<td>chr1</td>
</tr>
<tr>
<td>SH3KB1</td>
<td>30011</td>
<td>SH3-domain kinase binding protein 1</td>
<td>2.83</td>
<td>chrX</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SH3MD2</td>
<td>57630</td>
<td>SH3 multiple domains 2</td>
<td>5.41</td>
<td>chr4</td>
</tr>
<tr>
<td>SH3MD4</td>
<td>344558</td>
<td>SH3 multiple domains 4</td>
<td>5.15</td>
<td>chr2</td>
</tr>
<tr>
<td>SH3RF2</td>
<td>153769</td>
<td>SH3 domain containing ring finger 2</td>
<td>3.56</td>
<td>chr5</td>
</tr>
<tr>
<td>SHB</td>
<td>6461</td>
<td>Src homology 2 domain containing adaptor protein B</td>
<td>2.10</td>
<td>chr9</td>
</tr>
<tr>
<td>SHC1</td>
<td>6464</td>
<td>SHC (Src homology 2 domain containing) transforming protein 1</td>
<td>2.21</td>
<td>chr1</td>
</tr>
<tr>
<td>SIL1</td>
<td>64374</td>
<td>SIL1 homolog, endoplasmic reticulum chaperone (S. cerevisiae)</td>
<td>7.07</td>
<td>chr5</td>
</tr>
<tr>
<td>SIRT2</td>
<td>22933</td>
<td>sirtuin (silent mating type information regulation 2 homolog) 2 (S. cerevisiae)</td>
<td>2.87</td>
<td>chr19</td>
</tr>
<tr>
<td>SIX1</td>
<td>6495</td>
<td>Sine oculis homeobox homolog 1 (Drosophila)</td>
<td>112.74</td>
<td>chr14</td>
</tr>
<tr>
<td>SLC10A3</td>
<td>8273</td>
<td>solute carrier family 10 (sodium/bile acid cotransporter family), member 3</td>
<td>2.72</td>
<td>chrX</td>
</tr>
<tr>
<td>SLC12A2</td>
<td>6558</td>
<td>solute carrier family 12 (sodium/potassium/chloride transporters), member 2</td>
<td>2.07</td>
<td>chr5</td>
</tr>
<tr>
<td>SLC12A4</td>
<td>6560</td>
<td>solute carrier family 12 (potassium/chloride transporters), member 4</td>
<td>2.84</td>
<td>chr16</td>
</tr>
<tr>
<td>SLC16A7</td>
<td>9194</td>
<td>solute carrier family 16 (monocarboxylic acid transporters), member 7</td>
<td>4.54</td>
<td>chr12</td>
</tr>
<tr>
<td>SLC17A5</td>
<td>26503</td>
<td>solute carrier family 17 (anion/sugar transporter), member 5</td>
<td>7.10</td>
<td>chr6</td>
</tr>
<tr>
<td>SLC20A2</td>
<td>6575</td>
<td>solute carrier family 20 (phosphate transporter), member 2</td>
<td>2.33</td>
<td>chr8</td>
</tr>
<tr>
<td>SLC22A18</td>
<td>5002</td>
<td>solute carrier family 22 (organic cation transporter), member 18</td>
<td>4.89</td>
<td>chr11</td>
</tr>
<tr>
<td>SLC22A4</td>
<td>6583</td>
<td>solute carrier family 22 (organic cation transporter), member 4</td>
<td>2.24</td>
<td>chr5</td>
</tr>
<tr>
<td>SLC25A20</td>
<td>788</td>
<td>solute carrier family 25 (carnitine/acylcarnitine translocase), member 20</td>
<td>2.63</td>
<td>chr3</td>
</tr>
<tr>
<td>SLC25A24</td>
<td>29957</td>
<td>solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 24</td>
<td>2.07</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC25A32</td>
<td>81034</td>
<td>solute carrier family 25, member 32 // solute carrier family 25, member 32</td>
<td>2.69</td>
<td>chr8</td>
</tr>
<tr>
<td>SLC26A5</td>
<td>375611</td>
<td>Solute carrier family 26, member 5 (prestin)</td>
<td>2.72</td>
<td>chr7</td>
</tr>
<tr>
<td>SLC2A10</td>
<td>81031</td>
<td>solute carrier family 2 (facilitated glucose transporter), member 10 // solute carrier family 2 (facilitated glucose transporter), member 20</td>
<td>5.13</td>
<td>chr20</td>
</tr>
<tr>
<td>SLC30A5</td>
<td>64924</td>
<td>solute carrier family 30 (zinc transporter), member 5</td>
<td>2.22</td>
<td>chr5</td>
</tr>
<tr>
<td>SLC30A7</td>
<td>148867</td>
<td>solute carrier family 30 (zinc transporter), member 7</td>
<td>4.96</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC31A2</td>
<td>1318</td>
<td>solute carrier family 31 (copper transporters), member 2</td>
<td>3.06</td>
<td>chr9</td>
</tr>
<tr>
<td>SLC35A3</td>
<td>23443</td>
<td>solute carrier family 35 (UDP-N-acetylgalactosamine (UDP-GlcNAc) transporter), member A3</td>
<td>2.31</td>
<td>chr1</td>
</tr>
<tr>
<td>SLC35B2</td>
<td>347734</td>
<td>solute carrier family 35, member B2</td>
<td>2.47</td>
<td>chr6</td>
</tr>
<tr>
<td>SLC35B3</td>
<td>51000</td>
<td>solute carrier family 35, member B3</td>
<td>4.68</td>
<td>chr6</td>
</tr>
<tr>
<td>SLC35C1</td>
<td>55343</td>
<td>solute carrier family 35, member C1</td>
<td>2.03</td>
<td>chr11</td>
</tr>
<tr>
<td>SLC35E1</td>
<td>79393</td>
<td>solute carrier family 35, member E1</td>
<td>3.25</td>
<td>chr19</td>
</tr>
<tr>
<td>SLC35F5</td>
<td>80255</td>
<td>solute carrier family 35, member F5</td>
<td>4.00</td>
<td>chr2</td>
</tr>
<tr>
<td>SLC39A13</td>
<td>91252</td>
<td>solute carrier family 39 (zinc transporter), member 13</td>
<td>2.82</td>
<td>chr11</td>
</tr>
<tr>
<td>SLC39A6</td>
<td>25800</td>
<td>solute carrier family 39 (zinc transporter), member 6</td>
<td>2.72</td>
<td>chr18</td>
</tr>
<tr>
<td>SLC41A2</td>
<td>84102</td>
<td>solute carrier family 41, member 2</td>
<td>2.05</td>
<td>chr12</td>
</tr>
<tr>
<td>SLC41A3</td>
<td>54946</td>
<td>solute carrier family 41, member 3</td>
<td>2.02</td>
<td>chr3</td>
</tr>
<tr>
<td>SLC4A4</td>
<td>8671</td>
<td>solute carrier family 4, sodium bicarbonate cotransporter, member 4</td>
<td>5.47</td>
<td>chr4</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SLC7A11</td>
<td>23657</td>
<td>solute carrier family 7, (cationic amino acid transporter, y+ system) member 11</td>
<td>3.15</td>
<td>chr4</td>
</tr>
<tr>
<td>SLIT3</td>
<td>6586</td>
<td>slit homolog 3 (Drosophila)</td>
<td>3.10</td>
<td>chr5</td>
</tr>
<tr>
<td>SLITL2</td>
<td>114990</td>
<td>slit-like 2 (Drosophila)</td>
<td>3.55</td>
<td>chr16</td>
</tr>
<tr>
<td>SMAP1L</td>
<td>64744</td>
<td>stromal membrane-associated protein 1-like</td>
<td>4.65</td>
<td>chr1</td>
</tr>
<tr>
<td>SMARCA2</td>
<td>6595</td>
<td>SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2</td>
<td>3.65</td>
<td>chr9</td>
</tr>
<tr>
<td>SMC5L1</td>
<td>23137</td>
<td>SMCS structural maintenance of chromosomes 5-like 1 (yeast)</td>
<td>2.42</td>
<td>chr9</td>
</tr>
<tr>
<td>SMPD1</td>
<td>6609</td>
<td>sphingomyelin phosphodiesterase 1, acid lysosomal (acid sphingomyelinase)</td>
<td>3.77</td>
<td>chr11</td>
</tr>
<tr>
<td>SMURF2</td>
<td>64750</td>
<td>SMAD specific E3 ubiquitin protein ligase 2</td>
<td>12.21</td>
<td>chr17</td>
</tr>
<tr>
<td>SMYD2</td>
<td>56950</td>
<td>SET and MYND domain containing 2</td>
<td>2.18</td>
<td>chr1</td>
</tr>
<tr>
<td>SNAG1</td>
<td>112574</td>
<td>Sorting nexin associated golgi protein 1</td>
<td>2.44</td>
<td>chr5</td>
</tr>
<tr>
<td>SNTB2</td>
<td>6645</td>
<td>syntrophin, beta 2 (dystrophin-associated protein A1, 59kDa, basic component 2)</td>
<td>2.26</td>
<td>chr16</td>
