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Abstract.  

Standard maize (SMS) and waxy maize starch (WMS) were hydrothermally treated at their 

residual moisture level (~12 %) by Instantaneous Controlled Pressure Drop process in order to 

obtain pre-gelatinised starches in a single step. The effect of two parameters of this process, 

namely the steam pressure level and processing time, on the structural and rheological properties 

of the native maize starches were described. The occurrence of partial gelatinization for DIC 

treated starches was clearly attested by the increase of the median volume diameter in cold water, 

the decrease of the gelatinization enthalpy and a loss of birefringence under polarized light, this 

was more prominent for the highest pressure and longest time: 2.7 to 3 bar for 200 to 300 seconds. 

Sensitivity of starches to the process was also dependent on their origin, SMS being more affected 

than WMS. 
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1. Introduction 

Starch is essential in many formulated foodstuffs. It constitutes an important source of energy and 

contributes to the structure and the texture of food, as a thickening or gelling agent. These 

properties occur under heating (pasteurization or sterilization) in an excess of water. 

Pregelatinized starches are widely used for many foods as a major ingredient to provide 

thickening texture at temperatures below the gelatinization temperature. They are obtained from 

native or modified starch, by drum (Vallous, Gavrielidou, Karapantsios & Kostoglou, 2002), roll, 

or spray drying after cooking and also by extrusion cooking (Mercier, 1987). Annealing (Tester & 

Debon, 2000) and heat-moisture treatment (HMT) (Gunaratne & Hoover, 2002) are also two 

common physical means by which the treated starch can acquire modified properties without 

rupturing the granule. These processes require a hydration step followed by drying. When 

applying a thermal treatment, the initial dispersion is changed into a starch paste due to the 

swelling of granules and leaching of amylose in the intergranular phase. This overall phenomenon 

is referred to as the pasting process and is a result of the gelatinization which corresponds to the 

loss of crystalline starch granules at ~ 60-70°C. These overall changes include loss of 

birefringence, loss of X-ray diffraction pattern, absorption of water and swelling, change of shape 

and size of starch granules and leaching of amylose from the granules (Williams & Bowler, 1982), 

(Eliasson & Larsson, 1993), (Hoover, 2001). 

Many methods of characterizing structural changes of starch upon pasting have been developed. A 

large number of techniques, such as differential scanning calorimetry (DSC) (Donovan, Lorenz & 

Kulp, 1983; Lim, Chang & Chung, 2001; Ziegler, Nordmark & Woodling, 2003; Kiseleva, Tester, 

Wasserman, Krivandin, Popov & Yurvev, 2003) and X-ray diffraction (Kiseleva et al., 2003; Lim 

et al., 2001) have been used to study the gelatinization behavior of starch granule altered by 

various physical treatments. During recent years differential scanning calorimetry (DSC) has 

evolved as the preferred method (Eliasson & Larsson, 1993; Takaya, Sano & Nishinari, 2000), to 
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measure different aspects of the gelatinization process. DSC is of great value in studying both the 

loss of crystalline order during gelatinization, which occurs when the starch is heated in the 

presence of water (Cooke & Gidley, 1992), and the re-ordering of such systems during ageing 

(Chung & Lim, 2003). 

Hydrothermal treatment of starch also leads to a modification of its rheological properties. These 

properties can be characterized after rehydration of the starches under mild temperature (40°C, 

Anastasiades, Thanou, Loulis, Stapatoris & Karapantsios, 2002) or using Brabender Viscogragh to 

assess repeatable pasting conditions. The shape of the pasting profile gives then useful indications 

on the ability of the granules to swell freely before their physical breakdown (peak and plateau 

values).  

The purpose of the present work was to characterize hydrothermally-treated starches by a recent 

hydrothermal process: the Instantaneous Controlled Pressure Drop (DIC) over a useful range of 

operating conditions. The DIC process is based on the thermomechanical processing induced by 

subjecting the product to a rapid transition from high steam pressure to a vacuum. It has been used 

initially in the field of the drying texturation in order to obtain a more expanded structure than one 

obtained by classical methods such as hot air. This process was applied to various products such 

as pasta products (Maache-Rezzoug & Allaf, 1999), and a thickening polysaccharide used in the 

petroleum industry, the scleroglucan (Rezzoug, Maache-Rezzoug, Mazoyer, Jeannin & Allaf, 2000). 

