Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells
David Paul Gillikin, Anne Lorrain, Jacques Navez, Jw Taylor, Luc André, Eddy Keppens, Willy Baeyens, F. Dehairs

To cite this version:
David Paul Gillikin, Anne Lorrain, Jacques Navez, Jw Taylor, Luc André, et al.. Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society, 2005, 6 Q05009, pp.1-15. <10.1029/2004GC000874>. <hal-00452795>
Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells

David Paul Gillikin1, *, Anne Lorrain2, Jacques Navez1, 2, James W. Taylor3, Luc André2, Eddy Keppens4, Willy Baeyens1 and Frank Dehairs1

1Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. Tel.: +32-2-629-1265; fax: +32-2-629-3274; E-mail: david.gillikin@vub.ac.be (D.P. Gillikin); * Corresponding author.

2Section of Mineralogy and Petrography, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.

3Department of Anthropology, University of Washington, Box 353100, Seattle, Washington, 98195, U.S.A.

4Isotope Geology and Paleo-Environment, Department of Geology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.

Submitted to Geochemistry, Geophysics, Geosystems 31 October 2004
Revision 1 submitted 26 January 2005
Revision 2 submitted 30 March 2005
Abstract

It is well known that skeletal remains of carbonate secreting organisms can provide a wealth of information about past environments. Sr/Ca ratios have been successfully used as a temperature proxy in corals and sclerosponges. Previous work on aragonitic bivalve shells has not been conclusive, but suggests a major control of growth rate on Sr/Ca ratios. As many studies have used bivalve growth rates to determine temperature, we tested if Sr/Ca ratios could predict temperature through its relationship with growth rate. Shells from the two species of clams from the same family (veneroidea) studied here, *Saxidomus giganteus* and *Mercenaria mercenaria*, show vastly different seasonal Sr/Ca profiles. A strong relationship between average annual Sr/Ca ratios and annual growth rate was found in *S. giganteus* shells from both Washington ($R^2 = 0.87$) and Alaska ($R^2 = 0.64$), USA, but not in *M. mercenaria* shells from North Carolina, USA. Furthermore, the Sr/Ca - growth rate relationship was also evident upon a more detailed inspection of sub-annual growth rates in *S. giganteus* ($R^2 = 0.73$). Although there were significant positive correlations between Sr/Ca ratios and temperature in *S. giganteus* shells, the correlations were weak ($0.09 < R^2 < 0.27$) and thus Sr/Ca ratios cannot be used as a reliable temperature proxy in these species of aragonitic bivalves. It is clear from this study that Sr/Ca ratios are not under thermodynamic control in either clam species, since thermodynamics predict a negative correlation between Sr/Ca ratios and temperature in aragonite. This points towards dominance of biological processes in the regulation of Sr$^{2+}$. This is also reflected by the largely differing Sr/Ca partition coefficients (D_{Sr}) in these shells ($D_{Sr} \approx 0.25$), when compared to inorganic, coral, and sclerosponge studies ($D_{Sr} \approx 1$), all of which show a negative dependence of Sr/Ca on temperature. We suggest that caution be taken when using Sr/Ca in any biogenic aragonite as a temperature proxy when the D_{Sr} greatly deviates from one, as this indicates the dominance of biological controls on Sr/Ca ratios.

Keywords: aragonite, biogenic carbonate, mollusk shell, paleo-temperature proxy, strontium, oxygen isotopes.
1. INTRODUCTION

Skeletal remains of carbonate secreting organisms potentially offer a wealth of information about past environments. For example, oxygen isotope ratios ($\delta^{18}O$) in biogenic carbonates are a powerful tool for paleotemperature reconstruction. However, interpretation is complicated since the isotopic composition of carbonates is also dependent on the $\delta^{18}O$ of the water, which in itself is related to salinity [see Epstein et al., 1953]. This can cause severe problems when attempting to obtain paleo-temperature records from estuarine bivalves [e.g., Klein et al., 1996; Gillikin et al., in press].

Alternative sea surface temperature (SST) proxies that are independent of other environmental variables would therefore be of great value.

Sr/Ca ratios have been proposed as such a proxy in biogenic aragonite and have been extensively utilized in both corals and sclerosponges with great success [e.g., Beck et al., 1992; Rosenheim et al., 2004]. Sr/Ca ratios in inorganic (or abiogenic) aragonite is a function of the Sr/Ca ratio of the solution, expressed as a partition coefficient, $D_{Sr} = (\text{Sr/Ca})_{\text{aragonite}} / (\text{Sr/Ca})_{\text{water}}$, where Sr/Ca are typically given as molar ratios [e.g., Dietzel et al., 2004]. The Sr/Ca ratio of the solution is not of major concern, as for many estuaries the Sr/Ca ratio of the water remains relatively constant above a salinity of about 10 [e.g., Dodd and Crisp, 1982], which precludes a large salinity effect for many marine and estuarine species. Inorganic precipitation experiments have shown that D_{Sr} in aragonite is inversely related to temperature [Kinsman and Holland, 1969; Dietzel et al., 2004] and is independent of precipitation rate [Zhong and Mucci, 1989]. Mineralogy also significantly affects Sr incorporation, with aragonite typically containing about two orders of magnitude more Sr than calcite due to the differences in the crystal lattice structure and D_{Sr} being strongly precipitation rate dependent in calcite [Kinsman and Holland, 1969; Tesoriero and Pankow, 1996].

Although many studies have utilized Sr/Ca ratios in corals for paleotemperature reconstruction [e.g., Beck et al., 1992; McCulloch et al., 1999; and many others], other studies have illustrated some complications with this proxy. For example, significant
differences in Sr/Ca - SST relationships between corals growing at the same site have been reported [de Villiers et al., 1995; Cardinal et al., 2001] and coral Sr/Ca ratios have also been found to be inversely related to calcification or growth rate, indicating that Sr/Ca ratios are not solely dependent on SST in corals [e.g., de Villiers et al., 1995; Ferrier-Pagès et al., 2002; Cohen and McConnaughey, 2003].