</tr>
<tr>
<td>SNX3</td>
<td>8724</td>
<td>sorting nexin 3</td>
<td>3.05</td>
<td>chr6</td>
</tr>
<tr>
<td>SNX9</td>
<td>51429</td>
<td>sorting nexin 9</td>
<td>2.01</td>
<td>chr6</td>
</tr>
<tr>
<td>SOAT1</td>
<td>6646</td>
<td>sterol O-acyltransferase (acyl-Coenzyme A: cholesterol acyltransferase) 1</td>
<td>6.88</td>
<td>chr1</td>
</tr>
<tr>
<td>SOCS5</td>
<td>9655</td>
<td>suppressor of cytokine signaling 5</td>
<td>4.44</td>
<td>chr2</td>
</tr>
<tr>
<td>SOD3</td>
<td>6649</td>
<td>superoxide dismutase 3, extracellular</td>
<td>2.35</td>
<td>chr4</td>
</tr>
<tr>
<td>SP100</td>
<td>6672</td>
<td>nuclear antigen Sp100</td>
<td>24.52</td>
<td>chr2</td>
</tr>
<tr>
<td>SPARC</td>
<td>6678</td>
<td>secreted protein, acidic, cysteine-rich (osteonectin)</td>
<td>42.54</td>
<td>chr5</td>
</tr>
<tr>
<td>SPATA18</td>
<td>132671</td>
<td>spermatogenesis associated 18 homolog (rat)</td>
<td>7.26</td>
<td>chr4</td>
</tr>
<tr>
<td>SPATA20</td>
<td>64847</td>
<td>spermatogenesis associated 20</td>
<td>2.71</td>
<td>chr17</td>
</tr>
<tr>
<td>SPATS2</td>
<td>65244</td>
<td>spermatogenesis associated, serine-rich 2</td>
<td>3.85</td>
<td>chr12</td>
</tr>
<tr>
<td>SPCS3</td>
<td>60559</td>
<td>signal peptidase complex subunit 3 homolog (S. cerevisiae)</td>
<td>2.77</td>
<td>chr4</td>
</tr>
<tr>
<td>SPIRE1</td>
<td>56907</td>
<td>spire homolog 1 (Drosophila)</td>
<td>2.55</td>
<td>chr18</td>
</tr>
<tr>
<td>SPOCD1</td>
<td>90853</td>
<td>SPOC domain containing 1</td>
<td>39.33</td>
<td>chr1</td>
</tr>
<tr>
<td>SPOP</td>
<td>8405</td>
<td>speckle-type POZ protein</td>
<td>2.45</td>
<td>chr17</td>
</tr>
<tr>
<td>SPSB1</td>
<td>80176</td>
<td>splA/ryanodine receptor domain and SOCS box containing 1</td>
<td>4.31</td>
<td>chr1</td>
</tr>
<tr>
<td>SPTAN1</td>
<td>6709</td>
<td>Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin) // CDNA FLJ44613 fis, clone BRACE2012814, highly</td>
<td>5.43</td>
<td>chr9</td>
</tr>
<tr>
<td>SQRDL</td>
<td>58472</td>
<td>sulfide quinone reductase-like (yeast)</td>
<td>8.57</td>
<td>chr15</td>
</tr>
<tr>
<td>SQSTM1</td>
<td>8878</td>
<td>sequestosome 1</td>
<td>3.18</td>
<td>chr5</td>
</tr>
<tr>
<td>SRA1</td>
<td>10011</td>
<td>steroid receptor RNA activator 1</td>
<td>2.05</td>
<td>chr5</td>
</tr>
<tr>
<td>SRGAP1</td>
<td>57522</td>
<td>SLIT-ROBO Rho GTPase activating protein 1</td>
<td>3.81</td>
<td>chr12</td>
</tr>
<tr>
<td>SRPR</td>
<td>6734</td>
<td>signal recognition particle receptor (‘docking protein’)</td>
<td>5.02</td>
<td>chr11</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>SRPX</td>
<td>8406</td>
<td>sushi-repeat-containing protein, X-linked</td>
<td>7.97</td>
<td>chrX</td>
</tr>
<tr>
<td>SRPX2</td>
<td>27286</td>
<td>sushi-repeat-containing protein, X-linked 2</td>
<td>18.18</td>
<td>chrX</td>
</tr>
<tr>
<td>SRNX1</td>
<td>140809</td>
<td>sulfiredoxin 1 homolog (S. cerevisiae)</td>
<td>2.09</td>
<td>chr20</td>
</tr>
<tr>
<td>SSR2</td>
<td>8082</td>
<td>sarcospan (Kras oncogene-associated gene)</td>
<td>16.19</td>
<td>chr12</td>
</tr>
<tr>
<td>ST3GAL1</td>
<td>6746</td>
<td>signal sequence receptor, beta (translocon-associated protein beta)</td>
<td>2.83</td>
<td>chr1</td>
</tr>
<tr>
<td>ST7</td>
<td>7982</td>
<td>suppression of tumorigenicity 7</td>
<td>2.02</td>
<td>chr7</td>
</tr>
<tr>
<td>STAM2</td>
<td>10254</td>
<td>signal transducing adaptor molecule (SH3 domain and ITAM motif) 2</td>
<td>3.97</td>
<td>chr2</td>
</tr>
<tr>
<td>STARD13</td>
<td>90627</td>
<td>START domain containing 13</td>
<td>7.46</td>
<td>chr13</td>
</tr>
<tr>
<td>STAT1</td>
<td>6772</td>
<td>signal transducer and activator of transcription 1, 91kDa</td>
<td>2.12</td>
<td>(vide)</td>
</tr>
<tr>
<td>STAT2</td>
<td>6773</td>
<td>signal transducer and activator of transcription 2, 113kDa</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>STAT6</td>
<td>6778</td>
<td>signal transducer and activator of transcription 6, interleukin-4 induced</td>
<td>2.49</td>
<td>chr12</td>
</tr>
<tr>
<td>STCH</td>
<td>6782</td>
<td>stress 70 protein chaperone, microsome-associated, 60kDa</td>
<td>2.70</td>
<td>chr21</td>
</tr>
<tr>
<td>STK10</td>
<td>6793</td>
<td>serine/threonine kinase 10</td>
<td>2.21</td>
<td>chr5</td>
</tr>
<tr>
<td>STK17B</td>
<td>9262</td>
<td>Basic leucine zipper and W2 domains 1</td>
<td>13.41</td>
<td>chr2</td>
</tr>
<tr>
<td>STK32B</td>
<td>55351</td>
<td>serine/threonine kinase 32B</td>
<td>4.59</td>
<td>chr4</td>
</tr>
<tr>
<td>STOML1</td>
<td>9399</td>
<td>stomatin (EPB72)-like 1</td>
<td>3.40</td>
<td>chr15</td>
</tr>
<tr>
<td>STS</td>
<td>412</td>
<td>steroid sulfatase (microsomal), arylsulfatase C, isozyme S</td>
<td>2.37</td>
<td>chrX</td>
</tr>
<tr>
<td>STS-1</td>
<td>84959</td>
<td>Cbl-interacting protein Sts-1</td>
<td>13.09</td>
<td>chr11</td>
</tr>
<tr>
<td>STX5A</td>
<td>6811</td>
<td>syntaxin 5A</td>
<td>2.81</td>
<td>chr11</td>
</tr>
<tr>
<td>STXBP1</td>
<td>6812</td>
<td>syntaxin binding protein 1</td>
<td>2.79</td>
<td>chr9</td>
</tr>
<tr>
<td>SUMF1</td>
<td>285382</td>
<td>sulfatase modifying factor 1</td>
<td>2.32</td>
<td>chr3</td>
</tr>
<tr>
<td>SUPT6H</td>
<td>6830</td>
<td>suppressor of Ty 6 homolog (S. cerevisiae)</td>
<td>2.27</td>
<td>chr17</td>
</tr>
<tr>
<td>SUSD1</td>
<td>64420</td>
<td>sushi domain containing 1</td>
<td>2.64</td>
<td>chr9</td>
</tr>
<tr>
<td>SYBL1</td>
<td>6845</td>
<td>synaptobrevin-like 1</td>
<td>2.90</td>
<td>chrX</td>
</tr>
<tr>
<td>SYDE1</td>
<td>85360</td>
<td>synapse defective 1, Rho GTPase, homolog 1 (C. elegans)</td>
<td>3.99</td>
<td>chr19</td>
</tr>
<tr>
<td>SYNJ1</td>
<td>8867</td>
<td>synaptojanin 1</td>
<td>2.29</td>
<td>chr21</td>
</tr>
<tr>
<td>SYNJ2</td>
<td>8871</td>
<td>synaptojanin 2</td>
<td>7.52</td>
<td>chr6</td>
</tr>
<tr>
<td>SYNP0</td>
<td>11346</td>
<td>synaptopodin</td>
<td>25.03</td>
<td>chr5</td>
</tr>
<tr>
<td>SYNP02</td>
<td>171024</td>
<td>synaptopodin 2</td>
<td>32.72</td>
<td>chr4</td>
</tr>
<tr>
<td>SYT14</td>
<td>94121</td>
<td>Synaptotagmin-like 4 (granuphilin-a)</td>
<td>3.38</td>
<td>chrX</td>
</tr>
<tr>
<td>TACC1</td>
<td>6867</td>
<td>transforming, acidic coiled-coil containing protein 1</td>
<td>8.32</td>
<td>chr8</td>
</tr>
<tr>
<td>TAF13</td>
<td>6884</td>
<td>TAF13 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 18kDa</td>
<td>2.18</td>
<td>chr1</td>
</tr>
<tr>
<td>TAGLN</td>
<td>6876</td>
<td>transgelin</td>
<td>25.80</td>
<td>chr11</td>
</tr>
<tr>
<td>TAGLN2</td>
<td>8407</td>
<td>transgelin 2</td>
