An Elasto-visco-plastic Model of Cell Aggregates
Luigi Preziosi, Davide Ambrosi, Claude Verdier

To cite this version:
Luigi Preziosi, Davide Ambrosi, Claude Verdier. An Elasto-visco-plastic Model of Cell Aggregates. 2009. <hal-00361051v1>

HAL Id: hal-00361051
https://hal.archives-ouvertes.fr/hal-00361051v1
Submitted on 13 Feb 2009 (v1), last revised 21 Aug 2009 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An Elasto-visco-plastic Model of Cell Aggregates

L. Preziosi
Department of Mathematics – Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
preziosi@polito.it

D. Ambrosi
MOX-Dipartimento di Matematica, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20131 Milano, Italy

C. Verdier
Laboratoire de Spectrométrie Physique - UMR 5588
CNRS and Université Grenoble I
140 avenue de la Physique, BP 87
38402 Saint-Martin d’Hères cedex, France

September 23, 2008

Abstract
Concentrated cell suspensions exhibit different mechanical behavior depending on the mechanical stress or deformation they undergo. These systems have a mixed rheological nature: cells behave elastically or viscoelastically, they can adhere to each other whereas the carrying fluid is usually Newtonian. We report here on a new elasto–visco–plastic model which is able to describe the mechanical properties of a concentrated cell suspension or aggregate. It is based on the idea that the rearrangement of adhesion bonds during the deformation of the aggregate is related to the existence of a yield stress in the macroscopic constitutive equation. We compare the predictions of this new model with three experimental situations: steady shear rate, oscillatory shearing tests as well as relaxation after application of a prescribed deformation. All of these experiments are shown to agree with the predictions of the model.

1 Introduction
Cell aggregates or multicellular systems appear in embryo development [29, 28, 26, 39, 24] or in blood flow, but they are also involved in other processes such as hydra aggregates motion, dictyostelium slugs crawling [34, 33] and they are of considerable interest in tumour growth [1, 2, 14, 15, 42]. Their mechanical behavior is often assimilated to soft biological tissues, usually corresponding to viscoelastic materials or to non–Newtonian fluids [17].

On the other hand, it is known that the intrinsic properties of the base components - cells and collagen - as well as their concentration can influence the rheological properties of such aggregates [41]. The best example in this respect is provided by the early works of Chien on blood cell suspensions [7, 8]. He found that the mechanical properties of such suspensions are affected not only by the deformation of individual cells but also by the possible aggregation among cells. Macroscopically, cell aggregation gives rise to a yield stress, i.e. a characteristic tension that separates
the flow and solid regimes. Relationships between yield stress and individual cell properties, such as cell interfacial energy or their elastic moduli, has been provided relating the micro- and macro-properties by Snabre [37, 38]. Using this approach, Iordan et al. [20] were able to determine typical intrinsic properties for concentrated suspensions of Chinese Hamster Ovary cells (CHO). Other works deal with different types of cell suspensions [10, 12, 11, 13, 42], and similar behaviors are observed. Their interpretation of the experimental data is usually given in terms of a macroscopic mechanism, i.e. the surface tension of the aggregate. Different values of the relevant parameter can be provided from studies dealing with heart, limb bud, liver, neural retina embryos. They show that cell aggregates can reorganize themselves like liquids with surface tension, as long as specific criteria are met for cell ordering [27, 5]. On the other hand, a yield stress might play a crucial role. In the typical compression experiment of Forgacs et al. [10], a fixed deformation is applied to the cell aggregate. The internal stress then relaxes until an asymptotic value is reached. This phenomenon could be explained using relaxation combined with a yield stress, as observed with other types of yield stress fluids of rheological interest [20, 32]. Therefore, models of viscoelastic behaviors coupled with a yield stress, although not yet much investigated, could be helpful in such cases [2, 35, 36]. Such models are called elasto-visco-plastic and have been applied in the past to various complex materials [19].

The purpose of this work is to compare the predictions of a visco-elasto-plastic model [2] with simple rheological experiments such as shear or compression tests. The model is illustrated in Sections 2 and 3 and it is then applied to cell aggregates and compared to different experiments in Section 4. Steady shear is considered in Section 4.1 where the results are compared with relevant data [20], stress relaxation and oscillatory shear tests are discussed in Sections 4.2 and 4.3, elastic recovery after shear is illustrated in Section 4.4. In the last section, compression experiments taken from the literature [10, 12, 13, 42] are re-considered in the framework of this new model.

2 Kinematics and Balance Laws

The present paper develops according to the arguments illustrated in [2], with one assumption that simplifies the algebraic aspects of the theory: As the time scale for cell mitosis and apoptosis is much larger then the typical time scale of mechanical experiments, here macroscopic growth is neglected; the focus is then on the plastic and elastic deformation and on the comparison with experiments known in the literature.

We will consider the cell aggregate as a deformable porous material filled of physiological liquid. The volume ratio of the solid phase is denoted by \(\phi \). We assume that at equilibrium the intercellular fluid pressure is hydrostatic so that it plays no role in the dynamics. We therefore restrict to consider the dependence of the cellular volume fraction in the aggregate tension field.

A useful paradigm for elastoplastic deformations is the multiplicative decomposition of the deformation gradient \(F \) [22, 23]. This is a mapping from the tangent space related to the initial (reference) configuration \(\mathcal{K}_0 \) onto the tangent space related to the current configuration \(\mathcal{K} \) and indicates how the body is deforming locally going from \(\mathcal{K}_0 \) to \(\mathcal{K} \). A virtual intermediate configuration is then introduced, imagining that each point of the body is allowed to relieve its state of stress while relaxing the continuity requirement, i.e. the integrity of the body. It then relaxes to a stress-free configuration. The atlas of these pointwise configurations forms what we define natural configuration with respect to \(\mathcal{K} \) and denote by \(\mathcal{K}_n \).

