Using Coulombian approach for Modeling Scalar Potential and Magnetic Field of a Permanent Magnet with Radial Polarization
Harijaona Lalao Rakotoarison, Jean-Paul Yonnet, Benoît Delinchant

To cite this version:

HAL Id: hal-00333210
https://hal.archives-ouvertes.fr/hal-00333210
Submitted on 22 Oct 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Using Coulombian Approach for Modeling Scalar Potential and Magnetic Field of a Permanent Magnet With Radial Polarization

H. L. Rakotoarison, J.-P. Yonnet, and B. Delinchant

Laboratoire d’Electrotechnique de Grenoble, Saint Martin d’Hères 38402, France

New compact semianalytical expressions of the scalar potential and magnetic fields produced by a radially polarized permanent magnet are described in this paper by using Coulombian approach. It uses fictitious magnetic charge to model the magnetic field intensity. With this fast model, we can compute the demagnetization field in each point inside the permanent magnet and the magnetic fields outside it.

Index Terms—Analytical model, magnetic field, radial polarized magnet.

I. INTRODUCTION

Radial polarized sector permanent magnets are often used in electromagnetic device. Most applications of this type of magnet were found in electrical motor and no-contact magnetic torque transmitter [1]. Recently, new application of this type of magnet is encountered in diamagnetic levitation device, used for microparticle sorting [2], 3-D force sensor [3], and accelerometer; those applications lead us to realize this device, used for microparticle sorting [2], 3-D force sensor [3], and accelerometer; those applications lead us to realize this device, used for microparticle sorting [2], 3-D force sensor [3], and accelerometer; those applications lead us to realize this device, used for microparticle sorting [2].

Furlani [5] had proposed the first 3-D semianalytical model of flux density, using amperian approach, but the expressions of \(B_r \) and \(B_\theta \) need the sum of two integrals computation, which can be time consuming if the model is used for dynamic simulation or optimization process. This paper proposes a compact magnetic field modeling with single numerical integration.

The final result is helpful if a continuous model of the magnetic field is required and demagnetization study is needed.

II. ELECTROSTATIC AND MAGNETOSTATIC ANALOGY

A. Basic Equations

Let us start from the four Maxwell’s equations in electrostatic [(1) and (2)] and magnetostatic [(3) and (4)]

\[
\nabla \times \mathbf{E} = \mathbf{0} \tag{1}
\]

\[
\nabla \cdot \mathbf{D} = \rho \tag{2}
\]

\[
\nabla \times \mathbf{H} = \mathbf{J} \tag{3}
\]

\[
\nabla \cdot \mathbf{B} = 0 \tag{4}
\]

where \(E, D, H, B, \rho, \) and \(j \) are electric field, electric flux density, magnetic field intensity, magnetic flux density, electrical charge, electric current density, respectively.

The magnetic field is only produced by the magnet, so (3) becomes

\[
\nabla \times \mathbf{H} = \mathbf{0}. \tag{5}
\]

Taking the material properties into account

\[
\mathbf{D} = \varepsilon_0 \mathbf{E} \tag{6}
\]

\[
\mathbf{B} = \mu_0 \mathbf{H} + \mathbf{J} \tag{7}
\]

\(\varepsilon_0 \) and \(\mu_0 \) are, respectively, the permittivity and the permeability of the vacuum, and \(J \) is the polarization of the magnet.

By using (6) and (7), expression (2) and (4) become, respectively, (8) and (9)

\[
\nabla \cdot \mathbf{E} = \rho / \varepsilon_0 \tag{8}
\]

\[
\nabla \cdot \mathbf{H} = -\nabla \cdot \mathbf{J} / \mu_0. \tag{9}
\]

Equations (1) and (8) show the duality between electrical field and electrical charge density \(\rho \) in electrostatic problem.

