Distributive semilattices as retracts of ultraboollean ones; functorial inverses without adjunction
Friedrich Wehrung

To cite this version:

HAL Id: hal-00002854
https://hal.archives-ouvertes.fr/hal-00002854v2
Submitted on 30 Aug 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DISTRIBUTIVE SEMILATTICES AS RETRACTS OF
ULTRABOOLEAN ONES; FUNCTIORAL INVERSES
WITHOUT ADJUNCTION

FRIEDRICH WEHRUNG

Souviens toi, ma petite Lynn,
la perle du petit dragon...

Abstract. A \langle \vee, 0 \rangle-semilattice is ultrabolean, if it is a directed union of finite
Boolean \langle \vee, 0 \rangle-semilattices. We prove that every distributive \langle \vee, 0 \rangle-semilat-
tice is a retract of some ultrabolean \langle \vee, 0 \rangle-semilattice. This is established
by proving that every finite distributive \langle \vee, 0 \rangle-semilattice is a retract of some
finite Boolean \langle \vee, 0 \rangle-semilattice, and this in a functorial way. This result is, in
turn, obtained as a particular case of a category-theoretical result that gives
sufficient conditions, for a functor \Pi, to admit a right inverse. The particular
functor \Pi used for the abovementioned result about ultrabolean semilattices
has neither a right nor a left adjoint.

1. Introduction

Our general kind of problem is the following. We are given a functor \(F \) from a
category \(A \) to a category \(B \), we wish to investigate whether \(F \) has a right inverse (up
to equivalence). Also, we suppose that we know how to do this on a subcategory
of \(B \), or, more generally, on a given class of diagrams of \(B \). We wish to set a general
framework that will enable us, under certain conditions, to find a right inverse of \(F \)
on a much larger class of diagrams of \(B \).

How to do this will be stated precisely in a further paper [17]. The present paper
is intended to provide a start for that program, and it is motivated by the following
example. We denote by \(\mathcal{L} \) the category of all lattices, by \(\mathcal{D} \) the category of all dis-
tributive \langle \vee, 0 \rangle-semilattices, and by \(\text{Con}_c : \mathcal{L} \rightarrow \mathcal{D} \) the functor that with a lattice \(L \)
associates its semilattice \(\text{Con}_c L \) of compact congruences, extended naturally to
lattice homomorphisms. It is a well-known open problem, stated by R. P. Dilworth
in 1945, whether every distributive \langle \vee, 0 \rangle-semilattice is isomorphic to \(\text{Con}_c L \) for
some lattice \(L \). We wish to reduce that problem, or rather some stronger versions
about diagrams of semilattices, to a smaller class of distributive \langle \vee, 0 \rangle-semilattices
for which calculations are easier. Our candidate is the following.

Date: August 30, 2005.

2000 Mathematics Subject Classification. Primary 18A30, 18A25, 18A20, 06A12, 06D05; Sec-
ondary 08B25, 18A40.

Key words and phrases. Category, functor, diagram, monic, section, retraction, retract, shelter,
right inverse, colimit, semilattice, distributive, Boolean, ultrabolean.

The author was partially supported by the institutional grant CEZ:J13/98:113200007a, by
FRVS 2731/2003, and by the Fund of Mobility of the Charles University (Prague).
Definition 1.1. A \((\lor, 0) \)-semilattice is ultrabolean, if it is a directed union of finite Boolean \((\lor, 0) \)-semilattices.

Hence every ultrabolean \((\lor, 0) \)-semilattice is distributive (the converse is trivially false, see the three-element chain).

For the present paper’s needs, everything boils down to expressing members of the larger class (distributive semilattices) as retracts of the members of the smaller class (ultrabolean semilattices). Furthermore, such a retraction needs to be functorial. We shall refer to this problem as the ultrabolean retraction problem. At first sight, it is not clear whether the functoriality restriction might cause a problem. Indeed, every finite distributive lattice \(D \) is a retract of a finite Boolean lattice \(B \). For example, as in [13, Section 1], we can embed \(D \) into the power set \(B = \mathfrak{P}(J(D)) \), where \(J(D) \) denotes the poset (i.e., partially ordered set) of join-irreducible elements of \(D \), via the map

\[
a \mapsto \{ p \in J(D) \mid p \leq a \}.
\]

This map has a retraction, given by \(X \mapsto \lor X \). As in [13, Section 1], one can extend ‘canonically’ any \((\lor, 0) \)-embedding \(f: D \hookrightarrow E \) to a \((\lor, 0) \)-homomorphism \(g: \mathfrak{P}(J(D)) \rightarrow \mathfrak{P}(J(E)) \); however, even for \(f = \text{id}_D \), the map \(g \) might not be an embedding! Hence this ‘functor’ preserves neither monomorphisms nor, in fact, identities, and thus it is not sufficient to solve the ultrabolean retraction problem.

In order to solve that problem, we need to embed any finite distributive \((\lor, 0) \)-semilattice \(D \) into some finite Boolean \((\lor, 0) \)-semilattice \(\Phi(D) \), via a \((\lor, 0) \)-embedding \(\varepsilon_D: D \hookrightarrow \Phi(D) \), with a retraction \(\mu_D: \Phi(D) \twoheadrightarrow D \), these data being subjected to functoriality conditions, stated precisely in Section 3. Here are some caveats:

- Solving the problem ‘without the retraction’ \(\mu_D \) is easy: namely, embed \(D \) into the universal Boolean semilattice \(\text{Bool}(D) \) over \(D \). For this construction, the corresponding embedding \(\varepsilon_D: D \hookrightarrow \text{Bool}(D) \) is not a meet-embedding as a rule. An explicit construction is given by \(\text{Bool}(D) = \mathfrak{P}(D^\leq) \) (where \(D^\leq = D \setminus \{1\} \)), \(\varepsilon_D(a) = \{ x \in D^\leq \mid a \not\leq x \} \) (for all \(a \in D \)). On the other hand, any \((\lor, 0) \)-embedding \(f: D \hookrightarrow E \) is turned to a lattice embedding \(g: \text{Bool}(D) \hookrightarrow \text{Bool}(E) \), but the retracts are lost, for the canonical retraction from \(\text{Bool}(D) \) onto \(D \) does not satisfy the required commutation conditions.

- For a finite distributive \((\lor, 0) \)-semilattice \(D \), the canonical map from \(D \) into \(\Phi(J(D)) \) is, in fact, a lattice embedding. However, the requirement that all the maps \(\varepsilon_D: D \hookrightarrow \Phi(D) \) be lattice embeddings is too strong to solve the ultrabolean retraction problem. This is showed by a counterexample in Section 10.

Nevertheless, we prove that the ultrabolean retraction problem has a positive solution. This result is, actually, an immediate application of a more general categorical principle, stated in Theorem 5.3. This principle states sufficient conditions for every object of a category \(A \) to be a retract of some object of a category \(B \), and this functorially. Although some aspects of the formulations might remind of the Adjoint Functor Theorem, it is not hard to prove that in the particular case of the ultrabolean retraction problem, the functorial inverse that we construct does not arise from a functorial adjunction, see Proposition 9.6.

The importance of finite, simple, atomistic lattices for representation problems is highlighted in the paper of P. P. Pálfy and P. Pudlák [11], where it is proved that if a
finite, simple lattice \(L \) whose atoms join to the unit is isomorphic to the congruence lattice of a finite algebra, then it isomorphic to the congruence lattice of a finite set with a finite group action. With this in mind and by using a trick of G. Grätzer and E. T. Schmidt, we give, in Section 11, an easy proof of the result that every \(\langle \lor, 0 \rangle \)-semilattice is a retract of some directed \(\langle \lor, 0 \rangle \)-union of finite, (lattice-)simple, atomistic lattices, and this in a functorial way. Although this proof does not use the result of Theorem 5.3, further potential uses of Theorem 5.3 are suggested by open problems such as Problem 5 (see Section 12).

While the present paper deals with the existence of functorial retractions, the paper [17] deals with how to use functorial retractions in order to prove that certain functors have large range. While this paper is mainly category-theoretical, it aims at building up tools that will be used later in universal algebra. For this reason, the author chose to write it in probably more detail than a category theorist would wish, with the hope to make it reasonably intelligible to members of both communities.

However, a direct semilattice-theoretical proof of Theorem 9.5 (solution of the ultraboomen retraction problem) is not easier than the categorical proof involving Theorem 5.3, and it does not lead itself to further potential generalizations such as those suggested in Section 12. This, together with the categorical approach required in [17], motivates our choice of the language of categories instead of the one of universal algebra.

2. Basic concepts

Most of our categorical notions are borrowed from S. Mac Lane [10]. For a category \(\mathcal{C} \), we shall denote by \(\text{Ob}\mathcal{C} \) the class of objects of \(\mathcal{C} \), by \(\mathcal{C}^{\text{iso}} \) the category whose objects are those of \(\mathcal{C} \) and whose morphisms are the isomorphisms of \(\mathcal{C} \). We shall denote by dom \(f \) the domain of a morphism \(f \) of \(\mathcal{C} \). As usual, a morphism in \(\mathcal{C} \) is a monic (resp., a section), if it is left cancellable (resp., left invertible) for the composition of morphisms. Of course, every section is a monic.

We shall view every quasi-ordered set \(\langle P, \sqsubseteq \rangle \) as a category in which hom-sets have at most one element. Technically speaking, our quasi-ordered sets may be proper classes, but in our context this will create no difficulty. For \(p \sqsubseteq q \) in \(P \), we shall denote by \(p \rightarrow q \) the unique morphism from \(p \) to \(q \). An ideal of \(P \) is a subset \(X \) of \(P \) such that \(p \sqsubseteq x \) implies that \(p \in X \), for all \((p, x) \in P \times X \). We denote by \(\downarrow X \) the ideal generated by \(X \), for all \(X \subseteq P \), and we put \(\downarrow p = \downarrow \{ p \} \), for all \(p \in P \). We put \(2 = \{ 0, 1 \} \), the two-element poset. For quasi-ordered sets \(\langle P, \leq_P \rangle \) and \(\langle Q, \leq_Q \rangle \), a map \(f : P \to Q \) is an embedding, if \(x \leq_P y \) iff \(f(x) \leq_Q f(y) \), for all \(x, y \in P \); we say that \(f \) is a lower embedding, if \(f \) is an embedding and the range of \(f \) is an ideal of \(Q \).

For a meet-semilattice \(S \), we put \(S^\leq = S \setminus \{ 1 \} \) if \(S \) has a unit, \(S^\leq = S \) otherwise. Furthermore, we denote by \(M(S) \) the set of all meet-irreducible elements of \(S \), that is, those \(u \in S^\leq \) such that \(u = x \land y \) implies that either \(u = x \) or \(u = y \), for all \(x, y \in S \). Dually, for a \(\langle \lor, 0 \rangle \)-semilattice \(S \), we denote by \(J(S) \) the set of all join-irreducible elements of \(S \).

We denote by \(\omega \) the set of all natural numbers and by \(\mathcal{P}(X) \) the power set of \(X \), for any set \(X \).
3. Functorial retracts

Definition 3.1. Let A and B be subcategories of a category \mathcal{C}. We denote by $\text{Retr}(A, B)$ the category whose objects and morphisms are the following:

— **Objects**: all quadruples $\langle A, B, \varepsilon, \mu \rangle$, where $A \in \text{Ob} \ A, B \in \text{Ob} \ B, \varepsilon: A \to B$, $\mu: B \to A$, and $\mu \circ \varepsilon = \text{id}_A$.

— **Morphisms**: a morphism from $\langle A, B, \varepsilon, \mu \rangle$ to $\langle A', B', \varepsilon', \mu' \rangle$ is a pair $\langle f, g \rangle$, where $f: A \to A'$ in A, $g: B \to B'$ in B, $g \circ \varepsilon = \varepsilon' \circ f$, and $\mu' \circ g = f \circ \mu$ (see Figure 3.1). Composition of morphisms is defined by the rule $(f', g') \circ (f, g) = (f' \circ f, g' \circ g)$.

In short, $\text{Retr}(A, B)$ is the category of all rejections of an object of B onto an object of A.

The *projection functor* from $\text{Retr}(A, B)$ to A is the functor from $\text{Retr}(A, B)$ to A that sends any object $\langle A, B, \varepsilon, \mu \rangle$ to A and any morphism $\langle f, g \rangle$ to f.

![Figure 3.1. Morphisms in Retr(A, B).](image)

Definition 3.2. We say that A is a *functorial retract* of B, if the projection functor from $\text{Retr}(A, B)$ to A has a right inverse. We shall call such an inverse a *functorial retraction* of A to B.

Hence a functorial retraction may be viewed as a triple $\langle \Phi, \varepsilon, \mu \rangle$ that satisfies the following conditions:

— Φ is a functor from A to B.