<td>6.46</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>TANK</td>
<td>10010</td>
<td>TRAF family member-associated NFkB activator</td>
<td>4.16</td>
<td>chr2</td>
</tr>
<tr>
<td>TAPBP</td>
<td>6892</td>
<td>TAP binding protein (tapasin)</td>
<td>2.27</td>
<td>chr6</td>
</tr>
<tr>
<td>TAX1BP3</td>
<td>30851</td>
<td>Tax1 (human T-cell leukemia virus type 1) binding protein 3</td>
<td>3.35</td>
<td>chr17</td>
</tr>
<tr>
<td>TBC1D10B</td>
<td>26000</td>
<td>TBC1 domain family, member 10B</td>
<td>2.05</td>
<td>chr16</td>
</tr>
<tr>
<td>TBC1D19</td>
<td>55296</td>
<td>TBC1 domain family, member 19</td>
<td>2.57</td>
<td>chr4</td>
</tr>
<tr>
<td>TBC1D2</td>
<td>55357</td>
<td>TBC1 domain family, member 2</td>
<td>3.50</td>
<td>chr9</td>
</tr>
<tr>
<td>TBC1D20</td>
<td>128637</td>
<td>TBC1 domain family, member 20</td>
<td>2.22</td>
<td>chr20</td>
</tr>
<tr>
<td>TBL2</td>
<td>26608</td>
<td>transducin (beta)-like 2</td>
<td>2.31</td>
<td>chr7</td>
</tr>
<tr>
<td>TXB2</td>
<td>6909</td>
<td>T-box 2</td>
<td>3.54</td>
<td>chr17</td>
</tr>
<tr>
<td>TXB3</td>
<td>6926</td>
<td>T-box 3 (ulnar mammary syndrome)</td>
<td>5.02</td>
<td>chr12</td>
</tr>
<tr>
<td>TCEA3</td>
<td>6920</td>
<td>transcription elongation factor A (SII), 3</td>
<td>5.15</td>
<td>chr1</td>
</tr>
<tr>
<td>TCEAL1</td>
<td>9338</td>
<td>transcription elongation factor A (SII)-like 1</td>
<td>2.94</td>
<td>chrX</td>
</tr>
<tr>
<td>TCEAL3</td>
<td>85012</td>
<td>transcription elongation factor A (SII)-like 3</td>
<td>3.89</td>
<td>chrX</td>
</tr>
<tr>
<td>TCEB1</td>
<td>6921</td>
<td>transcription elongation factor B (SIII), polypeptide 1 (15kDa, elongin C)</td>
<td>2.02</td>
<td>chr8</td>
</tr>
<tr>
<td>TCIRG1</td>
<td>10312</td>
<td>T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 protein a isoform 3</td>
<td>2.21</td>
<td>chr11</td>
</tr>
<tr>
<td>TCP11L1</td>
<td>55346</td>
<td>t-complex 11 (mouse) like 1</td>
<td>3.21</td>
<td>chr11</td>
</tr>
<tr>
<td>TCTA</td>
<td>6988</td>
<td>T-cell leukemia translocation altered gene</td>
<td>2.52</td>
<td>chr3</td>
</tr>
<tr>
<td>TCTE1L</td>
<td>6990</td>
<td>t-complex-associated-testis-expressed 1-like</td>
<td>4.95</td>
<td>chr20</td>
</tr>
<tr>
<td>TCTE3</td>
<td>6991</td>
<td>t-complex-associated-testis-expressed 3</td>
<td>2.17</td>
<td>chr6</td>
</tr>
<tr>
<td>TDE1</td>
<td>10955</td>
<td>tumor differentially expressed 1</td>
<td>3.61</td>
<td>chr20</td>
</tr>
<tr>
<td>TERF2IP</td>
<td>54386</td>
<td>telomeric repeat binding factor 2, interacting protein</td>
<td>3.89</td>
<td>chr16</td>
</tr>
<tr>
<td>TES</td>
<td>26136</td>
<td>testis derived transcript (3 LIM domains)</td>
<td>4.38</td>
<td>chr7</td>
</tr>
<tr>
<td>TESK1</td>
<td>7016</td>
<td>testis-specific kinase 1</td>
<td>2.11</td>
<td>chr9</td>
</tr>
<tr>
<td>TEX261</td>
<td>113419</td>
<td>testis expressed sequence 261</td>
<td>3.48</td>
<td>chr2</td>
</tr>
<tr>
<td>TFG</td>
<td>10342</td>
<td>TRK-fused gene</td>
<td>2.05</td>
<td>chr3</td>
</tr>
<tr>
<td>TGFBI</td>
<td>7040</td>
<td>transforming growth factor, beta 1 (Camurati-Engelmann disease)</td>
<td>2.33</td>
<td>chr19</td>
</tr>
<tr>
<td>TGFB1I1</td>
<td>7041</td>
<td>transforming growth factor beta 1 induced transcript 1</td>
<td>32.03</td>
<td>chr16</td>
</tr>
<tr>
<td>TGFB2</td>
<td>7048</td>
<td>transforming growth factor, beta receptor II (70/80kDa)</td>
<td>11.19</td>
<td>chr3</td>
</tr>
<tr>
<td>TGM2</td>
<td>7052</td>
<td>transglutaminase 2 (C polypeptide, protein-glutamine-gamma-glutamyltransferase)</td>
<td>24.74</td>
<td>chr20</td>
</tr>
<tr>
<td>TGOLN2</td>
<td>10618</td>
<td>trans-golgi network protein 2</td>
<td>4.37</td>
<td>chr2</td>
</tr>
<tr>
<td>THBD</td>
<td>7056</td>
<td>thrombomodulin</td>
<td>6.10</td>
<td>chr20</td>
</tr>
<tr>
<td>THBS1</td>
<td>7057</td>
<td>thrombospondin 1</td>
<td>76.57</td>
<td>chr15</td>
</tr>
<tr>
<td>THSD4</td>
<td>79875</td>
<td>Thrombospondin, type I, domain containing 4</td>
<td>4.83</td>
<td>chr15</td>
</tr>
<tr>
<td>TICAM2</td>
<td>353376</td>
<td>toll-like receptor adaptor molecule 2</td>
<td>8.89</td>
<td>chr5</td>
</tr>
<tr>
<td>TIMM17A</td>
<td>10440</td>
<td>translocase of inner mitochondrial membrane 17 homolog A (yeast)</td>
<td>2.14</td>
<td>chr1</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>TIMP1</td>
<td>7076</td>
<td>TIMP metallopeptidase inhibitor 1</td>
<td>6.85</td>
<td>chrX</td>
</tr>
<tr>
<td>TIPARP</td>
<td>25976</td>
<td>TCDD-inducible poly(ADP-ribose) polymerase</td>
<td>10.37</td>
<td>chr3</td>
</tr>
<tr>
<td>TLOC1</td>
<td>7095</td>
<td>translocation protein 1</td>
<td>3.35</td>
<td>chr3</td>
</tr>
<tr>
<td>TLR4</td>
<td>7099</td>
<td>toll-like receptor 4 // toll-like receptor 4</td>
<td>4.58</td>
<td>chr9</td>
</tr>
<tr>
<td>TM4SF1</td>
<td>4071</td>
<td>transmembrane 4 L six family member 1</td>
<td>48.84</td>
<td>chr3</td>
</tr>
<tr>
<td>TM7SF1</td>
<td>7107</td>
<td>transmembrane 7 superfamily member 1 (upregulated in kidney)</td>
<td>2.27</td>
<td>chr1</td>
</tr>
<tr>
<td>TM9SF1</td>
<td>10548</td>
<td>transmembrane 9 superfamily member 1</td>
<td>2.73</td>
<td>chr14</td>
</tr>
<tr>
<td>TMBIM1</td>
<td>64114</td>
<td>transmembrane BAX inhibitor motif containing 1</td>
<td>2.78</td>
<td>chr2</td>
</tr>
<tr>
<td>TMC01</td>
<td>54499</td>
<td>transmembrane and coiled-coil domains 1</td>
<td>2.37</td>
<td>chr1</td>
</tr>
<tr>
<td>TMC03</td>
<td>55002</td>
<td>transmembrane and coiled-coil domains 3</td>
<td>4.78</td>
<td>chr13</td>
</tr>
<tr>
<td>TMED3</td>
<td>23423</td>
<td>transmembrane emp24 protein transport domain containing 3</td>
<td>2.28</td>
<td>chr15</td>
</tr>
<tr>
<td>TMED7</td>
<td>51014</td>
<td>transmembrane emp24 protein transport domain containing 7</td>
<td>2.44</td>
<td>chr5</td>
</tr>
<tr>
<td>TMEM14A</td>
<td>28978</td>
<td>transmembrane protein 14A</td>
<td>2.43</td>
<td>chr6</td>
</tr>
<tr>
<td>TMEM16D</td>
<td>121601</td>
<td>transmembrane protein 16D</td>
<td>2.46</td>
<td>chr12</td>
</tr>
<tr>
<td>TMEM16F</td>
<td>196527</td>
<td>transmembrane protein 16F</td>
<td>2.61</td>
<td>chr12</td>
</tr>
<tr>
<td>TMEM17</td>
<td>200728</td>
<td>transmembrane protein 17</td>
<td>2.04</td>
<td>chr2</td>
</tr>
<tr>
<td>TMEM30A</td>
<td>55754</td>
<td>transmembrane protein 30A</td>
<td>7.85</td>
<td>chr6</td>
</tr>
<tr>
<td>TMEM43</td>
<td>79188</td>
<td>transmembrane protein 43</td>
<td>2.80</td>
<td>chr3</td>
</tr>
<tr>
<td>TMEM45A</td>
<td>55076</td>
<td>transmembrane protein 45A</td>
<td>2.67</td>
<td>chr3</td>