If we introduce the fictitious magnetic charge density \(\sigma \) and by applying the same duality as in (1) and (8) between magnetic field and fictitious magnetic charge in magnetostatic equations (5) and (9), we can write

\[
\nabla \cdot \mathbf{H} = \sigma / \mu_0. \tag{10}
\]

By identification with (9), the fictitious charge density is

\[
\sigma = -\nabla \cdot \mathbf{J}. \tag{11}
\]

This fictitious magnetic charge density \(\sigma \) is composed by a volume charge density \(\sigma_v \) and surface charge density \(\sigma_s \) (Fig. 1).
If the magnetic polarization J is uniform and radial, the expression of σ_v in cylindrical coordinate system (r, θ, z) is

$$\sigma_v = -\nabla \cdot J = -\frac{J}{r}. \quad (12)$$

Finding the surface charge density σ_s is straightforward; it can be obtained by referencing (4), which means that, considering the entire volume of the magnet, there was no monopole magnetic charge, so

$$\int \int \sigma_s ds + \int \int \sigma_v dv = 0. \quad (13)$$

\overrightarrow{n} defines the unit vector normal to surface; by using (12) and applying Green’s theorems, after identification, we obtain

$$\sigma_s = \overrightarrow{J} \cdot \overrightarrow{n}. \quad (14)$$

B. Electrostatic Equivalent Model

Finally, the electrostatic equivalent model of the permanent magnet with radial polarization can be illustrated as in Fig. 1. By projecting the polarization into the six surfaces of a magnet, the surface charge densities exist only in the inner and outer surface of the magnet.

The volume charge decreases according to a $1/r$ function from the inner to the outer surface. From (5), we can prove the existence of the magnetic scalar potential φ with

$$\overrightarrow{H} = -\nabla \cdot \varphi. \quad (15)$$

Basic expression for scalar potential and field calculation produced by the permanent magnet are obtained in (16) and (17), by using the electrostatic approach

$$\varphi_P = \frac{1}{4\pi \mu_0} \left(\int \int \sigma_s \frac{ds}{|\overrightarrow{r} - \overrightarrow{r}'|} + \int \int \sigma_v \frac{dv}{|\overrightarrow{r} - \overrightarrow{r}'|} \right). \quad (16)$$

By applying (15), the magnetic field intensity is

$$\overrightarrow{H}_P = \frac{1}{4\pi \mu_0} \left(\int \int \sigma_s \frac{ds}{|\overrightarrow{r} - \overrightarrow{r}'|^3} (\overrightarrow{r}' - \overrightarrow{r}'')ds + \int \int \sigma_v \frac{dv}{|\overrightarrow{r} - \overrightarrow{r}'|^3} (\overrightarrow{r}' - \overrightarrow{r}'')dv \right). \quad (17)$$

III. SCALAR POTENTIAL

After integrating (16) analytically, we obtain a single numerical integration with the parameterization shown in Fig. 3

$$\varphi(r, \theta, z) = \frac{J}{4\pi \mu_0} \sum_{i=1}^{\theta_1} \sum_{j=1}^{\theta_2} (-1)^{i+j} d\varphi(r, \theta, z, r'_i, \theta'_j, z'_j). \quad (18)$$

By using $\alpha = \theta' - \theta$ with $\theta'_1 \leq \theta' \leq \theta'_2$ and

$$G(\alpha) = \sqrt{(r - r'_i \cos(\alpha))^2 + (r'_i \sin(\alpha))^2 + (z - z'_j)^2}$$

$$= (z - z'_j)(1 - \ln(r'_i - r \cos(\alpha))) - (r'_i - r \cos(\alpha)) \ln((z - z'_j) + G(\alpha)) + r'_i \ln((z - z'_j) - G(\alpha))$$

$$+ r \sin(\alpha) \left[\arctan \left(\frac{(z - z'_j) + r \cos(\alpha)}{r \sin(\alpha) G(\alpha)} \right) - \arctan \left(\frac{(z - z'_j) - r \cos(\alpha)}{r \sin(\alpha)} \right) \right]. \quad (19)$$

IV. MAGNETIC FIELD EXPRESSION

After defining the magnetic scalar potential of the magnet, we can express the three components of the field by using (15).
A. Radial Component of the Field

Formula of the radial field component is

\[H_r(r, \theta, z) = \frac{J}{4\pi\mu_0} \cdot \sum_{i=1}^{\theta_2} \sum_{i=1}^{\theta_2} (z - z_i') \cdot (r - r_i' \cos(\alpha)) \cdot G(\alpha) \cdot (r_i' \sin(\alpha) - r \sin(\alpha)) \cdot \ln[G(\alpha) - (z - z_i')] \]

\[dH_r = \frac{J}{4\pi\mu_0} \cdot \sum_{i=1}^{\theta_2} \sum_{i=1}^{\theta_2} (z - z_i') \cdot (r - r_i' \cos(\alpha)) \cdot G(\alpha) \cdot (r_i' \sin(\alpha) - r \sin(\alpha)) \cdot \ln[G(\alpha) - (z - z_i')] \]