The relaxed state \(\mathcal{K}_n \) can differ from \(\mathcal{K}_0 \) because during the deformation cells in the configuration \(\mathcal{K}_n \) can undergo internal re-organization, which implies re-arranging of the adhesion links among the cells. We identify the deformation without cell re-organization with the tensor \(F_n \), describing how the body is deforming locally while going from the natural configuration \(\mathcal{K}_n \) to \(\mathcal{K} \). In this particular case, we will assume that for any given point the volume ratio in the natural configuration \(\mathcal{K}_n \) and in the original reference configuration \(\mathcal{K}_0 \) are the same.

According to the two-step process outlined above, the deformation gradient is then split as

\[
F = F_n F_p.
\]
In the following we will also use the following tensors

\[L = \dot{F}F^{-1}, \quad L_n = \dot{F}_nF_n^{-1}, \quad \text{and} \quad L_p = \dot{F}_pF_p^{-1}. \]

(2.2)

From standard tensor calculus one has

\[\dot{J}_p = J_p \text{tr} \mathbb{D}_p, \]

(2.3)

where

\[J_p = \det F_p \quad \text{and} \quad \mathbb{D}_p = \frac{1}{2}(L_p + L_p^T). \]

(2.4)

The assumption that the volume ratios in the natural and in the original reference configuration are the same implies \(J_p = 1 \) and therefore

\[\text{tr} \mathbb{D}_p = 0. \]

(2.5)

After deriving

\[B_n = F_nF_n^T, \]

(2.6)

with respect to time, one has

\[\dot{B}_n = L_nB_n + B_nL_n^T, \]

(2.7)

while, deriving \(F \) in time, one has

\[F = \dot{F}_nF_p + F_n\dot{F}_p = \dot{L}_nF_nF_p + F_n\dot{F}_pF_n^{-1}F_n^{-1}F_nF_p = (L_n + F_nL_pF_n^{-1})F, \]

(2.8)

that, using the definition (2.2) can be rewritten as

\[L_n = L - F_nL_pF_p^{-1}. \]

(2.9)

Back substitution of (2.9) into (2.7) gives

\[\dot{B}_n = L\dot{B}_n + B_nL^T - 2F_n\mathbb{D}_pF_n^T. \]

(2.10)

Introducing the following notation for the Maxwell upper convected derivative,

\[\frac{\mathbb{D}M}{\Delta t} = \dot{M} - LM - ML^T, \]

(2.11)

the following simple expression is recovered

\[\frac{\mathbb{D}B_n}{\Delta t} = -2F_n\mathbb{D}_pF_n^T. \]

(2.12)

3 Stress tensor for the cellular material

Our aim is to include elasto-visco-plastic effects in the mechanics of cell aggregates detailing the constitutive equation for the stress tensor. The starting point of the theory is the following experimental evidence, that holds when a cell aggregate undergoes compression

1. for a moderate amount of stress, the cell aggregate deforms elastically;

2. above a yield value the cell aggregate undergoes internal re-organization which is modelled at a macroscopic level as a visco-plastic deformation.

The work needed to break a single cell-to-cell bond is measurable; the threshold of the onset of cell re-organization is proportional to the area of the cell membranes in contact times the bond energy \[4\], so that it depends on the number of cells per unit volume. Figure 1 is a photograph of a CHO cell suspension (Chinese Hamster Ovary, epithelial cell line, 52% concentration in culture medium) It illustrates the typical configuration of a cell aggregate: cells are packed, they touch
each other and deform elastically, but they may shear and re-organize when a large enough stress is applied. We denote by $\tau(\phi)$ the minimum tension that induces the above shearing behavior and we call it the yield stress. In the following we will compare it with a frame invariant measure of the stress (ϕT) of the cellular constituent. It is worth to remark that the volume ratio is a macroscopic measure originated from an average and a small volume ratio can correspond to dispersed single cells as well as clusterized ensembles. In the former case, the yield stress is expected to be very low or null. In the second case, according to the theory of the dynamics of colloidal particles and flocculated suspensions, the yield stress should increase with the second or the third power of the volume ratio $[6, 38, 7]$. Iordan et al. $[20]$ measured $\tau(\phi)$ to be proportional to $\phi^{8.4}$. They also find the dependence of the shear elastic modulus to vary like $\phi^{11.6}$, not very far from other recent results for weakly aggregated suspensions $[32]$. On this basis, the following elastic-type constitutive equation can be suggested in the elastic regime

$$T = \hat{T}Bn,$$

if $f(\phi T) \leq \tau(\phi).$ (3.1)

where f is a suitable measure of the stress. Basov and Shelukhin $[3]$ suggest to use

$$t(n) = \phi[\hat{T}n - (n \cdot Tn)n],$$

(3.2)

that represents the tangential stress vector relative to the surface identified by the normal n. In particular, we will use

$$f(\phi T) = \max_{|n|=1} |t(n)|,$$

representing the maximum shear stress magnitude occurring in the plane identified by the eigenvector corresponding to the maximum of $|t(n)|$. It can be proved (see, for instance, $[25]$) that f is given by half of the difference between the maximum and the minimum eigenvalue of ϕT. Also observe that $f(T) = f(T')$ where $T' = T - \frac{1}{3}(\text{tr}T)I$.