Sr/Ca ratios in bivalve shells have been less well studied than in corals and there has been much debate over its interpretation. As early as 1956, it was proposed that the Sr/Ca ratio in bivalve shells was dependent on growth rate [Swan, 1956]. Later, Dodd [1965] found a large negative correlation between temperature and Sr/Ca ratios in *Mytilus edulis* aragonite. Buchardt and Fritz [1978] found no correlation with either growth rate or temperature and Sr/Ca ratios in a freshwater aragonitic gastropod. Palacios et al. [1994] found that Sr/Ca ratios were more strongly correlated to age than to growth rate in the chondrophores (an internal shell structure located at the hinge) of extinct and extant populations of *Mya arenaria*. They found an increase in Sr/Ca ratios with age in both populations and a decrease with increasing growth rate in the extinct population, but not in the extant population. Based on one shell, Purton et al. [1999] concluded that Sr/Ca ratios were metabolically controlled in aragonitic bivalves, since Sr/Ca ratios increased with decreasing growth rate. However, the results of both Palacios et al. [1994] and Purton et al. [1999] may not be representative because they analyzed the inner layers of the shell, which is known to be repeatedly dissolved and reprecipitated by the animal to buffer internal pH during anaerobic respiration [Crenshaw, 1980] and where biomineralization mechanisms can greatly differ [Wheeler, 1992]. Stecher et al. [1996] found that there was a negative correlation between Sr/Ca ratios and δ^{18}O (therefore positive between Sr/Ca ratios and temperature) in the shell of a modern and a Pleistocene *Mercenaria mercenaria* while there was a positive relationship (negative with temperature) in a *Spisula solidissima* shell, which they attributed to differences in season of maximal growth (i.e., a positive relationship between growth rate and Sr/Ca ratios). Hart and Blusztajn [1998] also found a positive relationship between Sr/Ca ratios and temperature in *Arctica islandica* and applied this relationship to derive SST from hydrothermal vent clams (*Calyptogena magnifica*). Dutton et al. [2002] found a negative
correlation between Sr/Ca ratios and δ^{18}O in bulk shell samples of the extinct aragonitic bivalve *Cucullaea*, however could not find a similar relationship in a shell sampled at high resolution. Finally, Takesue and van Geen [2004] found that Sr/Ca ratios decreased with decreasing growth rate in the aragonitic shells of *Prothaca staminea*. From this it is clear that there is no consensus on the effect of temperature and/or growth on aragonitic bivalve Sr/Ca ratios, which therefore may be species specific.

Despite the conflicting reports in the literature, interest in Sr/Ca ratios in bivalve shells as a temperature proxy is still receiving much interest at international congresses [e.g., Tripati et al., 2004; Watanabe et al., 2004; and many others].

Although it seems there is no direct relationship between temperature and Sr/Ca ratios in aragonitic bivalves, but rather a relationship between growth rate and/or metabolism and Sr/Ca ratios, the latter may still be a useful environmental proxy. In fact, growth rates in bivalves can be dependent on many factors including salinity, temperature and food supply [e.g., Lewis and Cerrato, 1997; Witbaard et al., 2003; Strom et al., 2004]. In particular there is often a strong correlation between temperature and both shell growth and metabolism [Lewis and Cerrato, 1997; Heilmayer et al., 2004]. Indeed, there have been many reports using bivalve shell growth increments to determine SST and other environmental parameters [e.g., Schöne et al., 2002; Schöne et al., 2003; Strom et al., 2004]. Thus, indirectly, Sr/Ca ratios in bivalve shells may record temperature.

Due to their wide distribution and good preservation, bivalve shells are potentially excellent archives of (paleo)environmental information. Two species that could be particularly suitable for such analyses are *Mercenaria mercenaria* (common along the East coast of North America) and *Saxidomus giganteus* (common along the Northwest coast of North America). These species are well represented in both archaeological and geological deposits [e.g., Kvenvolden et al., 1979; Stecher et al., 1996; Hetherington and Reid, 2003] and can live for several decades [Quayle and Bourne, 1972; Peterson, 1986].
To test if Sr/Ca ratios in aragonitic bivalves can indeed provide environmental information, we used high-resolution sampling techniques to measure both δ^{18}O and Sr/Ca ratios in several specimens of two infaunal clam species from North America, *Mercenaria mercenaria* (from North Carolina, USA) and *Saxidomus giganteus* (from Washington and Alaska, USA), both belonging to the family Veneroida. In particular we aim to determine whether Sr/Ca ratios are controlled by growth rate and if so, whether growth rate and temperature are coupled tightly enough to allow the use of Sr/Ca ratios as an indirect SST proxy.

2. METHODS

2.1 Sample collection and preparation

Three *Saxidomus giganteus* were collected from Puget Sound, Washington and one from Old Harbor, Kodiak Island, Alaska, USA, and nine *Mercenaria mercenaria* were collected from the Cape Lookout region of North Carolina, USA (i.e., Wade Creek, Johnson Creek and Back Sound; full data are listed in Table 1). All specimens were collected alive. Elliot et al. [2003] have shown that *M. mercenaria* precipitate aragonite shells. We conducted X-ray diffraction measurements of powdered samples of a *S. giganteus* shell, which revealed pure aragonite. Sections of the shells were cut with a diamond saw along the axis of maximal growth (dorso-ventral), rinsed with deionised water, air-dried and mounted on microscopic slides. Carbonate powder was milled from the shell cross-sections using a 300 µm drill bit and Merchantek Micromill (a fixed drill and computer controlled micro positioning device), which allows precise sampling. To avoid shell regions that may have been altered (e.g., the inner layer may have been dissolved and reprecipitated, see introduction, while the outermost layer may have exchanged ions with seawater as they were in direct contact), and to be consistent with other studies, samples were taken from the outer shell layer of *S. giganteus* (which have no middle layer), avoiding the outermost part [see Gillikin et al., in press], and from the middle layer of *M. mercenaria* [see Stecher et al., 1996; Elliot et al., 2003]. Various sampling distances were used (150 µm to 1 mm) depending on growth rate (i.e., fewer samples in regions of high growth). High resolution Sr/Ca profiles were obtained using a...
laser ablation system (see Sample Analysis, section 2.3). As the three *M. mercenaria* sampled at high resolution did not show expected results (see Discussion), six more *M. mercenaria* were sampled at low resolution (annual) using the growth lines on the shells, which are formed annually in late August to late September in this region [Peterson et al., 1985]. Annual sampling (low resolution) was carried out by milling lines across the annual growth increment, thus providing average annual Sr/Ca ratios for these six shells.