</tr>
<tr>
<td>TMEM47</td>
<td>83604</td>
<td>transmembrane protein 47</td>
<td>2.45</td>
<td>chrX</td>
</tr>
<tr>
<td>TMEM49</td>
<td>81671</td>
<td>transmembrane protein 49</td>
<td>4.57</td>
<td>chr17</td>
</tr>
<tr>
<td>TMEM55A</td>
<td>55529</td>
<td>transmembrane protein 55A</td>
<td>2.21</td>
<td>chr8</td>
</tr>
<tr>
<td>TMEM65</td>
<td>157378</td>
<td>transmembrane protein 65</td>
<td>3.26</td>
<td>chr8</td>
</tr>
<tr>
<td>TMEM87B</td>
<td>84910</td>
<td>Transmembrane protein 87B</td>
<td>4.46</td>
<td>chr2</td>
</tr>
<tr>
<td>TMEM9B</td>
<td>56674</td>
<td>TMEM9 domain family, member B</td>
<td>2.23</td>
<td>chr11</td>
</tr>
<tr>
<td>TMF1</td>
<td>7110</td>
<td>TATA element modulatory factor 1</td>
<td>2.82</td>
<td>chr3</td>
</tr>
<tr>
<td>TMC01D</td>
<td>29766</td>
<td>tropomodulin 3 (ubiquitous)</td>
<td>3.17</td>
<td>chr15</td>
</tr>
<tr>
<td>TMSB10</td>
<td>9168</td>
<td>thymosin, beta 10</td>
<td>2.57</td>
<td>chr2</td>
</tr>
<tr>
<td>TNFAIP6</td>
<td>7130</td>
<td>tumor necrosis factor, alpha-induced protein 6</td>
<td>2.49</td>
<td>chr2</td>
</tr>
<tr>
<td>TNFRSF10B</td>
<td>8795</td>
<td>tumor necrosis factor receptor superfamily, member 10b</td>
<td>4.42</td>
<td>chr8</td>
</tr>
<tr>
<td>TNFRSF10D</td>
<td>8793</td>
<td>tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain</td>
<td>17.91</td>
<td>chr8</td>
</tr>
<tr>
<td>TNFRSF1A</td>
<td>7132</td>
<td>tumor necrosis factor receptor superfamily, member 1A</td>
<td>6.21</td>
<td>chr12</td>
</tr>
<tr>
<td>TNFSF4</td>
<td>7292</td>
<td>tumor necrosis factor (ligand) superfamily, member 4 (tax-transcriptionally activated glycoprotein 1, 34kDa)</td>
<td>8.61</td>
<td>chr1</td>
</tr>
<tr>
<td>TNIP1</td>
<td>10318</td>
<td>TNFAIP3 interacting protein 1</td>
<td>2.96</td>
<td>chr5</td>
</tr>
<tr>
<td>TNS3</td>
<td>64759</td>
<td>Tensin 3</td>
<td>4.74</td>
<td>chr7</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>TOR1AIP2</td>
<td>163590</td>
<td>Torsin A interacting protein 2</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>TP53NP2</td>
<td>58476</td>
<td>tumor protein p53 inducible nuclear protein 2</td>
<td>2.64</td>
<td>chr20</td>
</tr>
<tr>
<td>TPCN1</td>
<td>53373</td>
<td>two pore segment channel 1</td>
<td>2.75</td>
<td>chr12</td>
</tr>
<tr>
<td>TPM2</td>
<td>7169</td>
<td>tropomyosin 2 (beta)</td>
<td>7.37</td>
<td>chr9</td>
</tr>
<tr>
<td>TPM3</td>
<td>7170</td>
<td>tropomyosin 3</td>
<td>7.84</td>
<td>chr3</td>
</tr>
<tr>
<td>TPM4</td>
<td>7171</td>
<td>tropomyosin 4</td>
<td>6.47</td>
<td>chr3</td>
</tr>
<tr>
<td>TPST1</td>
<td>8460</td>
<td>tyrosylprotein sulfotransferase 1</td>
<td>3.35</td>
<td>chr7</td>
</tr>
<tr>
<td>TRA1</td>
<td>7184</td>
<td>tumor rejection antigen (gp96) 1</td>
<td>2.05</td>
<td>vide</td>
</tr>
<tr>
<td>TRADD</td>
<td>8717</td>
<td>TNFRSF1A-associated via death domain</td>
<td>4.41</td>
<td>chr16</td>
</tr>
<tr>
<td>TRAF3</td>
<td>7187</td>
<td>TNF receptor-associated factor 3</td>
<td>3.00</td>
<td>chr14</td>
</tr>
<tr>
<td>TRAM1</td>
<td>23471</td>
<td>translocation associated membrane protein 1</td>
<td>2.74</td>
<td>chr8</td>
</tr>
<tr>
<td>TRAPP1</td>
<td>58485</td>
<td>trafficking protein particle complex 1</td>
<td>3.18</td>
<td>chr17</td>
</tr>
<tr>
<td>TRAPP1</td>
<td>27095</td>
<td>trafficking protein particle complex 3</td>
<td>2.12</td>
<td>chr1</td>
</tr>
<tr>
<td>TRIB3</td>
<td>57761</td>
<td>tribbles homolog 3 (Drosophila)</td>
<td>5.27</td>
<td>chr20</td>
</tr>
<tr>
<td>TRIM16 /// LOC1</td>
<td>10626 /// 147166</td>
<td>tripartite motif-containing 16 /// similar to tripartite motif-containing 16; estrogen-responsive B box protein</td>
<td>6.36</td>
<td>chr17</td>
</tr>
<tr>
<td>TRIM34</td>
<td>445372 /// 538400</td>
<td>tripartite motif-containing 34 /// tripartite motif-containing 6 and tripartite motif-containing 34</td>
<td>2.06</td>
<td>chr11</td>
</tr>
<tr>
<td>TRIM5</td>
<td>85363</td>
<td>tripartite motif-containing 5</td>
<td>2.89</td>
<td>chr11</td>
</tr>
<tr>
<td>TRIM56</td>
<td>81844</td>
<td>tripartite motif-containing 56</td>
<td>2.32</td>
<td>chr7</td>
</tr>
<tr>
<td>TRIM58</td>
<td>25893</td>
<td>tripartite motif-containing 58</td>
<td>4.25</td>
<td>chr1</td>
</tr>
<tr>
<td>TRIM62</td>
<td>55223</td>
<td>tripartite motif-containing 62</td>
<td>2.54</td>
<td>chr1</td>
</tr>
<tr>
<td>TRIM8</td>
<td>81603</td>
<td>tripartite motif-containing 8 /// tripartite motif-containing 8</td>
<td>3.71</td>
<td>chr10</td>
</tr>
<tr>
<td>TRIO</td>
<td>7204</td>
<td>triple functional domain (PTPRF interacting)</td>
<td>3.18</td>
<td>chr5</td>
</tr>
<tr>
<td>TROI</td>
<td>11078</td>
<td>TRIO and F-actin binding protein</td>
<td>2.09</td>
<td>chr22</td>
</tr>
<tr>
<td>TRIP11</td>
<td>9321</td>
<td>thyroid hormone receptor interactor 11</td>
<td>2.29</td>
<td>chr14</td>
</tr>
<tr>
<td>TRPC4</td>
<td>7223</td>
<td>transient receptor potential cation channel, subfamily C, member 4</td>
<td>3.31</td>
<td>chr13</td>
</tr>
<tr>
<td>TRPS1</td>
<td>7227</td>
<td>trichorhinophalangeal syndrome 1</td>
<td>4.44</td>
<td>chr8</td>
</tr>
<tr>
<td>TSC22D2</td>
<td>9819</td>
<td>TSC22 domain family, member 2</td>
<td>2.33</td>
<td>chr3</td>
</tr>
<tr>
<td>TSPAN10</td>
<td>83882</td>
<td>tetraspanin 10</td>
<td>2.35</td>
<td>chr17</td>
</tr>
<tr>
<td>TSPAN31</td>
<td>6302</td>
<td>tetraspanin 31</td>
<td>2.16</td>
<td>chr12</td>
</tr>
<tr>
<td>TTC8</td>
<td>123016</td>
<td>tetramicopeptide repeat domain 8</td>
<td>2.88</td>
<td>chr14</td>
</tr>
<tr>
<td>TTYH2</td>
<td>94015</td>
<td>tweeety homolog 2 (Drosophila)</td>
<td>2.18</td>
<td>chr17</td>
</tr>
<tr>
<td>TTYH3</td>
<td>80727</td>
<td>tweeety homolog 3 (Drosophila)</td>
<td>2.65</td>
<td>chr7</td>
</tr>
<tr>
<td>TUBA3</td>
<td>7846</td>
<td>tubulin, alpha 3</td>
<td>2.00</td>
<td>chr12</td>
</tr>
<tr>
<td>TUF1</td>
<td>7286</td>
<td>tuftelin 1</td>
<td>4.04</td>
<td>chr1</td>
</tr>
<tr>
<td>TULP3</td>
<td>7289</td>
<td>tubby like protein 3</td>
<td>2.11</td>
<td>chr12</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>TWIST1</td>
<td>7291</td>
<td>twist homolog 1 (acrocephalosyndactyly 3; Saethre-Chotzen syndrome) (Drosophila)</td>
<td>10.84</td>
<td>chr7</td>
</tr>
<tr>
<td>TWSG1</td>
<td>57045</td>
<td>twisted gastrulation homolog 1 (Drosophila)</td>
<td>3.64</td>
<td>chr18</td>
</tr>
<tr>
<td>TXNDC10</td>
<td>54495</td>
<td>thioredoxin domain containing 10</td>
<td>3.71</td>
<td>chr18</td>
</tr>
<tr>
<td>TXNDC11</td>
<td>51061</td>
<td>thioredoxin domain containing 11</td>
