A Coupled Duration-Focused Architecture for Real-Time Music-to-Score Alignment
Arshia Cont

To cite this version:
Arshia Cont. A Coupled Duration-Focused Architecture for Real-Time Music-to-Score Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2010, 32, pp.974-987. <10.1109/TPAMI.2009.106>. <hal-00479737>

HAL Id: hal-00479737
https://hal.archives-ouvertes.fr/hal-00479737
Submitted on 2 May 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A coupled duration-focused architecture for realtime
music to score alignment

Arshia Cont, Student member

Abstract—The capacity for realtime synchronization and coordi-
nation is a common ability among trained musicians performing a
music score that presents an interesting challenge for machine
intelligence. Compared to speech recognition, which has
influenced many music information retrieval systems, music's
temporal dynamics and complexity pose challenging problems
to common approximations regarding time modeling of data
streams. In this paper, we propose a design for a realtime
music to score alignment system. Given a live recording of
a musician playing a music score, the system is capable of
following the musician in realtime within the score and decoding
the tempo (or pace) of its performance. The proposed design
features two coupled audio and tempo agents within a unique
probabilistic inference framework that adaptively updates its
parameters based on the realtime context. Online decoding
is achieved through the collaboration of the coupled agents
in a Hidden Hybrid Markov/semi-Markov framework where
prediction feedback of one agent affects the behavior of the other.
We perform evaluations for both realtime alignment and the
proposed temporal model. An implementation of the presented
system has been widely used in real concert situations worldwide
and the readers are encouraged to access the actual system and
experiment the results.

Index Terms—Automatic musical accompaniment, Hidden

I. INTRODUCTION

REALTIME alignment of audio signals to symbolic music
scores, or score following, has a long tradition of research
dating back to 1983 [1], [2]. Both the original and current
motivations behind score following consist of live synchronization
between a computer with a symbolic music score and a
musician performing the same score with a musical instrument.
This can also be extended to a live computer accompaniment
with a human performer where the computer assumes the
performance of the orchestral accompaniment while the human
performs the solo part. Another musical motivation is new
music repertoire, primarily live electronic performances in
which the computer performs a live electronic score that
should be synchronous to the human performer in a realtime
performance situation1. Our overall intention is to bring the
computer into the performance as an intelligent and well-
trained musician capable of imitating the same reactions and
strategies during music performance that human performer(s)
would undertake. In recent years, automatic audio to score
alignment systems have become popular for a variety of other
applications such as Query-by-Humming [3], intelligent audio
editors [4] and as a front-end for many music information
retrieval systems.

A minimal description of realtime score following is as
follows: the system possesses a representation of the symbolic
music score in advance, which is given by the user and fed
into the system off-line. The goal of the system is to map
the incoming realtime audio stream onto this representation
and decode the current score position and realtime tempo
(the dynamic musical clock used by musicians, to be defined
shortly). Figure 1 demonstrates this through an excerpt of
a music score on the top, the realtime setup scheme of the
live performance in the middle, and sample results from
the alignment of a recording audio onto the excerpt score
indicating decoded event positions and timing information.

This paper proposes an architecture for the modeling of the
temporal dynamics of music events on the fly through parallel
decoding of two coupled audio and tempo agents, which could
be extended to similar applications in other domains. In most
transcribed musical cultures (including western musical nota-
tion), time is usually written with values relative to a musical
clock referred to as the tempo. Tempo in western cultures is
usually indicated by the number of beats that are expected
to occur in a minute (BPM) and accordingly, the temporality
of events in a symbolic score is indicated by the number of
expected beats that they should span in time which can be

1See http://imtr.ircam.fr/index.php/Score_Following/ for demonstrative
videos.
fractions of a pulse. The dynamic variation of tempo, or the musical clock, is highly responsible for musical expressivity among musicians and could lead to extreme variations in the distribution density of an underlying generative model of audio. The alignment problem presented in this paper is similar to well studied problems from speech recognition and segmentation such as speech-to-phoneme or speech-to-text alignment [5]. Most realtime systems for speech applications use generative models of the audio signal using hidden Markov models (HMM). One of the main issues with this type of generative model for speech and audio has been to accurately model duration distributions of the underlying events, leading to variants of HMM. In most approaches, the generative models along their underlying parameters describing (implicit or explicit) duration models are obtained through offline learning, thus assuming stationarity of the input data with regards to the learned models. Recent experiments in [6] show that by using standard HMMs with an increased number of states for each symbol (e.g. phonemes), we are capable of closely matching the performance of duration-focused approaches such as semi-Markov models or variable transition probabilities as applied to classical speech problems. Given the extreme variability of temporal dynamics of musical events, such approximations would lead to shortcomings in the performance of the system; therefore, we assume that the temporal structure of underlying events is a dynamic structure. The models proposed in this paper are capable of decoding such temporal dynamics on-the-fly and could be extended to other domains.

Our proposed method is based on an anticipatory forward propagation algorithm for realtime inference of event alignment and tempo parameters. The problem in nature is similar to finding the most optimal path within a sequence (e.g. music events in our case). This is usually addressed using the Viterbi algorithm [7] which uses both forward and backward propagation of beliefs at each time node t to decode the optimal path. In a realtime and reactive context such as ours, the system has no access to backward beliefs as the outcomes of future observations. In such situations, researchers usually rely on forward propagation to decode the optimal position or by cascading other sources of information (through joint or independent distributions). In our architecture, the absence of future observations is compensated by formulating the problem as in anticipatory systems. An Anticipatory System is “a system containing a predictive model of its environment, which allows it to change state at an instant in accord with the model’s predictions pertaining to a later instant [8].” In short, anticipatory behavior can be artificially obtained by a feedback of the system’s prediction into the future in order to affect current time decisions. In this paper we focus on state anticipation where explicit predictions of state durations for time $T > t$ affects the state of decision at time $T = t$.

In this paper, we present a realtime and online audio to score alignment system that is also capable of decoding the live tempo (or musical pace) of the performance. In its design and in comparison to existing systems, the proposed system encompasses two coupled audio and tempo agents that collaborate and compete in order to achieve synchrony. Collaboration is achieved through the feedback of prediction of one agent into the other. The inference engine features a hidden hybrid markov/semi-markov model that explicitly models events and their temporalities in the music score. The tempo agent features a self-sustained oscillator based on [9], adopted here in a stochastic framework for audio processing. The novelty of the proposed design is twofold: (1) Coupling of two parallel audio and tempo agents through a unique realtime inference technique, and (2) Online adaptation of system parameters (duration distributions) to the realtime context, leaving no need for offline training and leading to global reduction of learned parameters compared to existing systems. The system gets as input a score representation and an audio stream. The outputs of the system are the event indexes and realtime tempo, with no need for external training.

In practice, the presented system is capable of successfully decoding polyphonic music signals and has been featured in several concert performances world-wide with various artists including a performance with the Los Angeles Philharmonic. The paper is organized as follows: We introduce the research background on the topic in section II-A as well as background information on the foundations of musical time in section II-B that has inspired our computational approach. We introduce the general architecture as well as the employed sequential modeling in section III and provide the general inference framework thereafter in section IV. Sections V, VI, and VII detail the generative models and modeling aspects of the inference framework. We evaluate the system’s performance in various situations in section VIII followed by discussion and conclusion.