The originality of the DIC treatment compared to other hydrothermal treatments is that the 

starches are treated at residual moisture content; no hydration step is then required before the DIC 

treatment. 

The effect of process input variables (steam pressure level and processing time) on the structural 

and functional properties of two native starches, standard maize starch (SMS) and waxy maize 

(WMS) was investigated. 
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2. Materials and methods 

2.1. Raw materials 

Standard maize starch (SMS) and waxy maize starch (WMS, Waxilys 200) were supplied by 

Roquette Frères (Lestrem, France). The amylose content was different for the two types of starch: 

27-28 % and lower than 1% for SMS and WMS, respectively. 

 Methods 

 Moisture content 

The starch moisture content was determined by air oven at 105°C during 24 h, according to the 

A.F.N.O.R. standard method. 

 DIC hydrothermal treatment  

The schematic diagram of the equipment used has been described in a previous study (Rezzoug et 

al., 2000). This equipment is composed of three main elements: a processing vessel, a vacuum 

container and a valve that connects these two parts. In the DIC treatment, the sample is placed in a 

vessel which is maintained under vacuum (~ 50 mbar). This initial vacuum allows a better 

diffusion of the heating fluid through the product and consequently heat transfer is improved. The 

feed of the treatment vessel was typically 150 g of native starch at residual moisture content (~ 12 

% w/w). 

The thermal treatment is performed by injection of saturated steam, at a fixed steam pressure for a 

determined processing time, followed by a rapid pressure drop to vacuum (about 50 mbar). The 

opening of the valve leads to a rapid transition from processing pressure to a vacuum because the 

volume of the vacuum container (1600 L) is 130 times larger than the one of the treatment vessel 

(12 L). The rapid transition of pressure inside the processing vessel induces a rapid cooling of 

starch from 107-140 °C (depending on the steam pressure level) to about 30°C in less than 1 
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second. The equilibrium pressure after dropping pressure depends on the operating conditions: the 

higher the steam pressure level, the higher the equilibrium pressure. At the end of the treatment, 

the starch sample does not need a drying step because initial and final moisture are similar. 

2.2.3. Pasting procedure using Viscograph Brabender  

The processed samples are powdery products that have to be rehydrated for analytical purpose. 

This was performed using the Brabender Viscograph to obtain a starch paste under repeatable 

conditions. The starch concentrations were chosen in order to lie within the sensitivity range of the 

Viscograph: i.e. 6% for SMS and 3% (w/w) for WMS. Starch was slurried in demineralized water 

at room temperature, and then submitted to gradual heating (1.5°C/min) from 30°C to 96°C.; this 

temperature was maintained for 10 minutes and was followed by a cooling step (1.5°C/min) down 

to 70°C before sampling. The relevant values obtained from the pasting profile were: peak and 

plateau (at 96°C) in Brabender units (100 BU for 25 cmg). The moisture content was determined 

directly after the pasting procedure, to check the starch concentration before rheological 

measurements. 

2.2.4. Rheological measurements 

Flow behavior and viscoelastic properties of starch pastes were measured using a controlled stress 

rheometer (TA Instrument AR1000) with the cone/plate geometry (6 cm / 2°). An aliquot of the 

starch dispersion pasted in the Viscograph Brabender was poured onto the plate of the rheometer 

preheated at 60°C, then covered by a layer of paraffin oil to avoid evaporation. For flow 

measurements, two up-down shear scans from 0 to 660 s-1 (4 min each) were linearly applied, 

followed by a logarithmic stepwise decrease from 660 to 0.01 s-1, after equilibrium for each shear 

rate. 

The oscillatory tests were carried out at 4% strain (linear viscoelastic range) on a new aliquot, 

with the following sequence: a mechanical spectrum at 60°C, then a quenching to 25°C, followed 
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by a time dependent measurement of the viscoelastic behavior during 15 hours at 6.3 rad/s, and a 

mechanical spectrum at 25°C. The frequency range investigated was from 0.5 to 100 rad/s.  