2.2 Environmental data

Both SST and salinity data from Puget Sound, Washington (sampled monthly from Oct. 1997 to Sept. 2001) were provided by the King County Environmental Laboratory. Hourly SST data (Sept. 2002 to Aug. 2004) from Kodiak Island, Alaska, are from the NOAA [2004] and salinity is from Taylor [2004] and references therein. SST from Wade Creek, North Carolina, was recorded hourly for one year (Sept. 2002 to Aug. 2003) using a temperature logger (Onset Computer Corporation, StowAway TidbiT), while salinity was measured sporadically over a two year period using a WTW multiline P4 conductivity meter. Data from Back Sound are from Peterson et al. [1987]. Although no data were available from Johnson Creek, it probably experiences SST and salinities similar to Back Sound. Average monthly SST data are represented in Figure 1. For all samples, salinity was well above 10 and hence Sr/Ca ratios in the water can be considered constant [Dodd and Crisp, 1982; Klein et al., 1996].

2.3 Sample analysis

Oxygen and carbon isotope analysis was performed using a ThermoFinnigan Kiel III coupled to a ThermoFinnigan Delta+XL dual inlet isotope ratio mass spectrometer (IRMS). The samples were calibrated against the NBS-19 standard (δ^{18}O = -2.20 ‰, δ^{13}C = +1.95 ‰) and data are reported as ‰ VPDB using the conventional delta notation. The reproducibility (1σ) of the routinely analyzed carbonate standard is better than 0.1 ‰ for both δ^{18}O and δ^{13}C (more details can be found in Gillikin et al. [in press]).
High resolution Sr/Ca sampling and analysis of all shells was carried out on a laser-ablation inductively coupled plasma-mass spectrometer (LA-ICP-MS) and data were calibrated using both the NIST 610 (values from Pearce et al. [1997]) and the USGS MACS1 (values from S. Wilson, USGS, unpublished data, 2004). The laser was shot (~50 μm spots) directly in the holes of the isotope sampling allowing direct alignment of Sr/Ca and isotope profiles [cf. Toland et al., 2000]. Calibration (including blank subtraction and drift correction) was performed offline following Toland et al. [2000]. LA-ICP-MS Sr/Ca reproducibility over the entire sampling period (> 1 yr) was better than 0.1 mmol/mol (1σ) based on replicate measurements of shell material. Details of LA-ICP-MS operating conditions can be found in Lazareth et al. [2003]. Briefly, the system consists of a Fisons-VG frequency quadrupled Nd-YAG laser (266 nm) coupled to a Fisons-VG PlasmaQuad II+ mass spectrometer.

LA-ICP-MS data were validated with solution nebulization high resolution ICP-MS (SN-HR-ICP-MS; Finnigan MAT Element2). SN-HR-ICP-MS sampling was performed by drilling directly beneath the isotope sample, thus removing surface contamination (see section 2.1). Carbonate powders from the high resolution LA-ICP-MS validation and low resolution annual samples (~ 150 μg) were dissolved in a 1 ml 5% HNO₃ solution containing 1 μg l⁻¹ of In and Bi, which were used as internal standards. SN-HR-ICP-MS Sr/Ca reproducibility over the entire sampling period was better than 4% (1σ) based on replicate measurements of two reference materials (CCH1, n=36, Sr/Ca = 0.359 mmol/mol (values from Govindaraju [1994]) and MACS1, n=18, Sr/Ca = 0.255 mmol/mol). Considering the low Sr concentrations in these two standards, an in-house standard produced from a S. giganteus shell was also analyzed (approximately 25 mg of milled carbonate was dissolved in 50 ml of 5% HNO₃, diluting this four times at the time of analysis provided similar concentrations to the samples). The higher concentration of the in-house standard provided better reproducibility (2.6 % (1σ), Sr/Ca = 1.99 ± 0.05, n = 9) and is more indicative of the reproducibility of our samples. There was a significant linear correlation between LA-ICP-MS and SN-HR-ICP-MS results from the B1 shell, with the slope not significantly different from one (slope = 0.99, R² = 0.90, p < 0.0001, n = 63, intercept not significant (p = 0.62)); note that sample sizes are different, 50 μm for
LA vs. 300 µm for micromilling, so this can also include small-scale spatial variability in the sample itself. Therefore, our LA-ICP-MS calibration method can be considered robust. Additionally, this illustrates that the sample size difference between drilling (300 µm; SN-HR-ICP-MS and δ¹⁸O sampling) and LA (50 µm) does not influence the Sr/Ca profiles and thus allows direct comparison of Sr/Ca ratios and δ¹⁸O values.

2.4 Data treatment

To assess the similarity between the Sr/Ca profiles of the three *S. giganteus* shells collected from the same location (Puget Sound), the δ¹⁸O profiles of shell B1 and B3 were fit to shell B2. This was achieved by using a phase demodulation method [see De Ridder et al., 2004]. Briefly, this method models the intra-annual variation in growth rate by using Fourier analysis. Once the variation in growth rate of each shell is known, the time axes (x-axes) can be scaled accordingly and the δ¹⁸O profiles of the three shells can be fit to one scale. Considering that the Sr/Ca analyses were perfectly aligned with δ¹⁸O analyses (see section 2.3), the fitting of the δ¹⁸O profiles now allows a direct comparison of Sr/Ca profiles between the three shells. Similarly, this method was also used to fit the δ¹⁸O calculated temperature to the instrumental temperature (see Gillikin et al. [in press] for full details), which we used here to derive daily growth rates (see section 4.1).

2.5 Terminology

Considering that we discuss our results in the context of calcification processes, the distinction between growth rate and calcification rate should be made. In this study, the term growth rate is defined as the dorso-ventral linear extension of the shell per unit time (or growth increment per time). It must be noted that variations in this growth rate may differ from variations in the calcification rate (or crystal growth rate), which can be difficult to estimate (see Lorens [1981] and Carpenter and Lohman [1992] for discussions on this). It is well known that growth rates (i.e., linear shell extension rates) in bivalves decrease through ontogeny [e.g., Peterson, 1986; Schöne et al., 2002], and vary within one year [Peterson et al., 1986; Lorrain et al., 2004a]. Since decreasing shell growth rate
is usually accompanied by a thickening of the shell, variations in the total CaCO₃ precipitated by the animal each year and linear shell growth rate may not necessarily correlate [e.g. Lorrain et al., 2004a]. On the other hand, along linear transects, as sampled in this study, we may expect calcification rate and shell growth rate to vary in a similar fashion. Unlike corals, bivalve shell density should not change dramatically along the shell. Therefore, differences in linear growth can result either from constant calcification rates and non continuous growth over the year, or varying calcification rates and continuous growth. Considering that both of these species apparently grow for most of the year [Peterson and Fegley, 1986; Gillikin et al., in press], it seems highly unlikely that calcification rates remain constant.