II. BACKGROUND

A. Score Following Research

Score following research was first introduced independently in [1] and [2]. Due to computational limitations at the time, both systems relied on symbolic input through sensors installed on the musical instrument rather than raw audio. The problem would then be reduced to string matching between the symbolic input stream and the score sequence in realtime. The issue becomes more complicated when expressive variations of the performer, either temporal or event-specific, come into play. Underlying systems must have the tolerance to deal with these variations as well as human or machine observation errors in order to remain synchronous with the human performer. All these factors made the problem challenging even on the symbolic level.

In the early 1990s with the advent of faster computers, direct use of audio input instead of symbolic data became possible, allowing musicians to use their original instruments. In this new framework, the symbolic level of the score is not directly observable anymore and is practically hidden from the system. Early attempts used monophonic pitch detectors on the front-end, providing pitch information to the matching algorithm under consideration, thereby doubling the problem of tolerance with the introduction of pitch detection uncertainty which is an interesting problem by itself (e.g. [10]). By
the mid-90s, in parallel with developments made in the speech recognition community, Grubb et al. in [11] and Raphael in [12] introduced the stochastic approach. The latter is based on Hidden Markov Models and statistical observations from live audio input. Raphael’s approach was further developed by various authors leading to variants (for example [13], [14]). In a more recent development, Raphael introduced a polyphonic alignment system where tempo is decoded along score positions [15]. This design has two (cascaded) stages for decoding score position and tempo. The first stage is comprised of a Hidden Markov Model deducted from the score, which is responsible for decoding the position in the score (called the listener). The second stage uses an elaborate Bayesian network to deduct the smooth tempo during the performance. In this paper, we propose an anticipatory model for the problem of score following in which tempo and audio decoding are not separate problems but are coupled together within a single framework.

Offline versions of score following, where the whole audio sequence is entirely known prior to actual synchronization have been vastly studied in the literature (see [16, Chapters 5] and references therein). Many of these systems make use of generative models such as HMMs or their variants such as Dynamic Time Warping algorithms. In this paper, we focus on the online and realtime problem where the audio streams arrive incrementally into the system.

B. Foundation of Musical Time

The perception of musical metric structure in time is not merely an analysis of rhythmic content; rather, it shapes an active listening strategy in which the listener’s expectations about future events can play a role as important as the musical events themselves. The assumptions inherent in this imply that, contrary to basic speech to phoneme applications, the temporal structure of musical expectation is a dynamic structure and should be handled at the onset of the design. This fact is further enhanced by observing the manner in which various cultures have managed to transcribe dynamic temporal structures of music through music notation. Looking at a traditional western notated music score, the simplest way to transcribe temporal dynamics would be a set of discrete sequential note and silence events that occupy a certain amount of relative duration in time. The relative notion of musical time is one of the main sources of musical expressivity which is usually guided by tempo often represented in beats-per-minute (BPM). While limiting our discourse to the realm of western classical music notation, we provide two important insights on the temporality of musical events with direct consequences on our model, as expressed by two important figures of the late 20th century music composition in [17, 18]:

1) Temporal vs. Atemporal: An atemporal (or out-of-time) event corresponds to an object that possesses its own internal temporal structure independent of the overall temporal structures of the piece of music. The two structures are usually considered independent in music theory. To conform this distinction with our probabilistic design, we define an atemporal object or event as one that possesses a physical space in the score but does not contribute to the physical musical time of the score. Typical examples of atemporal objects are grace notes, internal notes of a trill, or typical ornaments in a baroque-style interpretation in western classical notation. In such cases, the individual events do not contribute to the notion of tempo, but their relative temporal appearance in the case of the grace note, or their overall in-time structure in the case of a trill, contribute to the notion of tempo.

2) Striated-time vs. Smooth-time: Striated time is one that is based on recurring temporal regularities while smooth time is a continuous notion of time as a flow of information. The pulsed-time used in most western classical music notation is a regulated striated time-flow which uses an internal musical clock usually driven by a tempo parameter in beats-per-minute. In our terminology, we distinguish between a striated time-scale where the notion of time is driven relative to a constantly evolving tempo, and a smooth time-scale where the information on the microscopic level consists of individual atemporal elements or is defined relative to a pulse. A typical example of a smooth-time event in western traditional notation is the free glissandi. It is important to mention that most available classical and popular music pertain to striated time.

C. Probabilistic Models of Time

Because of the intrinsic temporal nature of music, the ability to represent and decode temporal events constitutes the core of any score following system. In general, a live synchronization system evaluates live audio inputs versus timed models of a symbolic score in its memory. Since such systems are guaranteed to operate in uncertain situations probabilistic models have become a trend in modeling since the late 1990s. Within this framework, the goal of a probabilistic model is to decode the temporal dynamics of an outside process. Therefore the performance of such models is highly dependent on their ability to represent such dynamics within their internal topology. In these problems, any state of a given process occupies some duration that can be deterministic or not. We are interested in a probabilistic model of the macro-state duration and expected occupancy. In a musical context, a macro-state can refer to a musical event (note, chord, silence, trills etc.) given an expected duration that might be composed of one or more micro-states. A common way to model time series data in the literature is by the use of state-space models. A state-space model of a sequence is a time-indexed sequence of graphs (nodes and edges) where each node refers to a state of the system over time. Therefore, each state has an explicit time-occupancy that can be used to probabilistically model the occupancy and duration of the events under consideration. In this section, we limit our study to two wide classes of state-space models and their duration models which cover most existing approaches: Markov and Semi-Markov processes.

1) Markov Time Occupancy: In a parametric Markov time model, the expected duration of a macro-state \(j \) (events such as notes, chords etc. that occupy time) is modeled through a set of Markov chains (or mico-states) with random variables attached to transition probabilities which parameterize an occupancy distribution \(d_j(u) \), where the random variable
U accounts for the number of times spent in the macro state j. Figure 2 shows a parametric macro-state Markov chain topology commonly used for duration modeling. This way, the macro-state consists of r Markov states and two free parameters p and q corresponding respectively to the exit probability and the next-state transition probability. The macro-state occupancy distribution associated to this general topology is the compound distribution:

$$P(U = u) = \sum_{n=1}^{r-1} \binom{u-1}{n-1} (1-p-q)^u q^n p^{n-1} + \binom{u-1}{r-1} (1-p-q)^u q^r (p+q)$$

which corresponds to a series of r states with no jumps to the exit state with the shortcoming that the minimum time spent in the macro-state is r. This simplified version has been widely explored in various score following systems where the two parameters r and q are derived by optimization over the macro-state’s time duration provided by the music score ([12], [13]).

2) Semi-Markov Time Occupancy: In a Semi-Markov model, a macro-state can be modelled by a single state (instead of a fixed number of micro-states) and by using an explicit time occupancy probability distribution $d_j(u)$ for each state j and occupancy u. Assuming that S_t is the discrete random variable denoting the macro-states at time i from a state space $\mathcal{S} \subset \mathbb{N}$, and T_m is the time spent at each state m, then $S_t = m$ whenever

$$\sum_{k=1}^{m} T_k \leq t < \sum_{k=1}^{m+1} T_k.$$

Or simply, we are at state m at time t when the duration models for all states up to m and $m+1$ comply with this timing. In this configuration, the overall process is not a Markov process within macro-states but rather a Markov process in between macro-states, hence the name semi-Markov.

The explicit occupancy distribution can then be defined as follows:

$$d_j(u) = P(S_{t+u+1} \neq j, S_{t+u-v} = j, v \in [0, u-2] | S_{t+1} = j, S_t \neq j)$$

where $u = 1, \ldots, M_j$ with M_j the upper bound for the time spent in the macro-state.