— For every morphism $f: X \to Y$ in A, we have $\varepsilon_X: X \to \Phi(X), \mu_X: \Phi(X) \to X, \mu_X \circ \varepsilon_X = \text{id}_X, \Phi(f) \circ \varepsilon_X = \varepsilon_Y \circ f$, and $\mu_Y \circ \Phi(f) = f \circ \mu_X$ (see Figure 3.2).

Observe that we do not require the diagram of Figure 3.2 to be commutative, for example, $\Phi(f) \neq \varepsilon_Y \circ f \circ \mu_X$ in general.

![Figure 3.2. Functorial retraction of A to B.](image)
4. Sheltering between full subcategories

Definition 4.1. An *ideal of monics* of a category \(\mathcal{C} \) is a subcategory \(\mathcal{M} \) of \(\mathcal{C} \) satisfying the following conditions:

(i) Every identity of \(\mathcal{C} \) belongs to \(\mathcal{M} \).
(ii) \(g \circ f \in \mathcal{M} \) implies that \(f \in \mathcal{M} \), for all morphisms \(f \) and \(g \) of \(\mathcal{C} \) such that \(g \circ f \) is defined.
(iii) Every morphism in \(\mathcal{M} \) is a monic.

Of course, the monics of \(\mathcal{C} \) form the largest ideal of monics of \(\mathcal{C} \), while the sections of \(\mathcal{C} \) form the smallest ideal of monics of \(\mathcal{C} \). An example of often used ideal of monics distinct from both the class of all monics and the class of all sections is constructed within the category of all commutative monoids, as the ideal of all one-to-one monoid homomorphisms \(f \) that satisfy \(f(x) \leq f(y) \Rightarrow x \leq y \), where \(x \leq y \) is an abbreviation for \(\exists z(x + z = y) \).

Definition 4.2. Let \(\mathcal{A} \) and \(\mathcal{B} \) be full subcategories of a category \(\mathcal{C} \) and let \(\mathcal{M} \) be an ideal of monics of \(\mathcal{C} \). A shelter of \(\mathcal{C} \) by \(\mathcal{B} \) with respect to \(\langle \mathcal{A}, \mathcal{M} \rangle \) consists of the following data (illustrated on Figure 4.1):

(i) A functor \(B \) from \(\mathcal{C} \) iso to \(\mathcal{B} \) iso.
(ii) A natural transformation \(S \mapsto \eta_S \) from the identity functor on \(\mathcal{C} \) iso to the functor \(B \), such that \(\eta_S \in \mathcal{M} \), for every \(S \in \text{Ob} \mathcal{C} \).
(iii) A map that with every morphism \(g: S \to A \), where \(S \in \text{Ob} \mathcal{C} \) and \(A \in \text{Ob} \mathcal{A} \cup \text{Ob} \mathcal{B} \), associates a morphism \(g^\mathcal{B}: B(S) \to A \) such that \(g = g^\mathcal{B} \circ \eta_S \).

Furthermore, we require the following conditions to be satisfied:

1. For every isomorphism \(f: S \to T \) in \(\mathcal{C} \) and every \(g: T \to A \), with \(A \in \text{Ob} \mathcal{A} \cup \text{Ob} \mathcal{B} \), \(g^\mathcal{B} \circ B(f) = (g \circ f)^\mathcal{B} \) (see Figure 4.2(1)).

2. For every \(h: S \to A \) and every isomorphism \(u: A \to A' \) with either \(A, A' \in \text{Ob} \mathcal{A} \) or \(A, A' \in \text{Ob} \mathcal{B} \), \((u \circ h)^\mathcal{B} = u \circ h^\mathcal{B} \) (see Figure 4.2(2)).

Remark 4.3. In all examples considered in this paper, \(\mathcal{B} \) is contained in \(\mathcal{A} \). One can then say that a shelter is a weak reflection of \(\mathcal{C} \) to \(\mathcal{A} \) which is everywhere a monic (i.e., all arrows \(\eta_S \) are monics), has values in \(\mathcal{B} \) (in case \(\mathcal{B} \subseteq \mathcal{A} \)), and is functorial on isomorphisms.

5. Statement of the main theorem

Definition 5.1. Let \(\mathcal{M} \) be an ideal of monics of a category \(\mathcal{C} \). For \(S \in \text{Ob} \mathcal{C} \), we denote by \(\mathcal{M}(S) \) the set of all morphisms \(u: X \to S \) in \(\mathcal{M} \), and we put
\(\mathcal{M}'(S) = \mathcal{M}(S) \setminus \mathcal{M}^{\text{iso}} \). Furthermore, for \(u: X \to S \) and \(v: Y \to S \) in \(\mathcal{M} \), we put

\[
\begin{align*}
&u \preceq_S v \iff (\exists f: X \to Y)(u = v \circ f); \\
&u \sim_S v \iff (u \preceq_S v \text{ and } v \preceq_S u); \\
&u <_S v \iff (u \preceq_S v \text{ and } v \not\preceq_S u).
\end{align*}
\]

Obviously, \(\preceq_S \) is a quasi-ordering on \(\mathcal{M}(S) \) and \(\sim_S \) is the associated equivalence. In case \(u \preceq_S v \), we shall denote by \(u/v \) the unique \(f: X \to Y \) satisfying \(u = v \circ f \).

Necessarily, \(f \in \mathcal{M} \), and \(f \) is an isomorphism iff \(u \sim_S v \). We shall denote by \(\text{lh}S \) (the length of \(S \)) the length of the quasi-ordered set \((\mathcal{M}(S), \preceq_S) \) in case \(\mathcal{M}(S) \) has finite length. The blocks of \(\sim_S \) will be called the \(\mathcal{M} \)-subobjects of \(S \).

Lemma 5.2. Let \(\mathcal{M} \) be an ideal of monics of a category \(\mathcal{C} \) and let \(f: X \to Y \) in \(\mathcal{M} \). Then the map \(\mathcal{M}(f): \mathcal{M}(X) \to \mathcal{M}(Y), u \mapsto f \circ u \) is a lower embedding. Furthermore, if both \(X \) and \(Y \) have finite length, then \(f \) is an isomorphism iff \(\text{lh}X = \text{lh}Y \).

Proof. Verifying that \(\mathcal{M}(f) \) is a lower embedding is a straightforward exercise. If \(f \) is an isomorphism, then so is \(\mathcal{M}(f) \), thus \(\text{lh}X = \text{lh}Y \). If \(f \) is not an isomorphism, then \(\text{lh}X = \text{height}_{\mathcal{M}(X)}(\text{id}_X) < \text{height}_{\mathcal{M}(Y)}(\text{id}_Y) = \text{lh}Y \). \(\square \)

Now we state the main technical result of the paper.

Theorem 5.3. Let \(\mathcal{A} \) and \(\mathcal{B} \) be full subcategories of a category \(\mathcal{C} \) and let \(\mathcal{M} \) be an ideal of monics of \(\mathcal{C} \). We assume the following:

(i) Every diagram of \(\mathcal{C} \), indexed by a finite poset, and with vertices either in \(\mathcal{A} \) or in \(\mathcal{B} \), has a colimit.

(ii) Every object of \(\mathcal{A} \) has only finitely many \((\mathcal{A} \cap \mathcal{M}) \)-subobjects.

(iii) \(\mathcal{C} \) is sheltered by \(\mathcal{B} \) with respect to \((\mathcal{A}, \mathcal{M}) \).

(iv) For every \(\varphi: A_0 \to A_1 \) in \(\mathcal{M} \) and every section \(\varepsilon_0: A_0 \to B_0 \), with \(A_0, A_1 \in \text{Ob} \mathcal{A} \) and \(B_0 \in \text{Ob} \mathcal{B} \), there is \(S \in \text{Ob} \mathcal{C} \), together with \(\varepsilon_1: A_1 \to S \) and \(\psi: B_0 \to S \) both in \(\mathcal{M} \), such that \(\psi \circ \varepsilon_0 = \varepsilon_1 \circ \varphi \).

Then \(\mathcal{A} \cap \mathcal{M} \) is a functorial retract of \(\mathcal{B} \cap \mathcal{M} \).

From now on until the end of Section 8, we shall assume that \(\mathcal{A}, \mathcal{B}, \mathcal{C} \), and \(\mathcal{M} \) satisfy the assumptions of Theorem 5.3, with a shelter \(\mathcal{B} \) denoted as in Section 4. The functorial retraction of Theorem 5.3 will be constructed explicitly, in terms of categorical operations and \(\mathcal{B} \).
Our next lemma states that in item (iv) of Theorem 5.3, we may assume that $S \in \text{Ob}\mathcal{B}$.

Lemma 5.4. For all $\varphi: A_0 \to A_1$ in \mathcal{M} and every section $\varepsilon_0: A_0 \to B_0$, with A_0, $A_1 \in \text{Ob}\mathcal{A}$ and $B_0 \in \text{Ob}\mathcal{B}$, there is $B \in \text{Ob}\mathcal{B}$, together with $\varepsilon_1: A_1 \to B$ and $\psi: B_0 \to B$ both in \mathcal{M}, such that $\psi \circ \varepsilon_0 = \varepsilon_1 \circ \varphi$.

Proof. Consider S, ε_1, and ψ obtained from (iv) of Theorem 5.3. Replace S by $B = \mathcal{B}(S)$, ε_1 by $\eta_S \circ \varepsilon_1$, and ψ by $\eta_S \circ \psi$. \qed

Remark 5.5. Our formulation of Theorem 5.3 is a compromise between conciseness and generality. As one can never be sure about future applications, let us mention a few possible weakenings of its assumptions. Assumption (ii) can be weakened, by putting a cardinal upper bound, say, κ, on the number of subobjects of all objects of \mathcal{A}. Then, Assumption (i) needs to be extended to diagrams indexed by posets of size below κ. However, in order to be able to define the (ordinal) length, and, in particular, to get an analogue of Lemma 5.2, we need to keep the assumption that each poset $(\mathcal{M}(S), \preceq_S)$ is well-founded (the terminologyartinian is also used), that is, every nonempty subset has a minimal element. Finally, the diagrams involved in Assumption (i) are fairly special, for example, they have at least one vertex in \mathcal{A} and all their arrows in \mathcal{M}. However, we know no situation where such generalizations would be of any practical use.

6. *Inductive Construction of Φ, ε, μ*

Denote by A_n the full subcategory of \mathcal{A} whose objects are those $X \in \text{Ob}\mathcal{A}$ such that $\text{lh}X < n$, for every natural number n. Of course, A_0 is the empty category.

Fix a natural number n, and suppose having constructed a functor Φ from $A_n \cap \mathcal{M}$ to \mathcal{B}, together with a system of morphisms $\varepsilon_X: X \to \Phi(X)$ and $\mu_X: \Phi(X) \to X$, for $X \in \text{Ob}\mathcal{A}$, such that the following induction hypothesis is satisfied:

$$\mu_X \circ \varepsilon_X = \text{id}_X, \quad \Phi(f) \circ \varepsilon_X = \varepsilon_Y \circ f, \quad \text{and} \quad \mu_Y \circ \Phi(f) = f \circ \mu_X,$$

for every morphism $f: X \to Y$ in $A_n \cap \mathcal{M}$. \hfill (6.1)

We do not assume, for the moment, that Φ sends morphisms in \mathcal{M} to morphisms in \mathcal{M}. So, for $f: X \to Y$ in $A_n \cap \mathcal{M}$, all we know is that $\Phi(f): \Phi(X) \to \Phi(Y)$ in \mathcal{B}. We fix an object A of \mathcal{A} such that $\text{lh}A = n$.

Let us outline the construction. We shall introduce a diagram ρ_A, indexed by a quasi-ordered set $\langle \tilde{A} \mid A, \sqsubseteq_A \rangle$. Intuitively, ρ_A consists of all spans $\langle u, \eta_X \rangle$, where $X \in \text{Ob}\mathcal{A}$, $u: X \to A$ in \mathcal{M}, and η_X is either ε_X, in case $u \in \mathcal{M}^{\text{iso}}$, or id_X, in case $u \in \mathcal{M}^{\text{iso}}$. We equip these objects with the obvious arrows, see (6.2). An important auxiliary construction is the colimit of ρ_A, which consists of an object $\Phi_*(A)$, together with arrows $\varepsilon^A: A \to \Phi_*(A)$ and $\Phi_*(u): \Phi(X) \to \Phi_*(A)$, for $u: X \to A$ in $\mathcal{M} \setminus \mathcal{M}^{\text{iso}}$, subjected to the commutation relations illustrated on Figure 6.1. The resulting natural transformation $A \to \varepsilon^A$ from the identity to Φ_* is split by $\mu^-: \Phi_* \to \text{id}_A$, $A \to \mu^A$, living in \mathcal{C} and given as follows: μ^A is induced by the cocone $\langle \text{id}_A, \langle u \circ \mu_X \mid u: X \to A \text{ in } \mathcal{M} \setminus \mathcal{M}^{\text{iso}} \rangle \rangle$, see Lemma 6.3. We observe that the definition of $\Phi_*(A)$ does not use only all previous values of Φ_*, but really all previous values of Φ.