<td>3.94</td>
<td>chr16</td>
</tr>
<tr>
<td>TXNDC13</td>
<td>56255</td>
<td>thioredoxin domain containing 13</td>
<td>2.65</td>
<td>chr20</td>
</tr>
<tr>
<td>TXNRD1</td>
<td>7296</td>
<td>thioredoxin reductase 1</td>
<td>3.06</td>
<td>chr12</td>
</tr>
<tr>
<td>TXNRD3</td>
<td>114112</td>
<td>thioredoxin reductase 3</td>
<td>2.06</td>
<td>chr3</td>
</tr>
<tr>
<td>UACA</td>
<td>55075</td>
<td>uveal autoantigen with coiled-coil domains and ankyrin repeats</td>
<td>5.87</td>
<td>chr15</td>
</tr>
<tr>
<td>UAP1</td>
<td>6675</td>
<td>UDP-N-acetylglucosamine pyrophosphorylase 1</td>
<td>5.83</td>
<td>chr1</td>
</tr>
<tr>
<td>UBE2B</td>
<td>7320</td>
<td>ubiquitin-conjugating enzyme E2B (RAD6 homolog)</td>
<td>2.59</td>
<td>chr5</td>
</tr>
<tr>
<td>UBE2Q2</td>
<td>92912</td>
<td>ubiquitin-conjugating enzyme E2Q (putative) 2</td>
<td>2.76</td>
<td>chr15</td>
</tr>
<tr>
<td>UBE2W</td>
<td>55284</td>
<td>ubiquitin-conjugating enzyme E2W (putative)</td>
<td>2.32</td>
<td>chr8</td>
</tr>
<tr>
<td>UBL3</td>
<td>5412</td>
<td>ubiquitin-like 3</td>
<td>2.60</td>
<td>chr13</td>
</tr>
<tr>
<td>UBXD1</td>
<td>80700</td>
<td>UBX domain containing 1</td>
<td>3.08</td>
<td>chr19</td>
</tr>
<tr>
<td>UEV3</td>
<td>55293</td>
<td>ubiquitin-conjugating enzyme E2-like</td>
<td>6.22</td>
<td>chr11</td>
</tr>
<tr>
<td>UFM1</td>
<td>51569</td>
<td>ubiquitin-fold modifier 1</td>
<td>3.62</td>
<td>chr13</td>
</tr>
<tr>
<td>UGCGL1</td>
<td>56886</td>
<td>UDP-glucose ceramide glucosyltransferase</td>
<td>4.24</td>
<td>chr9</td>
</tr>
<tr>
<td>UHMK1</td>
<td>127933</td>
<td>U2AF homology motif (UHM) kinase</td>
<td>6.04</td>
<td>chr1</td>
</tr>
<tr>
<td>ULBP2</td>
<td>80328</td>
<td>UL16 binding protein 2</td>
<td>24.08</td>
<td>chr6</td>
</tr>
<tr>
<td>UNQ1912</td>
<td>345757</td>
<td>HGS_RE408</td>
<td>5.13</td>
<td>chr5</td>
</tr>
<tr>
<td>URB</td>
<td>151887</td>
<td>steroid sensitive gene 1</td>
<td>147.43</td>
<td>chr3</td>
</tr>
<tr>
<td>UROS</td>
<td>7390</td>
<td>uroporphyrinogen III synthase (congenital erythropoietic porphyria)</td>
<td>2.02</td>
<td>chr10</td>
</tr>
<tr>
<td>USP15</td>
<td>9958</td>
<td>ubiquitin specific peptidase 15</td>
<td>2.63</td>
<td>chr12</td>
</tr>
<tr>
<td>USP38</td>
<td>84640</td>
<td>ubiquitin specific peptidase 38</td>
<td>2.19</td>
<td>chr4</td>
</tr>
<tr>
<td>USP40</td>
<td>55230</td>
<td>ubiquitin specific peptidase 40</td>
<td>2.38</td>
<td>chr2</td>
</tr>
<tr>
<td>VAMP3</td>
<td>9341</td>
<td>vesicle-associated membrane protein 3 (cellubrevin) // vesicle-associated membrane protein 3 (cellubrevin)</td>
<td>3.14</td>
<td>chr1</td>
</tr>
<tr>
<td>VCP1P1</td>
<td>80124</td>
<td>Valosin containing protein (p97)/p47 complex interacting protein 1</td>
<td>2.83</td>
<td>chr8</td>
</tr>
<tr>
<td>VDR</td>
<td>7421</td>
<td>vitamin D (1,25-dihydroxyvitamin D3) receptor</td>
<td>3.81</td>
<td>chr12</td>
</tr>
<tr>
<td>VEGF</td>
<td>7422</td>
<td>vascular endothelial growth factor</td>
<td>3.89</td>
<td>chr6</td>
</tr>
<tr>
<td>VEPH1</td>
<td>79674</td>
<td>ventricular zone expressed PH domain homolog 1 (zebrafish)</td>
<td>16.65</td>
<td>chr3</td>
</tr>
<tr>
<td>VGCLN1</td>
<td>259232</td>
<td>Voltage gated channel like 1</td>
<td>6.11</td>
<td>chr13</td>
</tr>
<tr>
<td>VGL-3</td>
<td>389136</td>
<td>vestigial-like 3</td>
<td>26.25</td>
<td>chr3</td>
</tr>
<tr>
<td>VIM</td>
<td>7431</td>
<td>vimentin</td>
<td>4.65</td>
<td>chr10</td>
</tr>
<tr>
<td>WARS</td>
<td>7453</td>
<td>tryptophanyl-tRNA synthetase</td>
<td>2.30</td>
<td>chr14</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC<sub>up</sub></td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>WBP5</td>
<td>51186</td>
<td>WW domain binding protein 5</td>
<td>2.61</td>
<td>chrX</td>
</tr>
<tr>
<td>WDR26</td>
<td>80232</td>
<td>WD repeat domain 26</td>
<td>3.10</td>
<td>chr1</td>
</tr>
<tr>
<td>WDR41</td>
<td>55255</td>
<td>WD repeat domain 41</td>
<td>3.20</td>
<td>chr5</td>
</tr>
<tr>
<td>WDR47</td>
<td>22911</td>
<td>WD repeat domain 47</td>
<td>4.32</td>
<td>chr1</td>
</tr>
<tr>
<td>WHDC1L2</td>
<td>440253</td>
<td>WAS protein homology region 2 domain containing 1-like 1</td>
<td>2.46</td>
<td>chr15</td>
</tr>
<tr>
<td>WIG1</td>
<td>64393</td>
<td>p53 target zinc finger protein</td>
<td>14.99</td>
<td>chr3</td>
</tr>
<tr>
<td>WIP49</td>
<td>55062</td>
<td>WD40 repeat protein Interacting with phospholipid of 49kDa</td>
<td>9.13</td>
<td>chr17</td>
</tr>
<tr>
<td>WSB2</td>
<td>55884</td>
<td>WD repeat and SOCS box-containing 2</td>
<td>2.97</td>
<td>chr12</td>
</tr>
<tr>
<td>XRN1</td>
<td>54464</td>
<td>5-3' exoribonuclease 1</td>
<td>2.40</td>
<td>chr3</td>
</tr>
<tr>
<td>YIF1A</td>
<td>10897</td>
<td>Yip1 interacting factor homolog A (S. cerevisiae)</td>
<td>2.35</td>
<td>chr11</td>
</tr>
<tr>
<td>YIPF3</td>
<td>25844</td>
<td>Yip1 domain family, member 3</td>
<td>2.44</td>
<td>chr6</td>
</tr>
<tr>
<td>YIPF4</td>
<td>84272</td>
<td>Yip1 domain family, member 4</td>
<td>3.37</td>
<td>chr2</td>
</tr>
<tr>
<td>YIPF5</td>
<td>81555</td>
<td>Yip1 domain family, member 5</td>
<td>8.82</td>
<td>chr5</td>
</tr>
<tr>
<td>YKT6</td>
<td>10652</td>
<td>SNARE protein Ykt6</td>
<td>2.31</td>
<td>chr7</td>
</tr>
<tr>
<td>YSG2</td>
<td>54414</td>
<td>Ysg2 homolog (mouse) // Ysg2 homolog (mouse)</td>
<td>6.08</td>
<td>chr11</td>
</tr>
<tr>
<td>YWHAZ</td>
<td>7534</td>
<td>Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide</td>
<td>2.63</td>
<td>chr8</td>
</tr>
<tr>
<td>ZBTB1</td>
<td>22890</td>
<td>zinc finger and BTB domain containing 1</td>
<td>3.05</td>
<td>chr14</td>
</tr>
<tr>
<td>ZBTB38</td>
<td>253461</td>
<td>zinc finger and BTB domain containing 38</td>
<td>4.45</td>
<td>chr3</td>
</tr>
<tr>
<td>ZBTB41</td>
<td>360023</td>
<td>zinc finger and BTB domain containing 41</td>
<td>4.03</td>
<td>chr1</td>
</tr>
<tr>
<td>ZC3H7A</td>
<td>29066</td>
<td>zinc finger CCCH-type containing 7A</td>
<td>2.09</td>
<td>chr16</td>
</tr>
<tr>
<td>ZDHHC24</td>
<td>254359</td>
<td>zinc finger, DHHC-type containing 24</td>
<td>2.06</td>
<td>chr19</td>
</tr>
<tr>
<td>ZDHHC9</td>
<td>51114</td>
<td>Zsc finger, DHHC-type containing 9</td>
<td>2.07</td>
<td>chrX</td>
</tr>
<tr>
<td>ZFP91</td>
<td>80829</td>
<td>zinc finger protein 91 homolog (mouse)</td>
<td>2.38</td>
<td>chr11</td>
</tr>
<tr>
<td>ZFPL1</td>
<td>7542</td>
<td>zinc finger protein-like 1</td>
<td>4.15</td>
<td>chr11</td>
</tr>
<tr>
<td>ZHX3</td>
<td>23051</td>
<td>zinc fingers and homeoboxes 3</td>
<td>2.66</td>
