APPLICATION OF RESTORATION ECOLOGY PRINCIPLES TO THE PRACTICE OF LIMESTONE QUARRY REHABILITATION IN LEBANON

Carla Khater, Arnaud Martin

To cite this version:

Carla Khater, Arnaud Martin. APPLICATION OF RESTORATION ECOLOGY PRINCIPLES TO THE PRACTICE OF LIMESTONE QUARRY REHABILITATION IN LEBANON. Lebanese Science Journal, National Council for Scientific Research in Lebanon, 2007, 8 (1), pp.19-28. hal-00357029
APPLICATION OF RESTORATION ECOLOGY PRINCIPLES TO THE PRACTICE OF LIMESTONE QUARRY REHABILITATION IN LEBANON

Carla Khater and Martin Arnaud
National Council for Scientific Research, National Center for Remote Sensing, P.O.Box: 11-8281 Riad el Solh, Beirut, Lebanon
1 UMR 5175, Centre d’Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France
ckhater@cnrs.edu.lb

(Received 23 June 2006 - Accepted 1 March 2007)

ABSTRACT

Restoration ecology is an emerging science dealing with applied ecology and aiming at “helping nature to recreate itself”. This comprehensive paper presents the findings and main results related to the analysis of natural vegetation dynamics on abandoned limestone quarries in Mediterranean environment. It aims to answer three basic questions: where, when and how should intervention by ecological restoration be achieved in abandoned limestone quarries.

Results show that quarries are heterogeneous ecosystems and interventional strategies should be planned according to the different landforms observed. Quarry faces potentially host a particular saxicolous flora often composed of rare and endemic species, intervention is not recommended, unless required by urban planning issues. Intervention on platforms can be very expensive (substratum fracturing) and involves heavy engineering works. Restoration on quarry embankments aims at orienting and accelerating natural regeneration processes in order to shortcut the first stages naturally dominated by annuals and ruderal species. 27 species suitable for revegetation purposes have been identified for the different bioclimatic levels in Lebanon. They respond to two major criteria: availability in the natural surroundings (indigenous species) and adaptability to local conditions (pioneer adapted species). In conclusion, this paper suggests future openings for a development field integrating economical opportunities on solid scientific bases.

Keywords: restoration ecology, limestone quarries, rehabilitation strategies, plant adaptability, species availability, Mediterranean degraded ecosystems, Lebanon

Nomenclature Mouterde (1966)

INTRODUCTION

Restoration ecology is an emerging science that deals with several aspects of applied ecology situated at the interface between ecosystems concepts, plant biology and landscape engineering. The concept of restoration ecology is dated back to 1935 (Jordan et
al., 1987), but only in the late 80’s was it definitely defined as “an intentional activity that initiates or accelerates the recovery of an ecosystem with respect to its health, integrity and sustainability” (SER, 2002). The ecological trajectory of an ecosystem describes the developmental path of an ecosystem through time. It concerns as well the spontaneous trajectory in cases of natural regeneration, as well as any oriented pathway initiated by human intervention aiming to orient and accelerate natural processes. In principle, there are three possibilities to consider the restoration of a disturbed site (1) rely completely on spontaneous processes; (2) exclusively adopt technical measures and (3) combine (1) and (2) by directing natural/spontaneous succession (Prach, 2003).

Mediterranean ecosystems are defined by hydrological and temperature conditions that will determine the landscape organization (Quézel & Médail, 2003). On the ecological level, this will result in having (1) plant species adapted to drought as well as to winter sudden temperature drops, (2) accelerated erosion processes and (3) fragmentation of ecosystems and plant populations. Spontaneous regeneration, following ecosystem degradation can be seriously slowed down or completely hindered in such environmental constraints.

Over the past decades, Lebanon has witnessed anarchic exploitation of hilly ecosystems for quarrying purposes resulting in one quarry/15km² (Dar Handassah, 1996). Quarrying operations induce ecosystem disturbance and profound modifications on the substratum and the topographical profile of a site. On such heavily disturbed areas, spontaneous colonization is slow (Whisenant et al., 1995) and the natural vegetation succession is often inefficient to ensure proper protection against erosion (Bradshaw, 1993; 1997). Restoring disturbed ecosystems is often the result of land planning requirements; nevertheless, the intervention strategy should be inspired on the observation and analysis of the natural trajectory of the ecosystem (Bradshaw, 1987; Jochimsen, 2001). The success of such an operation is highly dependent on the choice of species to be used for revegetation purposes (Martin et al., 2002; Khater et al., 2003). The selection of such species should respond to three major principles: Biotic integrity (neighboring or local species), competitiveness (competitive perennial species in local conditions) and availability (presence in the market of viable seeds) (Martin et al., 2002; Khater, 2004).