Semi-Markov models were first introduced in [19] for speech recognition and gained attention because of their intuitive access to models’ temporal structure. Semi-Markov topologies are usually much more sparse in computations and controllable than their Markovian counterparts. Moreover, they provide explicit access to time models expressed as occupancy distributions. Despite these advantages, explicit duration models might require substantial development of standard statistical inference algorithms. Such developments could become cumbersome if duration models are assumed to be dynamic (as is the case in our framework) rather than stationary (as with most speech recognition problems).

III. GENERAL ARCHITECTURE

The general description of our score following task is as follows: having possession of the symbolic music score in advance, the goal of our system is to map the incoming realtime audio stream onto this representation and decode the current score position, realtime tempo and undertake score actions. In this paper we focus on the first two (as demonstrated through the example of figure 1). Score actions involve musical programming either for live electronics effects or automatic accompaniment applications and are reported in [20]. The music score is represented by a probabilistic state-space model constructed directly from a symbolic music score inspired by the observations in section II-B. Given the score’s state-space representation, the realtime system extracts instantaneous beliefs or observation probabilities of the audio features calculated from the stream, with regard to the states of the score graph. The goal of the system is to then integrate this instantaneous belief with past and future beliefs in order to decode the position and tempo in realtime. Figure 3 shows a general diagram of our system.
sequence of states s_t^j through the random variable $\{S_t\}$ that describes the symbolic score sequence. Hence the problem of score following is the inverse of this hypothesis: to find the most likely state-sequence associated with the observed realtime audio sequence. Due to the nature of this inverse problem, the underlying state-sequence that generates the audio is not directly observable by the system and is thus hidden. This process of finding the most likely state-sequence in a hidden process up to the present is referred to as the inference problem.

The proposed inference framework, detailed in section IV, is based on two parallel and coupled audio and tempo agents, and adaptively handles the temporal dynamics of musical structures. The two agents collaborate at all times to map the realtime audio input to the most likely state sequence in the score model. This choice of design is motivated by strong evidence in brain organization for music processing for dissociation of pitch and temporal processing of music [21]. This evidence suggests that these two dimensions involve the operation of separable neural subsystems, and thus can be treated in parallel in a computational framework. The tempo agent computes on the event timescale, as provided by the audio agent, and is based on a cognitive model of musical metric structure and provides continuous tempo predictions based on live audio input, detailed in section VII-B. Besides decoding realtime tempo, the tempo agent dynamically assigns the duration distributions used for score position alignment as detailed in section VII-C. The inference scheme computes on the continuous audio timescale and assigns probabilistic values to relevant states in the score state-space by combining tempo predictions and continuous audio observations. The proposed model is thus an anticipatory and coupled system where the state likelihoods are influenced dynamically by the predicted tempo, and in return, the tempo agent is directly affected by the instantaneous alignment positions through audio decoding.

The state-space generative model of the score proposed here is a Hidden Hybrid Markov/semi-Markov chain [22] which is motivated by observations in II-B and probabilistic models of time, as defined in the following section.

A. Hybrid Models of Time

The probabilistic (and generative) state-space model of the score describes the event types and time models of events in the score which are used during decoding and inference. For the state-space model of our framework, we propose to use the best of both of the probabilistic time models presented previously in section II-C, motivated by the observations on compositional foundations of time as described in section II-B. Within this framework, we would like to take advantage of explicit time-models of semi-Markov chains for temporal and striated-time events, and employ parametric Markov models for atemporal and smooth-time elements in a music score. These considerations lead to a probabilistic model based on Hybrid Markov/semi-Markov Chains as proposed in [22]. In this section we provide a formal definition of this model and detail its construction from a music score in section V.

Following our previous formalization, we then assume that the audio features represented by the random variable $\{X_t\}$ are generated by a sequence of states through the state process $\{S_t\}$ corresponding to (the hidden) states in a hybrid markov/semi-Markov chain constructed from the score. A discrete hidden hybrid Markov/semi-Markov chain can then be viewed as a pair of stochastic processes (S_t, X_t) where the discrete output $\{X_t\}$ is related to the state process $\{S_t\}$ by a stochastic function denoted by f where $X_t = f(S_t)$. Since this mapping f is such that $f(s_j) = f(s_k)$ may be satisfied for different j and k, or in other words, a given output may be observed in different states, the state process S_t is not observable directly but only indirectly through the output process X_t. Beyond this point, we use $P(S_t = j)$ as shorthand for $P(S_t = s_j)$ which denotes the probability that state j is emitted at time t.

Let S_t be a J-state hybrid Markov/semi-Markov chain. It can then be defined by:

- Initial probabilities $\pi_j = P(S_0 = j)$ with $\sum_j \pi_j = 1$.
- Transition Probabilities
 - semi-Markovian state j and $\forall j, k \in \mathbb{N}, k \neq j$: $p_{jk} = P(S_{t+1} = k | S_t \neq j, S_t = j)$

 where $\sum_{k \neq j} p_{jk} = 1$ and $p_{jj} = 0$.
 - Markovian state j:
 $$p_{jk} = P(S_{t+1} = k | S_t = j)$$

 with $\sum_k p_{jk} = 1$.

- An explicit occupancy distribution attached to each semi-Markovian state as in equation 1. Hence, we assume that the state occupancy distributions are concentrated on finite sets of time points.
- An implicit occupancy distribution attached to each Markovian state j where

$$P(S_{t+1} = k | S_t \neq j, S_t = j) = \frac{p_{jk}}{1 - p_{jk}}$$

defines an implicit state occupancy distribution as the geometric distribution with parameter $1 - p_{jk}$:

$$d_j(u) = (1 - p_{jk})p_{jk}^{u-1} \quad (2)$$

The output (audio) process X_t is related to the hybrid Markov/semi-Markov chain S_t by the observation or emission probabilities

$$b_j(y) = P(X_t = y | S_t = j) \quad \text{where} \quad \sum_y b_j(y) = 1.$$

This definition of the observation probabilities expresses the assumption that the output process at time t depends only on the underlying hybrid Markov/semi-Markov chain at time t.

The original formulations of the hybrid network defined above in [22] are not aimed for realtime decoding, neither anticipatory, nor multi-agent processing. In the following sections, we extend this framework to our coupled anticipatory framework.
IV. Inference Formulation

The solution to the inference problem determines the most-likely state-sequence S^*_t that would generate X^*_t, and in the process the score position and realtime decoded tempi. In a non-real-time context, an exact inference can be obtained using a Viterbi type algorithm [23] that for each time t uses both beliefs from time 0 through τ (referred to as for forward propagation or $\alpha(t)$) and future knowledge from present (τ) to a terminal state at time T (referred to as backward propagation or $\beta(t)$). In a score following system that necessitates on-the-fly synchronization of audio with the music score, since using the backward propagation of the Viterbi algorithm is either impossible or would introduce considerable delays in the system. In the proposed system, we hope to compensate for this absence of future beliefs with our anticipatory model of audio/tempo coupled agents and an adaptive forward propagation procedure. Here, we formulate a dynamic programming approach for an adaptive forward propagation for a hidden hybrid Markov/semi-Markov process.