2.2.5. Differential scanning calorimetry 

The DSC analysis was performed directly on samples treated by DIC with the Setaram Micro-

DSCIII apparatus at a 70% moisture content using the following procedure: gradual heating from 

20 to 95°C (1°C/min). From the DSC curves, the peak temperature (Tp) and gelatinization 

enthalpy (∆H) were calculated. The degree of gelatinization of hydrothermally treated starches 

was calculated by the following equation (Marshall, Wadsworth, Verma & Velupillai, 1993): 

( ) 1001(%) x
H
HDG

raw

t

∆
∆−=    (1) 

where DG is the degree of gelatinization of hydrothermally treated starch, ∆Ht the gelatinization 

enthalpy of DIC treated starch and ∆Hraw the gelatinization enthalpy of the native starch. 

2.2.6. Granule size and distribution 

Particle size determination was carried out at room temperature using a Malvern Master Sizer 

(Malvern Instruments, Ltd) laser scattering analyser with a 300 mm Fourier cell (range 0.05 µm to 

879 µm). The starch dispersion was first diluted (1/10) with demineralized water at 20°C 

immediately at the end of the Viscograph procedure, then dispersed in the sample dispersion unit 

(1 ml/100 ml water) and fed into the measuring cell. Volume distribution was obtained using the 

Mie scattering theory which requires the refractive index of the media to be specified: we used 

1.529 and 1.33, respectively, for starch and liquid phase and 0.1 for the starch granule absorption 

(Loisel, Cantoni & Doublier, 1998). From each distribution, the median volume diameter D(v, 

0.5) was chosen to allow comparison with the literature (Ziegler, Thompson & Casasnovas, 1993) 

and the size dispersion of starch granules was evaluated using the dispersion index referred to as 

the span, by the following equation: 
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Span:  
)5.0,(

)1.0,()9.0,(
vD

vDvD −
   (2) 

The same experiment was performed on the starch powder directly after the DIC process to yield 

the median volume diameter of starch granules. 

2.2.7. Microscopy 

The samples were examined visually using a phase contrast microscope equipped with a CCD 

camera. Small amounts of sample were suspended in distilled water to 1/20 and observed using a 

magnification of 400 under direct transmitted or polarized light.  

2.2.8. Experimental design  

A central composite rotatable design with two independent variables and five levels was used. For 

the two variables, the design yielded 12 experiments with four (22) factorial points, four extra 

points (star points) to form central composite design and four center points for the replications. 

The experiments were run in random order to minimize the effects of unexpected variability in the 

observed responses due to extraneous factors. The experimental range and the central point were 

based on the results of preliminary trials. Table 1 lists the independent variables and the coded 

factors levels. The response surfaces were obtained by using the analysis design procedure of 

Statgraphics Plus for Windows, (4.1 version). 

3. Results and discussion 

3.1. Effect of the DIC treatment on the physical properties of starch 

The effect of the DIC process on the overall physical properties of the two starches is summarized 

in Tables 2, 3 and 4. Table 2 presents the gelatinization characteristics for the two starches: peak 

temperature, gelatinization enthalpy and degree of starch gelatinization (%) induced when 

applying the DIC process. 
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For the two types of starches, the gelatinization temperature as defined by microcalorimetry as the 

maximum of the endothermic peak did not vary to a large extent when applying the DIC process, 

unless at the highest pressures. For instance the peak temperature, Tp, jumped from 67.1 

(untreated) to 76.6°C for SMS, and from 69.7 to 74.5°C for WMS, when the 3 bar/225 s process 

was applied. For milder treatment (2.7 bar/300 s) the change was less dramatic: 70.1 against 

67.1°C (untreated) for SMS, and 72.5 against 69.7°C (untreated) for WMS. 

Meanwhile the gelatinization enthalpy decreased progressively for the two types of starches; this 

decrease was more pronounced beyond 2 bars, particularly for SMS. The gelatinization enthalpy 

decreased from 11.6 J/g (untreated) down to 6.4 J/g (2.7 bar/300 s) and 2.8 J/g  (3 bar/ 225 s) for 

SMS, and from 16.8 J/g (untreated) down to 12.7 J/g (2.7 bar/300 s) and 8.2 J/g  (3 bar/ 225 s) for 

WMS. 

The decrease of gelatinization enthalpy has been related to loss of crystalline order within the 

starch granule (Cooke & Gidley, 1992). This loss of cristallinity, as estimated from DG, was up to 

76% for SMS against 51% for WMS. This shows that SMS is more sensitive to the DIC treatment 

than WMS. A progressive loss of cristallinity was experienced as the conditions of the treatment 

were more intensive. 