The shelter \mathcal{B} is used in order to define $\Phi(A)$: namely, $\Phi(A) = \mathcal{B}(\Phi_*(A))$, see (6.4). The natural transformation $A \to \varepsilon_A$, its section $A \to \mu_A$, and the
arrows $\Phi(u)$, for $u: X \to A$ in $M \setminus M^{\text{iso}}$, are then defined in the natural way, see (6.5)–(6.7). The rest of the section is then devoted to proving that this extension of Φ on \mathcal{A}_{n+1} can, indeed, be further extended to a functor. Although it will turn out that Φ preserves M, this is a nontrivial fact and it will not be assumed as an induction hypothesis through the construction. We shall establish this fact in Sections 7 and 8.

Now let us go to the details. We put $A \upharpoonright A = (A \cap M)(A)$ and $A \upharpoonright^* = (A \upharpoonright A) \setminus M^{\text{iso}}$. For $u: X \to A$ and $v: Y \to A$ in $A \upharpoonright A$ with $u \leq_A v$, we shall often identify the morphism $(A \upharpoonright A) u \to v$ with $f = u/v$, which is a morphism $(A \cap M)$ from X to Y. We endow the set

$$\tilde{A} \upharpoonright A = \{ \langle u, i \rangle \in (A \upharpoonright A) \times 2 \mid i = 1 \Rightarrow u \notin M^{\text{iso}} \}$$

with the partial quasi-ordering, that we shall still denote by \leq_A, defined by

$$\langle u, i \rangle \leq_A \langle v, j \rangle \iff (u \leq_A v \text{ and } i \leq j), \quad \text{for all } \langle u, i \rangle, \langle v, j \rangle \in \tilde{A} \upharpoonright A.$$

For $\langle u, i \rangle \in \text{Ob}(\tilde{A} \upharpoonright A)$, where $u: X \to A$, we define

$$\rho_A(\langle u, i \rangle) = \begin{cases} X, & \text{if } i = 0, \\ \Phi(X), & \text{if } i = 1. \end{cases}$$

(Observe that $i = 1$ implies that $u \notin M^{\text{iso}}$, thus $\text{lh} X < \text{lh} A$, and thus $\Phi(X)$ is defined.) Furthermore, if $\langle u, i \rangle \leq_A \langle v, j \rangle$ in $\tilde{A} \upharpoonright A$, we put

$$\rho_A(\langle u, i \rangle \to \langle v, j \rangle) = \begin{cases} u/v, & \text{if } i = j = 0, \\ \Phi(u/v) \circ \varepsilon_X, & \text{if } i = 0 \text{ and } j = 1, \\ \Phi(u/v), & \text{if } i = j = 1. \end{cases} \tag{6.2}$$

Lemma 6.1. The correspondence ρ_A defines a functor from $\tilde{A} \upharpoonright A$ to M.

Proof. It is obvious that $\rho_A(\langle u, i \rangle \to \langle v, j \rangle)$ is a morphism from $\rho_A(\langle u, i \rangle)$ to $\rho_A(\langle v, j \rangle)$, and that ρ_A sends identities to identities. Now let $\langle u, i \rangle \leq_A \langle v, j \rangle \leq_A \langle w, k \rangle$ in $\tilde{A} \upharpoonright A$, we need to verify the equality

$$\rho_A(\langle u, i \rangle \to \langle w, k \rangle) = \rho_A(\langle v, j \rangle \to \langle w, k \rangle) \circ \rho_A(\langle u, i \rangle \to \langle v, j \rangle). \tag{6.3}$$

Let $u: X \to A$, $v: Y \to A$, and $w: Z \to A$, put $f = u/v$ and $g = v/w$. We separate cases.

Case 1. $i = j = k = 0$. Then

$$\rho_A(\langle v, j \rangle \to \langle w, k \rangle) \circ \rho_A(\langle u, i \rangle \to \langle v, j \rangle) = g \circ f = \rho_A(\langle u, i \rangle \to \langle w, k \rangle).$$

Case 2. $i = j = 0$, $k = 1$. Then

$$\rho_A(\langle v, j \rangle \to \langle w, k \rangle) \circ \rho_A(\langle u, i \rangle \to \langle v, j \rangle) = \Phi(g) \circ \varepsilon_Y \circ f$$

$$= \Phi(g) \circ \Phi(f) \circ \varepsilon_X$$

$$= \Phi(g \circ f) \circ \varepsilon_X$$

$$= \rho_A(\langle u, i \rangle \to \langle w, k \rangle).$$

Case 3. $i = 0$, $j = 1$. Then

$$\rho_A(\langle v, j \rangle \to \langle w, k \rangle) \circ \rho_A(\langle u, i \rangle \to \langle v, j \rangle) = \Phi(g) \circ \Phi(f) \circ \varepsilon_X$$

$$= \Phi(g \circ f) \circ \varepsilon_X$$

$$= \rho_A(\langle u, i \rangle \to \langle w, k \rangle).$$
Case 4. $i = j = k = 1$. Then

$$
\rho_A(\langle v, j \rangle \to \langle w, k \rangle) \circ \rho_A(\langle u, i \rangle \to \langle v, j \rangle) = \Phi(g) \circ \Phi(f) = \Phi(g \circ f) = \rho_A(\langle u, i \rangle \to \langle w, k \rangle).
$$

This concludes the proof. □

Lemma 6.2. The functor ρ_A has a colimit in \mathcal{C}.

Proof. It follows from Assumption (ii) of Theorem 5.3 that $A \uparrow A$ is equivalent to a finite poset; hence $\tilde{A} \uparrow A$ is also equivalent to a finite poset. Since the colimit is a categorical concept, the conclusion follows from Assumption (i) of Theorem 5.3. □

A colimit of ρ_A is given by an object $\Phi_*(A)$, together with a system of morphisms $\theta_{(u,i)}: \rho_A(\langle u, i \rangle) \to \Phi_*(A)$, for all $\langle u, i \rangle \in \tilde{A} \uparrow A$, subjected to certain commutation relations. In case $u \in A \uparrow A$, the equality $\theta_{(u,0)} = \theta_{(u,1)} \circ \epsilon_{\text{dom } u}$ holds. Hence, putting $\Phi_*(u) = \theta_{(u,1)}$, and $\epsilon^A = \theta_{(\text{id}_A,0)}$, we obtain that the colimit of ρ_A is given by the object $\Phi_*(A)$, together with morphisms $\Phi_*(u): \Phi(\text{dom } u) \to \Phi_*(A)$, for $u \in A \uparrow A$, and $\epsilon^A: A \to \Phi_*(A)$, subjected to the commutativity of the diagrams represented on Figure 6.1 and the universality of $\Phi_*(A)$ together with the system of morphisms consisting of all $\Phi_*(u)$-s and ϵ^A. Observe that for $n = 0$, this reduces to the universality of $\epsilon^A: A \to \Phi_*(A)$; so, in that case, we may take $\Phi_*(A) = A$ and $\epsilon^A = \text{id}_A$.

![Figure 6.1. The colimit of ρ_A.](image)

Lemma 6.3. There exists a unique morphism $\mu^A: \Phi_*(A) \to A$ such that $\mu^A \circ \Phi_*(u) = u \circ \mu_{\text{dom } u}$, for every $u \in A \uparrow A$, and $\mu^A \circ \epsilon^A = \text{id}_A$.

Proof. We put $\tau_u = u \circ \mu_{\text{dom } u}$, for all $u \in A \uparrow A$. By the universality of the colimit, it suffices to verify that the diagrams of Figure 6.2 commute, for all $u: X \to A$ and $v: Y \to A$ in $A \uparrow A$ and $f = u/v$.

![Figure 6.2. Retracting $\Phi_*(A)$ onto A.](image)

Left hand side diagram: $\tau_u \circ \Phi(f) = v \circ \mu_Y \circ \Phi(f) = v \circ f \circ \mu_X = u \circ \mu_X = \tau_u$.

Right hand side diagram: $\tau_u \circ \epsilon_X = u \circ \mu_X \circ \epsilon_X = u$. This concludes the proof. □
Now we are ready to define $\Phi(A)$, ε_A, μ_A, and $\Phi(u)$, for $u: X \to A$ in $\mathcal{A} \uparrow^* A$:

\[
\Phi(A) = B(\Phi_*(A)); \tag{6.4}
\]

\[
\varepsilon_A = \eta_{\Phi_*(A)} \circ \varepsilon^A; \tag{6.5}
\]

\[
\mu_A = (\mu^A)^B. \tag{6.6}
\]

\[
\Phi(u) = \eta_{\Phi_*(A)} \circ \Phi_*(u). \tag{6.7}
\]

These maps are represented on Figure 6.3. They satisfy the relations $\mu^A \circ \varepsilon^A = \mu_A \circ \varepsilon_A = \text{id}_A$, $\varepsilon_A = \eta_{\Phi_*(A)} \circ \varepsilon^A$, $\mu^A = \mu_A \circ \eta_{\Phi_*(A)}$, and $\Phi(u) = \eta_{\Phi_*(A)} \circ \Phi_*(u)$.

![Figure 6.3. Defining $\Phi(A)$, ε_A, μ_A, and $\Phi(u)$.](image)

The computations of the relations $\Phi(u) \circ \varepsilon_X = \varepsilon_A \circ u$ and $\mu_A \circ \Phi(u) = u \circ \mu_X$ can be followed on Figures 6.1 and 6.3:

\[
\Phi(u) \circ \varepsilon_X = \eta_{\Phi_*(A)} \circ \Phi_*(u) \circ \varepsilon_X = \eta_{\Phi_*(A)} \circ \varepsilon^A \circ u = \varepsilon_A \circ u,
\]

\[
\mu_A \circ \Phi(u) = \mu_A \circ \eta_{\Phi_*(A)} \circ \Phi_*(u) = \mu^A \circ \Phi_*(u) = u \circ \mu_X.
\]

In order to complete the extension of Φ to all morphisms, it remains to define $\Phi(g)$, where $g: A \to A'$ in $\mathcal{A} \cap \mathcal{M}$ and $\text{lh} A = \text{lh} A' = n$. Observe that, by Lemma 5.2, g is an isomorphism. Moreover, if $u: X \to A$ and $v: Y \to A$ belong to $\mathcal{A} \uparrow^* A$ with $u \subseteq_A v$ and putting $f = u/v$, the diagrams of Figure 6.4 commute.

![Figure 6.4. Putting $\Phi_*(A')$ above the diagram defining $\Phi_*(A)$.](image)

Therefore, by the universal property of $\Phi_*(A)$ and the associated limiting morphisms, there exists a unique morphism $\overline{g}: \Phi_*(A) \to \Phi_*(A')$ such that

\[
\overline{g} \circ \varepsilon^A = \varepsilon^{A'} \circ g \quad \text{and} \quad \Phi_*(g \circ u) = \overline{g} \circ \Phi_*(u), \quad \text{for all} \ u \in \mathcal{A} \uparrow^* A. \tag{6.8}
\]

Symmetrically, there exists a unique morphism $\overline{g'}: \Phi_*(A') \to \Phi_*(A)$ such that

\[
\overline{g'} \circ \varepsilon^{A'} = \varepsilon^A \circ g^{-1} \quad \text{and} \quad \Phi_*(u) = \overline{g'} \circ \Phi_*(g \circ u), \quad \text{for all} \ u \in \mathcal{A} \uparrow^* A. \tag{6.9}
\]
Again by using the universal property defining $\Phi_*(A)$ and $\Phi_*(A')$, we obtain that f and $\Phi_*(g)$ are mutually inverse isomorphisms. We define

$$\Phi_*(g) = f$$ and $\Phi(g) = B(\Phi_*(g)).$ (6.10)

So $\Phi_*(g)$ is an isomorphism from $\Phi_*(A)$ onto $\Phi_*(A')$, and, since B is a functor from C^{iso} to B^{iso}, $\Phi(g)$ is an isomorphism from $\Phi(A)$ onto $\Phi(A')$.

Lemma 6.4. $\mu A' \circ \Phi_*(g) = g \circ \mu A$.

