Model Selection for CART Regression Trees
Servane Gey, Elodie Nédélec

To cite this version:

HAL Id: hal-00326549
https://hal.archives-ouvertes.fr/hal-00326549
Submitted on 3 Oct 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Model Selection for CART Regression Trees

Servane Gey, Elodie Nedelec

Abstract— The performance of the Classification And Regression Trees (CART) pruning algorithm and the final discrete selection by test-sample as a functional estimation procedure are considered. The validation of the pruning procedure applied to Gaussian and bounded regression is of primary interest. On the one hand, the paper shows that the complexity penalty used in the pruning algorithm is valid in both cases and, on the other hand, that, conditionally to the construction of the maximal tree, the final selection does not alter dramatically the estimation accuracy of the regression function. In both cases the risk bounds that are proved, obtained by using the estimation accuracy of the regression function. In both maximal tree, the final selection does not alter dramatically the other hand, that, conditionally to the construction of the

The interested reader will find some discussions and results about this topic in the paper by Nobel [4]. Let \(\mathcal{L} = \{(X_1, Y_1); \ldots; (X_N, Y_N)\} \) be a set of independent random variables, where each \((X_i, Y_i) \in \mathcal{X} \times \mathbb{R}\) follows a regression model with a common regression function \(s \). Let \(\hat{s} \) be the piecewise constant estimator of \(s \) provided by CART. We measure the performance of \(\hat{s} \) by the risk defined as follows:

\[
R(\hat{s}, s) = \mathbb{E} \left[(\hat{s}(X) - s(X))^2 \right] ,
\]

where \(\mathbb{E} \) denotes the expectation with respect to the current distribution of \((X, Y)\).

In this paper, we leave aside the analysis of the growing procedure to focus on the pruning procedure. We show that this method, used to reduce the complexity of the problem, is well-chosen in the sense that it guarantees a good performance of the selected estimator \(\hat{s} \) in terms of its risk \(R(\hat{s}, s) \). All our upper bounds for the risk are considered conditionally to the growing procedure. For results about the growing procedure see the papers by Nobel and Olshen [5] and Nobel [6] about Recursive Partitioning. Furthermore, Breiman et al. [1] propose two algorithms in their book, one using a test sample and another using cross-validation. We focus on two methods that use a test sample and give about the same results : let us split \(\mathcal{L} \) in three independent subsamples \(\mathcal{L}_1, \mathcal{L}_2 \) and \(\mathcal{L}_3 \), containing respectively \(n_1, n_2 \) and \(n_3 \) observations, with \(n_1 + n_2 + n_3 = N \). \(\mathcal{L}_1, \mathcal{L}_2 \) and \(\mathcal{L}_3 \) are randomly taken in \(\mathcal{L} \), except if the design is fixed. In that case one takes, for example, one observation out of three to obtain each subsample. Given these three subsamples, suppose that either a large tree is constructed using \(\mathcal{L}_1 \) and then pruned using \(\mathcal{L}_2 \) (as done in Gelfand et al. [7]), or a large tree is constructed and pruned using the same subsample \(\mathcal{L}_1 \) (as done in Breiman et al. [1]). Then the final step used in both cases is to choose a subtree among the sequence obtained after the pruning procedure. The method we will study in the rest of the paper is to make \(\mathcal{L}_3 \) go down each tree of the sequence and to select the tree which has the minimum empirical quadratic contrast, i.e., given for any \(k = 1, 2, 3 \) and any \(u \in \mathbb{L}^2(\mathcal{X}) \) the empirical quadratic contrast

\[
\gamma_{n_k}(u) = \frac{1}{n_k} \sum_{(X_i, Y_i) \in \mathcal{L}_k} (Y_i - u(X_i))^2 \, ,
\]

to take the final estimator of \(s \) as follows:

\[
\hat{s} = \arg\min_{\{\hat{s}_{T_i}, 1 \leq i \leq K\}} \left\{ \gamma_{n_i}(\hat{s}_{T_i}) \right\} ,
\]
The aim of the growing procedure is to construct by recursive partitioning a maximal binary tree \(T_{\text{max}} \) based on the data composing \(\mathcal{L}_1 \) and on the class \(\mathcal{S} \) of subsets of \(\mathcal{X} \). This algorithm yields a sharp partition of \(\mathcal{X} \), providing a large collection of estimators.

