Effective Compositional Model for Lexical Alignment
Béatrice Daille, Emmanuel Morin

To cite this version:
Béatrice Daille, Emmanuel Morin. Effective Compositional Model for Lexical Alignment. Asian Federation of Natural Language Processing. IJCNLP 2008: Third International Joint Conference on Natural Language Processing, Jan 2008, Hyderabad, India. 1, pp.95-102, 2008. <hal-00403643>
Abstract

The automatic compilation of bilingual dictionaries from comparable corpora has been successful for single-word terms (SWTs), but remains disappointed for multi-word terms (MWTs). The increase of coverage of bilingual dictionary thanks to compositional translation improved the results, but still shows some limits for MWTs of different syntactic structures. In this paper, we propose to bridge the gap between syntactic structures through morphological links. The results show a significant improvement in the compositional translation of MWTs that demonstrate the efficiency of the morphologically based method for lexical alignment.

1 Introduction

Current research in automatic compilation of bilingual dictionaries from corpora makes use of comparable corpora. Comparable corpora gather texts sharing common features (domain, topic, genre, discourse) without having a source text-target text relationship. They are considered by human translators more trustable than parallel corpora (Bowker and Pearson, 2002). Moreover, they are available for any written languages and not only for pairs of languages involving English. The compilation of specialized dictionaries should take into account multi-word terms (MWTs) that are more precise and specific to a particular scientific domain than single-word terms (SWTs). The standard approach is based on lexical context analysis and relies on the simple observation that a SWT or a MWT and its translation tend to appear in the same lexical contexts. Correct results are obtained for SWTs with an accuracy of about 80% for the top 10-20 proposed candidates using large comparable corpora (Fung, 1998; Rapp, 1999; Chiao and Zweigenbaum, 2002) or 60% using small comparable corpora (Déjean and Gaussier, 2002). In comparison, the results obtained for MWTs are disappointed. For instance, (Morin et al., 2007) have achieved 30% and 42% precision for the top 10 and top 20 candidates in a 0.84 million-word French-Japanese corpus. These results could be explained by the low frequency of MWTs compared to SWTs, by the lack of parallelism between the source and the target MWT extraction programs, and by the low performance of the alignment program. For SWTs, it proceeds in two steps: a dictionary look-up, and if no direct translation is available, the contextual analysis. For MWTs, an intermediate step is necessary that will propose several translation candidates to compare with the target MWTs. These candidate translations are obtained thanks to a compositional translation method (Melamed, 1997; Grefenstette, 1999) which increases the coverage of the bilingual dictionary. This method shows some limits when MWTs in the source and the target languages do not share the same syntactic patterns.

In this paper, we propose an extended compositional method that bridge the gap between MWTs of different syntactic structures through morphological links. We experiment this method of French-Japanese lexical alignment, using a multilingual terminology mining chain composed of two term ex-
traction programs, one in each language, and an alignment program. The term extraction programs are publicly available and both extract MWTs. The alignment program makes use of the direct context-vector approach (Fung, 1998; Peters and Picchi, 1998; Rapp, 1999). The results show an improvement of 33% in the translation of MWTs that demonstrate the efficiency of the morphologically based method for lexical alignment.

2 Multilingual terminology mining chain

Taking as input a comparable corpora, the multilingual terminology mining chain outputs a list of single- and multi-word candidate terms along with their candidate translations (see Figure 1). This chain performs a contextual analysis that adapts the direct context-vector approach (Rapp, 1995; Fung and McKeown, 1997) for SWTs to MWTs. It consists of the following five steps:

1. For each language, the documents are cleaned, tokenized, tagged and lemmatized. For French, Brill’s POS tagger\(^1\) and the FLEM lemmatiser\(^2\) are used, and for Japanese, ChaSen\(^3\). We then extract the MWTs and their variations using the ACABIT terminology extraction program available for French\(^4\) (Daille, 2003), English and Japanese\(^5\) (Takeuchi et al., 2004). (From now on, we will refer to lexical units as words, SWTs or MWTs).