3. RESULTS

Oxygen isotope profiles obtained from all seven shells sampled at a high resolution show a clear, relatively smooth, annual cyclicity (Figs. 2 and 3). The δ¹⁸O axes in Figures 2 and 3 are inverted in order to reflect a relative temperature scale. More positive δ¹⁸O values correspond to winter temperatures and more negative δ¹⁸O values to summer temperatures. Sharp, episodic drops in the δ¹⁸O profiles, indicative of short-term freshwater discharge extremes, are absent. As reported in Gillikin et al. [in press], the three S. giganteus shells from Puget Sound show remarkably similar δ¹⁸O profiles (0.77 < R² < 0.87) recording the full range of temperatures at this site (i.e., there was no shell growth shutdown temperature); thus the average δ¹⁸O from the three Puget Sound specimens are given in Figure 4. The shell from Alaska has more positive δ¹⁸O indicative of the cooler temperatures this clam experienced (Fig. 2D). Growth lines in S. giganteus shells were not annual in nature (up to three lines in one year) and were not systematically located in a particular season (data not shown). δ¹⁸O in M. mercenaria cover the range of δ¹⁸O measured in the four S. giganteus shells (Fig. 3), undoubtedly due to the large range of temperatures at the North Carolina sites (see Table 1 and Fig. 1). The annual growth lines in M. mercenaria shells occurred in late summer as has been previously shown for this location [Peterson et al., 1985].
As there is a negligible salinity effect on the δ¹⁸O variability in these *S. giganteus* [Gillikin et al., in press] and *M. mercenaria* [Elliot et al., 2003] shells, δ¹⁸O is presumed to be primarily temperature controlled. Using the δ¹⁸O profiles as a relative temperature scale, Sr/Ca profiles also show an annual cyclicity near the umbo in shell B1 and B2 (Fig. 2 and 4). However, in the slow growing parts of the shell (most recently formed), the cyclicity becomes unclear. This is most easily seen in the Sr/Ca profile of shell B3, in which only the slow growing part of the shell was sampled (Fig. 2C; compare x-axes). The annual Sr/Ca cyclicity was not observed in the *S. giganteus* shell collected in Alaska, nor in any of the three *M. mercenaria* shells analyzed at high resolution. Detailed inspection of the profiles shows that there is an annual Sr/Ca cycle for both species only in years when annual growth rates were above about 10 mm yr⁻¹, but this is not always the case (Figs. 2 and 3). There were no distinct changes in the Sr/Ca profiles in the organic rich regions of shell growth lines for either species.

All *S. giganteus* shells show a clear decrease in Sr/Ca ratios through ontogeny, starting around 2 - 3 mmol/mol, decreasing to 1 – 2 mmol/mol as the clams age (Fig. 2). Figure 4 illustrates the good correlation between Sr/Ca ratios in the shells from Puget Sound (between B1 and B2: \(R^2 = 0.73 \), slope not different from one, \(p < 0.0001 \)). As the negative relationship between shell δ¹⁸O and temperature is well established [Epstein et al., 1953], the δ¹⁸O data were used to delimit annual growth for each shell sampled at high resolution. Simply, the shell δ¹⁸O maximum was used as a winter mark and the distance between each of these points was considered as the annual growth rate. The Sr/Ca data between two successive winter marks were then averaged. Combining the 21 years sampled from the three *S. giganteus* shells from Puget Sound resulted in a significant relationship between Sr/Ca ratios and growth rate (\(p < 0.0001 \)) with \(R^2 = 0.87 \) (Fig 5A). The partially sampled shell (B3) had a lower \(R^2 (0.69, n = 4) \) as compared to the other two shells (B1: \(R^2 = 0.88, n = 8 \); B2: \(R^2 = 0.92, n = 9 \)), undoubtedly due to the small sample size and reduced growth rate range. The shell from Kodiak Island also shows a significant relationship between these parameters, albeit not as strongly as the Puget Sound specimens (\(R^2 = 0.64, p < 0.0001 \), Fig 5A). As can be seen in the high resolution profiles, *M. mercenaria* shells do not show a significant relationship between
growth rate and Sr/Ca ratios ($R^2 = 0.04$, $p = 0.56$, Fig 5B). Likewise, the 128 annual growth increments sampled at an annual resolution from six $M. mercenaria$ shells do not show a consistent trend with growth rate (Fig 6). Only two of the six shells were found to have a significant positive relationship between annual growth and average annual Sr/Ca ratios, however, growth rate explained only 30 and 56 % of the Sr/Ca variation in these two shells (Table 3).

It is clear that the overall relationship between Sr/Ca ratios and $\delta^{18}O$ is weak in all shells. There are, however, significant correlations between $\delta^{18}O$ and Sr/Ca ratios in $S. giganteus$ shells when regions of fast and slow growth are separated (Table 2, see also Fig. 2). Although the correlations are weak (maximum $R^2 = 0.27$), the slopes of the fast and slow growing regions were similar between shells B1 and B2 (Table 2). $M. mercenaria$ shells on the other hand do not exhibit this trend. There is no discernable relationship between $\delta^{18}O$ and Sr/Ca ratios, nor was an ontogenic decrease noted (Fig. 3).

4. DISCUSSION

It is becoming increasingly clear that many proposed proxies in biogenic carbonates are complicated by the influence of the physiology of the animal precipitating the carbonate [e.g., Klein et al., 1996; Stecher et al., 1996; Purton et al., 1999; Vander Putten et al., 2000; Zacherl et al., 2003; Lorrain et al., 2004a]. However, an animal’s physiology is often strongly dependent on the environmental conditions it experiences (see Introduction). For elements to reach the site of calcification, they must first pass through biological membranes which can alter the original seawater chemistry [Wheeler, 1992], possibly in a predictable manner. Although the elemental contents of the external water may influence the elemental contents of the shell to some degree, it is highly unlikely that variations in the external seawater Sr/Ca ratios are responsible for the approximately 50 to 200 % Sr/Ca variations observed in the shells in this study. As previously stated, seawater Sr/Ca ratios should have remained relatively constant in the areas where these bivalves grew. Although some shells experienced low salinities (see Table 1), the $\delta^{18}O$
profiles do not show sharp episodic peaks to more negative values as would be expected if the clams were growing during periods of reduced salinity (Figs. 2 and 3).