Proof. By using the universal property defining $\Phi_*(A)$, it suffices to verify that the diagram represented on Figure 6.5 commutes, in both cases $h = \mu A' \circ \Phi_*(g)$ and $h = g \circ \mu A$, for all $u: X \rightarrow A$ in $A \uparrow A$. Of course, none of the arrows of Figure 6.5 except ε^A, g, and h are needed in case $n = 0$, in which case $\Phi_*(A) = A$ and $\varepsilon^A = id_A$. The details of the computations use (6.8), (6.10), and Lemma 6.3;

\[
\begin{array}{c}
\Phi(X) \\
\Phi_*(u) \\
\Phi_*(A) \\
\varepsilon^A \\
A
\end{array}
\begin{array}{c}
\mu A' \circ \Phi_*(g \circ u) \\
\Phi_*(g) \\
\varepsilon^A \\
A
\end{array}
\begin{array}{c}
\mu A' \circ \Phi_*(g) \\
g \circ \mu A \\
A
\end{array}
\begin{array}{c}
u \\
\varepsilon_A \\
A
\end{array}
\]

Figure 6.5. Characterizing a morphism from $\Phi_*(A)$ to A'.

they are as follows:

$$\mu A' \circ \Phi_*(g) \circ \Phi_*(u) = \mu A' \circ \Phi_*(g \circ u),$$

$$g \circ \mu A \circ \Phi_*(u) = g \circ u \circ \mu_X = \mu A' \circ \Phi_*(g \circ u),$$

$$\mu A' \circ \Phi_*(g) \circ \varepsilon^A = \mu A' \circ \varepsilon^A \circ g = g,$$

$$g \circ \mu A \circ \varepsilon^A = g.$$

This completes the proof. \qed

Lemma 6.5. $\Phi(g) \circ \varepsilon_A = \varepsilon_A \circ g$ and $\mu A' \circ \Phi(g) = g \circ \mu A$.

Proof. By using (6.5), (6.8), and (6.10), we obtain

$$\Phi(g) \circ \varepsilon_A = \Phi(g) \circ \eta_{\Phi_*(A)} \circ \varepsilon^A = \eta_{\Phi_*(A')} \circ \Phi_*(g) \circ \varepsilon^A = \eta_{\Phi_*(A')} \circ \varepsilon_A \circ g = \varepsilon_A \circ g.$$

Furthermore, since B is a shelter, we obtain, by using (6.6), the following equalities:

$$\mu A' \circ \Phi(g) = (\mu A')^B \circ B(\Phi_*(g)) = (\mu A' \circ \Phi_*(g))^B,$$

$$g \circ \mu A = g \circ (\mu A)^B = (g \circ \mu A)^B.$$

Therefore, by Lemma 6.4, $\mu A' \circ \Phi(g) = g \circ \mu A$. \qed

At this stage, we have extended Φ to $A_{n+1} \cap M$, up to verification of preservation of composition by Φ. Proving this preservation is the object of the next three lemmas.
Lemma 6.6. Let \(A_0, A_1, A_2 \in \text{Ob} \mathcal{A} \) with \(\text{lh} A_0 = \text{lh} A_1 = \text{lh} A_2 = n \), let \(f: A_0 \to A_1 \) and \(g: A_1 \to A_2 \) in \(\mathcal{M} \). Then \(\Phi_*(g \circ f) = \Phi_*(g) \circ \Phi_*(f) \) and \(\Phi(g \circ f) = \Phi(g) \circ \Phi(f) \).

Proof. By Lemma 5.2, both \(f \) and \(g \) are isomorphisms. By using (6.8) and (6.10), we obtain
\[
\Phi_*(g \circ f) \circ \varepsilon^{A_0} = \Phi_*(g) \circ \varepsilon^{A_1} \circ f = \varepsilon^{A_2} \circ g \circ f,
\]
and, for all \(u \in A \),
\[
\Phi_*(g \circ f \circ u) = \Phi_*(g) \circ \Phi_*(f \circ u) = \Phi_*(g) \circ \Phi_*(f) \circ \Phi_*(u).
\]
Since these properties determine \(\Phi_*(g \circ f) \), we obtain that \(\Phi_*(g \circ f) = \Phi_*(g) \circ \Phi_*(f) \).

Since \(\mathcal{B} \) is a functor from \(\mathcal{C}^{\text{iso}} \) to \(\mathcal{B}^{\text{iso}} \), the equality \(\Phi(g \circ f) = \Phi(g) \circ \Phi(f) \) follows. \(\square \)

Lemma 6.7. Let \(X \in \text{Ob} \mathcal{A}_n \) and let \(A, A' \in \text{Ob} \mathcal{A} \) such that \(\text{lh} A = \text{lh} A' = n \), let \(u: X \to A \) and let \(g: A \to A' \) in \(\mathcal{M} \). Then \(\Phi(g \circ u) = \Phi(g) \circ \Phi(u) \).

Proof. By Lemma 5.2, \(g \) is an isomorphism. By using (6.7), (6.8), and (6.10), we obtain
\[
\Phi(g \circ u) = \eta_{\Phi_*(A')} \circ \Phi_*(g \circ u) = \eta_{\Phi_*(A')} \circ \Phi_*(g) \circ \Phi_*(u)
= \Phi(g) \circ \eta_{\Phi_*(A)} \circ \Phi_*(u) = \Phi(g) \circ \Phi(u),
\]
which concludes the proof. \(\square \)

Lemma 6.8. Let \(X, Y \in \text{Ob} \mathcal{A}_n \) and let \(A \in \text{Ob} \mathcal{A} \) such that \(\text{lh} A = n \), let \(f: X \to Y \) and let \(u: Y \to A \) in \(\mathcal{M} \). Then \(\Phi(u \circ f) = \Phi(u) \circ \Phi(f) \).

Proof. By using (6.7) and the relations on Figure 6.1, we obtain
\[
\Phi(u) \circ \Phi(f) = \eta_{\Phi_*(A)} \circ \Phi_*(u) \circ \Phi(f) = \eta_{\Phi_*(A)} \circ \Phi_*(u \circ f) = \Phi(u \circ f),
\]
which concludes the proof. \(\square \)

At this stage, \(\Phi, \varepsilon, \) and \(\mu \) have been extended to the whole category \(\mathcal{A}_{n+1} \cap \mathcal{M} \). Therefore, arguing by induction on \(n \), we obtain an extension of \(\Phi, \varepsilon, \) and \(\mu \) on \(\mathcal{A} \cap \mathcal{M} \) that satisfies the following:
\[
\mu_X \circ \varepsilon_X = \text{id}_X, \quad \Phi(f) \circ \varepsilon_X = \varepsilon_Y \circ f, \quad \text{and} \quad \mu_Y \circ \Phi(f) = f \circ \mu_X,
\]
for every morphism \(f: X \to Y \) in \(\mathcal{A} \cap \mathcal{M} \). \(\quad (6.11) \)

Definition 6.9. The triple \((\Phi, \varepsilon, \mu) \) thus constructed is the canonical \(\mathcal{B} \)-cover of \(\mathcal{A} \).

The construction \((\Phi, \varepsilon, \mu) \) involves the shelter \(\mathcal{B} \) and categorical operations such as the colimit. Hence, even for fixed \(\mathcal{B} \), it is defined uniquely only if we choose representatives for colimits of diagrams: otherwise, it is defined only up to isomorphism.

What is still missing is that we do not know yet whether the image under \(\Phi \) of a morphism in \(\mathcal{M} \) is a morphism in \(\mathcal{M} \) (which is why we have, so far, kept this condition out of the induction hypothesis). This is the hardest part of the proof, and it will be the object of the next two sections.
7. Factoring \(B \)-liftings

In this section we shall establish (see Lemma 7.3) a certain “quasi-universality” property of the canonical \(B \)-cover \((\Phi, \varepsilon, \mu)\) of \(A \), with respect to the notion of \(B \)-lifting introduced in the following definition.

Definition 7.1. Let \(A \in \text{Ob} A \), let \(I \) be an ideal of \(A \), and let \(\Psi : I \to B \) be a functor. A \(B \)-lifting of \(\Psi \) is a natural transformation from the domain functor \(u \mapsto \text{dom} u \) (from \(I \) to \(A \cap M \)) to \(\Psi \).

Hence a \(B \)-lifting of \(\Psi \) consists of a family \(\tilde{\varepsilon} = \langle \tilde{\varepsilon}_u | u \in I \rangle \), where \(\tilde{\varepsilon}_u : \text{dom} u \to \Psi(u) \), for all \(u \in I \), such that if \(u : X \to A \) and \(v : Y \to A \) in \(I \) with \(u \triangleleft_A v \), then, putting \(f = u/v \), the equality \(\Psi(f) \circ \tilde{\varepsilon}_u = \tilde{\varepsilon}_v \circ f \) holds, see Figure 7.1. Observe that we use the convention, introduced at the beginning of Section 6, to identify \(f \) with \(u \to v \), so \(\Psi(f) \) is, in fact, defined as \(\Psi(u \to v) \).

\[
\begin{array}{ccc}
A & \xrightarrow{u} & X \\
\downarrow f & \swarrow & \downarrow \varepsilon_u \\
Y & \xrightarrow{v} & \\
\end{array}
\]

Figure 7.1. Illustrating a \(B \)-lifting of \(\Psi \).

Definition 7.2. Let \(A \in \text{Ob} A \), let \(I \) be an ideal of \(A \), and let \(\Psi : I \to B \) be a functor. A factor of \(\langle \Psi, \tilde{\varepsilon} \rangle \) is a natural transformation \(\delta = \langle \delta_u | u \in I \rangle \) from \(\Phi \circ \text{dom} \) to \(\Psi \) such that \(\tilde{\varepsilon}_u = \delta_u \circ \varepsilon_{\text{dom} u} \), for all \(u \in I \).

Hence, for \(u : X \to A \) and \(v : Y \to A \) in \(J \) with \(u \triangleleft_A v \) and putting \(f = u/v \), the diagram of Figure 7.2 commutes.

\[
\begin{array}{ccc}
\Phi(X) & \xrightarrow{\delta_u} & \Phi(Y) \\
\downarrow \tilde{\varepsilon}_u & \swarrow & \downarrow \tilde{\varepsilon}_v \\
X & \xrightarrow{f} & Y \\
\end{array}
\]

Figure 7.2. Illustrating a factor of \(\langle \Psi, \tilde{\varepsilon} \rangle \).

Lemma 7.3. Let \(A \in \text{Ob} A \) and let \(J \) and \(J' \) be ideals of \(A \) such that \(J \) contains \(J' \). Let \(\varepsilon \) be a \(B \)-lifting of a functor \(\Psi : J \to B \). Then any factor of \(\langle \Psi \restriction_J, \varepsilon \rangle \) can be extended to a factor of \(\langle \Psi, \tilde{\varepsilon} \rangle \).

Proof. Arguing by induction on the length reduces the problem to the case where \(\{ v \in A | v \triangleleft_A u \} \) is contained in \(J \), for all \(u \in J \). So let \(u : U \to A \) in \(J \setminus J' \), we shall define a morphism \(\delta_u : \Phi(U) \to \Psi(u) \).
For all \(v: X \to U \) and \(w: Y \to U \) in \(\mathcal{A} \uparrow U \) such that \(v \preceq_U w \), letting \(f = v/w \), both relations \(u \circ v \preceq_A u \) and \(u \circ w \preceq_A u \) hold, thus both \(u \circ v \) and \(u \circ w \) belong to \(\mathcal{J} \). Furthermore, the diagrams of Figure 7.3 commute: this is obvious for the left hand side, while for the right hand side, \(\Psi(v) \circ \delta_{uov} \circ \varepsilon_X = \Psi(v) \circ \tilde{\varepsilon}_{uov} = \tilde{\varepsilon}_u \circ v \).

\[
\begin{array}{ccc}
\Phi(X) & \xrightarrow{\delta_{uov}} & \Psi(u \circ v) \\
\Phi(f) \downarrow & & \downarrow \Psi(v) \\
\Phi(Y) & & \Psi(u \circ w)
\end{array}
\quad
\begin{array}{ccc}
\Phi(X) & \xrightarrow{\psi} & \Psi(u) \\
\Phi(f) \downarrow & & \downarrow \Psi(w) \\
\Phi(Y) & & \Psi(u \circ w)
\end{array}
\quad
\begin{array}{ccc}
\xi_X & \xrightarrow{v} & U \\
\varepsilon_X \downarrow & & \downarrow \tilde{\varepsilon}_u \\
X & & U
\end{array}
\]

Figure 7.3. Putting \(\Psi(u) \) above the diagram defining \(\Phi_*(U) \).

Hence, by the universal property defining \(\Phi_*(U) \), there exists a unique morphism \(\gamma_u: \Phi_*(U) \to \Psi(u) \) such that \(\gamma_u \circ \Phi_*(v) = \Psi(v) \circ \delta_{uov} \), for all \(v \in \mathcal{A} \uparrow U \), and \(\tilde{\varepsilon}_u = \gamma_u \circ \varepsilon_U \). Put \(\delta_u = \gamma^B_u \) (see Figure 7.4).

\[
\begin{array}{ccc}
\Phi_*(U) & \xrightarrow{\gamma_u} & \Psi(u) \\
\Phi_*(v) \downarrow & & \downarrow \Psi(v) \\
\Phi(\text{dom } v) & \xrightarrow{\delta_{uov}} & \Psi(u \circ v)
\end{array}
\quad
\begin{array}{ccc}
\Phi_*(U) & \xrightarrow{\gamma_u} & \Psi(u) \\
\Phi_*(v) \downarrow & & \downarrow \Psi(v) \\
\Phi(\text{dom } v) & \xrightarrow{\delta_{uov}} & \Psi(u \circ v)
\end{array}
\quad
\begin{array}{ccc}
\Phi(U) & \xrightarrow{\eta_{\Phi_*(U)}} & \Phi_*(U) \\
\phi_\Phi(U) \downarrow & & \downarrow \gamma_u \\
\Phi(U) & \xrightarrow{\gamma_u} & \Psi(u)
\end{array}
\]

Figure 7.4. Defining \(\gamma_u \) and \(\delta_u \).

