Subtracting a best rank-1 approximation may increase tensor rank
Alwin Stegeman, Pierre Comon

To cite this version:

HAL Id: hal-00435877
https://hal.archives-ouvertes.fr/hal-00435877
Submitted on 26 Nov 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SUBTRACTING A BEST RANK-1 APPROXIMATION MAY INCREASE TENSOR RANK

Alwin Stegeman
Heymans Institute for Psychological Research, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands
phone: +31 50 363 6193, fax: +31 50 363 6304, a.w.stegeman@rug.nl

Pierre Comon
Laboratoire I3S, UMR6070 CNRS, UNS, 2000, route des Lucioles, BP 121, 06903 Sophia Antipolis Cedex, France
phone: +33 4 92 94 27 17, fax: +33 4 92 94 28 98, pcomon@unice.fr

ABSTRACT

Is has been shown that a best rank-\(R\) approximation of an order-\(k\) tensor may not exist when \(R \geq 2\) and \(k \geq 3\). This poses a serious problem to data analysts using Candecomp/Parafac and related models. It has been observed numerically that, generally, this issue cannot be solved by consecutively computing and subtracting best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximation generally does not decrease tensor rank. In this paper, we provide a mathematical treatment of this property for real-valued \(2\times 2\times 2\) tensors, with symmetric tensors as a special case. Regardless of the symmetry, we show that for generic \(2\times 2\times 2\) tensors (which have rank 2 or 3), subtracting a best rank-1 approximation will result in a tensor that has rank 3 and lies on the boundary between the rank-2 and rank-3 sets. Hence, for a typical tensor of rank 2, subtracting a best rank-1 approximation has increased the tensor rank.

Keywords: tensor rank, low-rank approximation, tensor decomposition, multi-way, Candecomp, Parafac.
AMS subject classifications: 15A03, 15A22, 15A69, 49M27, 62H25.

1. INTRODUCTION

Tensors of order \(d\) are defined on the outer product of \(d\) linear spaces, \(\mathcal{S}_1, \ldots, \mathcal{S}_d\), \(1 \leq \ell \leq d\). Once bases of spaces \(\mathcal{S}_\ell\) are fixed, they can be represented by \(d\)-way arrays. For simplicity, tensors are usually assimilated with their array representation. We assume throughout the following notation: bold italic uppercase for tensors \(\mathbf{X}\), bold uppercase for matrices \(\mathbf{U}\), bold lowercase for vectors \(\mathbf{a}\), calligraphic for sets \(\mathcal{S}\), and plain font for scalars \(x_{ijk}\), \(T_{ij}\) or \(a_{i}\), will be distinguished thanks to their font.

Let \(\mathbf{X}\) be a 3rd order tensor defined on the tensor product \(\mathcal{S}_1 \otimes \mathcal{S}_2 \otimes \mathcal{S}_3\). If a change of bases is performed in the spaces \(\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3\) by invertible matrices \(\mathbf{S}, \mathbf{T}, \mathbf{U}\), then the tensor representation \(\tilde{\mathbf{X}}\) of \(\mathbf{X}\) is transformed into

\[
\tilde{\mathbf{X}} \equiv (\mathbf{S}, \mathbf{T}, \mathbf{U}) \cdot \mathbf{X} \quad (1)
\]

whose coordinates are given by \(\tilde{x}_{ijk} = \sum_{pqr} s_{ip} t_{jq} u_{kr} x_{pqr}\). This is known as the multi-linearity property enjoyed by tensors. Matrices, which can be associated with linear operators, are tensors of order 2.

The rank of a tensor \(\mathbf{X}\) is defined as the smallest number of outer product tensors whose sum equals \(\mathbf{X}\), i.e. the smallest \(R\) such that

\[
\mathbf{X} = \sum_{r=1}^{R} \mathbf{a}_r \otimes \mathbf{b}_r \otimes \mathbf{c}_r \quad (2)
\]

Hence a rank-1 tensor \(\mathbf{X}\) is the outer product of vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) and has entries \(x_{ijk} = a_i b_j c_k\). The decomposition of a tensor into a sum of outer products of vectors and the corresponding notion of tensor rank were first introduced and studied by [14] [15].

The multilinear rank of a 3rd order tensor is a triplet \((r_1, r_2, r_3)\), where \(r_\ell\) denotes the rank of the set of mode-\(\ell\) vectors. A mode-\(i\) vector is obtained by varying the \(i\)th index and keeping other indices fixed.