4.1 Are Sr/Ca ratios controlled by growth rate?

On an annual scale, using δ^{18}O maxima as winter markers, we found that annually averaged Sr/Ca ratios are strongly correlated to annual growth rate in *S. giganteus* shells from Puget Sound and to a slightly lesser extent in the *S. giganteus* shell from Alaska (Fig. 5A). However, using annual growth rates does not account for sub-annual variations in growth rate, which is undoubtedly occurring in these shells [Peterson and Fegley, 1986; Elliot et al., 2004]. To determine if Sr/Ca ratios are related to growth rate on a sub-annual scale, which would rule out a purely ontogenic effect [see Palacios et al., 1994], we require sub-annual growth rate data. This is possible considering that temperature calculated from δ^{18}O in the shells of *S. giganteus* from Puget Sound covers the full range of instrumental temperature at this site [see Gillikin et al., in press], indicating these shells very likely grew throughout the year. Therefore, calendar dates can be assigned to each sample from these shells with some degree of confidence. This can be done using the method outlined in Klein et al. [1996], where the calculated temperature (here using the empirical equation of Böhm et al. [2000]) from each sample is fit with the instrumental temperature, for which the calendar dates are known (see section 2.4). Then with the sample distance and the time difference between the samples, a daily growth rate can be calculated. Comparing Sr/Ca ratios and daily growth rates in the three *S. giganteus* shells (B1, B2 and B3) resulted in a significant positive relationship between both factors (Fig. 7; $R^2 = 0.73$, $p < 0.0001$, $n = 350$). The relationship was not as good in the shell where only the slow growing section was sampled (shell B3: $R^2 = 0.31$, $p < 0.0001$, $n = 53$) as compared to the fully sampled shells (shell B1: $R^2 = 0.73$, $p < 0.0001$, $n = 179$; shell B2: $R^2 = 0.70$, $p < 0.0001$, $n = 118$). Thus, even at a more detailed level, growth rate explains much of the variability of Sr/Ca in these *S. giganteus* shells. Therefore, the relationship between Sr/Ca ratios and annual growth rate is not caused by an age effect as was noted by Palacios et al. [1994].
In opposition, Sr/Ca ratios in *M. mercenaria* shells were not significantly correlated to growth rate in seven of the nine shells analyzed (Figs. 5B and 6, Table 3). Two factors may account for the discrepancy between the Sr/Ca patterns in *M. mercenaria* shells in this study as compared to the *M. mercenaria* shells analyzed by Stecher et al. [1996]. First, Stecher et al. [1996] sampled their modern clam from a marine site with sandy sediment (Delaware, USA), which could imply differences in Sr controls between the same species depending on habitat. However, even though we sampled our nine clams from both estuarine muddy sediments and sandy marine sediments, we did not find anything comparable to Stecher et al. [1996] for *M. mercenaria*. A second possibility for the difference may be that growth rates in the shells analyzed by Stecher et al. [1996] were generally higher than the growth rates of the *M. mercenaria* analyzed in this study, which could imply that differences in nutrient availability or other site-specific differences could be responsible for the discrepancy. Overall, we could not find a satisfactory explanation based on our current knowledge of Sr incorporation into bivalve shells.

Despite the good correlation between growth and Sr/Ca ratios in *S. giganteus*, the fact that there is no precipitation rate effect in inorganic aragonite [Zhong and Mucci, 1989], and that the *M. mercenaria* shells analyzed in this study do not consistently show a relationship between growth rate and Sr/Ca ratios, implies that Sr/Ca ratios are not under direct control of growth rate. Therefore, there is no general mechanism that can answer the question of whether Sr/Ca ratios are controlled by growth rate.

4.2 Can Sr/Ca ratios be used as a temperature proxy?

The inverse relationship between δ¹⁸O in bivalve shells and temperature is well established [Epstein et al., 1953]. Elliot et al. [2003] and Gillikin et al. [in press] have shown that variations of δ¹⁸O in the shells of both species used in this study are largely temperature controlled, with temperature explaining most of the δ¹⁸O variability in the *S. giganteus* shells used in this study ($R^2 = 0.83$, see Gillikin et al., [in press]). Therefore, if Sr/Ca ratios are under thermodynamic control, there should be a negative relationship.
between Sr/Ca ratios and temperature, and a positive relationship between Sr/Ca ratios and δ\(^{18}\)O. However, we did not find any positive correlations between δ\(^{18}\)O and Sr/Ca ratios in either species (correlations between Sr/Ca ratios and δ\(^{18}\)O in these shells are negative), aside from a very weak, but significant positive correlation in the *S. giganteus* shell from Kodiak Island (R\(^2\) = 0.13, p < 0.01, Table 2). This further stresses that Sr/Ca ratios are not under thermodynamic control and that biological effects on Sr incorporation dominate in these bivalves.

If Sr/Ca ratios are correlated with growth rate, and growth rate is correlated with temperature, then Sr/Ca ratios should correlate fairly well with δ\(^{18}\)O. However, despite the evidence that Sr/Ca ratios are tightly coupled with growth rate in *S. giganteus* (Fig. 7), and growth rate is often following temperature in bivalves (see introduction), Sr/Ca ratios are not very well correlated with δ\(^{18}\)O (0.09 < R\(^2\) < 0.27, see Table 2). Therefore, disappointingly, Sr/Ca ratios cannot be used as a reliable temperature proxy in these bivalves. Although the good correlation between Sr/Ca ratios between the different shells of *S. giganteus* that grew in Puget Sound (Fig. 4) could indicate an environmental control on Sr/Ca ratios, the correlation is probably the result of the clams having similar ages and growth rate being correlated between them.