We verify that the \(\delta_u \)-s are as required (see Figure 7.2). First,

\[
\delta_u \circ \varepsilon_U = \delta_u \circ \eta_{\Phi_*(U)} \circ \varepsilon_U = \gamma_u \circ \varepsilon_U = \tilde{\varepsilon}_u.
\]

Our next series of calculations will prove that the extended \(\delta \) is a natural transformation from \(\Phi \circ \text{dom} \) to \(\Psi \).

For \(u: U \to A \) in \(\mathcal{J} \setminus \mathcal{J} \) and \(v: X \to U \) in \(\mathcal{A} \uparrow U \) (thus in \(\mathcal{J} \)),

\[
\delta_u \circ \Phi(v) = \delta_u \circ \eta_{\Phi_*(U)} \circ \Phi_*(v) = \gamma_u \circ \Phi_*(v) = \Psi(v) \circ \delta_{uov}.
\]

Now let \(u: U \to A \) and \(v: V \to A \) in \(\mathcal{J} \setminus \mathcal{J} \) such that \(u \preceq_A v \), and put \(f = u/v \). If \(f \) is not an isomorphism, then \(u \preceq_A v \), thus (since \(v \in \mathcal{J} \)) \(u \in \mathcal{J} \), a contradiction. Hence \(f \) is an isomorphism. We prove that \(\Psi(f^{-1}) \circ \gamma_v \circ \Phi_*(f) \) satisfies the properties defining \(\gamma_u \).

\[
\Psi(f^{-1}) \circ \gamma_v \circ \Phi_*(f) \circ \varepsilon_U = \Psi(f^{-1}) \circ \gamma_v \circ \varepsilon_V \circ f \quad \text{(by (6.8) and (6.10))}
\]

\[
= \Psi(f^{-1}) \circ \tilde{\varepsilon}_v \circ f
\]

\[
= \tilde{\varepsilon}_u.
\]

Let \(w \in \mathcal{A} \uparrow U \). By using (6.8) and (6.10), we compute:

\[
\Psi(f^{-1}) \circ \gamma_v \circ \Phi_*(f) \circ \Phi_*(w) = \Psi(f^{-1}) \circ \gamma_v \circ \Phi_*(f \circ w)
\]

\[
= \Psi(f^{-1}) \circ \Psi(f \circ w) \circ \delta_{uow}
\]

\[
= \Psi(w) \circ \delta_{uow}.
\]
Therefore, $\Psi(f^{-1}) \circ \gamma_v \circ \Phi_*(f) = \gamma_u$, that is, $\gamma_v \circ \Phi_*(f) = \Psi(f) \circ \gamma_u$. Now we can compute further, using the assumption that B is a shelter:

$$\delta_u = \gamma_u^B = (\Psi(f^{-1}) \circ \gamma_v \circ \Phi_*(f))^B$$

$$= \Psi(f^{-1}) \circ \gamma_v^B \circ B(\Phi_*(f))$$

$$= \Psi(f^{-1}) \circ \delta_v \circ \Phi(f),$$

whence $\Psi(f) \circ \delta_u = \delta_v \circ \Phi(f)$.

\[\square\]

8. Preservation of \mathcal{M} by Φ

In this section we shall prove the remaining claim about the canonical \mathcal{B}-cover $\langle \Phi, \varepsilon, \mu \rangle$, namely, that Φ preserves \mathcal{M}. The idea of the proof is the following. For $f: U \to A$ in $\mathcal{A} \cap \mathcal{M}$, we construct, using the amalgamation property stated in Lemma 5.4, a certain functor Ψ, defined on all subobjects of A, together with a \mathcal{B}-lifting $\tilde{\varepsilon}$ of Ψ. Furthermore, we shall see that the restriction of $\langle \Psi, \tilde{\varepsilon} \rangle$ to all subobjects of A below f has a factor. By the "quasi-universality" property established in Section 7, namely, Lemma 7.3, this factor extends to a factor of $\langle \Psi, \tilde{\varepsilon} \rangle$ on all subobjects of A. As Ψ is constructed in such a way that the arrow $\Psi(f \to \text{id}_A)$ belongs to \mathcal{M}, it follows that $\Phi(f)$ also belongs to \mathcal{M}.

Lemma 8.1. For any morphism f of $\mathcal{A} \cap \mathcal{M}$, $\Phi(f)$ belongs to $\mathcal{B} \cap \mathcal{M}$.

Proof. We let $f: U \to A$ in $\mathcal{A} \cap \mathcal{M}$, we prove that $\Phi(f) \in \mathcal{M}$. If f is an isomorphism, then (since Φ is a functor) so is $\Phi(f)$, thus $\Phi(f) \in \mathcal{M}$. From now on we assume that f is not an isomorphism.

Since $\varepsilon_U: U \to \Phi(U)$ is a section (for $\mu_U \circ \varepsilon_U = \text{id}_U$), it follows from Lemma 5.4 that there exists $B \in \text{Ob } \mathcal{B}$, together with $\varphi: \Phi(U) \to B$ and $\varepsilon: A \to B$ in \mathcal{M}, such that $\varphi \circ \varepsilon_U = \varepsilon \circ f$.

For each $u: X \to A$ in $\mathcal{A} \upharpoonright A$, we define $\Psi(u) \in \text{Ob } \mathcal{B}$ and $\tilde{\varepsilon}_u: X \to \Psi(u)$ by

$$\Psi(u) = \begin{cases} \Phi(X), & \text{if } u \leq_A f, \\ B, & \text{otherwise;} \end{cases} \quad \tilde{\varepsilon}_u = \begin{cases} \varepsilon_X, & \text{if } u \leq_A f, \\ \varepsilon \circ u, & \text{otherwise.} \end{cases} \quad (8.1)$$

For $u: X \to A$ and $v: Y \to A$ in $\mathcal{A} \upharpoonright A$, we put $g = u/v$ and we define a morphism $\Psi(u \to v): \Psi(u) \to \Psi(v)$ in \mathcal{B} as follows:

Case 1. $v \leq_A f$. Put $\Psi(u \to v) = \Phi(g)$.

Case 2. $u \leq_A f, v \nless_A f$. Put $\Psi(u \to v) = \varphi \circ \Phi(u/f)$.

Case 3. $u, v \nless_A f$. Put $\Psi(u \to v) = \text{id}_B$.

Claim 1. In the context above, $\Psi(u \to v) \circ \tilde{\varepsilon}_u = \tilde{\varepsilon}_v \circ g$.

Proof of Claim. In Case 1, this is equivalent to the statement $\Phi(g) \circ \varepsilon_X = \varepsilon_Y \circ g$, which holds.

In Case 2, putting $\overline{v} = u/f$, we compute

$$\varphi \circ \Phi(\overline{v}) \circ \varepsilon_X = \varphi \circ \varepsilon_U \circ \overline{v} = \varepsilon \circ f \circ \overline{v} = \varepsilon \circ u = \varepsilon \circ v \circ g,$$

which is the desired statement.

In Case 3, from $v \circ g = u$ it follows that $\varepsilon \circ v \circ g = \varepsilon \circ u$, which is the desired statement. \qed Claim 1.

Claim 2. Ψ is a functor.
Proof of Claim. It suffices to prove that \(\Psi(u \to w) = \Psi(v \to w) \circ \Psi(u \to v) \), for all \(u \leq_A v \leq_A w \) in \(A \mid A \). Put \(X = \text{dom } u, Y = \text{dom } v, Z = \text{dom } w, g = u \lor v \), and \(h = v \lor w \). We separate cases.

Case 1. \(w \leq_A f \). Then
\[
\Psi(v \to w) \circ \Psi(u \to v) = \Phi(h) \circ \Phi(g) = \Phi(h \circ g) = \Psi(u \to w).
\]

Case 2. \(v \leq_A f \) and \(w \nleq_A f \). Put \(\varpi = u/f \) and \(\varpi = v/f \). The equality \(u = v \circ g \) can be written \(f \circ \varpi = f \circ \varpi \circ g \), thus, since \(f \) is monic, \(\varpi = \varpi \circ g \). Therefore,
\[
\Psi(u \to w) = \varphi \circ \Phi(\varpi) = \varphi \circ \Phi(\varpi) \circ \Phi(g) = \Psi(v \to w) \circ \Psi(u \to v).
\]

Case 3. \(u \leq_A f \) and \(v \nleq_A f \). Put \(\varpi = u/f \). Then
\[
\Psi(u \to w) = \varphi \circ \Phi(\varpi) = \text{id}_B \circ \varphi \circ \Phi(\varpi) = \Psi(v \to w) \circ \Psi(u \to v).
\]

Case 4. \(u \nleq_A f \). Then \(\Psi(u \to w) = \Psi(u \to w) = \Psi(v \to w) = \text{id}_B \), whence
\[
\Psi(u \to w) = \Psi(v \to w) \circ \Psi(u \to v).
\]
This concludes the proof of our claim. \(\Box \) Claim 2.

By Claims 1 and 2, \(\tilde{\varepsilon} \) is a \(B \)-lifting of the functor \(\Psi \) on the ideal \(J = A \mid A \). Furthermore, putting
\[
J = \{ u \in A \mid A \mid u \leq_A f \},
\]
the rule \(\delta_u = \text{id}_{\Phi(\text{dom } u)} \) defines a factor of \(\langle \Psi_{|J}, \tilde{\varepsilon}_J \rangle \). Therefore, by Lemma 7.3, \(\delta \) extends to a factor of \(\langle \Psi, \tilde{\varepsilon} \rangle \), which we shall still denote by \(\delta \).

Since \(f \in J \) and \(\text{id}_A \notin J \), we obtain \(\Psi(f \to \text{id}_A) = \varphi \circ \Phi(\text{id}_U) = \varphi \). Therefore,
\[
\varphi = \varphi \circ \delta_f = \delta_{\text{id}_A} \circ \Phi(f).
\]
Since \(\varphi \in M \), we obtain that \(\Phi(f) \in M \). \(\Box \)

This completes the proof of Theorem 5.3: the canonical \(B \)-cover \(\langle \Phi, \varepsilon, \mu \rangle \) is a solution of the given problem.

9. Distributive and ultrabolean semilattices

A \((\lor, 0) \)-semilattice \((S, \lor, 0, \leq) \) is **distributive**, if its ideal lattice \(\text{Id } S \) is distributive, see G. Grätzer [6, Section II.5]. Equivalently, for all \(a, b, c \in S \), if \(c \leq a \lor b \), then there are \(x \leq a \) and \(y \leq b \) such that \(c = x \lor y \). Distributive \((\lor, 0) \)-semilattices are characterized in P. Pudlák [12, Fact 4, p. 100] as directed \((\lor, 0) \)-unions of finite distributive \((\lor, 0) \)-semilattices.

Denote by \(S \) the category of finite \((\lor, 0) \)-semilattices and \((\lor, 0) \)-homomorphisms, and by \(D \) and \(B \) the full subcategories of \(S \) consisting of all distributive, respectively Boolean members of \(S \). We denote by \(M \) the subcategory of \(S \) consisting of all \((\lor, 0) \)-embeddings. Of course, \(M \) is an ideal of monics of \(S \).

Lemma 9.1. Let \(S, T, \) and \(D \) be \((\lor, 0) \)-semilattices with \(D \) finite distributive, and let \(e : S \to T \) and \(f : S \to D \) be \((\lor, 0) \)-homomorphisms with \(e \) an embedding. Then there exists a largest \((\lor, 0) \)-homomorphism \(g : T \to D \) extending \(f \), and it is given by the formula
\[
g(t) = \bigwedge_D (f(s) \mid s \in S, \ t \leq e(s)), \text{ for all } t \in T.
\]
(\text{Of course, the meet of the empty set is defined here as the unit of } D.)
Proof. An easy exercise. Although the distributivity of D is not used for correctness of the definition (9.1), it is used for proving that g is a $\langle \vee, 0 \rangle$-homomorphism. □

We shall call the map g defined in (9.1) the largest extension of f with respect to e.

Any $S \in \text{Ob} \ S$ is a finite lattice, thus also a meet-semilattice. We put $B(S) = \mathcal{P}(M(S))$, and we let

$$\eta_S: S \hookrightarrow B(S), \ a \mapsto \{ u \in M(S) \mid a \nless u \}.$$

Lemma 9.2 (folklore). The map η_S is a $\langle \vee, 0, 1 \rangle$-embedding from S into $\langle \mathcal{B}(S), \cup, \emptyset, S \rangle$, for every finite $\langle \vee, 0 \rangle$-semilattice S.