Usefulness. Tensors play a wider and wider role in numerous application areas including blind techniques for Telecommunications [2] [10] [8], Arithmetic Complexity [20] [58] [1] [27], or Data Analysis [22]. For instance, Independent Component Analysis was originally introduced for symmetric tensors whose rank did not exceed dimension [14] [2]. Now, it has become possible to estimate more factors than the dimension [3] [16] [8]. In some applications, tensors may be symmetric only in some modes [1], or may not be symmetric nor have equal dimensions [3] [22] [19]. In most of these applications, the decomposition of a tensor into a sum of rank-1 terms is relevant, since tensors entering the models to fit have a reduced rank.

Matrix algebra is insufficient. The manipulation of tensors remains difficult, because of major differences between their properties when we go from second order to higher. Several of these differences have already been underlined in the past [8], e.g. (i) tensor rank often exceeds dimensions, (ii) tensor rank can be different in real and complex fields, (iii) maximal tensor rank is not generic, and is still unknown in general, (iv) computing the rank of a tensor is very difficult, (v) a tensor may not have a best low-rank approximate [3] [23] [24] [3] [18] [26].

It has been observed numerically in [17] section 7 that a best or ”good” rank-\(R\) approximation cannot be obtained by consecutively computing and subtracting \(R\) best rank-1 approximations (which always exist). The reason for this is that subtracting a best rank-1 approximation generally does not decrease tensor rank. Hence, the deflation technique practiced for matrices (via the Singular Value Decomposition)
cannot generally be extended to higher-order tensors. A special case where this deflation technique works is when the tensor is diagonalizable by orthonormal multilinear transformation; see [17, section 7].

In this paper, we provide a mathematical treatment of the (in)validity of a rank-1 deflation procedure for higher-order tensors. We consider $2 \times 2 \times 2$ tensors over the real field, with symmetric tensors as a special case. First, however, we discuss the problem of finding a best rank-1 approximate to a 3rd order tensor. The proofs of our results will be available in a forthcoming full-length version of this paper.

2. BEST RANK-1 APPROXIMATION

Finding the best rank-1 approximate consists of minimizing the criterion

$$\Psi = \frac{1}{2} \| X - a \otimes b \otimes c \|^2$$

with respect to vectors a, b and c. The solution will likely depend on the norm, and we shall restrict to the Frobenius norm: $\|X\|^2 = \sum_{ijk} |X_{ijk}|^2$. Obviously there is a scale indeterminacy in this problem, and we could impose two of these three vectors to be unit norm. We shall not do that here because the presentation would be slightly longer. Let \otimes denote the summation over the tth index (that is the contraction operator in the tth space). For instance, the product $AB\otimes C$ between two matrices can be written as $A \otimes B \otimes C$, if X is a 3rd order tensor, $X_{\otimes 1}$ is a matrix, and $X_{\otimes 1} \otimes b \otimes c$ is a vector. And let us rewrite criterion (1) as:

$$\Psi = \frac{1}{2} \| X \|^2 - X_{\otimes 1} b_c + \frac{1}{2} \| a \|^2 \| b \|^2 \| c \|^2.$$ (4)

Proceeding as in [3], gradients with respect to the three vectors can be obtained:

$$d\Psi_a = -X_{\otimes 2} b_c + a \| b \|^2 \| c \|^2$$

$$d\Psi_b = -X_{\otimes 1} a_c + b \| a \|^2 \| c \|^2$$

$$d\Psi_c = -X_{\otimes 1} a_b + c \| a \|^2 \| b \|^2$$

Concerning the uniqueness of a best rank-1 approximate, one may ask the following question: are there tensors for which the solution defined by $a = \| b \|^{-2} \| c \|^{-2} X_{\otimes 1} b_c$ and $d\Psi_b = d\Psi_c = 0$ is not unique up to scale? We exhibit in this section a family of such tensors.