For a semi-Markovian state j_t, the Viterbi recursion of the forward variable is provided by the following dynamic programming formulation (see Appendix for derivation):

$$\alpha_j(t) = \max_{\alpha_0, \ldots, \alpha_{t-1}} P(S_{t+1} \neq j, S_t = j, S_0 = s_0, X_0 = x_0)$$

$$= \max_{\alpha_0, \ldots, \alpha_{t-1}} \left[b_j(x_t) \prod_{i=1}^{t-1} b_i(x_{t-i}) d_j(u) \max_{t-u} \alpha_i(t-u) \right]$$

(3)

For a Markovian state j_t, the same objective amounts to [7]:

$$\tilde{\alpha}_j(t) = \max_{\alpha_0, \ldots, \alpha_{t-1}} P(S_t = j, S_0 = s_0, X_0 = x_0)$$

$$= \max_{\alpha_0, \ldots, \alpha_{t-1}} \left[b_j(x_t) \max_{t-u} \alpha_i(t-1) \right]$$

(4)

Within this formulation, the probability of the observed sequence x_{0}^{t-1} along with the most probable state sequence is $\arg \max_{t-j} \{ \alpha_j(t-1) \}$.

In order to compute equations 4 and 3 in realtime, we need the following parameters:

- State types and topologies which determine the type of decoding and transition probabilities p_{ij}. This probabilistic topology is constructed directly from the music score and is discussed in section V.
- Observations probabilities $b_j(x_t)$ which are obtained from realtime audio features (x_t) and are discussed in details in section VI.
- The occupancy distribution $d_j(u)$ which decodes and models the musical tempo in realtime, and the upper bound u of the product in eq. 3, which are discussed in section VII.
- A prior belief (or belief at time zero) denoted by $\alpha_j(0)$, which is usually assigned to the corresponding starting point on the score during a performance.

The complexity of this propagation procedure is $O(J\tau(J+\tau))$-time in the worst case and $O(J\tau)$-space, where J is the number of states present in the system under consideration and τ the discrete time element. In a realtime application on a left-right state-space time structure, we can suitably limit J and τ to small homogeneous zones in space and time during filtering as function of the latest decoding position.

V. Music Score Model

Using the inference formulation above, each audio observation is mapped to a state-space representation of the music score where each event in the score is modeled as one or more states s_j with appropriate characteristics. The state-space in question would be a hidden hybrid Markov/semi-Markov model constructed out of a given music score during parsing. The type of the state (Markov or semi-Markov), its topology and associated symbols are decided based on the musical construct taken from the music score. In this section we describe a set of topologies that were designed to address most temporal structures in western music notation as outlined in section II-B. In the figures that follow Markov states are demonstrated by regular circles whereas semi-Markov states are denoted by double-line circles.

A. Basic Events

A single event can be a single pitch, a chord (a set of pitches occurring all at once), or a silence. These events can be either temporal or atemporal (see section II-B). A timed event is mapped to semi-Markov state where an atemporal event (such as a grace note) is mapped to a Markov state. A semi-Markov state s_i is described by a set $\{i, \ell_i, f_0\}$ where i is the event number or discrete location since the beginning of the score, ℓ_i is its duration expressed as the number beats relative to the initial score tempo, and f_0 is a list of expected pitch frequencies. Figure 4 shows a sample graphical score and its equivalent Markov topology after parsing. If the duration associated with a single event is set to 0.0, it is a sign that the associated event is atemporal (and therefore Markovian) and described by $\{i, f_0\}$. In the example of figure 4, grace notes are encoded as Markovian states (circles) where timed pitches are parsed into semi-Markovian (dashed circle) states. In this example, pitches are represented with their fundamental frequencies in Hz and a left-right Markov topology in one-to-one correspondence with the score. Note that in this example, a dummy atemporal silence is created in the middle. The parser automatically puts dummy silences between events where appropriate to better model the incoming audio.

```
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{Sample state-space topology for basic events}
\end{figure}
```

B. Special timed events

Many score models for alignment purposes stop at this point. However, music notation utilizes a large vocabulary in which events are sometimes spread erratically over time and interpretations are either varied from performance to performance or are free at large. This is the case with almost every written music piece that contain events such as trills,
and *glissandos*. While studying some of these common irregularities we figured out that the particularity of such events are in how they are spreaded over time and how their observations are handled during realtime decoding. We came out with two simple state topologies that address several classical cases as well as more general ones which are described hereafter. Another motivation for this part of our work is the use of our system by contemporary music composers who always seek to expand traditional notions of music writing.

1) **TRILL Class:** As the name suggests, the TRILL class is a way to imitate classical music trill notation. In terms of modeling, a trill is one in-time event that encompasses several out-of-time events. Moreover, time-order, time-span and the number of repetitions of these sub-states are of no importance. For example, a whole-tone trill on a middle C with a duration of one beat \((\ell = 1)\), can consist of 4 crotchets, or 8 quavers, or 16 semiquavers etc. of sequences of \(C\) and \(D\), depending on the musician, music style, or dynamics of the performance. To compensate for these effects, we consider the TRILL class as one semi-Markov state \(s_i\) with a given duration, whose observation \(f_{0i}\) is shared by two or more atemporal states. During realtime decoding, the observation of the general TRILL state is the maximum observation among all possibilities for the incoming audio frame or \(b_j(x_t) = \max\{p_i = p(x_t|f_{0j})\}\).

Figure 5 shows two musical examples that can be described using the TRILL class, where the second\(^3\) demonstrates a free glissandi which can also be successfully encoded using this model.

![Fig. 5. State-space topology for the TRILL class](image)

2) **MULTI Class:** Another less common situation, but of interest to our applications in music notation, is continuous time events where the time span of a single event undergoes change in the observation. An example of this in western classical notation is the continuous *glissando* or *portamento*, described as continuously variable pitch, where the musical instrument allows such notation (such as violin, trombone, and the human voice). Moreover, this class of objects would allow matching for continuous data such as audio and gesture, along with symbolic score notations. To this end, we add the MULTI class which is similar to the TRILL class, with the exception that the symbols defined within its context are atemporal Markov states that are ordered in time. In this new topology, a high-level semi-Markov state represents the overall temporal structure of the whole object that is mapped to a series of sequential left-right Markov chains. Figure 6 shows a MULTI example for two consecutive notated glissandis.

![Fig. 6. State-space topology for the MULTI class](image)

\(\text{VI. Observation Model}\)

The inference formulation of section IV attempts to map audio signals as discrete frames \(x_t\) in time to their corresponding state \(s_t\) in a music score. As mentioned earlier, in our problem the states are not directly observable by the system and thus are hidden. The observation probabilities \(b_j(x_t)\) in the inference formulation are thus the *eye* of the system towards the outside world and provide probabilities that the observation vector \(x_t\) is emitted from state \(j\). In other words, they are the likelihood probabilities \(p(x_t|s_j)\) which after entering the forward propagation become posterior beliefs \(p(s_j|x_t, x_{2t}, \ldots, x_t)\). The audio stream \(x_t\) in our system corresponds to sampled audio signals over overlapping windows of fixed length over time, where \(t\) refers to the center of the time window. In the experiments shown in this paper, the time window has a length of 92ms with an overlap factor of four as a compromise between the frequency and time resolution of the input. In this section we show the model that provide the observation probabilities \(b_j(x_t)\) during realtime inference.

In a polyphonic music setting, the observation probabilities should reflect instantaneous pitches that are simultaneously present in an analysis window entering the system in realtime. Polyphonic pitch detection is a difficult problem in itself. In our setting the problem is less complicated since the music score provides prior information regarding expected pitches during the performance. Thus the goal is to compute the conditional probabilities \(p(x_t|s_j)\) where each state \(s_j\) provides the expected pitches in the score.