We assume that when the tension overcomes the yield stress in terms of the stipulated measure (3.3), the energy is no longer elastically stored but it is spent in cell unbinding at the microscopic scale, i.e. material rearrangement at the macroscopic scale. Such a pictorial description is put into formal terms by the following constitutive equation

$$\left[1 - \left(\frac{\tau(\phi)}{f(\phi T')}\right)^a\right](\phi T') = 2\eta(\phi)F_nD_{p\phi}F^{-1}_n,$$

if $f(\phi T') > \tau(\phi)$, (3.4)
where T' operates on the current configuration and, for the sake of compatibility, D_p is pulled back using F_n. We can merge the above equation to the condition that there is no evolution of the natural configuration when and where the shear stress is smaller than the yield stress by writing

$$F_n D_p F_n^{-1} = \frac{1}{2\tilde{\eta}} \left[1 - \frac{1}{f(T')} \right] + T', \quad (3.5)$$

where $[]_+$ stands for the positive part of the argument, $\tilde{\eta} = \eta(\phi)/\phi$, and $f(T') = [f(\phi T')/\tau(\phi)]^\alpha$ with α between 0 and 1.

Notice that

$$\text{tr}(F_n D_p F_n^{-1}) = \text{tr} D_p = 0, \quad (3.6)$$

as it should be, hence the l.h.s. of (3.5) is traceless as T'.

In alternative, we can re-write (3.5) as

$$\left[1 - \frac{1}{f \left(\frac{S_n C_n}{J_n} \right) \left(\frac{S_n C_n}{J_n} \right)'} \right] + \frac{S_n' C_n}{J_n} = 2\tilde{\eta} D_p, \quad (3.7)$$

where $S_n' = J_n F_n^{-1} T' F_n^{-T}$ is the (excess) second Piola-Kirchhoff stress tensor and $C_n = F_n^{-T} F_n$. It can be noticed that since

$$\text{tr}(S_n' C_n) = \text{tr}(J_n F_n^{-1} T' F_n) = J_n \text{tr} T' = 0 \quad (3.8)$$

$S_n' C_n$ is traceless as D_p.

In addition, if we assume that the cellular spheroid obeys a neo-Hookean law,

$$T = \mu(\phi)(-\Sigma I + B_n) \quad (3.9)$$

where $\Sigma = \Sigma(\phi/\phi_n)$, with $\Sigma(1) = 1$, then $S_n C_n$ has the same eigenvalues as T' so that $f \left(\frac{S_n C_n}{J_n} \right) = f(T')$, and $\mu(\phi)$ is the shear elastic modulus.

In this case, F_p evolves according to

$$\dot{F}_p = \frac{\mu}{\tilde{\eta}} \left[1 - \frac{1}{f \left(\frac{B_n}{\frac{1}{3}(\text{tr} B_n)I} \right) \left(\frac{B_n}{\frac{1}{3}(\text{tr} B_n)I} \right)'} \right] + F_n^{-1} \left(B_n - \frac{1}{3}(\text{tr} B_n)I \right) F. \quad (3.10)$$

Eq. (3.10) can be phenomenologically explained in the following way: if the body undergoes a deformation corresponding to a stress below the yield stress, then the square parenthesis vanishes and F_p does not change, i.e., the natural configuration does not evolve and all the energy is stored elastically. If the measure of tension f takes a value larger than the yield stress, then the reference configuration changes to release the stress in excess, until the yield condition defined by f is reached again. The ratio $\tilde{\eta}/\mu$ gives an indication of the characteristic time needed to relax the internal stress through the re-organization of cells and to return the yield condition.

Deriving

$$T' = \mu \left(B_n - \frac{1}{3}\text{tr} B_n I \right) \quad (3.11)$$

and recalling (3.3) one can write

$$\dot{T}' = \mu \left(L B_n + B_n L^T - 2F_n D_p F_n^{-T} - \frac{1}{3} \text{tr}(L B_n + B_n L^T - 2F_n D_p F_n) I \right). \quad (3.12)$$

Using (3.5), one then has

$$\dot{T}' + \frac{\mu}{\tilde{\eta}} \left[1 - \frac{1}{f(T')} \right] + T'B_n - \frac{1}{3} \text{tr}(T'B_n) I = \mu \left[L B_n + B_n L^T - \frac{1}{3} \text{tr}(L B_n + B_n L^T) I \right], \quad (3.13)$$
which can be written in terms of upper convective derivative as
\[
\frac{D\mathcal{T}'}{Dt} + \frac{1}{\lambda} \left[1 - \frac{1}{f(T')} \right]_+ \left(\mathcal{T}'\mathcal{B}_n - \frac{1}{3} \text{tr}(\mathcal{T}'\mathcal{B}_n)\mathbb{I} \right) = \frac{2}{3} \mu \left[\text{tr}(\mathcal{B}_n)\mathbb{D} - \text{tr}(\mathcal{B}_n\mathbb{D})\mathbb{I} \right],
\]
(3.14)
where \(\lambda = \frac{\hat{\eta}}{\mu} \) will be called here the plastic rearrangement time.