The first step is computed as follows: the whole space \(\mathcal{X} \) is assimilated to the root of the tree, denoted by \(t_1 \), so that every observation \(X_i \) \((1 \leq i \leq n_1) \) belongs to \(t_1 \). The next step starts by computing the first split as

\[
\hat{s}_p = \arg\min_{s \in \mathcal{S}} \{ \gamma_{n_1}(\hat{s}_{|sp}) + \gamma_{n_1}(\hat{s}_{|sp'}) \}.
\]

Here, for any subset \(sp \) of \(\mathcal{X} \), \(\hat{s}_{|sp} \) is the minimum least-squares estimator of \(s \) on the set of constant functions on \(sp \), that is

\[
\hat{s}_{|sp} = \arg\min_{a \in \mathbb{R}} \gamma_{n_1}(a \mathbb{1}_{sp}) = \mathbb{Y}_{sp} \mathbb{1}_{sp}
\]

where, for all \(x \in \mathcal{X} \), \(\mathbb{1}_{sp}(x) = 1 \) if \(x \in sp \) and \(\mathbb{1}_{sp}(x) = 0 \) otherwise, and

\[
\mathbb{Y}_{sp} = \frac{1}{|X_i \in sp|} \sum_{X_i \in sp} Y_i.
\]

Hence, noticing that \(\gamma_{n_1}(\hat{s}_{|sp} + \hat{s}_{|sp'}) = \gamma_{n_1}(\hat{s}_{|sp}) + \gamma_{n_1}(\hat{s}_{|sp'}) \), the data of \(\mathcal{L}_1 \) are split in such a way that the interclass variance between \(\{Y_i; X_i \in \hat{s}_p\} \) and \(\{Y_i; X_i \in \hat{s}_p'\} \) is maximal. In the tree terminology, one adds to the root \(t_1 \) a left node \(t_L \) (assimilated to \(\hat{s}_p \)) and a right node \(t_R \) (assimilated to \(\hat{s}_p' \)). In what follows, we always assimilate a tree node with its corresponding subset in \(\mathcal{S} \).

Then the same elementary step is applied recursively to the two generated subsamples \(\{(X_i,Y_i); X_i \in \hat{s}_p\} \) and \(\{(X_i,Y_i); X_i \in \hat{s}_p'\} \) until some convenient stopping condition is satisfied. This provides the maximal tree \(T_{\text{max}} \) and one calls terminal nodes or leaves the final nodes of \(T_{\text{max}} \).

A.2 Pruning Procedure

First let us recall that a pruned subtree of \(T_{\text{max}} \) is defined as any binary subtree of \(T_{\text{max}} \) having the same root \(t_1 \) as \(T_{\text{max}} \). Then, let us introduce the following notation:

(i) Take two trees \(T_1 \) and \(T_2 \). Then, if \(T_1 \) is a pruned subtree of \(T_2 \), write \(T_1 \preceq T_2 \).

(ii) For a tree \(T \), \(\tilde{T} \) denotes the set of its leaves and \(|T| \) the cardinality of \(T \).

To prune \(T_{\text{max}} \), one proceeds as follows. First simply denote by \(n \) the number of data used. Notice that, given a tree \(T \) and \(S_T \) a set of piecewise functions in \(\mathbb{L}^2(\mathcal{X}) \) defined on the partition given by the leaves of \(T \), one has

\[
\hat{s}_T = \arg\min_{s \in S_T} \gamma_{n}(z) = \sum_{t \in \tilde{T}} \mathbb{Y}_t \mathbb{1}_t.
\]

Then, given \(T \preceq T_{\text{max}} \) and \(\alpha > 0 \), one defines

\[
\text{crit}_\alpha(T) = \gamma_{n}(\hat{s}_T) + \frac{|T|}{n} \alpha
\]

the penalized criterion for the so called temperature \(\alpha \), and \(T_\alpha \) the subtree of \(T_{\text{max}} \) satisfying:

The paper is organized as follows. In Section II we recall some facts about the CART algorithm and give some notation used in the rest of the paper. In Section III we study the Gaussian regression framework, in which we validate the pruning algorithm taking either \(\mathcal{L}_1 \) independent of \(\mathcal{L}_2 \) or \(\mathcal{L}_1 = \mathcal{L}_2 \) and give an upper bound concerning the final selection using \(\mathcal{L}_3 \) as test-sample. In Section IV, we perform the same program for the bounded regression framework. Section V is devoted to some open questions and the proofs of the results obtained in the previous sections are given in the last sections.