2. We collect all the lexical units in the context of each lexical unit \(i\) and count their occurrence frequency in a window of \(n\) words around \(i\). For each lexical unit \(i\) of the source and the target languages, we obtain a context vector \(v_i\) which gathers the set of co-occurrence units \(j\) associated with the number of times that \(j\) and \(i\) occur together \(occ_{ij}\). In order to identify specific words in the lexical context and to reduce word-frequency effects, we normalize context vectors using an association score such as Mutual Information (Fano, 1961) or Log-likelihood (Dunning, 1993).

3. Using a bilingual dictionary, we translate the lexical units of the source context vector. If the bilingual dictionary provides several translations for a lexical unit, we consider all of them but weight the different translations by their frequency in the target language.

4. For a lexical unit to be translated, we compute the similarity between the translated context vector and all target vectors through vector distance measures such as Cosine (Salton and Lesk, 1968) or Jaccard (Tanimoto, 1958).

5. The candidate translations of a lexical unit are the target lexical units closest to the translated context vector according to vector distance.

In this approach, the translation of the lexical units of the context vectors (step 3 of the previous approach), which depends on the coverage of the bilingual dictionary vis-à-vis the corpus, is the most important step: the greater the number of elements translated in the context vector, the more discriminating the context vector in selecting translations in the target language. Since the lexical units refer to SWTs and MWTs, the dictionary must contain many entries which occur in the corpus. For SWTs, combining a general bilingual dictionary with a specialized bilingual dictionary or a multilingual thesaurus to translate context vectors ensures that much of their elements will be translated (Chiao and Zweigenbaum, 2002; Déjean et al., 2002). For a MWT to be translated, steps 3 to 5 could be avoided thanks to a compositional method that will propose several translation candidates to directly compare with the target MWTs identified in step 1. Moreover, the compositional method is useful in step 3 to compensate the bilingual dictionary when the multi-word units of the context vector are not directly translated.

3 Default compositional method

In order to increase the coverage of the dictionary for MWTs, that could not be directly translated, we generated possible translations by using a default compositional method (Melamed, 1997; Grefenstette, 1999).

\(^1\)http://www.atalf.fr/winbrill/
\(^2\)http://www.univ-nancy2.fr/pers/namer/
\(^3\)http://chasen-legacy.sourceforge.jp/
\(^5\)http://cl.cs.okayama-u.ac.jp/rsc/jacabit/
For each element of the MWT found in the bilingual dictionary, we generated all the translated combinations identified by the term extraction program. For example, for the French MWT \textit{fatigue chronique} (chronic fatigue), there are four Japanese translations for \textit{fatigue} (fatigue) – 疲れ, 疲労, 倦怠, 飽き – and two translations for \textit{chronique} (chronic) – 記事番組, 慢性. Next, we generated all possible combinations of the translated elements (see Table 16) and selected those which refer to an existing MWT in the target language. In the above example, only one term for each element was identified by the Japanese terminology extraction program: 慢性疲労. In this approach, when it is not possible to translate all parts of an MWT, or when the translated combinations are not identified by the term extraction program, the MWT is not taken into account in the translation step.

This approach also differs from that used by (Robitaille et al., 2006) for French-Japanese translation. They first decompose the French MWT into combinations of shorter multi-word unit elements. This approach makes the direct translation of a subpart of the MWT possible if it is present in the bilingual dictionary. For an MWT of length n, (Robitaille et al., 2006) produce all the combinations of shorter multi-word unit elements of a length less than or equal to n. For example, the French MWT \textit{syndrome de fatigue chronique} (chronic fatigue disorder) yields the following four combinations: i) [syndrome de fatigue chronique], ii) [syndrome de fatigue] [chronique], iii) [syndrome] [fatigue chronique] and iv) [syndrome] [fatigue] [chronique]. We limit ourselves to the com-

\begin{table}[h]
\begin{tabular}{|c|c|}
\hline
\textit{chronique} & \textit{fatigue} \\
\hline
記事番組 & 疲れ \\
慢性 & 疲労 \\
記事番組 & 倦怠 \\
慢性 & 飽き \\
\hline
\end{tabular}
\caption{Illustration of the compositional method \textup{(the underlined Japanese MWT actually exists)}}
\end{table}

6The French word order is reversed to take into account the different constraints between French and Japanese.
bination of type iv) above since 90% of the French
candidate terms provided by the term extraction pro-
cess after clustering are only composed of two con-
tent words.