4 Small Deformations from the Relaxed State

We now assume that the deformation from the natural configuration is small. This assumption applies depending on the value of the yield stress: it has to be small enough so that the condition \(|\mathcal{B}_n \cdot \mathbb{I} - 3| \ll 1 \) is always satisfied during the motion. The experiments by Iordan et al. \([20]\) give an indication of the order of magnitude of the yield stress. In this regime, for small elastic strain, one can use linear elasticity while for larger stress, the natural configuration evolves, keeping the deformations with respect to the evolving natural configuration small. In the limit of small elastic deformations
\[
\mathcal{L}\mathcal{B}_n + \mathcal{B}_n\mathbb{I}^T \approx 2\mathbb{D}, \quad \text{and} \quad \mathcal{T}'\mathcal{B}_n \approx \mathcal{T}',
\]
(4.1)
and therefore (3.13) simplifies to
\[
\dot{\mathcal{R}}' + \frac{1}{\lambda} \left[1 - \frac{1}{f(T')} \right]_+ \mathcal{T}' = 2\tilde{\eta} \left(\mathbb{D} - \frac{1}{3} \text{tr}(\mathbb{D})\mathbb{I} \right).
\]
(4.2)
We observe that in (4.2), the term containing the yield stress plays the role of a stress relaxation term but it switches on just when the stress is above the yield value. Otherwise, for \(\tilde{f}(\mathcal{T}') < 1 \), (4.2) can be integrated to give back the elastic equation (3.11).

Similarly to classical viscoelasticity \([18, 21]\), here the plastic rearrangement time \(\lambda \) identifies the characteristic time needed to relax the stress to the yield value (not the null one, as in Maxwell fluids).

Rewriting (4.2) as
\[
\lambda \dot{\mathcal{T}}' + \left[1 - \frac{1}{f(T')} \right]_+ \mathcal{T}' = 2\tilde{\eta} \left(\mathbb{D} - \frac{1}{3} \text{tr}(\mathbb{D})\mathbb{I} \right),
\]
(4.3)
it is easy to realize that for processes with characteristic times larger than \(\lambda \) and stresses much larger than \(\tau \) (i.e., \(\tilde{f} \gg 1 \)) the model behaves like the viscous models used in \([14, 15, 16]\).

Following the same argument proposed in \([30, 31]\) one can state that in transient phenomena for times much larger than the plastic rearrangement time \(\lambda \) identifies the natural configuration evolving relaxing the stress and dissipation stops when the state of stress of the material reaches the surface identified by the yield condition.

We now want to analyze the behavior of the constitutive model above under several shear and compression tests.

For pure shear tests (4.2) rewrites
\[
\dot{T} + \frac{1}{\lambda} \left[1 - \left(\frac{\dot{\tau}}{T} \right) \right]_+ T = \mu \dot{\gamma},
\]
(4.4)
where \(\dot{\gamma} \) is the shear rate, \(f(T) = |T_{xy}| = |T| \) and \(\tau = \tau(\phi) / \phi \). The case \(\alpha = 1 \) corresponds to a Bingham fluid while the limit case \(\alpha = 0 \) corresponds to an elastic fluid. In the following, sometimes the particular case \(\alpha = 1 \) will be considered in more detail, because it allows to write analytical solutions in an easy way and to easily understand the main feature of the constitutive model.
4.1 Steady shear

According to the model illustrated in the previous section, when a cell aggregate undergoes a standard shear test with smooth loading, initially the body deforms elastically and the stress grows until the yield value $\dot{\tau}$ is reached. In this initial regime the cell bonds are simply stretched, no internal re-organization occurs, the natural configuration does not evolve, and the body would be able to return to the initial stress-free configuration. When locally the stress overcomes the yield value, some adhesion bonds break, new ones form and the natural configuration evolves. The body is then not able to return to the original configuration any longer.

As an example, consider the case of shear increasing linearly in time, i.e., $\gamma = \dot{\gamma}_0 t$ and $\alpha = 1$. Integration in time of (4.4) gives

$$ T(t) = \begin{cases} \mu \gamma_0 t, & \text{for } t \leq t_\tau = \frac{\dot{\tau}}{\mu \gamma_0}, \\ \dot{\tau} + \mu \gamma_0 \lambda \left[1 - e^{-(t + t_\tau)/\lambda} \right], & \text{for } t > t_\tau. \end{cases} \quad (4.5) $$

If $t \to \infty$ then $T(t) \to \dot{\tau} + \tilde{\eta} \dot{\gamma}_0$. This means that plotting the apparent viscosity $\eta(\dot{\gamma}_0) = T/\dot{\gamma}_0$ as a function of the shear rate $\dot{\gamma}_0$, the plot should depend on $\dot{\gamma}_0^{-\alpha}$ for small $\dot{\gamma}_0$. This is the case of experiments shown in [20].

In general, for $0 \leq \alpha \leq 1$, the relation between $\dot{\gamma}_0$ and the apparent viscosity $\eta(\dot{\gamma}_0)$ is given by

$$ \dot{\gamma}_0 = \frac{\dot{\tau}}{\eta(\dot{\gamma}_0)} \left(1 - \frac{\tilde{\eta}}{\eta(\dot{\gamma}_0)} \right)^{-1/\alpha}. \quad (4.6) $$

If $\eta \to \infty$ then $\dot{\gamma}_0$ goes to zero as $\dot{\tau}/\eta(\dot{\gamma}_0)$ that implies that for small $\dot{\gamma}_0$, the apparent viscosity $\eta(\dot{\gamma}_0)$ behaves like $\dot{\gamma}_0^{-1}$. On the other hand, if $\eta \to \tilde{\eta}$ then $\dot{\gamma}_0$ goes to infinity, that means that at high shear rates, the apparent viscosity $\eta(\dot{\gamma}_0) = T/\dot{\gamma}_0$ goes towards its limiting value $\tilde{\eta}$. This limit is concentration dependent and has been obtained experimentally [9, 20]. A plot of the viscosity dependence against shear rate is presented in Fig.2a. One can note the limiting behaviors at small shear rates (slope -1 on this log-log figure). At high $\dot{\gamma}_0$, the viscosity reaches its limit $\tilde{\eta}$.