<td>chr20</td>
</tr>
<tr>
<td>ZMYM6</td>
<td>9204</td>
<td>zinc finger, MYM-type 6</td>
<td>2.79</td>
<td>chr1</td>
</tr>
<tr>
<td>ZNF236</td>
<td>7776</td>
<td>zinc finger protein 236</td>
<td>2.07</td>
<td>chr18</td>
</tr>
<tr>
<td>ZNF25</td>
<td>219749</td>
<td>zinc finger protein 25 (KOX 19)</td>
<td>9.71</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF275</td>
<td>10838</td>
<td>zinc finger protein 275</td>
<td>2.60</td>
<td>chrX</td>
</tr>
<tr>
<td>ZNF294</td>
<td>26046</td>
<td>zinc finger protein 294</td>
<td>2.01</td>
<td>chr21</td>
</tr>
<tr>
<td>ZNF365</td>
<td>22891</td>
<td>zinc finger protein 365</td>
<td>2.90</td>
<td>chr10</td>
</tr>
<tr>
<td>ZNF469</td>
<td>84627</td>
<td>zinc finger protein 469</td>
<td>7.92</td>
<td>chr16</td>
</tr>
<tr>
<td>ZNF537</td>
<td>57616</td>
<td>zinc finger protein 537</td>
<td>4.61</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF575</td>
<td>284346</td>
<td>zinc finger protein 575</td>
<td>2.66</td>
<td>chr19</td>
</tr>
<tr>
<td>ZNF599</td>
<td>148103</td>
<td>zinc finger protein 599</td>
<td>2.09</td>
<td>chr19</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Entrez Gene</td>
<td>Gene Title</td>
<td>MPC_up</td>
<td>Chromosome Number(Avadis)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ZNF650</td>
<td>130507</td>
<td>zinc finger protein 650</td>
<td>2.13</td>
<td>chr2</td>
</tr>
<tr>
<td>ZNF654</td>
<td>55279</td>
<td>Zinc finger protein 654</td>
<td>2.78</td>
<td>chr3</td>
</tr>
<tr>
<td>ZNHIT1</td>
<td>10467</td>
<td>zinc finger, HIT type 1</td>
<td>2.48</td>
<td>chr7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(vide)</td>
<td>66.75</td>
<td>chr17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wingless-type MMTV integration site family, member 5A /// wingless-type MMTV integration site family</td>
<td>37.13</td>
<td>chr2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>syncoolin, intermediate filament 1 /// syncoolin, intermediate filament 1</td>
<td>9.57</td>
<td>chr3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protein kinase C, alpha</td>
<td>6.99</td>
<td>chr5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fucosyltransferase 1 (galactoside 2-alpha-L-fucosyltransferase, H blood group)</td>
<td>4.06</td>
<td>chrY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sterol carrier protein 2 /// sterol carrier protein 2</td>
<td>2.44</td>
<td>(vide)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transmembrane protein with EGF-like and two follistatin-like domains 2 /// transmembrane protein with</td>
<td>2.30</td>
<td>chr4</td>
</tr>
</tbody>
</table>
Table S9: Genes overexpressed in MPC compared to hES and down-regulated in NPC compared to hES (94 genes FC>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC_up</th>
<th>NPC_down</th>
<th>Chromosome Number (Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSL1</td>
<td>2180</td>
<td>acyl-CoA synthetase long-chain family member 1</td>
<td>4.65</td>
<td>2.48</td>
<td>chr4</td>
</tr>
<tr>
<td>ADM</td>
<td>133</td>
<td>adrenomedullin</td>
<td>2.37</td>
<td>2.02</td>
<td>chr11</td>
</tr>
<tr>
<td>AER61</td>
<td>285203</td>
<td>AER61 glycosyltransferase</td>
<td>2.05</td>
<td>2.95</td>
<td>chr3</td>
</tr>
<tr>
<td>AK2</td>
<td>204</td>
<td>adenylate kinase 2</td>
<td>5.50</td>
<td>2.32</td>
<td>chr1</td>
</tr>
<tr>
<td>ANXA4</td>
<td>307</td>
<td>annexin A4</td>
<td>2.99</td>
<td>2.67</td>
<td>chr2</td>
</tr>
<tr>
<td>AP2S1</td>
<td>1175</td>
<td>adaptor-related protein complex 2, sigma 1 subunit</td>
<td>2.12</td>
<td>2.04</td>
<td>chr19</td>
</tr>
<tr>
<td>ARF4</td>
<td>378</td>
<td>ADP-ribosylation factor 4</td>
<td>2.73</td>
<td>2.25</td>
<td>chr3</td>
</tr>
<tr>
<td>BAG2</td>
<td>9532</td>
<td>BCL2-associated athanogene 2</td>
<td>2.08</td>
<td>4.88</td>
<td>chr6</td>
</tr>
<tr>
<td>BMPR2</td>
<td>659</td>
<td>bone morphogenetic protein receptor, type II (serine/threonine kinase)</td>
<td>11.78</td>
<td>2.18</td>
<td>chr2</td>
</tr>
<tr>
<td>BTBD7</td>
<td>55727</td>
<td>BTB (POZ) domain containing 7</td>
<td>2.88</td>
<td>3.07</td>
<td>chr14</td>
</tr>
<tr>
<td>C6orf62</td>
<td>81688</td>
<td>chromosome 6 open reading frame 62</td>
<td>2.02</td>
<td>2.14</td>
<td>chr6</td>
</tr>
<tr>
<td>CALU</td>
<td>813</td>
<td>calumenin</td>
<td>5.44</td>
<td>2.00</td>
<td>chr7</td>
</tr>
<tr>
<td>CBR3</td>
<td>874</td>
<td>carbonyl reductase 3</td>
<td>3.59</td>
<td>4.42</td>
<td>chr21</td>
</tr>
<tr>
<td>CD164</td>
<td>8763</td>
<td>CD164 antigen, sialomucin</td>
<td>2.57</td>
<td>2.47</td>
<td>chr6</td>
</tr>
<tr>
<td>CD24</td>
<td>934</td>
<td>CD24 antigen (small cell lung carcinoma cluster 4 antigen)</td>
<td>2.83</td>
<td>15.01</td>
<td>chr5</td>
</tr>
<tr>
<td>CDK6</td>
<td>1021</td>
<td>cyclin-dependent kinase 6</td>
<td>24.64</td>
<td>3.10</td>
<td>chr7</td>
</tr>
<tr>
<td>CHES1</td>
<td>1112</td>
<td>checkpoint suppressor 1</td>
<td>2.07</td>
<td>2.22</td>
<td>chr14</td>
</tr>
<tr>
<td>CHURC1</td>
<td>91612</td>
<td>churchill domain containing 1</td>
<td>2.50</td>
<td>2.05</td>
<td>chr1</td>
</tr>
<tr>
<td>CLCC1</td>
<td>23155</td>
<td>chloride channel CLIC-like 1</td>
<td>2.05</td>
<td>2.38</td>
<td>chr1</td>
</tr>
<tr>
<td>CRTAP</td>
<td>10491</td>
<td>cartilage associated protein</td>
<td>3.03</td>
<td>2.22</td>
<td>chr3</td>
</tr>
<tr>
<td>CTSC</td>
<td>1075</td>
<td>cathepsin C</td>
<td>2.73</td>
<td>5.33</td>
<td>chr11</td>
</tr>
<tr>
<td>CTTN</td>
<td>2017</td>
<td>cortactin</td>
<td>4.24</td>
<td>2.25</td>
<td>chr11</td>
</tr>
<tr>
<td>CXCL12</td>
<td>6387</td>
<td>chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)</td>
<td>2.80</td>
<td>4.19</td>
<td>chr10</td>
</tr>
<tr>
<td>CXorf39</td>
<td>139231</td>
<td>Chromosome X open reading frame 39</td>
<td>2.37</td>
<td>2.36</td>
<td>chrX</td>
</tr>
<tr>
<td>DKFZP564J0863</td>
<td>259232</td>
<td>DKFZP564J0863 protein</td>
<td>3.99</td>
<td>3.00</td>
<td>chr11</td>
</tr>
<tr>
<td>DOCK5</td>
<td>80005</td>
<td>dedicator of cytokinesis 5</td>
<td>3.84</td>
<td>3.98</td>
<td>chr8</td>
</tr>
<tr>
<td>DSTN</td>
<td>11034</td>
<td>Destrin (actin depolymerizing factor)</td>
<td>2.81</td>
<td>2.37</td>
<td>chr20</td>
</tr>
<tr>
<td>EHD4</td>
<td>30844</td>
<td>EH-domain containing 4</td>
<td>3.75</td>
<td>2.20</td>
<td>chr15</td>
</tr>
<tr>
<td>EIF2C2</td>
<td>27161</td>
<td>Eukaryotic translation initiation factor 2C, 2</td>
<td>6.05</td>
<td>2.23</td>
<td>chr15</td>
</tr>
<tr>
<td>ELL2</td>
<td>22936</td>