The discussion above suggests that there is a biological control on Sr/Ca ratios in bivalve shells. Additional evidence for this is given by comparing the D\(_{Sr}\) of inorganic, coral, and sclerosponge aragonite with the D\(_{Sr}\) of aragonitic bivalves. The D\(_{Sr}\) of inorganic, coral, and sclerosponge aragonite is typically around 1 [e.g., McCulloch et al., 1999; Dietzel et al., 2004; Rosenheim et al., 2004], while in aragonitic bivalves it is around 0.25 [Palacios et al., 1994; Stecher et al., 1996; Takesue and van Geen, 2004; this study], indicating a strong biological regulation of Sr in aragonitic bivalves. Although biogenic aragonites with Sr/Ca ratios far from expected equilibrium values (i.e., D\(_{Sr}\) = 1) may still be faithful recorders of the environment, we stress that care should be taken when using these carbonates due to the high probability of dominating biological controls on Sr/Ca ratios.
4.3 What controls Sr/Ca ratios in aragonitic bivalves?

Biomineralization in bivalves takes place in the extrapallial fluid (EPF), a thin film of liquid between the calcifying shell surface and the mantle epithelium [Wheeler, 1992]. Elements may move into the EPF through the epithelial mantle cells via active (i.e., intracellular transport) or inactive processes (i.e., intercellular (or paracellular) transport through, e.g., ‘gap’ junctions) [see Crenshaw, 1980; Wheeler, 1992; Klein et al., 1996]. In the marginal mantle epithelium (where the shell areas we analyzed are formed) it is believed that active processes dominate [Crenshaw, 1980]. Two enzymes which have been determined to be of great importance in active calcification are Ca$^{2+}$-ATPase and carbonic anhydrase (CA). Ca$^{2+}$-ATPase pumps Ca$^{2+}$ to the EPF while removing 2 H$^+$, and CA catalyses the reaction of bicarbonate to CO$_2$, which can then easily diffuse through membranes [Crenshaw, 1980; Cohen and McConnaughey, 2003]. Ca$^{2+}$-ATPase not only supplies Ca$^{2+}$ to the site of calcification, but helps concentrate CO$_3^{2-}$ at the calcification site by pumping protons away [Cohen and McConnaughey, 2003]. It is therefore logical that when Ca$^{2+}$-ATPase activity increases, so do calcification rates (and presumably shell growth or extension rates increase as well). Ferrier-Pagès et al. [2002] found that both Ca and Sr in corals were inhibited by a calcium channel blocker, illustrating that both elements can use similar pathways. However, the enzyme Ca$^{2+}$-ATPase does have a higher affinity for Ca$^{2+}$ [Yu and Inesi, 1995]. Therefore, increased Ca$^{2+}$-ATPase activity increases calcification rate and decreases Sr/Ca ratios by increasing Ca$^{2+}$ disproportional to Sr$^{2+}$, so Sr/Ca ratios and growth rates should be inversely correlated. This inverse correlation between Sr/Ca ratios and extension rates (and calcification rates) is observed in corals [de Villiers et al., 1995; Ferrier-Pagès et al., 2002], but S. giganteus displays the opposite (Fig. 7).

Klein et al. [1996] also found a positive correlation between Sr/Ca ratios and extension rates in the calcite shell of *Mytilus trossulus*. They proposed a model similar to the Ca$^{2+}$-ATPase model, where increased metabolic pumping caused lower Sr/Ca ratios. However, to explain the positive correlation between Sr/Ca ratios and extension rates, they used the work of Rosenberg and Hughes [1991], which states that growth rate is inversely
proportional to mantle metabolic efficiency (measured as glucose consumption). In light of the above discussion, this contradicts the logical notion that increased metabolic pumping (which implies increased Ca\(^{2+}\)-ATPase activity, see Cohen and McConnaughey [2003]) would increase growth rates and not decrease them. Moreover, in the Klein et al. [1996] model, increased metabolic pumping should both decrease Sr/Ca ratios and lead to more negative \(\delta^{13}C\) of the EPF and shell (by addition of \(^{12}C\) enriched metabolic CO\(_2\)). However, in spite of a threefold Sr/Ca decrease in *S. giganteus* shells (Fig 5A), there was no decrease in \(\delta^{13}C\) (data not shown, see Gillikin et al. [in press]). The opposite was true for *M. mercenaria* shells where \(\delta^{13}C\) strongly decreased through ontogeny in (up to 4 ‰ in one shell, see Meng [2004]), but Sr/Ca ratios did not (Fig. 5B). Thus a mechanism other than metabolic pumping must control Sr/Ca ratios in bivalve aragonite.

Contrary to the Ca\(^{2+}\)-ATPase discussion above, Wada and Fujinuki [1976] found that Sr/Ca ratios in the central EPF of two aragonitic bivalves was higher in summer than in winter and that elemental concentrations were slightly more concentrated during periods of rapid shell growth (summer) and slightly diluted during periods of slow or no shell growth (winter) as compared to the ambient seawater. Although the central EPF is not relevant for this study, this illustrates a biological accumulation of Sr\(^{2+}\) in the central EPF during periods of high growth. If this were also the case for the marginal EPF, this could help explain our results from *S. giganteus* shells and other works who found a positive effect of growth rate on aragonitic bivalve shell Sr/Ca ratios [e.g., Stecher et al., 1996; Dutton et al., 2002; Takesue and van Geen, 2004]. However, the Sr/Ca ratios of the EPF measured by Wada and Fujinuki [1976] did not differ from that of seawater enough to produce aragonite with such low Sr/Ca ratios, which we have more recently confirmed for another aragonitic bivalve [Lorrain et al., 2004b]. This implies that Sr\(^{2+}\) discrimination in aragonitic bivalve shells occurs during shell crystallization, at the crystal surface, and not at biological membranes. Indeed, there is strong evidence that there are biological controls on crystal formation [e.g., Falini et al., 1996], which could possibly also regulate Sr/Ca ratios in the shell.
5. CONCLUSIONS