If we plug the expression of a back in the equation of stationary values of b, we get that $(X_{\otimes 1} b_c)_{\otimes 1} (X_{\otimes 1} c)_{\otimes 1} b = \lambda b$, where $\lambda = \| a \|^2 \| b \|^2 \| c \|^2$, which means that b is an eigenvector of the matrix $(X_{\otimes 1} b_c)_{\otimes 1} (X_{\otimes 1} c)$. If the latter matrix is proportional to the identity for any c, then any b is an eigenvector. Analogously, substituting the expression for a into $d\Psi_c = 0$, we get that $(X_{\otimes 1} b_c)_{\otimes 1} (X_{\otimes 1} b)_{\otimes 1} c = \mu c$, where $\mu = \| a \|^2 \| b \|^2 \| c \|^2$. If $(X_{\otimes 1} b_c)_{\otimes 1} (X_{\otimes 1} b)$ is also proportional to the identity for any c, then it follows that any (a, b, c) with a given by $d\Psi_c = 0$ is a stationary point. Substituting the expression of a into the criterion Ψ then yields a criterion function in (b, c) from which any (b, c) is a stationary point. Hence, the function is constant and any (b, c) is a minimizer. This yields the following proposition

Proposition 1 If a tensor X is such that the matrix $(X_{\otimes 1} c)_{\otimes 1}$ is orthogonal for any vector c, and $(X_{\otimes 1} b)_{\otimes 1}$ is orthogonal for any vector b, then X has infinitely many best rank-1 approximates.

In accordance with the usual practice, we shall represent a $p \times p \times 2$ tensor X with two $p \times p$ matrix slices, X_{1} and X_{2}, as $[X_{1} | X_{2}]$.

Example 1. Let $X = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$. Then for any choice of non zero vector c, the matrix $(X_{\otimes 1} c)_{\otimes 1}$, obtained by linear combination of the above two matrix slices, is orthogonal. Also, for any non zero vector b, the matrix $(X_{\otimes 1} b)_{\otimes 1}$ is orthogonal. Hence X has infinitely many rank-1 approximates.

Most tensors have multiple locally best rank-1 approximates, with one of them being better than the others (i.e., a unique best rank-1 approximate), as pointed out in Section 3. Examples will illustrate this fact.

Remark. The tensor in Example 1 has rank 3. Ten Berge et al. [29] showed that X has no best rank-2 approximation, the infimum of $\|X - Y\|^2$ over Y of rank at most 2 being 1. A more general result was obtained by De Silva and Lim [12] who showed that no $2 \times 2 \times 2$ tensor of rank 3 has a best rank-2 approximation. Stegeman [23] showed that any sequence of rank-2 approximations $Y^{(i)}$ for which $\|X - Y^{(i)}\|^2$ converges to the infimum of 1, features diverging components. It is shown in [1] that the stationary points of the $2 \times 2 \times 2$ symmetric best rank-1 approximation problem are obtained as the roots of a 3rd degree polynomial.

3. BEST RANK-1 SUBTRACTION

From now on, we restrict our discussion to tensors in the real field. De Silva and Lim [12, Section 7] showed that $2 \times 2 \times 2$ tensors (over the real field) can be transformed by invertible multilinear matrix multiplications into eight distinct canonical forms. This partitions the space $\mathbb{R}^{2 \times 2 \times 2}$ into eight distinct orbits under the action of invertible transformations in each of the 3 modes. Table 1 lists the canonical forms for each orbit as well as their rank and multilinear rank. These quantities are invariant under the transformations defining an orbit. This kind of classification is better known for symmetric tensors or multivariate polynomials [39]. Recall the following result stated by De Silva and Lim [12]:

Lemma 2 Let X be a $2 \times 2 \times 2$ tensor with matrix slices X_{1} and X_{2}.

(i) If $X_{2}X_{1}^{-1}$ or $X_{1}X_{2}^{-1}$ has real eigenvalues and is diagonalizable, then X is in orbit G_{2}.

(ii) If $X_{2}X_{1}^{-1}$ or $X_{1}X_{2}^{-1}$ has two identical real eigenvalues with only one associated eigenvector, then X is in orbit D_{3}.

(iii) If $X_{2}X_{1}^{-1}$ has complex eigenvalues, then X is in orbit G_{3}.

We shall use this lemma to verify the orbit of 2-dimensional 3rd order tensors.

Example 2. Consider the tensor

$$X = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$ (5)

Since $X_{2}X_{1}^{-1}$ has complex eigenvalues, X is in orbit G_{3}. It can be verified that X has a unique best rank-1 approximation

$$Y = \begin{bmatrix} 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$ (6)
When \(Y \) is subtracted from \(X \) we end up in orbit \(D_3 \), since
\[
Z = X - Y = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix},
\] (7)
can be transformed to the canonical form of orbit \(D_3 \) by swapping rows within each slice.