(21)

B. Azimuthal Component

\[H_\theta(r, \theta, z) = \frac{J}{4\pi\mu_0} \cdot \sum_{i=1}^{\theta_2} \sum_{i=1}^{\theta_2} (z - z_i') \cdot (r - r_i' \cos(\alpha)) \cdot G(\alpha) \cdot (r_i' \sin(\alpha) - r \sin(\alpha)) \cdot \ln[G(\alpha) - (z - z_i')] \]

with

\[dH_\theta = \frac{J}{4\pi\mu_0} \cdot \sum_{i=1}^{\theta_2} \sum_{i=1}^{\theta_2} (z - z_i') \cdot (r - r_i' \cos(\alpha)) \cdot G(\alpha) \cdot (r_i' \sin(\alpha) - r \sin(\alpha)) \cdot \ln[G(\alpha) - (z - z_i')] \]

(22)

C. Axial Component

\[H_z(r, \theta, z) = \frac{J}{4\pi\mu_0} \cdot \sum_{i=1}^{\theta_2} \sum_{i=1}^{\theta_2} (z - z_i') \cdot (r - r_i' \cos(\alpha)) \cdot G(\alpha) \cdot (r_i' \sin(\alpha) - r \sin(\alpha)) \cdot \ln[G(\alpha) - (z - z_i')] \]

with

\[dH_z = \frac{J}{4\pi\mu_0} \cdot \sum_{i=1}^{\theta_2} \sum_{i=1}^{\theta_2} (z - z_i') \cdot (r - r_i' \cos(\alpha)) \cdot G(\alpha) \cdot (r_i' \sin(\alpha) - r \sin(\alpha)) \cdot \ln[G(\alpha) - (z - z_i')] \]

(23)

V. RESULTS AND FINITE ELEMENT MODELING

As validation of the model, a finite element analysis was done by using FLUX3D software [6].

We have chosen the dimensions given in Table I, and we have taken \(J = 1 \text{T} \).

For obtaining a precise result in finite element analysis, the mesh close to the inner radius of the sector must be very fine (Fig. 4).

A. Discontinuity of the Normal Component of the Magnetic Field Intensity

Fig. 5 shows the discontinuity of radial field (the tangential component) inside and outside the magnet (\(r \) varying from 0 to 6 mm); it illustrates as well that the demagnetization effect is less important near the inner radius (1 mm) than close to the outer radius (4 mm). This feature can contribute to the design parameters during sizing process.

B. Comparing the Azimuthal Component

This investigation allows us to check the continuity of the normal component (Fig. 6) of the magnetic field intensity.
Fig. 6. Azimuthal component of the field from $\theta = -45^\circ$ to $\theta = 45^\circ$, with $r = 2.5$ mm and $z = 0$ mm.

Fig. 7. Axial component of the field from $z = -2.5$ mm to $z = 2.5$ mm, with $r = 2.5$ mm and $\theta = 0^\circ$.

C. Comparing the Axial Component

As the azimuthal component, the behavior of the axial component (Fig. 7) is continued, because it is the normal component of the magnetic field intensity.

D. Magnetic Field Radiated by a Cylinder Magnet

The distribution of the modulus of the magnetic field radiated by a ring-shaped magnet is depicted in Fig. 8. The polarization remains radial. Let us remark the presence of a hole of field in the center of the magnet; this feature is significant if diamagnetic levitation is required [3].

VI. Conclusion

This article proposes a fast 3-D semianalytical expression of the scalar potential and the magnetic field produced by an arc-shaped permanent magnet with radial polarization. The result can also be used for ring-shaped magnet. Expressions of the scalar potential and the magnetic field intensity is detailed and compared with a finite element method (FEM) simulation.

REFERENCES

Manuscript received January 30, 2006 (e-mail: lalao.rakotoarison-haririjaona@leg.ensieg.inpg.fr).