II. Preliminaries and Notation

A. The CART Algorithm

Let us give a short account of the CART algorithm in the regression case and recall the results associated with it, which are fully explained in [1].

CART is based on recursive partitioning using a training sample \(\mathcal{L} \) of the random variable \((X,Y) \in \mathcal{X} \times \mathbb{R} \) (we shall take as \(\mathcal{L} = \mathcal{L}_1 \) or \(\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2 \)), and a class \(\mathcal{S} \) of subsets of \(\mathcal{X} \) which tells us how to split at each step. Usually \(\mathcal{S} \) is taken as some class of half-spaces of \(\mathcal{X} \), for example the half-spaces of \(\mathcal{X} \) with frontiers parallel to the axes (see for example [1], [11]). In our framework, we consider a class \(\mathcal{S} \) with finite Vapnik-Chervonenkis dimension, henceforth referred to as VC-dimension (for a complete overview of the VC-dimension see [13]).

The algorithm is computed in two steps, that we call growing procedure and pruning procedure. The growing procedure permits to construct, from the data, a maximal binary tree \(T_{\text{max}} \) by recursive partitioning, and then the pruning procedure permits to select, among all the subtrees of \(T_{\text{max}} \), a sequence which contains the entire statistical information.

A.1 Growing Procedure

The aim of the growing procedure is to construct by recursive partitioning a maximal binary tree \(T_{\text{max}} \) based on the data composing \(\mathcal{L}_1 \) and on the class \(\mathcal{S} \) of subsets of \(\mathcal{X} \). This algorithm yields a sharp partition of \(\mathcal{X} \), providing a sequence which contains the entire statistical information.
(i) $T_0 = \text{argmin}_{T \leq T_{\text{max}}} \text{crit}_\alpha (T)$,
(ii) if $\text{crit}_\alpha (T) = \text{crit}_\alpha (T_0)$, then $T_0 \leq T$.

Thus T_0 is the smallest minimizing subtree for the temperature α. The existence and the unicity of T_0 are given in [1, pp 284-290].

The aim of the pruning procedure is to make the temperature α increase and to take at each time the corresponding T_α. The algorithm is an iterative one consisting in minimizing at each step a function of the nodes, which leads to a finite decreasing sequence of subtrees pruned from T_{max}

$$T_{\text{max}} \succeq T_1 \succ \ldots \succ T_{K-1} \succ T_K = \{ t_1 \}$$

corresponding to a finite increasing sequence of temperatures

$$0 = \alpha_1 < \alpha_2 < \ldots < \alpha_{K-1} < \alpha_K.$$

Remark 1. T_1 is the smallest subtree for the temperature 0, so it is not necessarily equal to T_{max}.

Breiman, Friedman, Olshen and Stone’s Theorem [1] justifies this algorithm :

Theorem II-A.1 (Breiman, Friedman, Olshen, Stone)

The sequence $(\alpha_k)_{1 \leq k \leq K}$ is nondecreasing, the sequence $(\bar{T}_k)_{1 \leq k \leq K}$ is nonincreasing and, given $k \in \{1, \ldots, K\}$, if $\beta \in [\alpha_k, \alpha_{k+1}]$, then $T_\beta = T_{\alpha_k} = T_k$.

By this theorem, it is easy to check that, for any $\alpha > 0$, T_α belongs to the sequence $(\bar{T}_k)_{1 \leq k \leq K}$. It is easily seen that this algorithm reduces the complexity of the choice of a subtree pruned from T_{max} efficiently, since by Theorem II-A.1 the sequence of pruned subtrees contains the whole statistical information according to the choice of the penalty function used in (4). Consequently it is useless to look at all the subtrees. Hence, to validate this algorithm completely, it remains to show that this choice of penalty is convenient.

The final step is to choose a suitable temperature α. Instead of minimizing over α, this issue is dealt with by using a test-sample to provide the final estimator \hat{s}, as mentioned in the Introduction, via equality (3). The results given in Sections III and IV deal, on the one hand, with the performance of the piecewise constant estimators given by T_α for α fixed and, on the other hand, with the performance of \hat{s}.