For this aim, we choose to represent analysis frames \(x_t\) in the frequency domain using a simple FFT algorithm and compare the frequency distribution to frequency templates constructed directly out of the pitch information of \(s_j\). This choice of observation model is natural since musical pitches tend to preserve quasi-stationary frequency distributions during their lifetime which correspond to their fundamental frequencies along with several harmonics. Since we are dealing with \(x_t\) and \(s_t\) as probability distributions over the frequency domain, it is natural to choose a comparison scheme based on probability density distances, for which we choose the Kullback-Leibler divergence as shown below:

\[
D(S_j || X_t) = \sum_i S_j(i) \log \frac{S_j(i)}{X_t(i)}
\]

where \(X_t\) is the frequency domain representation of \(x_t\) or \(\text{FFT}(x_t)\) and \(S_j\) is the frequency probability template corresponding to pitches in \(s_j\). Note that the KL divergence of eq. 5
is not a distance metric is employed as a likelihood observation function: if \(S_j \) is considered as the “true” frequency distribution of pitches in \(s_j \) and \(X_t \) as an approximation candidate for \(S_j \), then \(D(S_j||X_t) \) gives a measure up to which \(X_t \) can describe \(S_j \) and is between 0 and +\(\infty \) with \(D(S_j||X_t) = 0 \) iff \(S_j = X_t \). To convert eq. 5 to probabilities, we pass it through an exponential function that maps \([0, +\infty) \to [1, 0] \):

\[
p(x_t|S_j) = \exp\left[-\beta D(S_j||X_t) \right]
\]

where \(\beta \) is the scaling factor that controls how fast an increase in distance translates to decrease in probability, fixed to 0.5 in our system.

In order to construct the “true” frequency distributions of pitches in \(s_j \), we correctly assume that a pitch consists of a fundamental and several harmonics representing themselves as peaks in the frequency domain. Each peak is modeled as Gaussian, centered on the fundamental and harmonics and their variance relative to their centers on a logarithmic musical scale. We fix the number of harmonics for these templates to 10 for each fundamental with a variance of a half-tone in the tempered musical system which can be adjusted if needed by the user.

Note that the likelihood in eq. 6 requires normalization of \(X_t \) and \(S_j \) such that they would add to 1. This normalization undermines the robustness of the system to low-energy noise. To compensate, we influence eq. 6 by the standard deviation of \(X_t \), which reflects energy and noisiness of the original signal, to obtain \(b_j(x_t) \). A similar method is also reported in [15].

VII. STOCHASTIC MODEL OF TIME IN MUSIC PERFORMANCE

As stated earlier, any model for timing synchronisation of musical events should consider the hypothesis that the temporal structure of listeners’ expectations is a dynamic structure. A primary function of such structures is attentional which allows anticipation of future events, enabling perceptual targeting, and coordination of action with musical events. These considerations led Large et al [9] to propose a model of meter perception where they assume a small set of internal oscillating operators operating at periods that approximate those at hierarchical metrical levels. Each oscillator used in the model is self-sustained in the sense that, once activated, it can persist, even after simulation ceases or changes in significant ways. The oscillator has the ability to entrain to incoming rhythmic signals. Their model has been tested and verified largely in different experiments with human subjects. The tempo model introduced here is an adoption of the internal oscillator in [9] in a stochastic and continuous audio framework.

We define the problem as follows: given a music score such as the one in figure 1 with a global tempo as \(\Psi \) in seconds/beat\(^4\) depicting the (relative) beat duration of an event \(k \) by \(\ell_k \), the absolute clock-time event location in seconds can be obtained by the following recursive relationship:

\[
T_k = T_{k-1} + \Psi \times \ell_k
\]

\(^4\)For example, \(\Psi = 0.5 \text{ seconds/beat} \) for the sample score of figure 1 with tempo of 120 beats-per-minute.

However, even if an entire piece is depicted with a fixed tempo, the tempo variable \(\Psi_k \) revealing how fast the music is flowing with regards to the physical time. Following [9], we model the behavior of such random variable as an internal oscillator entraining to the musician’s performance. Such internal oscillation can be represented and modeled easily using sine circle maps. These models have been well-studied in the literature and can be considered as non-linear models of oscillations that entrain to a periodic signal using discrete-time formalism. In this framework, phase of the sine circle map is an abstraction of time and corresponds to the time to pass one circular period or the local tempo. Using this framework, we represent the tempo random variable as \(\phi_k \) in seconds/beat and note onset positions as phase values \(\phi_k \) on the sine circle. This way, given a local tempo \(\psi_t \), the score onset time \(t_n \) can be represented as \(\phi_n = \frac{t_n}{\psi_t} + \kappa k \pi \) where \(k \) is the number of tempo cycles to reach \(t_n \). In our model, a phase advance is the portion of the oscillator’s period corresponding to event Inter-Onset-Intervals (IOI). Thus, if the tempo is assumed as fixed (\(\psi_k \)) throughout a piece, then

\[
\phi_{n+1} = \phi_n + \frac{t_{n+1} - t_n}{\psi_k} \mod \frac{\pi}{\psi_k} \]

would indicate relative phase position of events in the score.

In order to compensate for temporal fluctuations during live music performance, we would need a function of \(\phi \) that would correct the phase during live synchronization and at the same time model the attentional effect discussed previously. The attentional pulse can be modeled using a periodic probability density function, the von Mises distribution which is the circle map version of the Gaussian distribution, as depicted below,

\[
f(\phi|\phi_\mu, \kappa) = \frac{1}{I_0} e^{\kappa \cos(2\pi(\psi - \phi_\mu))}
\]

where \(I_0 \) is a modified Bessel function of first kind and order zero, and \(\phi_\mu \) and \(\kappa \) are mean and variance equivalents of the von Mises distribution. Figure 7 demonstrates a realization of this function on the sine-circle map.

It is shown in [9] that the corresponding phase coupling function (tempo correction factor) for this attentional pulse is the derivative of a unit amplitude version of the attentional function, as depicted in equation 10. Figure 8 shows this function for different values of \(\kappa \) and \(\phi_\mu = 0 \).

\[
F(\phi|\phi_\mu, \kappa) = \frac{1}{2\pi} e^{\kappa \cos(2\pi(\psi - \phi_\mu))} \sin(2\pi(\psi - \phi_\mu))
\]

With the above introduction equation 8 can be rewritten as,

\[
\phi_{n+1} = \phi_n + \frac{t_{n+1} - t_n}{\psi_k} + \eta_k F(\phi_n|\phi_\mu_n, \kappa) \mod \frac{\pi}{\psi_k}
\]
shows the two in realtime.

In section III-A, we introduced the global inference method can recursively update tempo and are identical to the region around the mean of this feature in the next section to obtain the survival function.

The general Kalman filter algorithm then fall within two steps: Prediction and Correction. The prediction equations are responsible for projecting forward (in time) the current state and error estimates to obtain the a priori estimates for the next time step. The correction equations are responsible for the feedback or incorporating the new measurement into the a priori estimate to obtain an improved a posteriori estimate. While general Kalman filters use linear estimators, Extended Kalman Filters (EKF) assume non-linear estimators (as in our case with the Mises-Von correction factors).

Algorithm 1 shows the two correction and prediction steps for the tempo agent. The correction procedures make use of the true arrival time of event n or t_n and within two steps: In the first, we update the true variance κ needed during updates by accumulating the circular dispersion as in eq. 15 (a realtime approximation of eq. 13) by using an accumulation factor η_s which is set to a fixed value. Having κ updated through table lookup, the algorithm then updates the relative phase position of event n. By using previous estimations, current measurements and the score phase position. The prediction step then uses the newly corrected phase position of event n or ϕ_n, the score phase position $\hat{\phi}_n$ and the correction factors to obtain the new tempo prediction for event $n+1$. This algorithm is called recursively and upon each arrival of a newly aligned position from the audio agent.