For an isomorphism $f: S \to T$ of finite $\langle \vee, 0 \rangle$-semilattices, we put

$$B(f)(X) = f[X], \text{ for all } X \in \mathcal{B}(S).$$

It is immediate to verify that B is a functor from Siso to Biso and that η is a natural transformation from the identity of Siso to B.

Definition 9.3. Let S and A be finite $\langle \vee, 0 \rangle$-semilattices with A distributive, and let $g: S \to A$ be a $\langle \vee, 0 \rangle$-homomorphism. We denote g^B the largest $\langle \vee, 0 \rangle$-extension of g from $B(S)$ to A with respect to the embedding $\eta_S: S \hookrightarrow B(S)$.

Now the proof of the following lemma is a straightforward exercise (see Definition 4.2). Items (i), (ii), (1), and (2) of Definition 4.2 follows from the fact that the formulas defining B, $g \mapsto g^B$, and η are ‘intrinsic’, thus preserved under isomorphisms. Item (iii) of Definition 4.2 follows from Lemma 9.1 (see Definition 9.3).

Lemma 9.4. The correspondences B, η described above define a shelter of S by B with respect to $\langle D, M \rangle$.

The corresponding commutative diagram is given on the right hand side of Figure 4.1. Now we are ready to prove our main semilattice-theoretical result.

Theorem 9.5. There exists a functorial retraction $\langle \Phi, \varepsilon, \mu \rangle$ of the category $D \cap M$ to the category $B \cap M$. Furthermore, ε_A is a $\langle \vee, 0, 1 \rangle$-embedding, for all $A \in \text{Ob} \ D$.

Proof. We prove that the assumptions of Theorem 5.3 are satisfied, where we replace C by S and A by D. Item (i) is a very particular case of the well-known fact that every variety of algebras has small colimits, see, for example, [2, Theorem 8.3.8], Item (ii) is trivial. Item (iii) is Lemma 9.4.

Finally, it is proved in [8, Theorem 2.10] that every semilattice embeds into an injective semilattice. Hence the variety of semilattices has the so-called Transfer Property (see [9, Proposition 1.5]), thus a fortiori the Amalgamation Property. Since every finitely generated semilattice is finite, these results extend to the finite case. Technically speaking, these results are established in [8, 9] for semilattices which do not necessarily have a unit; however, the extension to the case with unit is trivial. The result for $\langle \vee, 0 \rangle$-semilattices is dual. This obviously implies Assumption (iv) of Theorem 5.3.

It remains to establish that the maps ε_A constructed in the proof of Theorem 5.3 are 1-preserving. We argue by induction on $lh A$. By definition, $\Phi_*(A)$ is $\langle \vee, 0 \rangle$-generated by the set

$$G = \text{im} \varepsilon^A \cup \bigcup (\text{im} \Phi_*(u) \mid u \in A \uparrow^* A). \quad (9.2)$$
Let $u : X \hookrightarrow A$ in $A \uparrow A$. By the induction hypothesis, ε_X is 1-preserving, thus

$$\Phi_*(u)(1_{\Phi_X(X)}) = \Phi_*(u) \circ \varepsilon_X(1_X) = \varepsilon_A \circ u(1_X) \leq \varepsilon_A(1_A),$$

thus the largest element of X is $\varepsilon_A(1_A)$. Hence the largest element of $\Phi_*(A)$ is also $\varepsilon_A(1_A)$, that is, ε_A is 1-preserving. Since η_S is 1-preserving for all S, it follows that $\varepsilon_A = \eta_{\Phi_*(A)} \circ \varepsilon_A$ is also 1-preserving. \qed

Finally, denote by b_A the largest $b \in \Phi(A)$ such that $\mu_A(b) = 0$, for every finite distributive $(\vee, 0)$-semilattice A. After replacing $\Phi(A)$ by its interval $[b_A, 1]$, and this for all A, we obtain that the μ_A-s may be assumed to separate zero (i.e., $\mu_A^{-1}\{0\} = \{0\}$).

For convenience, we list here the properties satisfied by the triple $\langle \Phi, \varepsilon, \mu \rangle$ of Theorem 9.5:

- The correspondence Φ is a functor from the category $D \cap M$ of all finite distributive $(\vee, 0)$-semilattices with $(\vee, 0)$-embeddings to the category $B \cap M$ of all finite Boolean $(\vee, 0)$-semilattices with $(\vee, 0)$-embeddings.
- The maps ε_A is a $(\vee, 0, 1)$-embedding from A into $\Phi(A)$ and the map μ_A is a zero-separating $(\vee, 0, 1)$-homomorphism from $\Phi(A)$ onto A, for every finite distributive $(\vee, 0)$-semilattice A. Furthermore, $\mu_A \circ \varepsilon_A = \text{id}_A$.
- For every $(\vee, 0)$-embedding $f : X \hookrightarrow Y$ between finite distributive $(\vee, 0)$-semilattices X and Y, both equalities $\Phi(f) \circ \varepsilon_X = \varepsilon_Y \circ f$ and $\mu_Y \circ \Phi(f) = f \circ \mu_X$ hold.

Observe that these properties imply that $\Phi(f)$ preserves the unit whenever f does.

As shown by the following result, this functorial inverse of the functor Π does not arise from an adjunction.

Proposition 9.6. The projection functor $\Pi : \text{Retr}(D \cap M, B \cap M) \rightarrow D \cap M$ has neither a right nor a left adjoint.

Proof. Denote the objects of $\mathcal{R} = \text{Retr}(D \cap M, B \cap M)$ as $p = (D_p, B_p, \alpha_p, \beta_p)$. A left or right adjoint of Π is given by a functor $\Psi : D \rightarrow \mathcal{R}$. Let Ψ be given, for any $f : D \rightarrow E$ in $D \cap M$, by

$$\Psi(D) = \langle \tilde{D}, \Phi(D)_*, \varepsilon^D \rangle \quad \text{and} \quad \Psi(f) = \langle \tilde{f}, \Phi(f)_* \rangle,$$

where $f : \tilde{D} \rightarrow \tilde{E}$ and $\Phi(f) : \Phi(D) \rightarrow \Phi(E).$ (9.3)

Suppose first that Ψ is a left adjoint of Π, and denote by η the unit of the corresponding adjunction. So $\eta_D : D \hookrightarrow \tilde{D}$, for every $D \in \text{Ob} \mathcal{D}$. By the definition of an adjunction, for all $D \in \text{Ob} D$, $p \in \text{Ob} \mathcal{R}$, and $f : D \hookrightarrow D_p$, there exists a unique $\langle f_*, f^* \rangle : \Psi(D) \rightarrow p$ such that $f = f_* \circ \eta_D$. In particular, for $D = D_p$ and $f = \text{id}_D$ (as seen in the Introduction, there are always B, α, and β such that $\langle D, B, \alpha, \beta \rangle \in \text{Ob} \mathcal{R}$), we obtain, since all our semilattices are finite, that η_D is an isomorphism from D onto \tilde{D}.

Now let $D = 3$ (the three-element chain), $D_p = B_p = 2^2$, $\alpha_p = \beta_p = \text{id}_{2^2}$, and $f : 3 \hookrightarrow 2^2$ any $(\vee, 0)$-embedding. From $\langle f_*, f^* \rangle : \Psi(D) \rightarrow p$ it follows that $f_* \circ \mu^D = f^*$, an embedding. Thus μ^D is an embedding, and so $\Phi(D) \cong \tilde{D} \cong D \cong 3$, which is not Boolean; a contradiction.

Now suppose that Ψ is a right adjoint of Π, and denote by ε the counit of the corresponding adjunction. So $\varepsilon_D : \tilde{D} \hookrightarrow D$, for all $D \in \text{Ob} \mathcal{D}$. By the definition of an adjunction, for all $D \in \text{Ob} \mathcal{D}$, $p \in \text{Ob} \mathcal{R}$, and $f : D_p \hookrightarrow D$, there exists a unique
⟨∨

\[\langle f_*, f^* \rangle : p \rightarrow \Psi(D) \text{ such that } \varepsilon_D \circ f_* = f. \] In particular, \(f^* : B_p \hookrightarrow \Phi(D) \), and hence \(|B_p| \leq |\Phi(D)| \). However, for \(D \) and \(D_p \) fixed, \(|B_p| \) can be taken arbitrarily large, a contradiction. \(\square \)

The functorial retraction given by Theorem 9.5 is given by an explicit formula. This makes it possible to give a crude upper bound for the maximum \(\varphi(n) \) of all cardinalities of \(\Phi(A) \), where \(A \) is a distributive \(\langle \lor, 0 \rangle \)-semilattice of cardinality at most \(n \). Of course, \(\varphi(1) = 1 \). As (9.2) gives a generating subset of \(\Phi_*(A) \), we obtain
\[
|\Phi_*(A)| \leq 2^{n+1+2^n\varphi(n)},
\]
whence
\[
\varphi(n+1) \leq 2^{2^{n+1+2^n\varphi(n)}}.
\]
Hence \(\varphi(n) \) is, roughly speaking, majorized by a tower of exponentials of length \(2n \), which is, of course, beyond the reach of any implementation.

As illustrated in [15], the poset of distributive subsemilattices of a finite distributive \(\langle \lor, 0 \rangle \)-semilattice can be quite complicated. To the contrary, the corresponding structure is much nicer for Boolean subsemilattices. This motivates the definition of ultraboolean introduced in Section 1.

Corollary 9.7. Every distributive \(\langle \lor, 0 \rangle \)-semilattice \(D \) is a \(\langle \lor, 0 \rangle \)-retract of an ultraboolean \(\langle \lor, 0 \rangle \)-semilattice \(B \). Furthermore, if \(D \) has a unit, then \(B \) can be taken with a unit.

Proof. By Pudlák’s Lemma, \(D = \lim_{i \in I} D_i \), for a direct system \(\langle D_i, f_{i,j} \mid i \leq j \in I \rangle \) of finite distributive \(\langle \lor, 0 \rangle \)-semilattices and \(\langle \lor, 0 \rangle \)-embeddings \(f_{i,j} : D_i \to D_j \). Furthermore, we may assume that all \(D_i \)-s contain as an element the unit of \(D \) in case there is any.

Now we use the functorial retraction constructed in the proof of Theorem 9.5. The semilattice \(B = \lim_{i \in I} \Phi(D_i) \), with transition maps \(\Phi(f_{i,j}) : \Phi(D_i) \to \Phi(D_j) \), is ultraboolean and has a unit in case \(D \) has a unit. Furthermore, the natural transformations \(\langle \varepsilon_{D_i} \mid i \in I \rangle \) and \(\langle \mu_{D_i} \mid i \in I \rangle \) define, by direct limit, \(\langle \lor, 0 \rangle \)-homomorphisms \(\varepsilon : D \to B \) and \(\mu : B \to D \) such that \(\mu \circ \varepsilon = \text{id}_D \). Therefore, \(D \) is a retract of \(B \). If \(D \) has a unit, then \(\varepsilon(1_D) = 1_B \). \(\square \)

10. **Simultaneous lattice embeddings into finite Boolean semilattices**

The maps \(\varepsilon_X : X \to \Phi(X) \) constructed in the proof of Theorem 9.5 are \(\langle \lor, 0, 1 \rangle \)-embeddings. On the other hand, for every finite distributive \(\langle \lor, 0 \rangle \)-semilattice \(S \), the embedding from \(S \) into \(\Phi(J(S)) \) that with every \(a \in S \) associates the set \(\{ p \in J(S) \mid p \leq a \} \) is always a lattice embedding, and it has nice “almost functorial” properties, see [13, Section 1]. Hence the question whether a new functorial retraction may be constructed, with the corresponding maps \(\varepsilon_X \)-s being lattice homomorphisms, is natural.

In the present section we shall prove, by a counterexample, that this is not possible. In fact we shall prove a much stronger negative statement, see Example 10.3.

All direct systems considered in this section will be indexed by posets. Hence, if \(\langle I, \leq \rangle \) is a poset, an \(I \)-indexed direct system in a category \(\mathcal{A} \) consists of a system \(\langle A_i, f_{i,j} \mid i \leq j \in I, f_{i,j} : A_i \to A_j \rangle \) in \(\mathcal{A} \), for \(i \leq j \) in \(I \), such that \(f_{i,i} = \text{id}_{A_i} \) and \(f_{i,k} = f_{j,k} \circ f_{i,j} \), for all \(i \leq j \leq k \) in \(I \).
Suppose now that all A_i-s are finite $\langle \vee, 0 \rangle$-semilattices, all the $f_{i,j}$-s are $\langle \vee, 0 \rangle$-embeddings, and let $i \leq j$ in I. For any $q \in J(A_i)$, we define $\partial^{i,j} q$ as the set of all minimal $p \in A_i$ such that $q \leq f_{i,j}(p)$. Of course, $\partial^{i,j} q$ is a subset of $J(A_i)$.