4 Pattern switching

The compositional translation presents problems
which have been reported by (Baldwin and Tanaka,
2004; Brown et al., 1993):

Fertility SWTs and MWTs are not translated by a
term of a same length. For instance, the French
SWT hypertension (hypertension) is translated by
the Japanese MWT 高血圧 (here the kanji
高 (taka) means high and the term 血圧 (ketsu-
atsu) means blood pressure).

Pattern switching MWTs in the source and the tar-
get language do not share the same syntactic
patterns. For instance, the French MWT cellule
graisseuse (fat cell) of N ADJ structure is
translated by the Japanese MWT 脂肪細胞 of
N N structure where the French noun cellule
is translated by the Japanese noun 細胞 (sai-
boo - cellule - cell) and the French adjective
graisseuse by the Japanese noun 脂肪 (shiboo
- graisse - fat).

Foreign name When a proper name is part of
the MWT, it is not always translated: within the
French MWT syndrome de Cushing (Cush-
ing syndrome), Cushing is either transliterated
クッシング症候群 or remains unchanged
Cushing症候群. The foreign name is of course
not present in the dictionary.

The pattern switching problem involves the Ad-
jective/Noun and the Noun/Verb part-of-speech
switches. The Adjective/Noun switch commonly
involves a relational adjective (ADJR). According
to grammatical tradition, there are two main cat-
categories among adjectives: epithetic such as im-
portant (significant) and relational adjectives such
as sanguin (blood). The first ones cannot have an
agentive interpretation in contrast to the sec-
ond: the adjective sanguin (blood) within the MWT
acidité sanguine (blood acidity) is an argument to
the predicative noun acidité (acidity) and this is
not the case for the adjective important (significant)
within the noun phrase acidité importante (signifi-
cant acidity). Such adjectives hold a naming func-
tion (Levi, 1978) and are particularly frequent in sci-
entific fields (Daille, 2001). Relational adjectives
are either denominal adjectives, morphologically de-
riv ed from a noun thanks to suffix, or adjectives hav-
ing a noun usage such mathématique (mathemat-
cal/mathematics). For the former, it exists appropri-
ate adjective-forming suffixes that lead to relational
adjectives such as -ique, -aire, -al. For a noun, it
is not possible to guess the adjective-forming suf-
fix that will be employed as well as the alternation
of the noun stem that could occur. Relational ad-
jectives part of a MWTs are often translated by a
noun whatever is the target language. From French
to Japanese, examples are numerous: prescription
médicamenteeuse (処方薬 - medicinal prescription),
surveillance glycémique (血糖管理 - glycemic mon-
toring), fibre alimentaire (食物繊維 - dietary fibre),
produit laitier (乳製品 - dairy product), fonction
rénale (腎臓機能 - kidney function).

The fertility problem could only be solved thanks
to a contextual analysis on the contrary of the for-
eign name problem that could be solved by an
heuristic. We decide to concentrate on the MWT
pattern switching problem.

5 Morphologically-based compositional
method

When it is not possible to directly translated a MWT
— i.e. i) before performing the steps 3 to 5 of
the contextual analysis for a multi-word term to be
translated or ii) during step 3 for translation of mul-
ti-word units of the context vector —, we try first
to translate the MWT using the default composi-
tional method. If the default compositional method
fails, we use a morphologically-based compositional
method. For each MWT of N ADJ structure, we
generate candidate MWTs of N Prep N structure
thanks to the rewriting rule:

\[
M(\text{ADJ}, N_2) = [-\text{ique}, -\text{ie}] \\
M(\text{ADJ}, N_2) = [-\text{ulaire}, -\text{le}] \\
M(\text{ADJ}, N_2) = [-\text{seux},] \\
\ldots \\
M(\text{ADJ}, N_2)
\]
such as *glycém-ique* and the noun N_2 from which the adjective has been derived such as *glycém-ie* thanks to the stripping-recoding rule [−ique, −ie]. We generate all possible forms of N_2 as matching stripping-recoding rules and keep those that belong to the bilingual dictionary such as *glycém-ie*. Thus, we have created a morphological link between the MWT *contrôle glycémique* (*glycemic control*) of N ADJ structure and the multi-word units (MWU) of N Prep N structure *contrôle de la glycémie* (lit. *control of glycemia*). Since it has not been possible to translate all the parts of the MWT *contrôle glycémique* as *glycémique* was not found in the dictionary, we use the associated MWT *contrôle de la glycémie* of which all the parts are translated. The generated MWU could be seen as an intermediate form in the translation process that possibly does not exist in the source language. For instance, if *index glycémique* (*glycemic index*) is a French MWT, the MWU *index de la glycémie* (lit. *index of the glycemia*) does not exist in French.