Due to the nature of the proposed model, the newly obtained tempo at each step ψ_n is a predictive tempo flow that can be used to anticipate future note locations in time. We use this feature in the next section to obtain the survival function needed for the inference module.

C. Survival Distribution Model

In section IV we introduced the global inference method used for a Hybrid Hidden Markov/semi-Markov model described in section III-A. We also introduced the graphical following equation on the circular map:

$$r = \frac{1}{n} \sum_{i=1}^{n} \cos 2\pi (\phi_i - \phi_{\mu_i})$$

which can be easily calculated recursively in realtime. Having this, the solution for $\hat{\kappa}$ is shown to be [24, Section 10.3.1]:

$$\hat{\kappa} = A_p^{-1}(r) \quad \text{where} \quad A_p(\lambda) = \frac{I_{p/2}(\lambda)}{I_{p/2-1}(\lambda)}$$

where $I_p(\lambda)$ is the modified Bessel function of the first kind and order ν. The solution to $\hat{\kappa}$ in eq. 14 is obtained by a table look-up of $A_p(\lambda)$ and using accumulated dispersions from eq. 13 in realtime.

B. Tempo Agent and Decoding

The tempo decoding scheme presented in this section is a recursive algorithm based on the above model and resembles an extended Kalman filtering approach [25]. The Kalman filter estimates a process by using a form of feedback control: the filter estimates the process state at some time and then obtains feedback in the form of environmental measurements.

Phase coupling is not sufficient in itself to model phase synchrony in the presence of a complex temporal fluctuation. To maintain synchrony, the period (or tempo) must also adapt in response to changes in sequence rate as follows:

$$\psi_{n+1} = \psi_n(1 + \eta_s F(\phi_n | \phi_{\mu_n}, \kappa))$$

Equations 11 and 12 can recursively update tempo and expected onset positions upon onset arrivals of temporal events from the inference engine. However, note that the phasetime regions where the phase adjustment is most efficient in figure 8 are identical to the region around the mean of the attentional distribution (eq. 9) spanned by its variance κ. Smaller values of κ spread the correction over the phase domain, amounting to a wider variance in the attentional function meaning that expectancy is dispersed throughout the oscillator. For this reason, the parameter κ is usually referred to as attentional focus. This observation suggests that the values of κ should be adjusted at each update to obtain the best possible performance. To this end, before each tempo update, we solve for κ using a maximum-likelihood formulation on the dispersion about the mean of a sampled population of previously occurred ϕ_ns. This dispersion is given by the
In terms of performance, first, during the inference process: and defined in eq. provides us with the survival distribution and is also equal adaptively during a realtime performance, and

\[d_j(t - t_{n-1}) = \exp \left[-\frac{t - t_{n-1}}{\psi_{n-1} \ell_n} \right] \]

Note that the upper limit of the product \(u \) in eq. 3 is also equal to the expected duration of the corresponding state or \(\psi_j \).

In summary, the tempo agent described in this section provides the occupancy function \(d_j(u) \) as well as upper limits of eq. 3 adaptively during a realtime performance, and decodes a continuous parameter pertaining to the tempo of the performance under consideration. Probably the most important characteristic of the proposed model is in its adaptability to a realtime context, thus modeling the dynamic temporal structure of music performance.

VIII. Evaluation

In this section, we provide the results of our realtime alignment method and temporal models, and evaluate them in various situations. The evaluation of score following systems with regards to alignment was a topic in the MIREX2006 evaluation contest [26], [27]. In that contest, the organizers with the help of the research community prepared references over more than 45 minutes of concert acoustic music and defined certain evaluation criteria which we will reuse in this paper. However, no clear methodology is yet proposed for the evaluation of tempo synchronization and timing accuracy, which is fundamentally a different topic than score alignment. In order to capture both, we propose two experimental setups for evaluation. In section VIII-A, we evaluate the timing accuracy of the system by artificially synthesizing temporal fluctuations and demonstrating different aspects of the adaptive decoding at work. In section VIII-B, we evaluate the system against real acoustic signals using the MIREX framework with some extensions.

A. Evaluation of dynamic temporal decoding

In this section, we evaluate the performance of the system against synthesized audio from a given score. The main reason for separating this procedure from real acoustic performances is for reassessment of the tempo synchronization and dynamic decoding of our temporal models. While evaluating alignment result is easily imaginable using real and acoustic data, the evaluation of tempo fluctuation is a difficult task. It is generally impossible to ask a musician to perform a given score using a temporal progression curve up to milli-second precision to be used as a reference. On the contrary, this is quite imaginable using synthesized audio by arranging temporal progressions of score events during the synthesis process.

Before defining the experimental setup and showing results, it is important to highlight several characteristics of the tempo agent described in section VII in terms of performance. First, the oscillator model has the underlying hypothesis that tempo progresses continuously and the tempo process adapts or locks into the new tempo progressively. This means that when an

Algorithm 1 Real-time Tempo decoding algorithm

Require: Upon decoding of event \(n \) at time \(t_n \) by the audio agent (measurement), given score IOI phase positions \(\phi_n \), initial or previously decoded tempo \(s_n \)

1. **Correction (1):** Update \(\kappa \) (variance)

 \[r = r - \eta_k \left[r - \cos \left(2\pi \left(\frac{t_n - t_{n-1}}{\psi_k} - \hat{\phi}_n \right) \right) \right] \]

 \[\kappa = A_2^{-1}(r) \]

 (Table lookup)

2. **Correction (2):** Update \(\phi_n \)

 \[\phi_n = \phi_{n-1} + \frac{t_n - t_{n-1}}{\psi_{n-1}} + \eta \phi F(\phi_{n-1}, \hat{\phi}_n, \kappa) \mod \frac{\pi}{\pi} \]

3. **Prediction:**

 \[\psi_{n+1} = \psi_n \left[1 + \eta_k F(\phi_n, \hat{\phi}_n, \kappa) \right] \]

4. **return** \(\psi_{n+1} \)

model topology with explicit time models with the use of explicit occupancy distributions \(d_j(u) \) which are required to calculate the inference formulation in section IV. In this section we derive and justify our choice of occupancy distributions \(d_j(u) \) needed during forward propagation.

We consider the process underlying the arrival rate of events over a time-period of musical performance as a spatial Poisson process with distribution \(P(N(t) = k) \) where \(N(t) \) is the number of events that have occurred up to time \(t \). The choice of this memoryless process is obviously an approximation, and assumes that musical events arrive independently of each other. This process is characterized as:

\[P[N(t + \tau) - N(t)] = k) = \frac{e^{-\lambda(x,t)\tau}(\lambda(x,t)\tau)^k}{k!} \]

where \(\lambda(x,t) \) is the expected number of events or arrivals that occur at score location \(x \) and time \(t \). We are now interested in a process that can model the arrival time of the \(k^{th} \) event, or \(T_k \), and from which we can derive the survival function needed for eq. 3 and defined in eq. 1. Depicting the realtime as \(t \) and \(t_{n-1} \) as the previously decoded event, the survival distribution is

\[d_j(t - t_{n-1}) = P(T_n > t | T_{n-1} = t_{n-1}, t_{n-1} < t) = P[N(t_n) - N(t_{n-1}) = 0] = \exp \left[-\lambda(n,t) (t - t_{n-1}) \right] \]

Now that we have a direct formulation of the survival distribution, it only remains to specify \(\lambda(n,t) \). Note that the expected value of this distribution is \(\frac{1}{\lambda} \) which is, for event \(n \), equivalent to its expected duration according to both the score and the latest tempo decoding as demonstrated in section VII-A. Therefore,

\[\lambda(n,t) = \frac{1}{\psi_{n-1} \ell_n} \]

noting that \(s_n \) or the (realtime) decoded local tempo is a function of both time \(t \) and score location \(n \). Combining both equations 18 and 17 provides us with the survival distribution to be used along with eq. 3 during the inference process:

abrupt or discontinuous jump occurs in the tempo, the κ or attentional focus should undergo abrupt changes until the tempo random variable reaches an equilibrium within a few steps. At the same time, when the tempo changes continuously (for example in the case of an acceleration or deceleration), the agent should be capable of locking itself to the new tempi. We therefore study each case separately. In both experiments, we consider a simple score depicted in figure 9 containing 30 notes with a score (or prior) tempo of 60 bpm or 1 second. By synthesizing this score to audio, we enforce a different tempo curve than the fixed tempo of the score and feed both the score and synthesized audio into the system and study the results.