This paper is based on the main results of an analysis of spontaneous vegetation dynamics on abandoned limestone quarries in Lebanon (Khater, 2004; Khater et al., 2003) and attempts to answer the following question: where and when is an intervention by ecological restoration really justified?

Therefore, this paper presents a methodology for practical interventions in ecological restoration on limestone quarry sites in Mediterranean environments.

STUDY AREA

The study area extends on the western part of Mount Lebanon on three vegetation levels defined along an altitudinal gradient of 500 m: the thermo, meso and supra Mediterranean (MOA, 1996). The rain fall regime concentrates from November to March and defines three bioclimatic levels on the study area (subhumid, humid and perhumid). The substratum is mainly composed of hard limestone particularly suitable for quarrying activities (Shaban et al., 1999).
MATERIALS AND METHODS

Mechanical excavations related to quarrying operations lead to the formation of three physiographical elements on a quarry site: cliffs, platforms and embankments. Cliffs or quarry faces are vertical headwalls resulting from the extraction of rocky materials for gravel and/or stone production. Platforms are horizontal landforms initiated by the quarrymen in order to facilitate truck mobility and transport of the material extracted. Embankments result from the erosion of neighboring slopes and/or reject material deposited. Substrata are mostly sterile and infertile lacking organic matter, microbial and faunal activity and seed bank (Fig.1).

Surveyed plots (116) were selected in representative quarries (26) in each of the different bioclimatic levels on each of the three physiographical elements within the quarry (cliffs, platforms and embankments) but also in the neighboring ecosystems defined here as the reference ecosystem (SER, 2002). On each site, an area of 75m² was inventoried by compiling a floristic list (290 species) and described 39 environmental parameters (phyto ecological releves). The surface cover was recorded for each species according to the Braun-Blanquet (1932) scale (0 to 5). Resulting data comprising 116 plots out of 26 quarries, enclosing 290 species and 39 environmental parameters were analyzed by multivariate correspondent analysis (Khater, 2004).
RESULTS AND DISCUSSION

In Mediterranean ecosystems, quarrying disturbance induce profound modifications on the landscape and stressful abiotic conditions on plant communities. It is thus difficult to estimate the speed of spontaneous vegetation recolonization. A dataset extending over 40 years shows that natural regeneration occurs at a very slow pace, up to 25-40 years in hard limestone quarries in Lebanon (Khater, 2004). Vegetation dynamics relies on species that are both available in the natural surroundings and adapted to local environmental (topography and soil) constraints. Since natural dynamics is specific upon the different topographic units within a quarry and spontaneous succession differs on embankments, on quarry faces and on platforms, it is necessary to adapt the restoration intervention accordingly.

Restoration on quarry faces

Natural cliffs naturally host a particular and diverse saxicolous and rupicolous flora (Boulet, 1996), especially in hilly Mediterranean landscapes (Coumoul & Mineau, 2002). Vertical quarry faces can be topographically compared to natural cliffs. Our surveys as well as those of Cullen et al. (1998) revealed comparable floristic composition between them. Natural surroundings cliffs could therefore be considered as reference ecosystems for quarry faces.

These surveys revealed the presence on quarry cliffs of rupicolous species, such as Centaurea speciosa, Galium canum, Putoria calabrica, Asperula libanotica, Tracheliposis tubulosa and Onosma frutescens many of which are endemic to the Mediterranean region. Scientific literature lacks suitable references highlighting the ecological value of abandoned quarries, but Arnal (1993) and Vela (2002) confirmed the presence in quarries of particular plant species, some of them being exclusive to this type of ecosystems and some rare and/or protected species spotted in abandoned quarries have been reported beyond their natural distribution area.

A restoration scheme on quarry faces should respect their potentialities to naturally host endemic and/or very interesting species. It is therefore recommended to avoid systematic intervention on quarry faces. Intervention should be restricted to urban surroundings when land use management is required.

Restoration on platforms

On quarries platforms, field visits revealed that species only occupied the rock fractures (Fig 1). Vegetation succession is very slow and seems unable to ensure sustainable effective spontaneous colonization. Intervention on such sites might be deemed necessary. Le Duc (1985) suggested rock fracturing with or without soil amendment as an appropriate but very costly method. Platforms could also be allocated as picnic areas, parking or even landfill sites depending on the quarry location. Consequently, reallocating quarry platforms will require implementation of important security measures and “visitor centers” if site planning implies regular public visits. In those cases, quarry platforms management rather falls under site engineering vocabulary than under restoration ecology principles.
Restoration on embankments

In Mediterranean region natural vegetation succession on quarry embankments is initiated and dominated by annual species as well as “all purpose” or cosmopolitan species.