It is clear from this study that Sr/Ca ratios are not under thermodynamic control and that biological processes dominate. Growth rate explained much of the variability in *S. giganteus* shells, but there was no discernable pattern in the Sr/Ca profiles of *M. mercenaria* shells. Stecher et al. [1996] found a seasonal periodicity in *M. mercenaria* shell Sr/Ca ratios from Delaware Bay which was related to growth rate. Thus either Sr$^{2+}$ is governed by another factor, occasionally correlated to growth rate, or Sr$^{2+}$ incorporation biology is site specific. Although there were significant positive correlations between Sr/Ca ratios and temperature in *S. giganteus* shells ($0.09 < R^2 < 0.27$; using δ^{18}O as a relative scale of temperature), the correlations were weak and therefore Sr/Ca ratios cannot be used as a reliable temperature proxy in these species of aragonitic bivalves. The strong biological regulation of Sr/Ca ratios can be seen from the deviation of D$_{Sr}$ in these shells (D$_{Sr} \approx 0.25$) from expected equilibrium values (i.e., D$_{Sr} \approx 1$). Inorganic, coral, and sclerosponge aragonite all show a negative dependence of Sr/Ca ratios on temperature, the opposite of what is typically found in bivalves. Considering this strong biological regulation on Sr/Ca ratios, it also seems unlikely that these shells would record changes in seawater Sr/Ca ratios. We suggest that caution be taken when using Sr/Ca ratios in any biogenic aragonite as a temperature proxy when the D$_{Sr}$ greatly deviates from one, as this indicates the dominance of biological controls on Sr/Ca ratios. We strongly believe that if a mechanistic understanding is to be achieved, future research needs to focus on the biochemistry of the elemental pathway through the organs, body fluids, and, most importantly, incorporation into the shell.

Acknowledgements - We are much indebted to K. Li and S. Mickelson of the King County Department of Natural Resources and Parks, Water and Land Resources Division, Marine Monitoring group (WA, USA) for collecting the *S. giganteus* shells and providing water data. W.C. Gillikin and L. Daniels both assisted with sample collection in N.C. C.H. Peterson (University of North Carolina, Chapel Hill) kindly provided *M. mercenaria* collected in the early 1980’s. L. Meng, T. Haifeng, and H. Ulen assisted in
sampling the shells. We thank A. Van de Maele, M. Korntheuer, and L. Monin for laboratory assistance. A. Verheyden and S. Bouillon gave helpful comments on an earlier version of this manuscript, and F. De Ridder assisted with the phase demodulation technique. We wish to thank R. K. Takesue, an anonymous reviewer, and L. D. Labeyrie (editor) for their detailed reviews and constructive comments on the manuscript. Funding was provided by the Belgian Federal Science Policy Office, Brussels, Belgium (CALMARS, contract: EV/03/04B). J.W.T. was funded by a Mary Gates undergraduate research fellowship. Funding for the HR-ICP-MS equipment was provided by the Belgian Lotto, via the FWO-Flanders (contract: G.0117.02N) and the Belgian Federal Science Policy Office.

REFERENCES

Table 1. List of samples and environmental data.

<table>
<thead>
<tr>
<th>Species</th>
<th>Shell name</th>
<th>Location</th>
<th>Sediment</th>
<th>SST range (ºC)</th>
<th>Salinity range</th>
<th>Date collected</th>
<th>Clam Age (yr)</th>
<th>Nr. of years sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saxidomus giganteus</td>
<td>B1</td>
<td>Puget Sound, WA</td>
<td>Gravelly mud</td>
<td>7 - 17</td>
<td>21 - 30</td>
<td>18 Sept 01</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>Puget Sound, WA</td>
<td>Gravelly mud</td>
<td>7 - 17</td>
<td>21 - 30</td>
<td>18 Sept 01</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>Puget Sound, WA</td>
<td>Gravelly mud</td>
<td>7 - 17</td>
<td>21 - 30</td>
<td>18 Sept 01</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>OH1</td>
<td>Old Harbor, Kodiak Is., AK</td>
<td>Gravelly mud</td>
<td>0 - 13</td>
<td>18 - 32</td>
<td>28 June 03</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>Mercenaria mercenaria</td>
<td>MW1</td>
<td>Jarrett Bay, NC</td>
<td>Mud</td>
<td>1 - 35</td>
<td>23 - 37</td>
<td>15 Sept 02</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>MW2</td>
<td>Wade Creek, NC</td>
<td>Mud</td>
<td>1 - 35</td>
<td>23 - 37</td>
<td>20 Aug 03</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>MB1</td>
<td>Back Sound, NC</td>
<td>Sandy</td>
<td>2 - 30</td>
<td>28 - 34</td>
<td>23 Aug 03</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>MB2</td>
<td>Back Sound, NC</td>
<td>Sandy</td>
<td>2 - 30</td>
<td>28 - 34</td>
<td>23 Aug 03</td>
<td>23</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>MB3</td>
<td>Back Sound, NC</td>
<td>Sandy</td>
<td>2 - 30</td>
<td>28 - 34</td>
<td>May 1980</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>MB4</td>
<td>Back Sound, NC</td>
<td>Sandy</td>
<td>2 - 30</td>
<td>28 - 34</td>
<td>May 1980</td>
<td>24</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>MJ1</td>
<td>Johnson Cr., NC</td>
<td>Mud</td>
<td>2 - 30</td>
<td>28 - 34</td>
<td>1982</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>MJ2</td>
<td>Johnson Cr., NC</td>
<td>Mud</td>
<td>2 - 30</td>
<td>28 - 34</td>
<td>1982</td>
<td>28</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>MJ3</td>
<td>Johnson Cr., NC</td>
<td>Mud</td>
<td>2 - 30</td>
<td>28 - 34</td>
<td>1982</td>
<td>34</td>
<td>33</td>
</tr>
</tbody>
</table>

† Sampled at an annual resolution; †Based on Peterson et al. [1987].

Table 2. Regression data for Sr/Ca ratios and δ¹⁸O in *S. giganteus*. Data are separated between regions of fast and slow growth. The separation between fast and slow growth was chosen based on the δ¹⁸O profile (see Fig. 2).

<table>
<thead>
<tr>
<th>Shell and growth</th>
<th>Slope</th>
<th>R²</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 fast</td>
<td>-0.42</td>
<td>0.21</td>
<td>0.0001</td>
<td>120</td>
</tr>
<tr>
<td>B1 slow</td>
<td>-0.11</td>
<td>0.09</td>
<td>0.05</td>
<td>62</td>
</tr>
<tr>
<td>B2 fast</td>
<td>-0.44</td>
<td>0.22</td>
<td>0.001</td>
<td>56</td>
</tr>
<tr>
<td>B2 slow</td>
<td>-0.16</td>
<td>0.27</td>
<td>0.0001</td>
<td>63</td>
</tr>
<tr>
<td>B3 slow</td>
<td>-0.09</td>
<td>0.03</td>
<td>n.s.</td>
<td>54</td>
</tr>
<tr>
<td>OH1 fast</td>
<td>0.06</td>
<td>0.01</td>
<td>n.s.</td>
<td>31</td>
</tr>
<tr>
<td>OH1 slow</td>
<td>0.23</td>
<td>0.13</td>
<td>0.01</td>
<td>52</td>
</tr>
</tbody>
</table>

n.s. = not significant at α = 0.05. Shells B1-3: Puget Sound, WA; OH1: Kodiak Island, AK.