B. Notation

Assume we observe a set of independent random variables $\mathcal{L} = \{(X_1, Y_1), \ldots, (X_N, Y_N)\}$ such that :

$$Y_i = s(X_i) + \varepsilon_i,$$

where (X_i, Y_i) lies in $\mathcal{X} \times \mathbb{R}$, ε_i is a noise centered conditionally to X_i and s is the regression function to be estimated. Let us define by μ the common distribution of the $(X_i)_{1 \leq i \leq N}$ and by $\parallel \cdot \parallel$ the $L^2(\mathcal{X}, \mu)$-norm. Then the risk (1) of the final estimator \hat{s} becomes

$$R(\hat{s}, s) = \mathbb{E} \| \hat{s} - s \|^2.$$

Next, for a given tree T, S_T will denote the set of some piecewise constant functions defined on the partition given by the leaves of T. Thus \tilde{s}_T will be the minimum quadratic contrast estimator of s on S_T. Then a tree-structured estimator \hat{s} of s is said to satisfy an oracle inequality if there exists some nonnegative constant C, such that

$$\mathbb{E} [\| s - \hat{s} \|^2 | \mathcal{L}_1] \leq C \inf_{T \leq T_{\text{max}}} R_{\mathcal{L}_1}(\hat{s}_T, s),$$

where, for each subtree T pruned from T_{max}, $R_{\mathcal{L}_1}(\hat{s}_T, s) = \mathbb{E} [\| s - \hat{s}_T \|^2 | \mathcal{L}_1]$.

To estimate s using the CART algorithm and to compare the performance of \hat{s} with those of each \hat{s}_T, two different methods can be applied :

M1: \mathcal{L} is split in three independent parts \mathcal{L}_1, \mathcal{L}_2 and \mathcal{L}_3 containing respectively n_1, n_2 and n_3 observations.

Since T_{max} is constructed using \mathcal{L}_1, then pruned using \mathcal{L}_2 and finally a best subtree \bar{T} is selected among the sequence of pruned subtrees thanks to \mathcal{L}_3.

M2: \mathcal{L} is split in two independent parts \mathcal{L}_1 and \mathcal{L}_3 containing respectively n_1 and n_3 observations.

Since T_{max} is constructed and pruned using \mathcal{L}_1 and finally a best subtree \bar{T} is selected among the sequence of pruned subtrees thanks to \mathcal{L}_3.

Note that a penalty is needed in both methods in order to reduce the number of candidate tree-structured models contained in T_{max}. Indeed, if one does not penalize, the number of models to be considered grows exponentially with N, so results such as the ones of Wegkamp [14] cannot be applied. Then, making a selection by using a test sample without penalizing requires to visit all the models. As we will see in Sections III-B and IV-B, since in that case the number of models considered occurs via its logarithm in the upper bound of the risk, the resulting estimator will have a significantly large upper bound for its risk. Hence penalizing permits to reduce significantly the number of trees taken into account and then to get a convenient risk for \hat{s}. Both methods M1 and M2 are considered for the following reasons :

- Since all the risks are considered conditionally to the growing procedure the M1 method permits to make a deterministic penalized model selection and then to obtain sharper upper bounds than the M2 method.

- A contrario, the M2 method permits to keep the whole information given by \mathcal{L}_1, since, in that case, the sequence of pruned subtrees is not obtained via some plug-in method using a first split of the sample to provide the collection of tree-structured models. This method is the one proposed by Breiman et al. and it is more commonly applied in practice than the M1 one. We focus on this method to ensure that it provides estimators that have good performance in terms of risk.

Let us recall that the aim of this paper is to prove on the one hand that the complexity penalty used by Breiman et al. [1] in the pruning algorithm is well-chosen, and, on
the other hand, that the final selection among the pruned subtrees is, in terms of risk, not far from being optimal. We focus more particularly on Gaussian and bounded regression. The Gaussian case is classical and Birgé, Massart [8] obtain optimal constants for the risk of the penalized estimator in this case. The bounded case can be viewed as a first step to obtain similar results for the two-class classification problem, for which the penalty term is not obviously proportional to the number of leaves. From this viewpoint, the quadratic risk is equal to the misclassification cost. This is why we do not address here the issue of other estimation methods, as for example the maximum likelihood estimation which is used in logistic regression and can sometimes do better than least squares estimators in this case.