Such taxa invest in reproduction and dissemination strategies, through short and rapid cycles of soil occupation monitored by germination, rapid vegetative spring growth and seed production and death of mother plant in late summer. Therefore, during the rainy autumns in Mediterranean ecosystems, the annual vegetation fails to ensure sufficient soil cover and important erosions result on barren substrata. Spontaneous establishment of perennial vegetation composed of hemicryptophytes, chamaephytes and phanerophytes capable of ensuring lasting soil occupation and surficial stabilization by root development will only occur 5 to 6 years after site abandonment. Table 1 presents the dominant species recorded on quarry embankments in comparison to those in reference ecosystems in the different rainfall ranges/bioclimatic levels.

These results (Khater et al., 2003) have shown that intervention on quarry embankments would not only enhance vegetation cover composition but will also reduce erosion by providing long lasting plant rooting, ensure a better stabilization of substrata and promote visual integration within the landscape.

Figure 2. Hydroseeding technique particularly adapted to revegetate steep slopes and hard access areas.
<table>
<thead>
<tr>
<th>Range Fall Ranges</th>
<th>Major species on quarry embankments</th>
<th>Major species on both quarry embankments and reference ecosystems</th>
<th>Major species in reference ecosystems</th>
</tr>
</thead>
</table>
| 700- 1000 mm Sub humid | Inula viscosa
Avena Sterilis
Verbascum sinuatum
Lotus corniculatus
Geranium distachyum | Sarcopoterium spinosum
Callycotome villosa
Phagnalon rupestre
Micromeria nervosa
Ainsworthia cordata | Rubia tenuifolia
Uroserpeum picroides
Helichrysum sanguineum
Trifolium stellatum
Anagallis arvensis
Stachys distans
Teucrium pollium |
| 1000- 1200 mm Humid | Inula viscosa
Oryzopsis miliaceae
Geranium distachyum | Salvia triloba
Ptilostemon chamaepeuce
Stachys distans
Origanum syriacum
Callycotome villosa | Rubia tenuifolia
Cistus creticus
Smilax aspera
Pinus pinea
Quercus calliprinos
Pistacia palaestina |
| 1200- 1500 mm Per humid | Inula viscosa
Dactylis glomerata
Ainsworthia cordata | Origanum syriacum
Rhamnus punctata
Sarcopoterium spinosum
Melica uniflora
Salvia triloba
Anthemis creticum
Helichrysum sanguineum
Verbascum sinuatum | Rubia tenuifolia
Stachys distans |
An adapted restoration strategy on quarry embankments should orient the natural processes towards an earlier establishment of perennial taxa in order to shortcut the annuals phase and ensure a rapid self sustained vegetation succession and ecosystem development. Previous researches (Coumoul & Mineau, 2002; Martin et al., 2002; Brofas & Karestos, 2002) have proven that revegetation by hydroseeding is one of the best suited methods for high steep and hard access sites such as quarries and highway embankments and allowed to shortcut the natural succession processes by gaining 5 to 10 years on natural processes (Coumoul & Mineau, 2002). The method consists on spraying a seed assortment mixed with straw mulch and water, by means of a pump and a hose directly to the depleted area to be restored (Fig 2).

Intervention should be inspired on the natural trajectory of the ecosystem i.e from plant communities observed in situ (Bradshaw, 1997; Khater, 2004). Then it appears the question on the choice of best suited species to be used for such purposes.

Choosing species for revegetation purposes

Success of revegetation operations depend on the choice of species used in the seed mixture, with respect to the principles of biological integrity, local competitiveness and seed availability and adaptability (Pywell et al., 2002; Kater et al., 2003; Pywell et al., 2003). Therefore this choice is mainly articulated on three main axes: ecological needs, agro-ecological constraints (biology of the species) and economical feasibility.

Seed mixture should be composed of:

1) Species naturally present in the direct surroundings of the degraded site (principle of availability), and species that naturally develop in comparable sites (principle of adaptability); adding such species in the seed mixture helps reinforcing the chances of their establishment and further on-site colonization

2) Species absent from the direct surroundings of the site but whose ability to colonize comparable environments is indicated by their presence in similar degraded sites (principle of adaptability but non availability).

Seed mixture for revegetation on quarry embankments should include broad spectrum species that have the ability to colonize various types of ecosystems, described as “all purpose” species or « generalistic species » sensu Pywell et al. (2003). Those species will ensure rapid vegetation development. The integration of hemicyryptophytes and chamaephytes will ensure long lasting cover. This later category should include some specialized saxicolous, rock adapted species. Choosing small sized seeds that are able to penetrate in the gaps of the stony substrata, will enhance the chances of species colonization.