Definition 10.1. Let $\alpha = \langle A_i, f_{i,j} \mid i \leq j \in I \rangle$ and $\beta = \langle B_i, g_{i,j} \mid i \leq j \in I \rangle$ be direct systems of lattices, indexed by the same poset I. A simultaneous lattice embedding from α into β is a system $\langle \varepsilon_i \mid i \in I \rangle$ of lattice embeddings $\varepsilon_i : A_i \hookrightarrow B_i$ such that $\varepsilon_j \circ f_{i,j} = g_{i,j} \circ \varepsilon_i$, for all $i \leq j$ in I.

Proposition 10.2. Let $\langle A_i, f_{i,j} \mid i \leq j \in I \rangle$ be a direct system, indexed by a poset I, of finite distributive $\langle \vee, 0 \rangle$-semilattices and $\langle \vee, 0 \rangle$-embeddings, that admits a simultaneous lattice embedding into a direct system of finite Boolean semilattices. Then for all $i \leq j$ in I and all $p \in J(A_i)$, there exists $q \leq f_{i,j}(p)$ in $J(A_j)$ such that the following statements hold:

(i) $\partial^{i,j} q = \{p\}$.
(ii) For all $k \in I$ with $i \leq k \leq j$ and all $r \in \partial^{k,j} q$, the following implication holds:

$$r \leq f_{i,k}(1_{A_i}) \implies r \leq f_{i,k}(p).$$

Proof. We fix a simultaneous lattice embedding as in Definition 10.1, with all the A_i-s finite distributive $\langle \vee, 0 \rangle$-semilattices and all the B_i-s finite Boolean.

We put $0_i = 0_{A_i}$ and $1_i = 1_{A_i}$, for all $i \in I$. Furthermore, define X_i as the set of all atoms of B_i. Replacing B_i by the interval $[\varepsilon_i(0_i), \varepsilon_i(1_i)]$ (which is still Boolean), we see that there is no loss of generality in assuming that ε_i is a $\langle \vee, \wedge, 0, 1 \rangle$-embedding, for all $i \in I$. Furthermore, we may assume that the X_i-s are pairwise disjoint and that all the $f_{i,j}$-s are set-theoretical inclusion mappings, so that $A_i \subseteq A_j$, for all $i \leq j$ in I.

Since ε_i is a $\langle \vee, 1 \rangle$-homomorphism, we can define $\mu_i(x)$, for $x \in B_i$, as the least $a \in A_i$ such that $x \leq \varepsilon_i(a)$. Hence,

$$x \leq \varepsilon_i(a) \iff \mu_i(x) \leq a, \text{ for all } \langle a, x \rangle \in A_i \times B_i. \quad (10.1)$$

For $\langle \xi, \eta \rangle \in X_i \times X_j$, let $\xi \leq \eta$ hold, if $\eta \leq g_{i,j}(\xi)$. It is obvious that \leq is a partial ordering on $\bigcup \{X_i \mid i \in I\}$.

The following claim records a few elementary facts.

Claim 1.

(i) $\mu_i \circ \varepsilon_i = \text{id}_{A_i}$.
(ii) $x \leq \varepsilon_i \circ \mu_i(x)$, for all $x \in B_i$.
(iii) $\mu_i(\xi) \in J(A_i)$, for all $\xi \in X_i$.
(iv) $\varepsilon_i(a) = \bigvee \{\xi \in X_i \mid \mu_i(\xi) \leq a\}$, for all $a \in A_i$.
(v) $\mu_j \circ g_{i,j}(x) \leq \mu_i(x)$, for all $x \in B_i$.
(vi) $\xi \leq \eta$ implies that $\mu_j(\eta) \leq \mu_i(\xi)$, for all $\langle \xi, \eta \rangle \in X_i \times X_j$.

Proof. It follows from (10.1) that $\varepsilon_i(a) \leq \varepsilon_i(b)$ iff $\mu_i \varepsilon_i(a) \leq b$, for all $a, b \in A_i$. Since ε_i is an embedding, (i) follows.

Substituting $a = \mu_i(x)$ in (10.1) gives immediately (ii).

Put $p = \mu_i(\xi)$, for $\xi \in X_i$. Since ξ is nonzero, so is p. Let $p = a \vee b$, where $a, b \in A_i$. So, $\xi \leq \varepsilon_i(p) = \varepsilon_i(a) \vee \varepsilon_i(b)$, but ξ is an atom of B_i, whence either $\xi \leq \varepsilon_i(a)$ or $\xi \leq \varepsilon_i(b)$, and hence, by the definition of p, either $p = a$ or $p = b$. Item (iii) follows.
By (10.1), an element ξ of X_i lies below $\varepsilon_i(a)$ iff $\mu_i(\xi) \leq a$. Since B_i is Boolean, (iv) follows.

From (ii) it follows that $g_{i,j}(x) \leq g_{i,j} \circ \varepsilon_i \circ \mu_i(x) = \varepsilon_j \circ \mu_i(x)$; item (v) follows.

For $(\xi, \eta) \in X_i \times X_j$ with $\xi \not\leq \eta$, that is, $\eta \leq g_{i,j}(\xi)$, we obtain, using (v), that $\mu_j(\eta) \leq \mu_j \circ g_{i,j}(\xi) \leq \mu_i(\xi)$. Item (vi) follows.

\begin{claim}
The set $\partial^{i,j} \mu_j(\eta)$ is contained in $\{\mu_i(\xi) \mid \xi \in X_i \text{ and } \xi \leq \eta\}$, for all $i \leq j$ in I and all $\eta \in X_j$.
\end{claim}

\textbf{Proof of Claim.} Let $p \in \partial^{i,j} \mu_j(\eta)$. From Claim 1(iv) it follows that

$$\varepsilon_j(p) = \bigvee (\beta \in X_j \mid \mu_j(\beta) \leq p),$$

whence $\eta \leq \varepsilon_j(p)$. Therefore, again by using Claim 1(iv), we obtain

$$\eta \leq g_{i,j} \circ \varepsilon_i(p) = g_{i,j} \left(\bigvee (\xi \in X_i \mid \mu_i(\xi) \leq p) \right) = \bigvee (g_{i,j}(\xi) \mid \xi \in X_i \text{ and } \mu_i(\xi) \leq p),$$

whence there exists $\xi \in X_i$ such that $\xi \leq \eta$ and $\mu_i(\xi) \leq p$. Hence, by Claim 1(vi), $\mu_j(\eta) \leq \mu_i(\xi) \leq p$, with $\mu_i(\xi) \in A_i$ and $p \in \partial^{i,j} \mu_j(\eta)$. Therefore, $p = \mu_i(\xi)$.

\hfill \Box

Claim 2.

Now we can conclude the proof of Proposition 10.2. It follows from Claim 1(i,iv) that

$$p = \mu_i \circ \varepsilon_i(p) = \bigvee (\mu_i(\xi) \mid \xi \in X_i \text{ and } \mu_i(\xi) \leq p),$$

thus, since p is join-irreducible, there exists $\xi \in X_i$ such that $p = \mu_i(\xi)$. Since $g_{i,j}$ is an embedding, there exists $\eta \in X_j$ such that $\eta \leq g_{i,j}(\xi)$ and $\eta \notin g_{i,j}(\{\xi\})$. This means that $\xi \leq \eta$ and $\xi' \equiv \eta$ for all $i \in X_i \setminus \{\xi\}$. We prove that the element $q = \mu_j(\eta)$ is as desired.

First, by Claim 1(iii), q belongs to $J(A_j)$. Since $q \leq p$, the set $\partial^{i,j} q$ is nonempty. Let $p' \in \partial^{i,j} q$. By Claim 2, there exists $\xi' \in X_i$ such that $\xi' \equiv \eta$ and $\mu_i(\xi') = p'$. By the definition of η, we obtain that $\xi' = \xi$, so $p' = p$. Hence, $\partial^{i,j} q = \{p\}$.

Now let $k \in I$ with $i \leq k \leq j$ and let $r \in \partial^{i,j} q$ with $r \leq 1$. The latter inequality implies that $\partial^{i+k} r$ is nonempty. Let $p' \in \partial^{i+k} r$. Since $r \in \partial^{i,j} q = \partial^{i+k} \mu_j(\eta)$, there exists, by Claim 2, $\zeta \in X_k$ such that $r = \mu_k(\zeta)$ and $\zeta \equiv \eta$. Since $p' \in \partial^{i+k} r$, there exists, again by Claim 2, $\xi' \in X_i$ such that $\xi' \equiv \zeta$ and $\mu_i(\xi') = p'$. So $\xi' \equiv \eta$ with $\xi' \in X_i$, whence $\xi' = \xi$, and so $p' = p$. Therefore, by Claim 1(vi), $r = \mu_{i+k}(\zeta) \leq \mu_i(\xi') = p$.

\hfill \Box

\textbf{Example 10.3.} There exists a square (i.e., a diagram indexed by 2^2) of finite distributive $(\vee,0)$-semilattices and $(\vee,0,1)$-embeddings that does not have any simultaneous lattice embedding into any diagram of finite Boolean semilattices.

\textbf{Proof.} Identify the finite poset P diagrammed on the left hand side of Figure 10.1 with its canonical image in the (distributive) lattice A of all ideals of P. So, $1 = p_1 \lor p_2$ and $P = J(A)$. Put $p = p_1 \wedge p_2 = q_1 \lor q_2$ and let S denote the $(\vee,0)$-subsemilattice of A generated by $\{p, p_1, p_2\}$. Hence S is distributive and $J(S) = \{p, p_1, p_2\}$. For $i \in \{1,2\}$, put $r_i = q_i \lor q_i'$ and $P_i = \{p, p_1, p_2, r_i\}$. Denote by A_i the $(\vee,0)$-subsemilattice of A generated by P_i. The only nontrivial comparable pairs in P_1 are given by $r_1 < p_1$ and $p < p_1, p_2$. Furthermore, since $p_1 \not\leq r_1 \lor p_2$, all elements of P_1 are join-prime in A_1, hence A_1 is isomorphic to the lattice of all ideals
of \(P_1 \); whence it is distributive. Similarly, \(A_2 \) is distributive. The semilattices \(S \) and \(A_1 \) are diagrammed on Figure 10.1. Of course, \(A_1 \) and \(A_2 \) are isomorphic.

So we have obtained four \((\vee, 0, 1) \)-semilattices \(S \subseteq A_1, A_2 \subseteq A \). Suppose that this square has a simultaneous lattice embedding into a diagram of finite Boolean semilattices. We apply Proposition 10.2 to the element \(p \in J(S) \). The element \(q \in J(A) \) given by Proposition 10.2 lies below \(p \), so we may assume, by symmetry, that \(q = q_1 \). From \(r_1 \in \partial^{A_1 \cup A} q_1 \) and \(r_1 \leq 1_S \), it follows that \(r_1 \leq p \), a contradiction. □

The proof of Proposition 10.2 above makes essential use of the distributivity of all \(B_i \)-s. As we shall see in Section 11, this is unavoidable.

11. The Grätzer-Schmidt extension and retracts of ultra-simple-atomistic semilattices

A well-known result by M. Tischendorf [14] gives a direct construction implying that every finite lattice embeds into some finite atomistic lattice. For a finite lattice \(L \), denote by \(\text{Ti}(L) \) the finite atomistic lattice obtained from \(L \) via Tischendorf’s construction. It is proved in [14] that \(\text{Ti}(L) \) is a finite atomistic lattice containing (as a bounded lattice) \(L \), via the embedding \(\zeta_L : L \hookrightarrow \text{Ti}(L), a \mapsto \downarrow a \cap J(L) \). In fact, it is proved in [14] that \(\zeta_L \) is congruence-preserving, that is, the natural map from the congruence lattice \(\text{Con} L \) of \(L \) to \(\text{Con} \text{Ti}(L) \) is an isomorphism. Furthermore, the map \(\rho_L : \text{Ti}(L) \to L, X \mapsto \bigvee X \) is easily seen to be a \((\vee, 0) \)-retraction of \(\zeta_L \).

Although the correspondence \(L \hookrightarrow \text{Ti}(L) \) cannot be extended “naturally” to arbitrary \((\vee, 0) \)-embeddings, it can be extended to isomorphisms. This is sufficient to construct from it an appropriate shelter. This shelter can, in turn, be used to prove the following analogue of Corollary 9.7: Every \((\vee, 0) \)-semilattice is a retract of a \((\vee, 0) \)-semilattice which is a directed \((\vee, 0) \)-union of finite atomistic lattices.

However, a much stronger result can be proved with a much simpler method, see Theorem 11.5. We shall now present this proof.

We recall that a \((\vee, 0) \)-semilattice \(K \) is atomistic, if every element of \(K \) is a join of atoms of \(K \). The purpose of the first part of the following definition is to separate the two distinct notions of simple semilattice (which is a trivial) and simple lattice.
Definition 11.1. Let K be a lattice with zero. We say that the $\langle \lor, 0 \rangle$-semilattice $\langle K, \lor, 0 \rangle$ is lattice-simple, if the lattice $\langle K, \lor, \land \rangle$ is simple. A $\langle \lor, 0 \rangle$-semilattice K is ultra-simple-atomistic, if K is the directed union of its finite, lattice-simple, atomistic $\langle \lor, 0 \rangle$-subsemilattices.