<table>
<thead>
<tr>
<th>Canonical form</th>
<th>Tensor rank</th>
<th>Multilinear rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_0): [0 0 0 0]</td>
<td>0</td>
<td>((0,0,0))</td>
</tr>
<tr>
<td>(D_1): [1 0 0 0]</td>
<td>1</td>
<td>((1,1,1))</td>
</tr>
<tr>
<td>(D_2): [0 1 0 0]</td>
<td>2</td>
<td>((2,2,1))</td>
</tr>
<tr>
<td>(D'_2): [1 0 0 1]</td>
<td>2</td>
<td>((2,1,2))</td>
</tr>
<tr>
<td>(D''_2): [0 0 1 0]</td>
<td>2</td>
<td>((2,1,2))</td>
</tr>
<tr>
<td>(G_2): [0 1 0 0]</td>
<td>2</td>
<td>((2,2,2))</td>
</tr>
<tr>
<td>(D_3): [1 0 1 0]</td>
<td>3</td>
<td>((2,2,2))</td>
</tr>
<tr>
<td>(G_3): [0 1 0 1]</td>
<td>3</td>
<td>((2,2,2))</td>
</tr>
</tbody>
</table>

Table 1: Canonical forms of \(2 \times 2 \times 2 \) tensors for the eight orbits under the action of invertible multilinear matrix multiplications over the real field. The letters \(D \) and \(G \) stand for “degenerate” (zero volume set in the 8-dimensional space of \(2 \times 2 \times 2 \) tensors) and “typical” (positive volume set), respectively.

For tensors \(X \) in the orbits of Table 1, we would like to know in which orbit \(X - Y \) is contained, where \(Y \) is a best rank-1 approximation of \(X \). We have the following result for the degenerate orbits of ranks 1 and 2.

Proposition 3 Let \(X \) be a \(2 \times 2 \times 2 \) tensor, and let \(Y \) be a best rank-1 approximation of \(X \).

(i) If \(X \) is in orbit \(D_1 \), then \(X - Y \) is in orbit \(D_0 \).

(ii) If \(X \) is in orbit \(D_2 \) or \(D'_2 \), then \(X - Y \) is in orbit \(D_1 \).

For \(X \) in orbit \(G_2 \) or \(D_3 \), the tensor \(X - Y \) is not restricted to a single orbit.

Example 3. For the canonical tensor \(X \) of orbit \(G_2 \) in Table 1 it can be seen that \(X - Y \) is in \(D_1 \). On the other hand, consider
\[
X = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}.
\] (8)

For this tensor, \(X_2X_2^{-1} \) has two distinct real eigenvalues. Hence, by Lemma 3, the tensor is in \(G_2 \). It can be shown that \(X \) has a unique best rank-1 approximation \(Y \) such that \(X - Y \) equals the canonical tensor of orbit \(D_3 \) in Table 1.

Example 4. Next, consider tensors in orbit \(D_3 \):
\[
\begin{bmatrix} 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}.
\]

Subtracting the best rank-1 approximation \(Y \) from these tensors amounts to replacing the element 2 by zero. Hence, \(X - Y \) is in orbit \(D_3, D'_3 \), and \(D''_3 \), respectively.

On the other hand, it can be verified numerically or analytically that for \(X \) equal to the canonical tensor of orbit \(D_3 \) in Table 1, \(X - Y \) is also in orbit \(D_3 \). Moreover, numerical experiments show that for a generic \(X \) in orbit \(D_3 \), we have \(X - Y \) in \(D_3 \) as well. This suggests the following

Conjecture 4 If \(X \) is in \(D_3 \) and \(Y \) is the best rank-1 approximation of \(X \), then almost all tensors \(X - Y \) are in \(D_3 \).

Tensors given in Examples 1 or 2 were both in orbit \(G_3 \), and we have seen that \(X - Y \) is in orbit \(D_3 \) in Example 3. For Example 4, this can be proved for any of the infinite best rank-1 approximates \(Y \) of \(X \). Numerically and analytically, we have not found any \(X \) in orbit \(G_3 \) for which \(X - Y \) is not in orbit \(D_3 \).