<td>elongation factor, RNA polymerase II, 2</td>
<td>4.14</td>
<td>3.13</td>
<td>chr1</td>
</tr>
<tr>
<td>FLJ11151</td>
<td>55313</td>
<td>Hypothetical protein FLJ11151</td>
<td>3.59</td>
<td>2.06</td>
<td>chr16</td>
</tr>
<tr>
<td>FLNB</td>
<td>2317</td>
<td>filamin B, beta (actin binding protein 278)</td>
<td>2.06</td>
<td>2.37</td>
<td>chr3</td>
</tr>
<tr>
<td>FXYD5</td>
<td>53827</td>
<td>FXYD domain containing ion transport regulator 5</td>
<td>3.33</td>
<td>6.47</td>
<td>chr19</td>
</tr>
<tr>
<td>GFPT1</td>
<td>2673</td>
<td>glutamine-fructose-6-phosphate transaminase 1</td>
<td>2.82</td>
<td>2.20</td>
<td>chr2</td>
</tr>
</tbody>
</table>
Table S9: Genes overexpressed in MPC compared to hES and down-regulated in NPC compared to hES (94 genes FC>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC_up</th>
<th>NPC_down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLS</td>
<td>2744</td>
<td>glutaminase</td>
<td>17.00</td>
<td>2.14</td>
<td>chr2</td>
</tr>
<tr>
<td>GNB1</td>
<td>2782</td>
<td>guanine nucleotide binding protein (G protein), beta polypeptide 1</td>
<td>3.97</td>
<td>2.06</td>
<td>chr1</td>
</tr>
<tr>
<td>HSPB1</td>
<td>3315</td>
<td>heat shock 27kDa protein 1</td>
<td>11.96</td>
<td>2.93</td>
<td>chr7</td>
</tr>
<tr>
<td>IGFBP6</td>
<td>3489</td>
<td>insulin-like growth factor binding protein 6</td>
<td>7.75</td>
<td>2.36</td>
<td>chr12</td>
</tr>
<tr>
<td>ITCH</td>
<td>83737</td>
<td>itchy homolog E3 ubiquitin protein ligase (mouse)</td>
<td>2.85</td>
<td>2.04</td>
<td>chr20</td>
</tr>
<tr>
<td>JAK1</td>
<td>3716</td>
<td>Janus kinase 1 (a protein tyrosine kinase)</td>
<td>5.81</td>
<td>2.20</td>
<td>chr1</td>
</tr>
<tr>
<td>JAZF1</td>
<td>221895</td>
<td>juxtaposed with another zinc finger gene 1</td>
<td>2.18</td>
<td>4.31</td>
<td>chr7</td>
</tr>
<tr>
<td>KIAA1404</td>
<td>57169</td>
<td>KIAA1404 protein</td>
<td>2.00</td>
<td>2.16</td>
<td>chr20</td>
</tr>
<tr>
<td>KLF7</td>
<td>8609</td>
<td>Kruppel-like factor 7 (ubiquitous)</td>
<td>3.30</td>
<td>2.26</td>
<td>chr2</td>
</tr>
<tr>
<td>LACTB</td>
<td>114294</td>
<td>lactamase, beta</td>
<td>2.37</td>
<td>2.62</td>
<td>chr15</td>
</tr>
<tr>
<td>LAMP2</td>
<td>3920</td>
<td>lysosomal-associated membrane protein 2</td>
<td>6.02</td>
<td>2.16</td>
<td>chrX</td>
</tr>
<tr>
<td>LGALS1</td>
<td>3956</td>
<td>lectin, galactoside-binding, soluble, 1 (galectin 1)</td>
<td>52.69</td>
<td>13.73</td>
<td>chr22</td>
</tr>
<tr>
<td>LOC151194</td>
<td>151194</td>
<td>similar to hepatocellular carcinoma-associated antigen HCA557b</td>
<td>2.09</td>
<td>2.47</td>
<td>chr2</td>
</tr>
<tr>
<td>LOC201895</td>
<td>201895</td>
<td>hypothetical protein LOC201895</td>
<td>4.58</td>
<td>2.28</td>
<td>chr4</td>
</tr>
<tr>
<td>LOC441762</td>
<td>441762</td>
<td>Similar to CG7467-PA // Similar to CG7467-PA</td>
<td>2.16</td>
<td>2.64</td>
<td>chr16</td>
</tr>
<tr>
<td>MAP1LC3B</td>
<td>81631</td>
<td>microtubule-associated protein 1 light chain 3 beta</td>
<td>4.53</td>
<td>3.04</td>
<td>chr12</td>
</tr>
<tr>
<td>MAP3K5</td>
<td>4217</td>
<td>mitogen-activated protein kinase kinase kinase 5</td>
<td>2.25</td>
<td>2.98</td>
<td>chr6</td>
</tr>
<tr>
<td>MAP4</td>
<td>4134</td>
<td>microtubule-associated protein 4</td>
<td>5.40</td>
<td>2.64</td>
<td>chr3</td>
</tr>
<tr>
<td>MAPK1</td>
<td>5594</td>
<td>mitogen-activated protein kinase 1</td>
<td>2.26</td>
<td>2.51</td>
<td>chr22</td>
</tr>
<tr>
<td>MAPKAP1</td>
<td>79109</td>
<td>mitogen-activated protein kinase associated protein 1</td>
<td>2.72</td>
<td>2.96</td>
<td>chr9</td>
</tr>
<tr>
<td>ME1</td>
<td>4199</td>
<td>Malic enzyme 1, NADP(+)-dependent, cytosolic</td>
<td>12.94</td>
<td>2.20</td>
<td>chr6</td>
</tr>
<tr>
<td>MEF2A</td>
<td>4205</td>
<td>MADS box transcription enhancer factor 2, polypeptide A (myocyte enhancer factor 2A)</td>
<td>2.45</td>
<td>2.22</td>
<td>chr15</td>
</tr>
<tr>
<td>MGC11324</td>
<td>84803</td>
<td>hypothetical protein MGC11324 /// hypothetical protein MGC11324</td>
<td>2.89</td>
<td>2.30</td>
<td>chr4</td>
</tr>
<tr>
<td>MT2A</td>
<td>4502</td>
<td>metallothionein 2A</td>
<td>3.32</td>
<td>5.41</td>
<td>chr16</td>
</tr>
<tr>
<td>NCBP2</td>
<td>22916</td>
<td>Nuclear cap binding protein subunit 2, 20kDa</td>
<td>2.14</td>
<td>2.33</td>
<td>chr3</td>
</tr>
<tr>
<td>PAPSS2</td>
<td>9060</td>
<td>3'-phosphoadenosine 5'-phosphosulfate synthase 2</td>
<td>6.50</td>
<td>4.71</td>
<td>chr10</td>
</tr>
<tr>
<td>PHLD1A</td>
<td>22822</td>
<td>Pleckstrin homology-like domain, family A, member 1</td>
<td>3.23</td>
<td>3.12</td>
<td>chr12</td>
</tr>
<tr>
<td>PINK1</td>
<td>65018</td>
<td>PTEN induced putative kinase 1</td>
<td>2.75</td>
<td>2.16</td>
<td>chr1</td>
</tr>
<tr>
<td>PKIB</td>
<td>5570</td>
<td>protein kinase (cAMP-dependent, catalytic) inhibitor beta</td>
<td>2.33</td>
<td>2.69</td>
<td>chr6</td>
</tr>
<tr>
<td>PPGB</td>
<td>5476</td>
<td>protective protein for beta-galactosidase (galactosialidosis)</td>
<td>2.61</td>
<td>2.34</td>
<td>chr20</td>
</tr>
<tr>
<td>PRKAA1</td>
<td>5562</td>
<td>protein kinase, AMP-activated, alpha 1 catalytic subunit</td>
<td>3.78</td>
<td>2.02</td>
<td>chr5</td>
</tr>
<tr>
<td>PTEN</td>
<td>5728</td>
<td>Phosphatase and tensin homolog (mutated in multiple advanced cancers 1)</td>
<td>2.70</td>
<td>2.12</td>
<td>chr10</td>
</tr>
<tr>
<td>RAB3B</td>
<td>5885</td>
<td>RAB3B, member RAS oncogene family</td>
<td>3.19</td>
<td>2.14</td>
<td>chr1</td>
</tr>
<tr>
<td>RCN3</td>
<td>57333</td>
<td>reticulocalbin 3, EF-hand calcium binding domain</td>
<td>3.50</td>
<td>2.75</td>
<td>chr19</td>
</tr>
</tbody>
</table>
Table S9: Genes overexpressed in MPC compared to hES and down-regulated in NPC compared to hES (94 genes FC>2; α<0.05)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Entrez Gene</th>
<th>Gene Title</th>
<th>MPC_up</th>
<th>NPC_down</th>
<th>Chromosome Number(Avadis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REXO2</td>
<td>25996</td>
<td>REX2, RNA exonuclease 2 homolog (S. cerevisiae)</td>
<td>2.08</td>
<td>3.49</td>
<td>chr11</td>
</tr>
<tr>
<td>RPS27L</td>
<td>51065</td>
<td>Ribosomal protein S27-like</td>
<td>4.27</td>
<td>2.01</td>
<td>chr15</td>
</tr>
<tr>
<td>RRBP1</td>
<td>6238</td>
<td>ribosome binding protein 1 homolog 180kDa (dog)</td>
<td>2.01</td>
<td>3.21</td>
<td>chr20</td>
</tr>
<tr>
<td>RSL1D1</td>
<td>26156</td>
<td>Ribosomal L1 domain containing 1</td>
<td>4.27</td>
<td>2.18</td>
<td>chr16</td>
</tr>
<tr>
<td>RSU1</td>
<td>6251</td>