In reference to species auto ecology, Table 2 displays for three ranges of rainfall, suggested generalistic herbaceous species and specialized chamephytes, to be used in revegetation intervention on embankments (limestone quarries, side roads, degraded mountain slopes) in Lebanon.
TABLE 2

Suggested *Taxa* for Revegetation of Quarry Embankments in Lebanon in the Different Bioclimatic Level

<table>
<thead>
<tr>
<th>Rainfall range</th>
<th>« Generalistic » herbaceous</th>
<th>« Specialized » chamaephytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>700-1000 mm Sub humid bioclimatic level</td>
<td>Bromus madritensis</td>
<td>Teucrium pollium</td>
</tr>
<tr>
<td></td>
<td>Dactylis glomerata</td>
<td>Putoria calabrica</td>
</tr>
<tr>
<td></td>
<td>Hymenocarpus circinatus</td>
<td>Salvia triloba</td>
</tr>
<tr>
<td></td>
<td>Hyparrhenia hirta</td>
<td>Ononis reclinata</td>
</tr>
<tr>
<td></td>
<td>Blackstonia perfoliata</td>
<td>Ptilostemon chamaepeue</td>
</tr>
<tr>
<td></td>
<td>Melica uniflora</td>
<td>Phagnalon rupestre</td>
</tr>
<tr>
<td>1000-1200 mm Humid bioclimatic level</td>
<td>Ainsworthia cordata</td>
<td>Salvia triloba</td>
</tr>
<tr>
<td></td>
<td>Dactylis glomerata</td>
<td>Origanum syriacum</td>
</tr>
<tr>
<td></td>
<td>Hymenocarpus circinatus</td>
<td>Putoria calabrica</td>
</tr>
<tr>
<td></td>
<td>Andropogon distachyus</td>
<td>Ptilostemon chamaepeue</td>
</tr>
<tr>
<td></td>
<td>Dactylis glomerata</td>
<td>Phagnalon rupestre</td>
</tr>
<tr>
<td></td>
<td>Urospermum picroides</td>
<td>Stachys distans</td>
</tr>
<tr>
<td></td>
<td>Oryzopsis holciformis</td>
<td>Satureja thymbra</td>
</tr>
<tr>
<td></td>
<td>Andropogon distachyus</td>
<td></td>
</tr>
<tr>
<td>1200-1500 mm Per humid bioclimatic level</td>
<td>Sterigmostemon sulphureum</td>
<td>Ptilostemon chamaepeue</td>
</tr>
<tr>
<td></td>
<td>Euphorbia thamnoides</td>
<td>Teucrium pollium</td>
</tr>
<tr>
<td></td>
<td>Oryzopsis holciformis</td>
<td>Phagnalon rupestre</td>
</tr>
<tr>
<td></td>
<td>Lotus corniculatus</td>
<td>Calycotome villosa</td>
</tr>
<tr>
<td></td>
<td>Poterium verrucosum</td>
<td>Stachys distans</td>
</tr>
<tr>
<td></td>
<td>Ainsworthia cordata</td>
<td>Salvia triloba</td>
</tr>
<tr>
<td></td>
<td>Hymenocarpus circinatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andropogon distachyus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyparrhenia hirta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dactylis glomerata</td>
<td></td>
</tr>
</tbody>
</table>
Once those scientific requirements in relation with the choice of adapted species to be used are met, we are faced with two alternatives in order to make those seeds available for revegetation operations. One could either use directly harvested seeds from natural populations or harvested seeds can be used to cultivate mother plants themselves becoming a source of seeds. In this latter option, it is important to develop adequate know how in terms of agricultural domestication of such wild species for their production. Those techniques have been mastered in Southern France to develop into an active economical branch especially devoted to the production of “wild cultivated species”, mainly used in restoring side road and railways embankments (Martin et al., 2002).

CONCLUSION

Restoration of degraded sites implies enabling spontaneous mechanism to occur in shorter periods of time by making available adapted species by revegetation. Quarries represent extreme cases of degradation characterized by complete removal of vegetation cover and profound landform modifications. Conclusions drawn of such ecosystems are therefore applicable to other types of degraded sites such as side road embankments, mountain slopes. It is also possible to rely on the findings presented in this paper in a landscaping perspective introducing alternatives towards water economy in urbanized areas by promoting the use of indigenes adapted species for landscaping purposes.

Going beyond scientific results, strategic orientation for Lebanon would be to develop economical opportunities in the restoration field as it was the case 15 years ago in Southern France. Relying on governmental and academic institutions for collecting, domesticating, producing wild species would orient further commercial activities for their promotion and use. This first step represents leading potentials for new economical openings combining landscape integrity and local community involvement.

REFERENCES

Boulet, L. 1996. Approche phytoécologique de la dynamique des végétations primaires dans les carrières de roches massives. These de doctorat. Université de Rennes I.

Shaban, A., Bou Kheir, R. and Khawlie, M. 1999. Land degradation through the study of gully development on rendzinas soils and soft marl rocks in the Saida area, South Lebanon. 6th International Meeting on Soils with Mediterranean Type of Climate (I MSMT C), Barcelona (Catalonia), Spain.