Fig. 9. Sample score 1 for tempo experiment.

The synthesis method used here is based on a simple FM synthesis method described in [28] and used in many commercial synthesizers. We did not experience any significant difference by changing the synthesis method regarding the aims and results for this section. Evaluation on more complex signals is discussed in section VIII-B.

1) Discrete tempo jumps: We first study the results and behavior of the system for discrete tempo jumps in the incoming audio. To this aim, we synthesize the score of figure 9 by introducing two tempo jumps during the life of the synthesized score of figure 9. Results are demonstrated in figure 10 where figure 10(a) shows the synthesized waveform with the alignment results where each number tag refers to one of the 30 notes in the score of figure 9. Comparing the left and right portion of this waveform clearly shows the difference in duration length of each event corresponding to the abrupt tempo jump. Figures 10(b) shows the tempo synchronization result along with the real tempo curve as a dashed line on the main left figure and the corresponding κ parameter at each time step on the top, and local estimation error on the right figure. The estimation error is computed as the difference in milli-second between the real tempo and decoded tempo both expressed in milli-seconds/beat.

Looking closely at figure 10 we can interpret the online tempo adaptation as follows: within the three regions where the reference tempo is different from the expected tempo, the agent goes into sudden instability leading to the biggest estimation error as depicted in fig. 10(b) on the right. These instabilities lead to sudden changes in the κ parameter which controls attentional focus. This process continues for several time steps until the agent locks itself around the correct tempo which can be observed by looking at estimated tempi converging to the reference tempi, or by observing the decrease in the estimation error, as well as by observing the increase in the adaptive κ parameter reaching its upper bound (here set to 15). Note also that the reference tempo curve for audio synthesis starts with a different tempo than the prior one indicated by the score, so the κ parameter starts low in the beginning until stability and undergoes change every time the system enters inequilibrium as shown in figures 10(b). The mean estimation error for this test session is 57 ms.

2) Continuous tempo change: For this experiment we use the same procedure as before, but continuously change the tempo parameter during synthesis. This experiment is aimed at simulating acceleration and deceleration common in music performance practice. The control function for tempo during sound synthesis is set to an exponential function $e^{\gamma(n-1)}$ where n is the note event number in the score and γ controls the slope of the change with $\gamma < 0$ indicating acceleration and $\gamma > 0$ deceleration over performance time. A partial goal here is to demonstrate the performance of the system despite the lack of time to reach an equilibrium state.

Before doing a mass evaluation, we visually demonstrate some results to highlight the performance of the system. Figure 11 shows the output of synchronization on acceleration (left) and deceleration (right) with $\gamma = \pm 0.04$ resulting in a tempo difference of 131 bpm and -41 bpm respectively. As before, we are demonstrating the resulting synthesis waveforms and alignment tags in fig. 11(a), the real and estimated tempi along with adaptive κ parameters in fig. 11(b), as well as tempo estimation error on each event in fig. 11(c).

Figure 11 leads to the following important observations: First, the κ parameter is constantly changing over the course of both processes in figures 11(b). This is normal since the reference tempo is continuously evolving in both cases. Second, note that while γ only changes signs in the two cases, the estimation results and the mean errors are quite different. This phenomena is easy to explain: In the deceleration case (right portion of fig. 11, the difference between the two tempo extremes is about -40 bpm but the time steps between each event (and their respective tempo-phase) are exponentially increasing, so the system needs more time and steps to reach a better stability point; despite it following the original curve correctly. This leads to a bigger estimation error than the acceleration case, where the phase steps become smaller and
Fig. 11. Evaluation of tempo using synthesized score and continuously controlled tempo.

The observations above are further enhanced by enlarging the evaluation set by varying the values of \(\gamma \) during sound synthesis. Table I shows the same evaluation procedure above for various values of \(\gamma \), where the first three columns characterize the synthesized audio from score in figure 9, and the last two columns show tempo and onset estimation errors in milli-seconds. Here again, we can observe that accelerating \(|\gamma|\)s (or \(\gamma > 0 \)) have better estimation rates than their decelerating counterparts. The estimation errors here are the mean over all the events in the score (total of 30 in each case). The reader might argue that an estimated error of 158\(\mu \)s is not acceptable for a controlled tempo. In response, note that the tempo difference for this process (281.8bpm) is almost never experienced in a musical performance setting unless explicitly stated in the music score by a discrete tempo change which would resolve the case.

B. Evaluation of Alignment Precision

In table I, we report the mean onset error which is the elapsed time between the detected time of each event and the synthesis reference. While these results are encouraging, in a real acoustic music situation the audio signals are much less stationary than the synthesized signals used in the previous section. In this section we evaluate the realtime alignment results in the context of acoustic music performances.

In 2006, an international evaluation campaign was organized by the research community for the evaluation of audio to score alignment algorithm for Music Information Retrieval Evaluation eXchange (MIREX) and was reported during the ISMIR conference in Victoria, Canada on August 2006. The campaign was repeated in 2008 with more results and participants. During this campaign a general consensus was obtained for evaluation metrics and procedures applicable to most available systems. The agreed procedures as well as documentation of all details and discussions are available through the MIREX web-portal [26] and in [27]. Evaluation consists of running the system on a database of real audio performances with their music scores where an alignment reference exists for each audio/score couple. This procedure aims at simulating a realtime performance situation, thus audio frames are required to enter incrementally into the system but the procedure could also be easily extended to non-realtime techniques.

Table II describes the database used for this evaluation which is a partial copy of the one in [26] plus some additions. Items 1 and 2 are strictly monophonic, item 3 is lightly polyphonic with the appearances of music chords of the violin from time to time in the piece, while item 4 is strictly polyphonic with up to 4 different voices happening at the same time. This database contains more than 30 minutes of referenced audio/score pairs and has been chosen to demonstrate the performance of the system on different musical instruments, and styles (item 1 is in contemporary music style with unconventional timings) and degree of polyphony. Items 1 to 3 are used in [26] whereas item 4 is aligned using a heavy offline algorithm and further enhanced as reported in [29]. All the symbolic scores in this database contain some forms of special timed events of section V-B (e.g. musical trills), which are detected automatically in the original score by our system’s score parser and prepared for performance.