In order to observe the behavior close to the limit $\tilde{\eta}$, a plot of the reduced viscosity $\eta(\dot{\gamma}_0) - \tilde{\eta} \over \eta - \tilde{\eta}$ is shown in Fig.2b and the limiting behavior for high shear rates can be explained. Noting that (4.6) can be partly inverted, it is obtained that

$$ \frac{\eta(\dot{\gamma}_0) - \tilde{\eta}}{\eta} = \frac{\eta(\dot{\gamma}_0) - \tilde{\eta}}{\eta} \left(\frac{\eta(\dot{\gamma}_0)}{\eta} \right)^{-\alpha}. $$

Therefore, as $\eta(\dot{\gamma}_0)$ approaches $\tilde{\eta}$ in the high shear rate domain,

$$ \frac{\eta(\dot{\gamma}_0) - \tilde{\eta}}{\eta} \sim \left(\frac{\dot{\gamma}_0}{\tau} \right)^{-\alpha}. $$

This means that in a log-log plot a slope of $-\alpha$ should be obtained as the apparent viscosity approaches $\tilde{\eta}$ for large shear $\dot{\gamma}_0$, as shown in Fig.2b.

In order to validate the model with a true biological aggregate, parameter adjustments are made using the data of Iordan et al. [20] in Fig.3b. The only adjustable parameters are found to be $\frac{\dot{\tau}}{\eta}$ and α, by simple scaling arguments. In our case, we fixed $\tilde{\eta} = 0.0013 Pa.s$ (the culture medium viscosity) and let $\dot{\tau}$ and α vary. A first attempt is made on the 42% concentration and values of the fitting parameters give $\dot{\tau} = 0.05 Pa$ and $\alpha = 0.01$. This is shown in Fig.3b.

Again, we carry on the same type of analysis and this gives rise to the following features in Fig.3a. We obtained that, in most cases, $0.001 \leq \alpha \leq 0.01$, using the same $\tilde{\eta} = 0.0013 Pa.s$. The values of the yield stress are found to be close to the ones obtained previously [20] and show a typical dependence of the type $\dot{\tau} \sim 962.2 \phi^{11}$, at large concentrations $0.4 \leq \phi \leq 0.6$. The small values found for α indicate that the system has some elastic properties, which will be discussed in Section 4.2.
Figure 2: Apparent viscosity $\eta(\dot{\gamma}_0) = T/\dot{\gamma}_0$ and reduced viscosity $\frac{\eta(\dot{\gamma}_0) - \tilde{\eta}}{\eta}$ for different values of the parameter α.
Figure 3: Comparison of the model vs. the experiments by Iordan et al. [20]. (a) Viscosity vs. shear rate at different volume ratios. (b) focuses on the case $\phi = 0.42$. Fitting parameters are $\hat{\tau} = 0.05 \text{ Pa}, \tilde{\eta} = 0.0013 \text{ Pa} \cdot \text{s}, \alpha = 0.01$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3a.png}
\caption{(a) Viscosity vs. shear rate at different volume ratios.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3b.png}
\caption{(b) Focuses on the case $\phi = 0.42$.}
\end{figure}
Finally, we observe that if $\alpha = 1/2$ then the steady response would satisfy

$$\sqrt{T} = \sqrt{\tau} + \frac{\eta}{\sqrt{T}} \dot{\gamma}_0,$$

that can be solved to give

$$\sqrt{T} = \sqrt{\frac{\tau}{4}} + \sqrt{\frac{\tau}{4} + \eta \dot{\gamma}_0},$$

that is close to the classical Casson’s relation $\sqrt{T} = \sqrt{\tau} + \sqrt{\eta \dot{\gamma}_0}$.

We conclude that, despite its simplicity, the model agrees quite well with the data obtained in [20].

4.2 Stress relaxation

A standard relaxation test is obtained applying a sudden constant deformation γ_0. If $\gamma_0 \leq \dot{\gamma}/\mu$, then the stress in the body is $T = \mu \gamma_0 (\ll \dot{\gamma})$ at any time corresponding to the straight line in Fig. 4a, an elastic response. If, on the other hand, $\gamma_0 > \dot{\gamma}/\mu$ the solution of Eq.(4.4) is

$$T(t) = \dot{\gamma} \left\{ 1 + \left[\left(\frac{\mu \gamma_0}{\tau} \right)^\alpha - 1 \right] e^{-\alpha t/\lambda} \right\}^{1/\alpha},$$

(4.7)

and is plotted in Fig. 4a for increasing values of γ_0 and in Fig. 4b for different α’s. In particular, for $\alpha = 1$

$$T(t) = \dot{\gamma} + (\mu \gamma_0 - \dot{\gamma}) e^{-t/\lambda}.$$

(4.8)

Hence for small strains the body behaves elastically, while for large strains part of the stress relaxes to the yield value $\dot{\gamma}$, regardless of the magnitude of the applied strain. Notice that the decrease toward the asymptotic state is faster for larger exponents.

4.3 Oscillatory shear

Oscillatory shear experiments are a common technique to characterize viscoelastic materials without much deforming the samples. Experiments of this type have been carried out using red blood cell suspensions [40] or recently with CHO cell suspensions [20].