We have no deterministic result for tensors in orbits \(G_2 \) and \(G_3 \), but we still have the following result, verified almost everywhere (hence the word “generic”):

Proposition 5 Let \(X \) be a generic \(2 \times 2 \times 2 \) tensor, and \(Y \) be a best rank-1 approximation of \(X \). Then almost all tensors \(X - Y \) are in orbit \(D_3 \).

Hence, for typical tensors in orbit \(G_2 \), subtracting a best rank-1 approximate increases the rank to 3. For typical tensors in orbit \(G_3 \), subtracting a best rank-1 approximate does not affect the rank.

However, some non typical tensors of rank 2 may have a different behavior, as now shown.

Proposition 6 Let \(X \) be a \(2 \times 2 \times 2 \) rank-2 tensor with diagonal slices, and let \(Y \) be a best rank-1 approximation of \(X \). Then \(X - Y \) is in orbit \(D_1 \).

Example 5. Let \(X = \begin{bmatrix} a & 0 & e & 0 \\ 0 & d & 0 & h \end{bmatrix} \). Then
\[
X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} a \\ e \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ h \end{bmatrix}.
\]

Then it can be seen that \(X = (1,1,1) \cdot I \), where \(I \) denotes the identity matrix and \(I \) the diagonal tensor tensor with ones on its diagonal:
\[
I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ and } T = \begin{bmatrix} a & d \\ e & h \end{bmatrix}.
\]

This shows that \(X \) is in orbit \(G_2 \), and Proposition 5 implies that this is an exception to Proposition 6.

Proposition 6 states that such exceptions form a set of null measure.

4. Symmetric Tensors

A tensor is symmetric if its entries are invariant under arbitrary permutations of its indices. There is a bijection between the space of symmetric \(I \times I \times I \) tensors and the space of homogeneous polynomials of degree 3 in \(I \) variables. A symmetric \(I \times I \times I \) tensor \(X \) can be associated with the polynomial
\[
p(s_1, \ldots, s_I) = \sum_{ijk} x_{ijk} s_is_js_k.
\] (9)
The symmetric rank of an order-3 symmetric tensor X is the minimal number R such that:

$$X = \sum_{r=1}^{R} a_r \otimes a_r \otimes a_r.$$

(10)

The orbits of symmetric $2 \times 2 \times 2$ tensors are given in Table 2:

<table>
<thead>
<tr>
<th>canonical form</th>
<th>polynomial</th>
<th>sym. rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_0: $\begin{bmatrix} 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D_1: $\begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$</td>
<td>s_1^3</td>
<td>1</td>
</tr>
<tr>
<td>G_2: $\begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$</td>
<td>$s_1^3 + s_2^2$</td>
<td>2</td>
</tr>
<tr>
<td>D_3: $\begin{bmatrix} 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix}$</td>
<td>$3s_1^2s_2$</td>
<td>3</td>
</tr>
<tr>
<td>G_3: $\begin{bmatrix} -1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \end{bmatrix}$</td>
<td>$-s_1^3 + 3s_1s_2^2 + s_2^3$</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2: Canonical forms of symmetric $2 \times 2 \times 2$ tensors and associated polynomials, for the three orbits under the action of invertible multilinear transformations over the real field. The letters D and G stand for “degenerate” (zero volume set in the 4-dimensional space of symmetric $2 \times 2 \times 2$ tensors) and “typical” (positive volume set), respectively.

The symmetric rank of symmetric tensors of dimension 2 can be obtained from the Sylvester Theorem, at any order. This Theorem is formulated below in the case of third order tensors.

Theorem 7 (Sylvester) A symmetric $2 \times 2 \times 2$ tensor with associated polynomial

$$p(s_1, s_2) = \gamma_0 s_1^3 + 3 \gamma_2 s_1^2 s_2 + 3 \gamma_1 s_1 s_2^2 + \gamma_6 s_2^3,$$

(11)

has a symmetric rank-R decomposition (10) if and only if there exists a vector $g = (g_0, \ldots, g_R)^T$ such that

$$\begin{bmatrix} \gamma_0 & \cdots & \gamma_R \\ \gamma_1 & \cdots & \gamma_{R+1} \\ \vdots & \ddots & \vdots \\ \gamma_{R-1} & \cdots & \gamma_0 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ \vdots \\ g_R \end{bmatrix} = 0,$$

(12)

and if the polynomial $q(s_1, s_2) = g_0 s_1^3 + g_2 s_1^2 s_2 + g_1 s_1 s_2^2 + g_6 s_2^3$ has R distinct real roots.