The stripping-recoding rules could be manually encoded, mined from a monolingual corpus using a learning method such as (Mikheev, 1997), or supplied by a source terminology extraction program that handle morphological variations. For such program, a MWT is a canonical form which merge several synonymic variations. For instance, the French MWT *excès pondéral* (*overweight*) could be seen as a canonical form of the following variants: *excès pondéral* (*overweight*), *excès de poids* (*overweight*) of N Prep N structure. If the pattern switching could only been partially solved as MWT variations are not always attested forms in the corpus, the morphological links could be used to generate stripping-recoding rules. It is this last method that we employ for our experiment.

6 Evaluation

In this section, we outline the different linguistic resources used for our experiments. We then evaluate the performance of the default and morphologically-based compositional methods.

6.1 Linguistic resources

In order to obtain comparable corpora, we selected the French and Japanese documents from the Web. The documents are from the medical domain, within the sub-domain of ‘diabetes’ and ‘nutrition’. Document harvesting was carried out by a domain-based search, then by manual selection. The search for documents sharing the same domain can be achieved using keywords reflecting the specialized domain: for French *alimentation, diabète* and *obésité* (*food, diabetes, and obesity*); for Japanese, *糖尿病* and *肥満* (*diabetes, and overweight*). Then the documents were manually selected by native speakers of each language who are not domain specialists. These documents (248 for French and 538 for Japanese) were converted into plain text from HTML or PDF, yielding 1.5 million-word corpus (0.7 million-word for French and 0.8 million-word for Japanese).

The French-Japanese bilingual dictionary used in the translation phase was composed of four dictionaries freely available on the Web ([dico 1][7], [dico 2][8], [dico 3][9], and [dico 4][10]), and the French-Japanese Scientific Dictionary (1989) (called [dico 5]). Besides [dico 4] which deals with the medical domain, the other resources are general (as [dico 1, 2, and 3]) or technical (as [dico 5]) dictionaries. Merging the dictionaries yields a single resource with 173,156 entries (114,461 single words and 58,695 multi words) and an average of 2.1 translations per entry.

6.2 French N ADJ reference lists

In order to extract French N ADJ reference lists, we proceed as follows:

1. We identify the candidate terms corresponding to N ADJ structure in the French corpus using AÇABIT.

2. We preserve only the candidate terms whose occur more than 2 times in the French corpus. As a result of filtering, 1,999 candidate terms were extracted.

3. We manually select only those corresponding to a correct term. Here, 360 candidate terms were removed, mainly some misspelled terms,
English terms, broken terms, or incoherent terms.

4. We take off the terms that are translated by the bilingual dictionary and found in the comparable corpora. We identified 61 terms of which 30 use a relational adjective such as vaisseau sanguin (blood vessel - 血管), produit laitier (dairy product - 乳製品) and insuffisance cardiaque (heart failure - 心不全).

Finally, we created two French reference lists:
- [N ADJE] composed of 749 terms where ADJE is an epithetic adjective;
- [N ADJR] composed of 829 terms where ADJR is a relational adjective.

6.3 Default compositional method
We first evaluate the quality of the default compositional method for the two French reference lists. Table 2 shows the results obtained. The first three columns indicate the number of French and Japanese terms found, and the number of correct French-Japanese translations.

<table>
<thead>
<tr>
<th></th>
<th># French terms</th>
<th># Japanese terms</th>
<th># correct translations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[N ADJE]</td>
<td>76</td>
<td>98</td>
<td>68</td>
</tr>
<tr>
<td>[N ADJR]</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2: Production of the default compositional method

By comparison with the previous method, the results of this experiment show that a significant quantity of terms are now translated. Since compositional method can yield several Japanese translations for one French term, we associate 170 Japanese terms to 128 French terms with a high level of precision: 88.2%. Here, we are unable to generate any translations for 136 (16%) terms by comparison with the 227 terms (27%) for the default compositional method.