<table>
<thead>
<tr>
<th>#</th>
<th>Piece name</th>
<th>Composer</th>
<th>Instr.</th>
<th>Files</th>
<th>Prefix</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Explosante-Fixe</td>
<td>P. Boileau</td>
<td>Flute</td>
<td>7</td>
<td>st-vy</td>
<td>615</td>
</tr>
<tr>
<td>2</td>
<td>K. 370</td>
<td>Mozart</td>
<td>Clarinet</td>
<td>2</td>
<td>k370</td>
<td>1816</td>
</tr>
<tr>
<td>3</td>
<td>Violin Sonata 1</td>
<td>J.S. Bach</td>
<td>Violin</td>
<td>2</td>
<td>vs1</td>
<td>2019</td>
</tr>
<tr>
<td>4</td>
<td>Fugue BWV487</td>
<td>J.S. Bach</td>
<td>Piano</td>
<td>1</td>
<td>RA</td>
<td>225</td>
</tr>
</tbody>
</table>

TABLE II

EVALUATION DATABASE DESCRIPTION

Once every piece is run through the system, we obtain a set
of event tags \(i\) with their detection times \(t^d_i\) in milli-seconds. The process of evaluation compares the results with the previously prepared references for each piece with the same tags \(i\) and alignment times \(t^r_i\). An event \(i\) is reported as missing if either \(t^d_i\) does not exist, or \(|t^d_i - t^r_i| > 250\text{ms}\), meaning that the error tolerance for matching is set to 250 milliseconds. Evaluation metrics are then the number of misses, and corresponding statistics on the offset time \(\alpha_i = t^d_i - t^r_i\) between detected time tags and the associated ones in the reference database. Table III shows the results of evaluation on each file in the described database, starting from monophonic scores and going gradually towards the polyphonic ones. Here FP refers to false positives which are misaligned events and are parts of the missed events. The average offset error is the mean over the absolute offset values or \(\sum |\alpha_i|\), where mean offset is the regular mean without taking the absolute value. Given these statistics, the overall precision is calculated as the percentage of total number of events to detect minus the total number of missed notes whereas the piecewise precision is the mean of the same rate but over individual files. In [26] another metric is proposed pertaining to latency and defined as the interval between the detection time and the time the event is reported. This metric was specifically designed for systems that are realtime but are not necessarily online, thus allowing a delay in the reporting of the correct alignment. This is the case for example in [15]. We drop this measure since our system is strictly online and this measure is always zero.

\[
\text{Table III Real-time Alignment Evaluation Results}
\]

For the sake of completeness, we provide a comparison of piecewise precision performance of our proposed model to other existing approaches in table IV. System identifiers correspond to the following designs: HMM system corresponds to a pure HMM solution to the problem as presented in [13] and expanded further in [30]. DTW refers to a solution using online Dynamic Time Warping on chroma features loosely based on [31] and [32], and Pitch-based refers to a string-matching type algorithm based on a pitch detector input as reported in [10]. Shown results for HMM and Pitch-Based categories are borrowed from results on the same database in [26]. Reported results are based on a subset of the database in table II, excluding the highly polyphonic item (4). Moreover, the described evaluation scheme requires high alignment precision up to a few milli-seconds which might not be a priority for many of the mentioned approaches. The reader curious about the topic of score following evaluation is encouraged to check the MIREX web portal\(^5\) where every year new systems and approaches are being tested and evaluated against each other.

\[
\text{Table IV Real-time Alignment Comparative Evaluation}
\]

Despite the adopted harsh evaluation scheme, the robustness of the proposed model in highly polyphonic situations pinpoints to an important design parameter: in a situation where observations on data streams are uncertain, coupling different sources of information and tackling adaptive time models instead of adopting approximate schemes could result in less uncertainty than observed in each individual agent.

IX. Conclusion

In this paper, we presented the design and implementation of a realtime and online audio to score alignment for music signals. The presented design features a coupled tempo/audio inference model that adaptively updates its explicit duration models during performance and hence does not need any offline training or parameter tweaking. The system is capable of decoding the placement of the live musician in the score and also provides a continuous tempo parameter that is quite useful for automatic accompaniment applications.

Realtime music information retrieval poses interesting challenges to the engineering community due to the natural complexity of musical structures, to the extent that classical approaches to speech processing prove to be insufficient to address all the complexity of the music-related issues. The methods presented in this paper try to tackle two main issues that are usually passed through approximations in speech processing: duration-specific models that are adaptive to the realtime context, and coupling different sources of information with uncertainty through a unique inference technique to increase precision. The proposed anticipatory framework emerged out of considerations in tackling the specific musical question of realtime synchronization, but the methods presented can be extended to other sequential applications that require the given premises. We believe that music, as a rich source of complexity that is unforgiving to approximation, could inspire more advances in machine intelligence.

The system presented in this paper has been purposely designed and developed to be used in serious concert situations that go beyond formal evaluations. To this date it has been used in several large-scale music events worldwide, including a performances with the Los Angeles Philharmonic and in Japan, France, Germany, and with more performance scheduled for the seasons to come. We believe that in the end, the best evaluation of any realtime and performance oriented system is by its usability by the community. We invite curious readers to follow events featuring our system, watch demos, or download and test the system themselves\(^6\).

\(^6\)http://imtr ircam.fr/index.php/Antescofo
APPENDIX

DERIVATION OF FORWARD RECURSION

To solve for an analytical solution of the inference formulation, we are interested in the most likely-state-sequence S^T that would generate the outside process X^T up to time T and over the entire state-space $\{S_0, \ldots, S_J\}$. By definition and applying the Bayes formula in chains we have:

$$\alpha_j(t) = \max_{s_0, \ldots, s_{t-1}} P(S_{t+1} \neq j, S_t = j, S_{t-1} = s_{t-1}, X_0^t = x_0^t)$$

$$= \max_{s_0, \ldots, s_{t-1}} \max_{j \neq s_{t-1}} P(S_{t+1} = j, S_t = j, S_{t-1} = s_{t-1}, X_0^t = x_0^t)$$

$$= \max_{1 \leq j \leq Z} \max_{1 \leq s \leq Z} P(X_{t+1} = s, X_t = j, X_{t-1} = s_{t-1}) \cdot P(S_{t+1} = j, S_t = j, S_{t-1} = s_{t-1})$$

$$\times P(S_{t+1} = j | S_t = j, X_t = j, S_{t-1} = s_{t-1})$$

$$\times P(S_{t+1} = j, S_t = j, S_{t-1} = s_{t-1})$$

The nominator in equation 20 reduces to $\prod_{l=1}^{n-1} b_j(x_{t-l})$ with the assumption that observations b_j are independent. The denominator here is a normalization factor that can be dropped out in our computation. Equation 21 is the definition of the occupancy distribution $d_j(y)$ from section III-A. Similarly equation 23 is the definition of the semi-Markovian transition probabilities p_{ij} and equation 22 is the definition of α_i at time $t - u$. Replacing these definitions in the equation and factoring indexes, the recursion then becomes:

$$\alpha_j(t) = \max_{s_0, \ldots, s_{t-1}} P(S_{t+1} \neq j, S_t = j, S_{t-1} = s_{t-1}, X_0^t = x_0^t)$$

$$= b_j(x_t) \times \max \left[\prod_{1 \leq i \leq Z} \max_{1 \leq s \leq Z} d_j(s) \max_{p_j \alpha_i(t-u)} \right]$$

ACKNOWLEDGEMENTS

The author would like to specially thank composer Marco Stroppa, who initiated the artistic challenges that led to the design exposed in this paper. The system described in this paper, Antescofo, has been designed specifically for a new work by Stroppa and is today in use for other music pieces and more new works to come. This research was partially funded by the European Commission in the framework of the FP7 SAME project.

REFERENCES