Example 6. Using Sylvester’s Theorem, one can obtain the following decomposition for the representative of orbit D_3 given in Table 2

$$6s_1^2s_2 = (s_1 + s_2)^3 + (-s_1 + s_2)^3 - 2s_2^3.$$

(13)

In other words, the associated tensor can be written $X = a^3 + 6b^3 - 2c^3$, where $a = [1, 1]^T$, $b = [-1, 1]^T$ and $c = [0, 1]^T$.

We have the following analogue of Lemma 3 to verify the orbit of symmetric tensors of dimension 2.

Lemma 8 Let X be a symmetric $2 \times 2 \times 2$ tensor with matrix slices X_1 and X_2.

(i) If $X_2X_1^{-1}$ or $X_1X_2^{-1}$ has distinct real eigenvalues, then X is in orbit G_2.

(ii) If $X_2X_1^{-1}$ or $X_1X_2^{-1}$ has two identical real eigenvalues, then X is in orbit D_2.

(iii) If $X_2X_1^{-1}$ has complex eigenvalues, then X is in orbit G_3.

Next, we present an example of a symmetric $2 \times 2 \times 2$ tensor in orbit G_3, that has a unique best symmetric rank-1 approximation Y, such that $X - Y$ is in orbit D_3.

Example 7. Let

$$X = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

(14)

We have

$$X_2X_1^{-1} = \begin{bmatrix} 0 & -1 \\ -1 & 1 \end{bmatrix},$$

(15)

which has complex eigenvalues. Hence, by Lemma 8 (iii) the tensor is in orbit G_3.

Next, we compute the best symmetric rank-1 approximation Y to X, which has the form

$$Y = \begin{bmatrix} x_1^3 \\ x_1^2x_2 \\ x_1x_2^2 \\ x_2^3 \end{bmatrix}.$$

(16)

After some manipulations, it can be shown that the minimum of $||X - Y||^2$ is obtained for $x_1^3 = x_2^3 = 3/4$, that is

$$Y = \begin{bmatrix} 3/4 \\ 3/4 \\ 3/4 \\ 3/4 \end{bmatrix}.$$

(17)

By subtraction, we obtain

$$Z = X - Y = \begin{bmatrix} -3/4 \\ -3/4 \\ -3/4 \\ -3/4 \end{bmatrix},$$

(18)

and

$$Z_2Z_1^{-1} = \begin{bmatrix} 0 & -1 \\ -1 & -2 \end{bmatrix},$$

(19)

which has a double eigenvalue -1. Hence, by Lemma 8 (ii) the tensor Z is in orbit D_3.

In our next example, the symmetric $2 \times 2 \times 2$ tensor is in orbit G_2, and has a unique best symmetric rank-1 approximation Y, such that $X - Y$ is in orbit D_3.

Example 8. Let

$$X = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix}.$$

(20)

We have

$$X_2X_1^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 4 \end{bmatrix},$$

(21)

which has real and distinct eigenvalues. Hence, by Lemma 8 (i) the tensor is in orbit G_2.

Next, we compute the best symmetric rank-1 approximation Y to X. It can be shown that the minimum of $||X - Y||^2$ is obtained for

$$Y = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

(22)
By subtraction, we obtain
\[
Z = X - Y = \frac{1}{2} \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}, \tag{23}
\]
and
\[
Z_0^2 Z_1^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, \tag{24}
\]
which has a double eigenvalue \(-1\). Hence, by Lemma 8 (ii) the tensor \(Z\) is in orbit \(D_1\).

Finally, we have the following analogue of Proposition 5.

Proposition 9 Let \(X\) be a generic symmetric \(2 \times 2 \times 2\) tensor, and \(Y\) be a best rank-1 approximation of \(X\). Then almost all tensors \(X - Y\) are in orbit \(D_3\).

Hence, for typical symmetric \(2 \times 2 \times 2\) tensors with symmetric rank 2, subtracting a best rank-1 approximate increases the symmetric rank to 3. For typical symmetric tensors with symmetric rank 3, subtracting a best rank-1 approximate does not affect the symmetric rank.

REFERENCES

[29] J. M. ten Berge, H. A. L. Kiess, and J. de Leeuw. Explicit Candecomp/Parafac solutions for a contrived \(2 \times 2 \times 2\) array of rank three. *Psychome-