The usual protocol way to do this is to apply a sinusoidal deformation $\gamma = \gamma_0 \sin(\omega t)$ and plot the stress response $T = T_0 \sin(\omega t + \psi)$. Here ω is the angular frequency, ψ the phase
angle, γ_0 the applied deformation and T_0 the stress amplitude. Typically, small deformations are used in order to remain in the linear regime. Therefore, one can define the elastic and viscous moduli (G', G'') which correspond respectively to the in–phase part of the stress (G') and out of phase part (G''). Typical moduli responses [20] vs. frequency in the case of concentrated cell suspensions usually show a plateau for the G' modulus whereas G'' usually increases slowly with frequency. Similarly, using red blood cell suspensions, Thurston [40] observed the appearance of a high elasticity (increasing values of G' vs. frequency) for higher concentrations of cells (typically 70%).

Researchers have used this method also for large deformations [19] thus obtaining a variety of results that are understood as the signature of complex fluids. Note that the stress response now includes other frequency modes such as $\omega, 3\omega,...$ In such a case, the values of moduli G' and G'' are plotted against the amplitude of the applied deformation γ_0, and usually show a decreasing behavior as in polymeric systems. Recently [19, 35], it has been found that other behaviors like strain hardening possibly followed by a decrease in G' or G'' could be observed with complex materials and this could be an interesting way to classify such a complexity.

Considering first small deformations and using (4.4) with the above applied sinusoidal deformation, we obtain an elastic behavior, when stresses are smaller than the yield stress $\hat{\tau}$:

$$\dot{T} = \mu \dot{\gamma} = \mu \omega \cos(\omega t)$$

Therefore, the complex moduli $G^* = G' + iG''$ is simply $G^* = \mu$. Note that normal stresses are neglected here, but could be included leading to slight changes in the moduli evolution [35]. This result is therefore not good enough to describe the behavior of aggregates as observed in our earlier work [20], although the behavior for G' is characteristic of such aggregates.

We next consider the resolution of (4.4) using a periodic sine wave for a large amplitude deformation. Results are shown in Fig.5a. The shear stress follows the oscillatory motion imposed by the deformation as long as it is below the yield stress $\hat{\tau}$ but as it becomes higher, it follows a more complex time dependence. G' and G'' can be deduced from the stress amplitude by Fourier transform providing the first modes $\sin(\omega t)$ and $\cos(\omega t)$. They are plotted in Fig.5b. G' is a constant equal to μ then decreases with deformation, at a critical deformation $\gamma_c \sim 0.01$. This critical value corresponds to the fact that the shear stress reaches the critical value $\hat{\tau} = \mu \gamma_c = 1Pa$ in this case. On the other hand, G'' increases from 0 to reach a maximum then decreases again with deformation or shows a plateau. This is usually the behavior called "weak strain overshoot" as obtained previously for Xanthan gum solutions [19, 35, 36].

The value of γ_c is found to be close to 1% (deformation of 0.01), even when the frequency is changed. As shown in Fig.5b, as ω increases, G' decreases in a less pronounced manner, and the loss modulus G'' decreases more slowly, except for the last case corresponding to an angular frequency $\omega = 500\ rad/s$, when it always increases.

4.4 Elastic recovery

To compare the predictions of the mathematical model illustrated above and the experimental results obtained by Foty et al. [11], we now consider a modification of the stress relaxation experiment consisting in releasing the imposed stress after some time from the beginning of the experiment. As already stated, if the imposed deformation is small as compared to the yield condition, then the body will go back to the original configuration. Otherwise, it induces an internal re-organization of the cells and the body will not recover its initial configuration, because in the meantime the natural configuration has changed. In fact, denoting by T_2 the value of stress before the sudden stress release (that is much faster than the cell re-organization time λ) the yield stress is reached for

$$\gamma = \gamma_2 = \frac{T_2 - \hat{\tau}}{\mu},$$

which is

11
Figure 5: Stress response when applying a sinusoidal deformation. Parameters: $\eta = 0.17 Pa \cdot s$, $\mu = 100 Pa$, $\dot{\gamma} = 1 Pa$, $\alpha = 0.5$, $\lambda = 0.001 s$. (a) Different stress responses for different $\gamma_0 = 0.001, 0.0022, 0.0046, 0.01, 0.022, 0.046, 0.1$. The response becomes nonlinear above 1% deformation. (b) Moduli G' (Gp) and G'' (Gpp) vs. deformation at different angular frequencies $\omega = 10 - 100 - 500 rad/s$.
independently of α. After that, the body will relax the stress, reaching the stress-free configuration when
\[
\gamma_{fn} = \gamma_2 - \frac{T_2}{\mu}. \tag{4.11}
\]
To be more specific, in the stress relaxation experiment described by Eq.(4.7), at time t_{compr} the compressing plate is removed so that the specimen is stress-free and
\[
\gamma_{fn} = \gamma_0 - \frac{\tau}{\mu} \left\{ 1 + \left(\frac{\mu^0}{\tau} \right)^\alpha - 1 \right\} e^{-\alpha t_{compr}/\lambda} \right\}^{1/\alpha}. \tag{4.12}
\]
In particular, if $t_{compr} \ll \lambda$, the exponential and the power in (4.12) can be approximated to give
\[
\gamma_{fn} \approx \gamma_0 \left[1 - \left(\frac{\tau}{\mu \gamma_0} \right)^\alpha \right] \frac{t_{compr}}{\lambda}. \tag{4.13}
\]
This means that if the compression is kept for such a small time that the body does not have enough time to re-organize, then the body will recover almost everything and return close to the original configuration mainly showing an elastic like behavior. If, on the other hand, $t_{compr} \gg \lambda$, then
\[
\gamma_{fn} = \gamma_0 - \frac{\tau}{\mu}, \tag{4.14}
\]
meaning that the body will still recover the amount τ/μ corresponding to the elastic component. In other words, it will not keep the value $\gamma = \gamma_0$ imposed, even if this is done for a very long time.