Sections III and IV are respectively devoted to the two above mentioned cases and consider separately the pruning procedure and the final selection by test-sample. We will see that, conditionally to the construction of \(T_{\text{max}} \), the final estimator \(\hat{s} \) satisfies some oracle-type inequalities for the Gaussian case when using either method M1 or M2. Moreover, the penalty term is the same with the two methods, although a factor \(\log n_1 \) can occur in the temperature when \(\mathcal{L}_1 = \mathcal{L}_2 \). In addition, the penalized model selection is made via pruning on random models defined on \(\{X_i : (X_i, Y_i) \in \mathcal{L}_1\} \). Then, by using Birgé and Massart’s results for Gaussian regression on fixed design and working conditionally to \(\mathcal{L}_1 \), as we will see in Sections III, the norm occurring in the risk for pruning is the empirical norm \(\| \cdot \|_{\mathcal{L}_1} \), on \(\{X_i : (X_i, Y_i) \in \mathcal{L}_2\} \) for M1 and the empirical norm \(\| \cdot \|_{\mathcal{L}_1} \) on \(\{X_i : (X_i, Y_i) \in \mathcal{L}_1\} \) for M2. On the other hand, the norm occurring in the risk for the discrete selection is the empirical norm \(\| \cdot \|_{\mathcal{L}_1} \) on \(\{X_i : (X_i, Y_i) \in \mathcal{L}_3\} \). Nevertheless, under some truncation arguments, the results of Baraud [15] or Wegkamp [14] can be applied and the results will be true under the underlying norm \(\| \cdot \| \). The results are slightly different for the bounded case since the norms that will occur are \(\| \cdot \|_{\mathcal{L}_1} \) for M1 and \(\| \cdot \|_{\mathcal{L}_2} \) for M2, the selection being made on a deterministic grid conditionally to \(\mathcal{L}_1 \) in the M1 case. In that case, a connection can be made between pruning and final selection by test-sample.

Note that the constants appearing in the upper bounds for the risks are not sharp. We do not investigate the sharpness of the constants here.

III. GAUSSIAN REGRESSION

Let us consider the Gaussian regression framework, where, for a given \(i \in \{1, \ldots, N\} \), \(\varepsilon_i \) is \(\mathcal{N}(0, \sigma^2) \)-distributed conditionally to \(X_i \), with \(\sigma^2 \) known. The two following subsections give some more precise results on the pruning algorithm for both the M1 and M2 methods, and particularly on the constants appearing in the penalty function. The last subsection validates the discrete selection by test-sample. Note that the two results obtained for the validation of the pruning algorithm also hold in the case of deterministic \(X_i \)’s.

A. Validation of the pruning algorithm

In this section, we focus on the pruning algorithm and show that, for a convenient constant \(\alpha \), \(\hat{s}_{T_{\alpha}} \) (where \(T_{\alpha} \) is the smallest minimizing subtree for the temperature \(\alpha \) as defined in subsection II-A) is not far from \(s \) in terms of its risk conditionally to \(\mathcal{L}_1 \). Let us emphasize that the subsample \(\mathcal{L}_3 \) plays no role in the two following results.

A.1 \(\hat{s} \) constructed via M1

Here we consider the second subsample \(\mathcal{L}_2 \) of \(n_2 \) observations. We assume that \(T_{\text{max}} \) is constructed on the first set of observations \(\mathcal{L}_1 \) and then pruned with the second set \(\mathcal{L}_2 \) independent of \(\mathcal{L}_1 \). Since the set of pruned subtrees is deterministic according to \(\mathcal{L}_2 \), we make a selection among a deterministic collection of models. By this way, since \(T_{\text{max}} \) is fixed, we do not have to look at the manner that \(T_{\text{max}} \) is constructed. Hence, in contrast to Proposition 2 in the following where the growing and pruning procedures are made on the same sample, the parameters occurring in the growing procedure, as the Vapnik-Chevronenkis dimension of the set of split used, play no role in the bounds or constants we obtain here.

In the rest of the paper, given a subtree \(T \) of \(T_{\text{max}} \), we write \(S_T \) the linear subspace of \(L^2(X, \mu) \) composed by all the piecewise constant functions defined on the partition associated with the leaves of \(T \). \(S_T \) is then a model on which \(s \) will be estimated, and its dimension is \(|T| \). Then we choose the estimators as follows:

- For \(T \leq T_{\text{max}} \), \(\hat{s}_T = \text{argmin}_{s \in S_T} [\gamma_{n_2}(t)] \).
- For \(\alpha > 0 \), \(T_{\alpha} \) is the smallest minimizing subtree for the temperature \(\alpha \) as defined in subsection II-A and \(\hat{s}_{T_{\alpha}} = \text{argmin}_{s \in S_{T_{\alpha}}} [\gamma_{n_2}(t)] \).

Let us now consider the behaviour of such \(\hat{s}_{T_{\alpha}} \).