In spite of lower moisture content of DIC treated starches (~12%) compared to moisture content 

of HMT treated starches (20 ~30%), quite similar results have been reported in the case of HMT 

treatment by Takaya et al. (2000) for standard maize starch (at 120 and 130°C under saturated 

humidity for 20 min) and by Lim et al. (2001) (120°C, 1 hour, 25% moisture content). These 

authors observed an increase of the gelatinization peak temperature as well as a decrease of the 

gelatinization enthalpy. For instance Tp increased from 66.9 (untreated) to 74.2°C (120°C, 25% 

moisture content) in the work by Lim et al. (2001), whereas the gelatinization enthalpy decreased 

from 18.7 to 14.4 J/g. Hoover and Manuel (1996) also found a shift towards higher temperatures 

for maize starches: 66 °C (untreated) against 71°C, and 73 °C (untreated) against 74°C for SMS 
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and WMS, respectively. However, no change was observed in the endothermic value; this 

difference could be ascribed to the milder process used by these authors: 100°C during 16h for 

30% hydrated starch. 

It has been postulated that the gelatinization enthalpy is related to the overall cristallinity of 

amylopectin (Tester & Morrison, 1990). For Cooke and Gidley (1992) the ∆H value represents the 

number of double helices that unravel and melt during gelatinization. The difference of Tp and ∆H 

between WMS and SMS may be attributed to starch composition, especially the amylose to 

amylopectin ratio. It is well known that amylopectin is primarily involved in starch granule 

cristallinity (French, 1984). This may explain why SMS, which contains amylose, is more 

sensitive to the DIC treatment.  

Table 3 gives the median volume diameter before and after pasting in the Viscograph and the 

Brabender values for the two types of starches. D(v,0.5) obtained before pasting increased with 

the severity of the treatment. The increase was progressive at first, and then more pronounced for 

the highest pressures: from 14.5 µm to about 67 µm for SMS and from 15.7 µm to 36 µm in the 

case of WMS. The value for untreated starch corresponds to the usual starch granule size: since 

starch granules are known not to swell in cold water, the increase of volume diameter may be 

ascribed to the loss of cristallinity already discussed: the less organized the starch granule, the 

more hydrated it is. It is worth noting that the largest median diameters of SMS, 52.0 µm (2.7 

bar/300 s) and 66.8 µm (3 bar/225 s) are associated to higher span values: 2.2 instead of usual 

lower values, 1.2 to 1.5.  This heterogeneity of size is due to the presence of larger particles for 

that samples, probably composed of aggregates of starch granules. 

D(v,0.5) of pasted samples exhibit the reverse tendency: the largest size of the granules is obtained 

for untreated samples, 60.9 µm and 39.0 µm for SMS and WMS respectively. Then the median 

diameter decreases from 60.9µm to about  40 µm (2 bar/225 s) for SMS and from 39.0 µm to 32.8 

µm (2.7 bar/150 s) for WMS. The median diameter of 64.2µm (2 bar/225 s) for SMS being related 
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to higher heterogeneity as already mentioned. The decrease of the median diameter of pasted 

starch granules with increasing DIC conditions, may result from partial disruption of starch 

granules: the starches which are partially gelatinized by the DIC treatment are more sensitive to 

the thermal treatment in the Viscograph. 

For the two types of results, before and after pasting with the Viscograph, the changes are again 

dramatic for the most severe treatments. As regards to the calorimetric results, the effect of the 

treatment differs between SMS and WMS: the later being less prone to swelling.  

Figure 1 shows microscopic views of SMS starch granules under polarized light before pasting. 

The untreated starch (a) exhibited the usual Maltese cross related to its crystalline order. The same 

observation could be made for the 2 bar/225s treated starch (b). For the view (c) (2.7 bar/300 s), 

we observed intact starch granules but also starch granules without their Maltese cross. The 

presence of the later shows partial gelatinization of starch as already mentioned from the 

calorimetric results. The coexistence of the two types of starch granules may also be related to the 

heterogeneity in DIC treatment. A recent study pointed out the existence of a gradient of 

temperature and moisture content between the surface and the bottom of the powder layer 