The above description is consistent with the observations in [11] (their figures 3 and 5) where they see that if the spheroid is compressed for few seconds then it will bounce back almost to the original configuration. If it is compressed for a longer time (few hours in their experiments) this does not occur though a minor shape recovery is observed. This can not be explained using the concept of surface tension, but is compatible with our model.

On the other hand, we have to point out that in this model the process is instantaneous, while it seems that in the experiment in [11] it takes some times for the spheroid to return to the natural configuration as in standard indentation tests. This might be due to the fact that here we completely neglected the fact that the spheroid is a porous material filled with the liquid in which the experiment is done. Such an effect can be included for instance taking into account that T is only one of the components of the stress and a further viscous component needs to be added to obtain the stress for the mixture as a whole T_m, i.e.,
\[
T_m = T + \eta \dot{\gamma}. \tag{4.15}
\]
In this case the process will take a characteristic time of the order of $\lambda/(1 + \frac{\mu}{\eta})$.

4.5 Uniaxial compression

In this section we study the response of a material satisfying (4.2) subjected to a uniaxial compression test in order to compare our model with the experimental results described in [10, 11, 42].

We will assume that the deformation is homogeneous and is given by
\[
x = \frac{X}{\sqrt{\psi(t)}}, \quad y = \frac{Y}{\sqrt{\psi(t)}}, \quad z = \psi(t) Z, \tag{4.16}
\]
with F_p given by
\[
F_p = \text{diag} \left\{ \frac{1}{\sqrt{\Psi(t)}}, \frac{1}{\sqrt{\Psi(t)}}, \Psi(t) \right\}. \tag{4.17}
\]
How $\Psi(t)$ differs from 1 then is a measure of how much the aggregate has re-organized and the natural configuration has evolved. Hence F and F_n are respectively given by
\[
F = \text{diag} \left\{ \frac{1}{\sqrt{\psi(t)}}, \frac{1}{\sqrt{\psi(t)}}, \psi(t) \right\}, \tag{4.18}
\]
and
\[F_n = \text{diag} \left\{ \sqrt{\frac{\Psi(t)}{\psi(t)}}, \sqrt{\frac{\Psi(t)}{\psi(t)}}, \sqrt{\frac{\Psi(t)}{\psi(t)}} \right\}. \tag{4.19} \]

Therefore, dropping \(t \) for sake of simplicity,
\[B_n = \text{diag} \left\{ \Psi, \Psi, \psi^2 \right\}, \tag{4.20} \]
and
\[T = \mu \text{diag} \left\{ -\Sigma + \Psi, -\Sigma + \Psi, -\Sigma + \Psi^2 \right\} = \text{diag} \left\{ 0, 0, P_{\text{appl}} \right\}, \tag{4.21} \]
where \(P_{\text{appl}} \) is the time–dependent applied stress in the \(z \)-direction.

In conclusion,
\[\Sigma = \Psi, \quad \text{and} \quad P_{\text{appl}} = \mu \frac{\psi^3 - \Psi^3}{\psi^2}. \tag{4.22} \]

On the other hand,
\[D_p = \dot{F}_p F_p^{-1} = \text{diag} \left\{ -\frac{1}{2}, -\frac{1}{2}, 1 \right\} \frac{\dot{\Psi}}{\sqrt{\Psi}}, \tag{4.23} \]
and therefore from (3.5)
\[\frac{\dot{\Psi}}{\Psi} = \frac{1}{3\tilde{\eta}} \left[1 - \frac{1}{f(T')} \right] + P_{\text{appl}} = \frac{1}{3\tilde{\eta}} \left[1 - \left(\frac{2\dot{\tau}}{|P_{\text{appl}}|} \right)^\alpha \right] + P_{\text{appl}}. \tag{4.24} \]

Substituting (4.22) in the equation above, one has the evolution equation for \(\Psi \), i.e., for the natural configuration
\[\dot{\Psi} = \frac{\mu}{3\tilde{\eta}} \left[1 - \left(\frac{2\dot{\tau}}{\mu} \frac{\psi \Psi^2}{\psi^3 - \Psi^3} \right)^\alpha \right] \frac{\psi^3 - \Psi^3}{\psi^2}. \tag{4.25} \]

In order to mimic Forgacs’ experiment assume that a given strain \(\psi_0 < 1 \) is imposed on the cell aggregate. Then, if the compression is sufficiently strong so that the square parenthesis above is positive, i.e.,
\[\frac{1}{\psi_0} - \psi_0^2 > \frac{2\dot{\tau}}{\mu}, \tag{4.26} \]
\(\Psi \) will decrease from \(\Psi = 1 \) according to
\[\dot{\Psi} = -\frac{\mu}{3\tilde{\eta}} \left[1 - \left(\frac{2\dot{\tau}}{\mu} \frac{\psi_0 \Psi^2}{\psi_0^3 - \Psi^3} \right)^\alpha \right] \frac{\psi_0^3 - \Psi^3}{\psi_0 \Psi}, \tag{4.27} \]
that is integrated in Fig. 6.