Table 3. Regression data of Sr/Ca ratios and annual growth rate in *M. mercenaria* sampled at an annual resolution.

<table>
<thead>
<tr>
<th>Site</th>
<th>Shell</th>
<th>Slope</th>
<th>R²</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>MB2</td>
<td>0.00</td>
<td>0.00</td>
<td>n.s.</td>
<td>22</td>
</tr>
<tr>
<td>Sound</td>
<td>MB3</td>
<td>0.03</td>
<td>0.56</td>
<td>0.001</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>MB4</td>
<td>0.02</td>
<td>0.13</td>
<td>n.s.</td>
<td>23</td>
</tr>
<tr>
<td>Johnson</td>
<td>MJ1</td>
<td>-0.01</td>
<td>0.03</td>
<td>n.s.</td>
<td>7</td>
</tr>
<tr>
<td>Creek</td>
<td>MJ2</td>
<td>-0.01</td>
<td>0.06</td>
<td>n.s.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>MJ3</td>
<td>0.01</td>
<td>0.30</td>
<td>0.01</td>
<td>33</td>
</tr>
</tbody>
</table>

n.s. = not significant at α = 0.05
Figure Captions

Figure 2. Sr/Ca ratios (black lines and circles) and $\delta^{18}O$ (grey lines) from the three S. giganteus shells from Puget Sound, Washington (A, B and C) and the specimen from Old Harbor, Kodiak Island, Alaska (D). Note that the $\delta^{18}O$ axes are inverted and x-axes vary. See Table 1 for more details about each site. Vertical lines indicate the separation of slow and fast growth (see Table 2). The resolution of the $\delta^{18}O$ samples is identical to the Sr/Ca samples.

Figure 3. Sr/Ca ratios (black lines and circles) and $\delta^{18}O$ (grey lines) from the three M. mercenaria shells from North Carolina. Shells MW1 and MW2 (A and B) are from more estuarine sites with muddy sediments, while shell MB1 (C) is from a more marine site with sandy sediments. Note that the $\delta^{18}O$ axes are inverted and x-axes vary. See Table 1 for more details about each site. The resolution of the $\delta^{18}O$ samples is identical to the Sr/Ca samples.

Figure 4. Sr/Ca ratios (black lines with symbols) and average $\delta^{18}O$ (grey line) from the three S. giganteus shells from Puget Sound, Washington (Fig. 2 A-C). Data were fit to the x-axis of shell B2 using a phase demodulation method (see Methods). Note that the $\delta^{18}O$ axis is inverted.

Figure 5. Average annual Sr/Ca ratios versus annual growth rates (GR) (from data in Figs. 2 and 3). The three S. giganteus shells from Puget Sound, Washington are included in the same regression (solid line) and are compared with the regression of the 19 year old specimen from Kodiak Island Alaska (dashed line) (A). The three M. mercenaria shells
are included in the same regression as well (B). Error bars represent standard deviations; n = number of annual growth increments included in each regression.

785 Figure 6. Annual Sr/Ca ratios from the six *M. mercenaria* shells sampled at an annual resolution. Shells MB3 and MJ3, which had significant correlations with growth rate (GR) (see Table 3), are represented by the grey and white symbols, respectively. All data are included in the regression; n = number of annual growth increments included in the regression.

790 Figure 7. All Sr/Ca data from the three *S. giganteus* shells from Puget Sound, Washington, versus calculated daily growth rate (GR) (see text). All data are included in the regression; n = number of samples included in the regression.
Figure 2. Sr/Ca ratios (black lines and circles) and δ¹⁸O (grey lines) from the three *S. giganteus* shells from Puget Sound, Washington (A, B and C) and the specimen from Old Harbor, Kodiak Island, Alaska (D). Note that the δ¹⁸O axes are inverted and x-axes vary. See Table 1 for more details about each site. Vertical lines indicate the separation of slow and fast growth (see Table 2). The resolution of the δ¹⁸O samples is identical to the Sr/Ca samples.
Figure 3. Sr/Ca ratios (black lines and circles) and δ¹⁸O (grey lines) from the three *M. mercenaria* shells from North Carolina. Shells MW1 and MW2 (A and B) are from more estuarine sites with muddy sediments, while shell MB1 (C) is from a more marine site with sandy sediments. Note that the δ¹⁸O axes are inverted and x-axes vary. See Table 1 for more details about each site. The resolution of the δ¹⁸O samples is identical to the Sr/Ca samples.
Figure 4. Sr/Ca ratios (black lines with symbols) and average δ¹⁸O (grey line) from the three *S. giganteus* shells from Puget Sound, Washington (Fig. 2 A-C). Data were fit to the x-axis of shell B2 using a phase demodulation method (see Methods). Note that the δ¹⁸O axis is inverted.
Figure 5. Average annual Sr/Ca ratios versus annual growth rates (GR) (from data in Figs. 2 and 3). The three *S. giganteus* shells from Puget Sound, Washington are included in the same regression (solid line) and are compared with the regression of the 19 year old specimen from Kodiak Island Alaska (dashed line) (A). The three *M. mercenaria* shells are included in the same regression as well (B). Error bars represent standard deviations; n = number of annual growth increments included in each regression.
Figure 6. Annual Sr/Ca ratios from the six *M. mercenaria* shells sampled at an annual resolution. Shells MB3 and MJ3, which had significant correlations with growth rate (GR) (see Table 3), are represented by the grey and white symbols, respectively. All data are included in the regression; n = number of annual growth increments included in the regression.
Figure 7. All Sr/Ca data from the three *S. giganteus* shells from Puget Sound, Washington, versus calculated daily growth rate (GR) (see text). All data are included in the regression; n = number of samples included in the regression.