(Zarguili, Maache-Rezzoug, Loisel & Doublier, 2004). Thus the sampling may have an influence 

on the microscopic observations. The disappearance of the Maltese cross is more pronounced and 

the proportion of intact granules is smaller for the view (d) (3 bar/225 s). This confirms the loss of 

cristallinity for the strongest treatments. It is worth noting that even for the most intensive 

treatment integrity of the starch granule was not altered whereas the size of the starch granules 

could vary to a large extent (Table 3). For WMS (pictures not shown) there was no dramatic 

change: the Maltese cross was still observed, whatever the intensity of the treatment. These 

microscopic observations confirm the higher resistance of WMS to the DIC treatment. 
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Figure 2 shows the Brabender viscograms for untreated (a), 2 bar/331 s (b) and 2.7 bar/300s (c) 

treated SMS. For the two treatments, no peak could be seen and the plateau values clearly were 

lower.  

The peak and plateau values from the viscograms are presented in Table 3. For SMS, the viscosity 

peak as well as the plateau value dramatically decreased for pressures higher than 2 bars. SMS 

treated at 2.7 bar during 300 seconds reached the Brabender peak viscosity of 140 BU while for 

the untreated SMS, the viscosity peak was of 844 BU. For 3 bar/225 s, no viscosity could be 

measured by this way. This may be explained by disruption of starch granules, as already 

mentioned from the results of Table 3, the dispersion being extremely fluid. On the opposite way, 

WMS was much less affected by the hydrothermal treatment. 

Typical flow curves of SMS dispersions at 60°C are shown in Figure 3 for untreated and DIC 

treated samples at 6% concentration (w/w). These flow curves are typical of a non-newtonian 

shear-thinning fluid with a yield stress as described by Evans and Haisman (1979) and Doublier 

(1981). The Herschel-Bulkley equation fitted the data satisfactorily (R2 = 0.987), according to the 

equation (3).  

n
0 K  ττ γ&+=      (3) 

Where τo is the yield stress (Pa), K the consistency index (Pa.sn) and n the flow behavior index 

(dimensionless). 

As seen in Table 4 the apparent viscosity at a shear rate of 1s-1 and the yield stress values for SMS 

first decreased for the mildest DIC treatment; this was followed by a slight increase and then a 

decrease beyond 2 bar/119 s. For the 3 bar/225 s treated SMS, the behavior was also shear-

thinning, but no yield stress was detected, owing to the fluidity of the paste (0.09 Pas at 1 s-1). For 

WMS, the Herschel-Buckley equation was obeyed (R2 = 0.983) but no strong effect of the 

treatment was noticed.  
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Figure 4 illustrates the viscoelastic behavior at 60°C of 6% native and 2.7 bar/300 s treated SMS 

dispersion through the variations of the storage modulus (G’) and the loss modulus (G’’) as a 

function of frequency. The native starch exhibited the behavior of a weak gel with G’> G” and G’ 

almost independent of frequency. The SMS treated sample displayed lower and more frequency-

dependent moduli, but the behavior remained solid-like. As can be seen from Table 4, the storage 

modulus dramatically dropped for the 2.7 bar/300 s treated starch and completely disappeared for 

the 3 bar/225 s experiment. In this case the starch paste was extremely fluid. With respect to the 

waxy maize starch, no change of the moduli was observed after the DIC treatment.  

The rheological behavior of starch suspensions is known to be the result of a combination of two 

major factors: the continuous phase and the volume fraction of the dispersed phase. In the range of 

concentrations used in this work, the volume fraction appears to be close to unity: the suspension 

can then be described as a packing of swollen starch granules, the overall behavior being governed 

by the dispersed phase (Doublier, Llamas & Le Meur, 1987). This explains why the elastic 

response in the viscoelastic behavior of the suspension is predominant (Tecante & Doublier, 

1999). In such a case, the deformability of the swollen starch granules also plays a role in the 

rheological properties: the decrease of apparent viscosity and storage modulus with the intensity 

of the treatment may be related to a higher deformability.  

Figure 5 shows changes with time of the storage modulus measured at 25 °C for untreated SMS 

starch and treated at 2.7 bar during 150 s and 300 s. For untreated starch, the increase in G’ is the 

result of amylose gelation which takes place in the continuous phase of the starch dispersion at 

25°C. As a result, the starch gel can be regarded as a composite of swollen granules embedded in 

a solid matrix. For the treated starch, the occurrence of amylose gelation is attested by the increase 

of G’ as a function of time for both treatments; the time of the treatment modifies the G’ value on 

a significant way, by decreasing the G’ value. The lower G’ values may result of the combination 

of different parameters such as: increased deformability of starch granules or lower elasticity of 
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the continuous phase. This latter phenomenon would be related to lower ability to form a gel of 

the amylose in the continuous phase. 