We denote by $\text{At} K$ the set of all atoms of a $\langle \lor, 0 \rangle$-semilattice K, and we put $\text{NAt} K = K \setminus \{\{0\} \cup \text{At} K\}$. For every $a \in \text{NAt} K$, we adjoin distinct atoms $p^i_a < a$, for $i \in \{0,1\}$, such that $p^i_a = p^j_b$ only in case $a = b$ and $i = j$. Now we put

$$\text{GS}(K) = K \cup \{p^i_a | a \in \text{NAt} K \text{ and } i < 2\}.$$

Since this construction is used in the proof of [7, Lemma 7], we shall call it the Grätzer-Schmidt extension of K.

The ordering of $\text{GS}(K)$ consists of the ordering of K, augmented by the following pairs:

$$p^i_a \leq b \iff a \leq b$$

in case $a \in \text{NAt} K$,

$$a \leq p^i_a \iff a = 0$$

in case $b \in \text{NAt} K$,

$$p^i_a \leq p^j_b \iff (a = b \text{ and } i = j)$$

in case $a, b \in \text{NAt} K$,

for $a, b \in K$ and $i, j < 2$.

The following lemma records a few straightforward properties of $\text{GS}(K)$.

Lemma 11.2. Let K be a $\langle \lor, 0 \rangle$-semilattice. Then the following properties hold:

(i) The ordering \leq endows $\text{GS}(K)$ with a structure of $\langle \lor, 0 \rangle$-semilattice.

(ii) The inclusion map $\varepsilon_K : K \hookrightarrow \text{GS}(K)$ is a complete $\langle \lor, \land \rangle$-embedding (that is, an order-embedding that preserves all meets and joins defined in K).

(iii) If K is a lattice, then so is $\text{GS}(K)$.

(iv) The map $\mu_K : \text{GS}(K) \to K$ extending id_K such that $\mu_K(p^i_a) = a$, for all $a \in \text{NAt} K$ and $i < 2$, is a $\langle \lor, 0 \rangle$-homomorphism, and $\mu_K \circ \varepsilon_K = \text{id}_K$.

For elements a, b, and c in a $\langle \lor, 0 \rangle$-semilattice K, we say that $c = a \oplus b$, if $c = a \lor b$ and $a \land b = 0$. Moreover, we say that a and b are perspective, in notation $a \sim b$, if there exists $x \in K$ such that $a \oplus x = b \oplus x$. The following lemma contains further related properties.

Lemma 11.3. Let K be a $\langle \lor, 0 \rangle$-semilattice. Then the following properties hold:

(i) Every element of $\text{GS}(K)$ is a join of at most two atoms.

(ii) For all $x, y \in \text{GS}(K)$ such that $0 < x < y$, there exists an atom p of $\text{GS}(K)$ such that $y = x \oplus p$.

(iii) Any two atoms of $\text{GS}(K)$ are perspective.

(iv) If K is a lattice, then $\text{GS}(K)$ is lattice-simple.

(v) In the general case, $\text{GS}(K)$ is ultra-simple-atomistic.

Proof. (i) Any $a \in \text{NAt} K$ satisfies that $a = p^0_a \lor p^1_a$.

(ii) Necessarily, $y \in K$. If $x \in K$, then $y = x \oplus p^0_y$. If $x = p^i_a$, then $a \leq y$, and so $p^i_a \oplus p^{1-i}_y = y$.

(iii) Let x and y be distinct atoms of $\text{GS}(K)$, and put $c = \mu_K(x) \lor \mu_K(y)$. If $x, y \in \text{At} K$, then $x \lor p^0_y = y \lor p^0_x = c$. If $x \in \text{At} K$ and $y = p^0_b$ (so $\mu_K(y) = a$), then $x \lor p^1_y = y \lor p^{1-i}_x = c$. Suppose that $x = p^i_a$ and $y = p^j_b$. Since $a \in \text{NAt} K$, there exists $d \in K$ such that $0 < d < a$. If $a = b$, then $x \oplus d = y \oplus d = a$. Suppose that $a \neq b$, say $b \not\leq a$. Then $x \oplus p^{i-j}_c = y \oplus p^{i-j}_c = c$.
(iv) It follows from Lemma 11.2(iii) that $\text{GS}(K)$ is a lattice. Denote by $\Theta(x, y)$ the (lattice-)congruence of $\text{GS}(K)$ generated by the pair $\langle x, y \rangle$, for any $x, y \in \text{GS}(K)$. It follows from (iii) that $\Theta(0, x) = \Theta(0, y)$, for all atoms x and y of $\text{GS}(K)$. Therefore, by (i) or (ii), $\text{GS}(K)$ is lattice-simple.

(v) As K is the directed union of its finite $\langle \lor, 0 \rangle$-subsemilattices (we define the empty directed union as $\{0\}$), we obtain that $\text{GS}(K)$ is the directed union of all $\text{GS}(F)$, for F a nontrivial finite join-subsemilattice of K. By (i) and (iv), $\text{GS}(F)$ is finite, atomistic, and lattice-simple, for all such F. \square

For $\langle \lor, 0 \rangle$-semilattices K and L and a $\langle \lor, 0 \rangle$-embedding $f: K \hookrightarrow L$, we define a map $\text{GS}(f): \text{GS}(K) \rightarrow \text{GS}(L)$ by the rule

\[
\text{GS}(f)(a) = a \quad \text{for } a \in K,
\]

\[
\text{GS}(f)(p_i^a) = p_{f(a)}^i \quad \text{for } a \in \text{NAt} K \text{ and } i < 2.
\]

The verification of the following lemma is straightforward.

Lemma 11.4. In the context above, the map $\text{GS}(f)$ is a $\langle \lor, 0 \rangle$-embedding from $\text{GS}(K)$ into $\text{GS}(L)$ such that $\text{GS}(f) \circ \varepsilon_K = \varepsilon_L \circ f$ and $\mu_L \circ \text{GS}(f) = f \circ \mu_K$. Furthermore, if f is a lattice homomorphism, then so is $\text{GS}(f)$.

Putting together some of the information above, we obtain the following rather elementary result.

Theorem 11.5. The triple $\langle \text{GS}, \varepsilon, \mu \rangle$ is a functorial retraction of the category of $\langle \lor, 0 \rangle$-semilattices and $\langle \lor, 0 \rangle$-embeddings to the full subcategory of ultra-simple-atomic $\langle \lor, 0 \rangle$-semilattices. Furthermore, the functor GS sends finite lattices to finite (lattice-)simple lattices.

The essence of this result can be captured by the following somewhat loose formulation: Every $\langle \lor, 0 \rangle$-semilattice is a retract of some ultra-simple-atomic $\langle \lor, 0 \rangle$-semilattice, and this holds functorially.

Further properties of the functorial retraction of Theorem 11.5 are obtained above. For example, for any $\langle \lor, 0 \rangle$-embedding $f: K \hookrightarrow L$,

1. the map ε_K is a complete $\langle \lor, \land \rangle$-embedding (this is why the assumption of distributivity of the B_i-s is unavoidable in the proof of Proposition 10.2);
2. if $f: K \hookrightarrow L$ is a 0-lattice embedding, then so is $\text{GS}(f)$.

Let us keep the notation of Section 9 for \mathcal{S} and \mathcal{M}, and denote by \mathcal{S}_{at} the full subcategory of atomistic members of \mathcal{S}. We state the following analogue of Proposition 9.6.

Proposition 11.6. The projection functor from $\text{Retr}(\mathcal{S} \cap \mathcal{M}, \mathcal{S}_{\text{at}} \cap \mathcal{M})$ to $\mathcal{S} \cap \mathcal{M}$ has neither a right nor a left adjoint.

The proof of Proposition 11.6 is virtually the same as the one of Proposition 9.6. However, as shows the following easy result and since there are finite non-atomic lattices, the analogue of Theorem 11.5 for lattices does not hold.

Proposition 11.7. Any finite $\langle \lor, \land \rangle$-homomorphic image of a $\langle \lor, \land \rangle$-direct limit of finite atomistic lattices is atomistic.

Proof. Let K be a finite lattice and let $g: L \rightarrow K$ be a surjective lattice homomorphism, where $L = \lim_{\longrightarrow} L_i$, with I directed, the lattices L_i finite atomistic, and transition maps $f_i: L_i \rightarrow L$. Since K is finite, there exists $i \in I$ such that $g_i = g \circ f_i$ is surjective. Since $g_i(p)$ is an atom of K, for any atom p of L_i, K is atomistic. \square
12. Open problems

As observed above, the functorial retraction constructed in the proof of Theorem 9.5, although theoretically computable, lives a priori beyond the reach of any implementation. The most natural question is thus whether such a functorial retraction could be constructed with ‘reasonable’ growth.

A possible way to formulate this problem is the following. We use the notation of Section 9.

Problem 1. Are there a functorial retraction \((\Phi, \varepsilon, \mu)\) of \(D \cap M\) to \(B \cap M\) such that \(|J(\Phi(D))|\) is bounded by a polynomial in \(|J(D)|\), for every finite distributive (semi)lattice \(D\)?

Both Example 10.3 and the huge upper bound for the construction of Theorem 9.5 suggest that \(\Phi(D)\) needs to be large with respect to \(D\).

Say that a \((\lor, 0)\)-homomorphism \(\mu: S \to T\) is weakly distributive, if whenever \(\mu(c) = a \lor b\), there is a decomposition \(c = x \lor y\) in \(S\) such that \(\mu(x) \leq a\) and \(\mu(y) \leq b\). In view of some lifting results with respect to the congruence functor on lattices (see [16] for a survey), the following problem may be relevant.

Problem 2. Is every distributive \((\lor, 0)\)-semilattice a weakly distributive image of some ultrabolean \((\lor, 0)\)-semilattice?

We know that Problem 2 has a positive answer for countable semilattices.

We do not know whether the analogue of Corollary 9.7 for dimension groups holds. By definition, a partially ordered abelian group \(G\) is a dimension group, if \(G\) is directed (for its ordering), unperforated, and has the interpolation property, see [4]. Special cases of dimension groups are the simplicial groups, that is, those partially ordered abelian groups that are isomorphic to some finite power of the integers (with componentwise ordering). As defined in [3], a partially ordered abelian group is \(E\)-ultrasimplicial, if it is a directed union of simplicial groups. Every \(E\)-ultrasimplicial group is a dimension group; the converse is easily seen to be false, even in the divisible case (see [3, Example 1.2]).

Problem 3. Is every dimension group a retract of some \(E\)-ultrasimplicial group?

A similar question can be formulated in the context of [5]. We denote by \(\mathcal{R}_{ep}\) (resp., \(\mathcal{R}_{ep}^*\)) the class of all monoids which are direct limits (resp., directed unions) of finite products of monoids of the form \((\mathbb{Z}/n\mathbb{Z}) \cup \{0\}\) for positive integers \(n\). A first-order characterization of \(\mathcal{R}_{ep}\) is obtained in [5].

Problem 4. Is every member of \(\mathcal{R}_{ep}\) a retract of some member of \(\mathcal{R}_{ep}^*\)?

The result of Theorem 9.5 is made possible by the shelter \(B\). In order to define a shelter we need a functor playing the role of the ‘functor from \(\mathcal{B}^{iso}\) to \(\mathcal{B}^{iso}\)’ of Definition 4.2(i). A special feature of such functors is that they can be easily defined on isomorphisms (because they are given by ‘explicit’ constructions), but not on embeddings. There are probably many such objects within mathematical practice. For example, it is proved in [1, Theorem 1.11], via an explicit construction, that every finite join-semidistributive lattice embeds into some finite atomistic join-semidistributive lattice. (A lattice is join-semidistributive, if it satisfies the quasi-identity \(x \lor y = x \lor z \Rightarrow x \lor y = x \lor (y \land z)\).) This suggests the following problem.
Problem 5. Say that a \(\langle \lor, 0 \rangle \)-semilattice \(S \) is \emph{join-semidistributive}, if for all \(a, b, c \in S \), if \(a \lor b = a \lor c \), then there exists \(x \leq b, c \) such that \(a \lor b = a \lor x \). Is every join-semidistributive \(\langle \lor, 0 \rangle \)-semilattice a retract of some direct limit of finite atomistic join-semidistributive \(\langle \lor, 0 \rangle \)-semilattices?

Acknowledgment

This work was partially completed while the author was visiting the Charles University (Prague). Excellent conditions provided by the Department of Algebra are greatly appreciated.

References

[17] F. Wehrung, \emph{Lifting retracted diagrams with respect to projectable functors}, preprint.

LMNO, CNRS UMR 6139, DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ DE CAEN, 14032 CAEN CEDEX, FRANCE

\textit{E-mail address:} wehrung@math.unicaen.fr

\textit{URL:} \url{http://www.math.unicaen.fr/~wehrung}