<table>
<thead>
<tr>
<th></th>
<th># French terms</th>
<th># Japanese terms</th>
<th># correct translations</th>
</tr>
</thead>
<tbody>
<tr>
<td>[N ADJR]</td>
<td>128</td>
<td>170</td>
<td>150</td>
</tr>
</tbody>
</table>

Table 4: Production of the morphologically-based compositional method

In Table 3, each French suffix is associated with the number of identify translations. The most productive suffix are -ique as glycémie/glycémique (glycemia/glycemic), -al as rein/renal (kidney/renal), -el as corps/corporeal (body/bodily), and -aire as aliment/alimentaire (food/dietary).

Finally from 859 terms relative to N ADJR structure, we translate 30 terms (5.1%) by the dictionary, 5 terms (0.6%) by the default compositional method, and 150 terms (17.5%) by the morphologically-based compositional method. It is difficult to find more translations for several reasons: i) some specialized adjectives or nouns are not included in our resources, ii) some terms are not considered by the Japanese extraction program, and iii) some terms are not encountered in the Japanese corpus.
Table 3: Production of relational adjective according to suffix

<table>
<thead>
<tr>
<th>Suffix</th>
<th># occ.</th>
<th>French term</th>
<th>Japanese term</th>
<th>(English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ique</td>
<td>94</td>
<td>patient diabétique</td>
<td>糖尿病患者</td>
<td>diabetes patient</td>
</tr>
<tr>
<td>-al</td>
<td>27</td>
<td>traitement hormonal</td>
<td>ホルモン療法</td>
<td>hormonal therapy</td>
</tr>
<tr>
<td>-el</td>
<td>18</td>
<td>trouble nutritionnel</td>
<td>栄養障害</td>
<td>nutritional disorder</td>
</tr>
<tr>
<td>-aire</td>
<td>15</td>
<td>cellule musculaire</td>
<td>腱肉細胞</td>
<td>muscular cell</td>
</tr>
<tr>
<td>-if</td>
<td>5</td>
<td>apport nutritif</td>
<td>栄養摂取</td>
<td>nutrition intake</td>
</tr>
<tr>
<td>-euse</td>
<td>4</td>
<td>cellule graisseuse</td>
<td>脂肪細胞</td>
<td>fat cell</td>
</tr>
<tr>
<td>-ier</td>
<td>4</td>
<td>centre hospitalier</td>
<td>センター病院</td>
<td>hospital complex</td>
</tr>
<tr>
<td>-ien</td>
<td>2</td>
<td>hormone thyroidien</td>
<td>甲状腺ホルモン</td>
<td>thyroid hormone</td>
</tr>
<tr>
<td>-in</td>
<td>1</td>
<td>lipide sanguien</td>
<td>血液脂質</td>
<td>blood lipid</td>
</tr>
</tbody>
</table>

7 Conclusion and future work

This study investigated the compilation of bilingual terminologies from comparable corpora and shows how to push back the limits of the methods used in alignment program to translate both single and multi-word terms. We proposed an extended compositional method that bridge the gap between MWTs of different syntactic structures through morphological links. We experiment the method on MWTs of N ADJ structure involving a relational adjective. By the use of a list of stripping-recoding rules conjugated with a term extraction program, the method is more efficient than the default compositional method. The evaluation proposed at the end of the paper shows that 170 French-Japanese MWTs are extracted with a high precision (88.2%). This increases the coverage of the French-Japanese terminology of MWTs that can be obtained by the bilingual dictionary or the default compositional method.

In this study, we have observed that MWTs are of a different nature in each language: French patterns cover nominal phrases while Japanese patterns focus on morphologically-built compounds. A Japanese nominal phrase is not considered as a term: thus, the Japanese extraction program does not identify カロリーの摂取 (caloric intake) as a candidate MWT but カロリー摂取, unlike the French extraction program which does the contrary (apport calorique - caloric intake). Since our morphologically-based compositional method associated カロリー摂取 to apport calorique, we could get yield the nominal phrase カロリーの摂取 and improve further more lexical alignment.

References

Hervé Déjean, Fatia Sadat, and Éric Gaussier. 2002. An approach based on multilingual thesauri and model
combination for bilingual lexicon extraction. In Proceedings of the 19th International Conference on Computational Linguistics (COLING’02), pages 218–224, Taipei, Taiwan.