To conclude, the Viscograph procedure which is a mean to characterize the starch paste under 

repeatable conditions produces a dramatic decrease of apparent viscosity and storage modulus of 

SMS starch previously treated under the most severe DIC conditions. This can be related to the 

partial gelatinization of SMS obtained through the DIC treatment, which makes it more sensitive 

to the thermal treatment in the Viscograph and leads to partial disruption of starch granules. 

3.2. Statistical analysis 

Among the response parameters cited in Tables 2, 3 and 4 for SMS, we selected three 

representative ones namely Dv, ∆H and ηa for statistical considerations. 

The relationship between the processing parameters and the responses can be explained by 

examining the response surfaces generated by the second order polynomial equation obtained 

from the experimental analysis (Fig. 6 for SMS). A second degree polynomial equation was 

assumed to approximate the considered response: 

Rp=β0 + β1x1 + β2x2 + β11x1
2 + β22 x2

2 + β12x1x2 (3) 

Where Rp is the considered response, β0, β1, β2 ,β11,β11 and β12 the regression coefficients and x1, 

x2, the variables related respectively to pressure level and processing time. The regression 

coefficients are showed in Table 5. Adequacy tests of the models, tested by the coefficients of 

determination R2, revealed that they were quite well adequate with a probability of rejecting the 

lack of fit greater than 0.05. 

The results of statistical analysis are given in Table 6 indicating the p-value and the F-ratio for 

each response parameter. P-value less than 0.05 indicates that the source (linear, quadratic or cross 

product term) is significantly different from zero at the 95% confidence level, based on Fisher test. 

From this Table, it can be clearly seen that the steam pressure level is the most significant 

parameter. 
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From Figure 6a, it can be seen that the linear and quadratic effects of the steam pressure level are 

very pronounced for Dv which increases from 13 to 43 µm when the pressure level increased from 

1.3 to 2.7 bar; in the meantime, the variation of Dv for increasing processing time from 150 sec 

300 sec is only from 13 to 23 µm. The increase of the pressure level induces an increase of the 

median volume diameter especially for high values of processing time. This is confirmed by a 

significant effect of the two-factor interaction illustrated by a distortion of the response surface.  

A similar trend is observed for ∆H for which the steam pressure level has a strong effect. Figure 

6b shows that the gelatinization enthalpy is directly proportional to steam pressure level, this 

being the only significant parameter. The higher the steam pressure, the lower the ∆H value. ∆H 

decreases from 11.2 to 6.2 J/g when the steam pressure level varies from 1.3 to 2.7 bar (Figure 

6b). The processing time is not a critical parameter, since an increase from 150 to 300 seconds 

yields a decrease of enthalpy of only 10 to 9.2 J/g.  

The apparent viscosity (Figure 6c) depends not only on the steam pressure level (linear and 

quadratic significant effects) but also on the processing time. This response decreases with both 

steam pressure level (beyond 1.6 bar) and processing time.  

The analysis of other parameters (not shown) displays a predominance of steam pressure level 

effect compared to that of processing time. 
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Conclusion  

Starch can be modified by Instantaneous Controlled Pressure Drop (Détente Instantanée 

Contrôlée: DIC) treatment, starch granules being exposed to high temperature obtained by steam 

under pressure during short time period (<10 min). DIC treatment of starch can be defined as a 

physical modification that involves treatment at very restricted moisture content (~12%). The DIC 

process revealed itself to be an interesting technique to obtain partially pre-gelatinized starches 

without subsequent drying of the product. The methods employed to estimate the physical changes 

i.e. microcalorimetry, particle size and microscopic analysis, attested the progressive loss of 

cristallinity while starch granules were not ruptured. These changes became dramatic for the 

strongest processing conditions: 2.7 to 3 bars for 200 to 300 seconds. The DIC treatment yielded 

an increased fluidity and a loss of the elastic response of the pastes, as a result of partial pre-

gelatinization of starch granules brought about by the process. We also noticed a marked 

difference in the sensitivity of the two types of starches to the process, SMS being more affected 

than WMS. For WMS, prolonged processing times or higher steam pressure are probably required 

to obtain a same gelatinization degree as SMS. 
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Figures captions 

Figure 1. Microscopic observations of SMS: untreated (a); DIC treated at 2bar/225s (b), at 
2.7bar/300s (c) and at 3 bar/225 (d). Scale bar: 50 µm. 