If the compression applies for a long enough time, then \(\Psi \) will tend towards that value \(\Psi_\infty > \psi_0 \) corresponding to the vanishing of the square parenthesis in (4.27), i.e.,
\[\frac{\Psi_\infty^3 - \psi_0^3}{\psi_0 \Psi_\infty^2} = \frac{2\dot{\tau}}{\mu}, \tag{4.28} \]
that is independent of \(\alpha \), as also evident from Figures 6a.

In particular, \(P_{\text{appl}} \) will tend to
\[P_{\text{appl},\infty} = \mu \frac{\psi_0^3 - \Psi_\infty^3}{\psi_0 \Psi_\infty^2} = -2\dot{\tau}, \tag{4.29} \]
(see Fig. 6b,d) that in addition of being independent of \(\alpha \) is also independent of \(\psi_0 \) as in the experiments in [10].
Figure 6: Uniaxial compression for $\dot{\tau}/\mu = 0.25$. Time is normalized with respect to $\tilde{\eta}/\mu$ and the applied stress is reported normalized with respect to μ. In (a,b) $\psi_0 = 0.75$ and $\alpha = 0.1, 0.3, 0.5, 0.7, 1$. In all cases the asymptotic value of Ψ is $\Psi_\infty = 0.8981$ and P_{appl}/μ tends to $2\dot{\tau}/\mu = -0.5$. In (c,d) α is fixed to 1 while ψ_0 changes. If $\psi_0 > 0.8351$ the compression is not strong enough to trigger cell re-organization and therefore $\Psi(t) = 1$ does not evolve and P_{appl}/μ is constantly equal to $\psi_0^2 - 1/\psi_0 > -0.5$.
In Fig. 6c,d instead the value of α is fixed to 1 and different compressions are applied. If $\psi_0 > 0.8351$ the compression is not strong enough to trigger cell re-organization and therefore $\Psi(t) = 1$ does not evolve and $|P_{\text{appl}}|$ is constantly below the yielding value that in this case is $2\hat{\tau} = 0.5$. For larger ψ_0 the natural configuration evolves and P_{appl} again tends to the constant value given in (4.29).

The behavior is then similar to the one described for shear tests in Section 4.4, though (4.27) cannot be easily solved. Finally, if at an instant t_2 (when $\Psi = \Psi_2 > \Psi_\infty$), the compression is suddenly released, then ψ will readily adjust to the value $\psi = \Psi_2$.

As already discussed above this result can be compared with the stress relaxation tests performed by Forgacs et al. [10]. They observe that the measured stress decreases to a value that depends on the tissue but is independent of the deformation imposed. They interpret this long time behavior as the effect of surface tension. In our view the same result can be interpreted using the constitutive model above and relating the asymptotic behavior to a measure of the yield stress.

The relation between the two interpretations is given by $\hat{\tau} = H\sigma$ where σ is the surface tension and H is the mean curvature of the compressed spheroids. Using the values in Forgacs et al. [10] the yield stress for the different tissues tested ranges between 1 to 100 Pa. Our results for a 60% concentration (the maximum one that we used) give a yield stress around 2 Pa, and higher concentrations will probably lead to data in the same range, especially since the yield stress is concentrated dependent like $\hat{\tau} \sim \phi^{11}$, as observed previously.

We mention that Forgacs et al. [10] point out the existence of two relaxation times in the cellular matter (one of the order of few seconds the other of the order of tens of seconds), that in our approach would be related to two re-organization mechanisms or to the detachment of different types of adhesion proteins. Of course, our model can be generalized to include more relaxation times.

5 Conclusions and Developments

In this paper we have derived a constitutive model that is able to describe the twin characteristics of cell aggregates: solid-like when and where the stresses are not large enough and liquid-like when and where the stress overcomes a sustainable threshold inducing internal cell re-organization. Though the constitutive model is kept as simple as possible, we have shown how it can reproduce the outcome of both shear tests performed by [20] and compression tests performed by [10, 12, 11, 13, 42]. The model also enabled us to predict the nonlinear dynamic shear behavior as often encountered with complex fluids.

Of course, the model can and need to be improved in several directions in order to reproduce more closely the behavior of cell aggregates. For instance, one should take into account the fact that the cell aggregate is a porous material filled with the liquid in which the experiment is done. Such an effect can be easily included by adding a further viscous component to the mechanical behavior of the cellular constituent. This is particularly important to explain creeping phenomena occurring when external stresses applied on the cellular aggregate are suddenly applied or released.

Another extension can be represented by the inclusion of more cell re-arrangement times, that can be related to different adhesion mechanisms. These can be due not only to different types of adhesion molecules at the cell membranes but also to the response occurring inside the cell itself with the rearrangement of the adhesion bonds connected to the actin cytoskeleton. In this case also the active role of myosin should be taken into account as well. Deducing a model with more relaxation times would certainly lead to a better fit of the experiments by [10, 12, 11, 13]. Nevertheless, the model provided here is a three-dimensional one, different from previous studies [10] suggesting to use simple one-dimensional Maxwell assemblies, coupled with the presence of an arbitrary surface tension. Here we provide a complete description of this visco-elastic-plastic model, and possible parameters have been chosen based on experimental data [20], this leading to relaxation constants in the range of the ones obtained previously [10].

This suggests that two possible interpretations are possible in relaxation tests. More work is
now needed to investigate more clearly the role of surface tension as opposed or coupled to yield stress effects.

References