<td>Ras suppressor protein 1</td>
<td>2.56</td>
<td>2.11</td>
<td>chr10</td>
</tr>
<tr>
<td>SEC24D</td>
<td>9871</td>
<td>SEC24 related gene family, member D (S. cerevisiae)</td>
<td>5.55</td>
<td>2.89</td>
<td>chr4</td>
</tr>
<tr>
<td>SGK</td>
<td>6446</td>
<td>serum/glucocorticoid regulated kinase</td>
<td>2.20</td>
<td>4.88</td>
<td>chr6</td>
</tr>
<tr>
<td>SLC18A2</td>
<td>6571</td>
<td>Solute carrier family 18 (vesicular monoamine), member 2</td>
<td>2.49</td>
<td>2.02</td>
<td>chr10</td>
</tr>
<tr>
<td>SMILE</td>
<td>160418</td>
<td>SMILE protein</td>
<td>2.59</td>
<td>2.14</td>
<td>chr12</td>
</tr>
<tr>
<td>SP110</td>
<td>3431</td>
<td>SP110 nuclear body protein</td>
<td>2.20</td>
<td>2.15</td>
<td>chr2</td>
</tr>
<tr>
<td>SRPRB</td>
<td>58477</td>
<td>signal recognition particle receptor, B subunit</td>
<td>2.52</td>
<td>2.18</td>
<td>chr3</td>
</tr>
<tr>
<td>SSR1</td>
<td>6745</td>
<td>Signal sequence receptor, alpha (translocon-associated protein alpha)</td>
<td>3.33</td>
<td>2.24</td>
<td>chr6</td>
</tr>
<tr>
<td>SSR3</td>
<td>6747</td>
<td>signal sequence receptor, gamma (translocon-associated protein gamma)</td>
<td>7.07</td>
<td>2.11</td>
<td>chr3</td>
</tr>
<tr>
<td>STAT3</td>
<td>6774</td>
<td>signal transducer and activator of transcription 3 (acute-phase response factor)</td>
<td>2.17</td>
<td>3.17</td>
<td>chr17</td>
</tr>
<tr>
<td>STC2</td>
<td>8614</td>
<td>stanniocalcin 2</td>
<td>6.38</td>
<td>3.44</td>
<td>chr5</td>
</tr>
<tr>
<td>SURF4</td>
<td>6836</td>
<td>surfet 4</td>
<td>2.15</td>
<td>2.70</td>
<td>chr9</td>
</tr>
<tr>
<td>THBS2</td>
<td>7058</td>
<td>thrombospondin 2</td>
<td>22.66</td>
<td>5.05</td>
<td>chr6</td>
</tr>
<tr>
<td>TMED5</td>
<td>50999</td>
<td>transmembrane emp24 protein transport domain containing 5</td>
<td>2.16</td>
<td>2.53</td>
<td>chr1</td>
</tr>
<tr>
<td>TRHDE</td>
<td>29953</td>
<td>thyrotropin-releasing hormone degrading enzyme</td>
<td>10.58</td>
<td>2.12</td>
<td>chr12</td>
</tr>
<tr>
<td>TRIM22</td>
<td>10346</td>
<td>tripartite motif-containing 22</td>
<td>5.53</td>
<td>4.12</td>
<td>chr11</td>
</tr>
<tr>
<td>UGCGL2</td>
<td>55757</td>
<td>UDP-glucose ceramide glucosyltransferase-like 2</td>
<td>4.64</td>
<td>2.49</td>
<td>chr13</td>
</tr>
<tr>
<td>USP53</td>
<td>54532</td>
<td>ubiquitin specific peptidase 53</td>
<td>3.74</td>
<td>2.10</td>
<td>chr4</td>
</tr>
<tr>
<td>WDR1</td>
<td>9948</td>
<td>WD repeat domain 1</td>
<td>2.33</td>
<td>2.30</td>
<td>chr4</td>
</tr>
<tr>
<td>WWTR1</td>
<td>25937</td>
<td>WW domain containing transcription regulator 1</td>
<td>6.13</td>
<td>2.11</td>
<td>chr3</td>
</tr>
<tr>
<td>ZC8SL1</td>
<td>285081</td>
<td>zinc finger, CSL-type containing 2</td>
<td>3.05</td>
<td>2.68</td>
<td>chr3</td>
</tr>
<tr>
<td>ZYX</td>
<td>7791</td>
<td>zyxin</td>
<td>5.69</td>
<td>2.23</td>
<td>chr7</td>
</tr>
<tr>
<td>Symbol</td>
<td>Gene Name</td>
<td>Mpc vs hES (m=118)</td>
<td>FC (1)</td>
<td>FC (2)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>HIF1A</td>
<td>hypoxia inducible factor 1. alpha subunit (basic helix-loop-helix transcription factor)</td>
<td>4.766</td>
<td>5.071</td>
<td>5.293</td>
<td></td>
</tr>
<tr>
<td>FOXG1</td>
<td>forkhead box G1</td>
<td>2.146</td>
<td>2.936</td>
<td>4.445</td>
<td></td>
</tr>
<tr>
<td>H2AFZ</td>
<td>H2A.0-like histone</td>
<td>3.545</td>
<td>13.020</td>
<td>10.679</td>
<td></td>
</tr>
<tr>
<td>TBX2</td>
<td>T-box 2</td>
<td>2.29</td>
<td>5.07</td>
<td>6.382</td>
<td></td>
</tr>
<tr>
<td>LBX1</td>
<td>LIM homeobox 2</td>
<td>3.362</td>
<td>17.02</td>
<td>10.679</td>
<td></td>
</tr>
<tr>
<td>TAF15</td>
<td>TAF15 RNA polymerase II. TATA box binding protein (TBP)-associated factor. 68kDa</td>
<td>-3.17</td>
<td>-8.384</td>
<td>-11.186</td>
<td></td>
</tr>
<tr>
<td>BCL2</td>
<td>B-cell CLL/lymphoma 6</td>
<td>2.184</td>
<td>2.29</td>
<td>4.445</td>
<td></td>
</tr>
<tr>
<td>ZBTB16</td>
<td>zinc fingers and homeoboxes 3</td>
<td>2.702</td>
<td>2.842</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>RBCK1</td>
<td>RBCK1</td>
<td>2.702</td>
<td>2.944</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>ESA</td>
<td>estrogen related hormone</td>
<td>2.681</td>
<td>2.681</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>PRKC</td>
<td>PRKC. apoptosis. WT1. regulator</td>
<td>2.645</td>
<td>2.645</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>EGR1</td>
<td>cAMP responsive element modulator</td>
<td>2.645</td>
<td>2.645</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>ZNF193</td>
<td>zinc finger protein 193</td>
<td>2.681</td>
<td>2.681</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>SIX6</td>
<td>SIX homeobox 6</td>
<td>2.681</td>
<td>2.681</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>ASH1L</td>
<td>aristaless related homeobox</td>
<td>2.681</td>
<td>2.681</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>ZNF141</td>
<td>zinc finger protein 141</td>
<td>2.681</td>
<td>2.681</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>HDAC6</td>
<td>histone deacetylase 6</td>
<td>2.681</td>
<td>2.681</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>ZBTB16</td>
<td>zinc fingers and homeoboxes 3</td>
<td>2.702</td>
<td>2.702</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>RRM1</td>
<td>RNA polymerase II. large subunit (RNA pol II)</td>
<td>2.645</td>
<td>2.645</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>TAF13</td>
<td>TAF13 RNA polymerase II. TATA box binding protein (TBP)-associated factor. 18kDa</td>
<td>-3.17</td>
<td>-8.384</td>
<td>-11.186</td>
<td></td>
</tr>
<tr>
<td>TAF13</td>
<td>TAF13 RNA polymerase II. TATA box binding protein (TBP)-associated factor. 18kDa</td>
<td>-3.17</td>
<td>-8.384</td>
<td>-11.186</td>
<td></td>
</tr>
<tr>
<td>TFIP5</td>
<td>TFIP5</td>
<td>2.645</td>
<td>2.645</td>
<td>5.529</td>
<td></td>
</tr>
<tr>
<td>FC(1)</td>
<td>Fold Change NCAM-NPC vs hES ; FC (2) Fold change CD73-MPC vs hES. NS : no significant modulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:
- **NCAM:** neural cell adhesion molecule (NCAM)
- **NPC:** neural progenitor cells
- **hES:** human embryonic stem cells
- **MPC:** mesenchymal progenitor cells
- **FC:** fold change
- **NS:** no significant modulation

The table lists various genes and their fold changes in expression compared to controls, highlighting those with significant modulation. The data sets include NCAM-NPC vs hES and CD73-MPC vs hES, with some genes showing modulation indicated by FC (fold change) values.