Figure 2. Pasting profiles obtained with the Brabender Viscograph of SMS: untreated (a); DIC 
treated at 2bar/331s (b) and at 2.7 bar/300s (c). 

Figure 3. Flow curves of 6 % SMS dispersion (measurement at 60 °C). (�): untreated starch; (●): 

DIC treated at 1 bar/ 225 s; (■): DIC treated at 2.7 bar/300 s. The continuous line represents the 
regression curve according to Herschel-Buckley equation. 

Figure 4. Mechanical spectra of 6 % SMS dispersion (measurement at 60 °C; shear strain 4 %). G’ 

(solid), G” (hollow); (�): untreated starch; (■): DIC treated at 2.7 bar/300 s. 

Figure 5. G’ variations at 25 °C as a function of time of 6 % SMS dispersions. (shear strain 4 %; 

angular frequency: 6.3 rad/s). (�): untreated starch; (▲): DIC treated at 2.7 bar/ 150 s; (■): DIC 
treated at 2.7 bar/300 s. 

Figure 6. Response surfaces plots for SMS as a function of the hydrothermal processing 
parameters.  
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Figure 3 
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Figure 4 
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Figure 6 
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Table 1: Coded levels for independent variables used in developing experimental data 

 Coded level 
 -α -1 0 1 +α 

Pressure level (bar) 1.0 1.3 2 2.7 3.0 
Processing time (s) 119 150 225 300 331 

α(Axial distance) N4 , N is the number of experiments of orthogonal design, i.e. of the 
factorial design. In this case α = 1.414. 
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Table 2: DSC characteristics of SMS and WMS after DIC process 

Processing 
Parameters 

Standard Maize Starch Waxy Maize Starch  

Steam pressure level 
(bar)/time (s) 

Tp 
(°C) 

∆H 
(J/g) 

DG (1) (%) Tp 
(°C) 

∆H 
(J/g) 

DG (1) (%) 

Untreated 67.1 11.6 - 69.7 16.8 0 
 1/225  67.1 11.5 1.2 69.8 15.9 5.3 

1.3/150 67.3 11.2 3.5 70.0 16.0 4.8 
1.3/300 67.5 11.0 5.1 70.5 15.4 8.3 
2/119 68.5 9.5 18.1 70.4 15.2 9.2 

2/225 (2) 69.1 (0.2) 9.6 (0.3) 17.2 (2.4) 71.2 (0.47) 14.8 (0.4) 11.9 (2.4) 
2/331 69.7 7.8 32.8 72.1 14.9 11.1 

2.7/150 68.1 8.6 25.5 70.9 13.8 18.0 
2.7/300 70.1 6.4 45.0 72.5 12.7 24.1 
3/225 76.6 2.8 76.3 74.5 8.2 51.3 

 

(1) DG, starch  gelatinization of DIC treated starch; (2) Mean absolute error (five repetitions); - too low to be measured. ha
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Table 3: Particle size and Brabender characteristics of SMS and WMS after DIC process 

 Standard Maize Starch Waxy Maize Starch 
 

Processing 
Parameters 

Particle size (1) Brabender 6% at 96°C Particle size (1) Brabender 3% at 96°C 

Steam pressure 
level (bar)/time (s) 

D(v,0.5) (2) 
before – after 
pasting (µm) 

Peak 
BU 

Plateau 
BU 

D(v,0.5) (2) 
before – after 
pasting (µm) 

Peak 
BU 

Plateau 
BU 

Untreated 14.5  - 60.9 844 716 15.7 – 39.0 680 384 
1/225 15.4 – 51.4 848 716 15.7 – 35.4 604 400 

1.3/150 16.8 – 41.2 848 716 15.9 – 36.7 636 412 
1.3/300 17.4 – 50.5 836 716 17.0 – 36.9 588 404 
2/119 17.6 – 64.2 760 676 18.3 – 36.8 636 404 

2/225(3) 18.5 (0.5) – 39.7 756 (28.7) 669 (19) 16.9 (0.7) – 36.8 646 (25) 424 (18) 
2/331 21.7 – 36.4 440 416 16.7 – 37.0 598 396 

2.7/150 20.8 – 40.5 580 524 22.3 (4) -  32.8 644 428 
2.7/300 52.0 – 35.4 140 148 19.2 – 32.0 548 388 
3/225 66.8 – 40.0 - - 36.0 – 26.1 504 356 

  

(1) Before and after pasting with the Viscograph; (2) average of three repetitions; (3) Mean absolute error  (five repetitions); (4) high 
variability; - : too low to be measured. 
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Table 4: Rheological properties of SMS and WMS after DIC treatment. 

 SMS Rheological properties at 6% WMS Rheological properties at 3 % 

Processing 

 parameters 

Flow behavior 

60°C 

 Viscoelasticity  

60°C, 6.3 rad/s  

 Flow behavior 

 60°C 

Viscoelasticity  

60°C, 6.3 rad/s 

Steam pressure 

 (bar)/time (s) 

τ0  

(Pa) 

K 

(Pa sn) 

n η 

(Pa s)(1) 

G’  

(Pa) 

G” 

 (Pa) 

τ0  

(Pa) 

K 

(Pa sn) 

n η 

(Pa.s)(1) 

G’ 

 (Pa) 

G”  

(Pa) 

Untreated 7.27 5.98 0.54 12.36 137.6 21.70 1.11 0.97 0.55 1.90 1.90 1.08 
1/225 4.94 4.37 0.55 8.61 130.3 23.16 1.20 0.96 0.55 1.93 1.94 1.04 

1.3/150 8.68 4.85 0.55 12.48 137.5 21.24 1.36 1.08 0.54 2.19 2.25 1.18 
1.3/300 9.29 4.33 0.56 12.64 153.1 20.60 1.28 1.00 0.55 2.04 2.32 1.12 
2/119 10.39 5.64 0.53 15.75 174.6 23.24 1.44 1.19 0.54 2.36 2.13 1.14 

2/225 (2) 6.51 4.74 0.53 10.79 144.7 18.99 1.28 1.05 0.55 2.10 2.31 1.15 
2/331 3.61 2.72 0.55 5.78 108.8 13.88 1.23 1.05 0.55 2.05 2.34 1.19 

 2.7/150 5.33 2.74 0.59 7.58 116.2 16.52 1.23 1.02 0.55 2.02 2.49 1.42 
2.7/300 0.50 1.12 0.60 1.42 8.88 4.24 0.96 0.92 0.55 1.70 2.1 1.14 
3/225 0 0 0 0.09 0 0 0.81 0.90 0.55 1.57 2.51 1.36 

Mean absolute 
error (%) 

0.23 0.44 0.005 0.48 17.6 3.41 0.07 0.069 0.004 0.12 0.08 0.03 

 

(1) Apparent viscosity measured at 1s-1; (2) Average of five repetitions 
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Table 5: Regression coefficients of the polynomial function (the values of the 
variables are specified in their original units) and the coefficients of 
determination 

Coefficients Apparent 

viscosity 

Enthalpy D (v,0,5) 

β0 
β1 

β2 

β11 
β12 
β22 

-7.36 
26.03 
0.00 
-6.07 
-0.03 
0.00 

5.52 
6.03 
0.02 
-1.82 
0.01 
0.00 

113.58 
-98.69 
-0.21 
21.44 
0.14 
0.00 

R2  91.74 % 88.15 % 91.45 % 
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Table 6: Analysis of variance showing the effect of treatment variables as a linear 
term, quadratic term and interactions (cross product) on the response parameters for 
SMS 

 Apparent viscosity Enthalpy D (v,0,5) 

Source F-ratio P-value F-ratio P-value F-ratio P-value 

P 

t 

PP 

Pt 

tt 

53.04 

27.00 

32.94 

5.34 

0.20 

0.0002* 

0.0013* 

0.0007* 

0.0542 

0.6670 

  43.36 

2.68 

5.07 

0.99 

0.10 

0.0003* 

0.1456 

0.0591 

0.3533 

0.7660 

42.25 

4.86 

20.94 

6.39 

0.01 

0.0003* 

0.0632 

0.0026* 

0.0393* 

0.9192 

* indicates significant at p < 0.05. P : steam pressure level; t : processing time 
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