Taking (1) into account, the following upper bound is actually an upper bound for the risk of \(\hat{s}_{T_{\alpha}} \) conditionally to \(\mathcal{L}_1 \):

\[R^{(2)}_{\mathcal{L}_1}(s, u) = \mathbb{E} \left[\|s - u\|^2 \mid \mathcal{L}_1 \right]. \]

If \(\alpha > \sigma^2(1 + 4 \log 2 + 2 \sqrt{2 \log 2}) \), then there exist some nonnegative constants \(\Sigma_\alpha \) and \(C_2 \) such that

\[R^{(2)}_{\mathcal{L}_1}(\hat{s}_{T_{\alpha}}, u) \leq C_1(\alpha) \inf_{T \leq T_{\text{max}}} \left\{ \inf_{u \in S_T} R^{(2)}_{\mathcal{L}_1}(s, u) + \sigma^2 |T| / n_2 \right\} + C_2 \sigma^2 \Sigma_\alpha / n_2, \]

where \(C_1(\alpha) > (1 + 4 \log 2 + 2 \sqrt{2 \log 2}) \) and \(\Sigma_\alpha \) are increasing with \(\alpha \).

A proof of this proposition is given in subsection VII-A.

To conclude:

- the penalty term is the same as the one proposed by Breiman et al. [1] in their pruning algorithm,
- the loss of \(\hat{s}_T \) with respect to \(s \) is

\[
R_{C_1}(s; \hat{s}_T) = \inf_{u \in \mathcal{S}_T} R_{C_1}(s; u) + \frac{\sigma^2 |T|}{n_2}
\]

(5)

Thus, for a large enough \(\alpha \), \(\hat{s}_{T_n} \) satisfies in this case an oracle inequality up to some additive constants,
- the inequality holds only for large enough temperatures \(\alpha \). Nevertheless, when \(\alpha \) becomes too large, the models are overpenalized, and the left hand side \(E \|s - \hat{s}_{T_n}\|_1^2 | \mathcal{L}_1 \) will grow with \(\alpha \). The main issue at this stage is to choose a temperature \(\alpha \) maximizing a good compromise between the size of \(E \|s - \hat{s}_{T_n}\|_1^2 | \mathcal{L}_1 \) and a large enough penalty term. This issue is partially addressed in Section V. \(C'_1(\alpha) \) and \(\Sigma_n \) are increasing with \(\alpha \), so both sides of the inequality grow with \(\alpha \).

Note that under the following condition on the distribution \(\mu \) of the \((X_i)_{1 \leq i \leq N} \)

\[
\inf_{t \in \mathcal{T}_{\text{max}}} \mu(t) > \frac{(\log n_1)^3}{n_1},
\]

and using truncation, the results of Baraud [15] can be applied and the same inequality holds under the \(L^2(X, \mu) \)-norm \(\|\cdot\| \) on a large probability set.

A.2 \(\hat{s} \) constructed via M2

In this subsection we define the different estimators and projections exactly in the same way as in subsection III-A.1, where \(\|\cdot\| \) is replaced by the empirical norm \(\|\cdot\|_1 \), on \(\{X_i : (X_i, Y_i) \in \mathcal{L}_1\} \) since the models and the evaluations of the empirical errors \(\gamma_{n_1}(\hat{s}_T) \) computed on the same grid \(\{X_i : (X_i, Y_i) \in \mathcal{L}_1\} \). In this case, we obtain nearly the same performance for \(\hat{s}_{T_n} \) despite the fact that the constants are not so accurate and can depend on \(n_1 \).

Proposition 2: Let \(P_{\mathcal{L}_1} \) denote the product distribution on \(\mathcal{L}_1 \) and let \(\|\cdot\|_1 \) be the empirical norm on \(\{X_i : (X_i, Y_i) \in \mathcal{L}_1\} \).

For \(T \leq T_{\text{max}} \), let \(\hat{s}_T \) verify \(\|s - \hat{s}_T\|_1^2 = \inf_{u \in \mathcal{S}_T} \|s - u\|_1^2 \).

Let \(S \) denote the set of all splits used in the growing procedure and let \(V \) denote the Vapnik-Chervonenkis dimension of \(S \). Suppose that \(V < +\infty \) and that \(n_1 \geq V \). Let \(\xi > 0 \), \(L_{n_1,V} = V (2 \log 2 + \log (n_1/V)) \) and

\[
\alpha_{n_1,V} = 1 + 2L_{n_1,V} + 2\sqrt{L_{n_1,V}}.
\]

If \(\alpha > \sigma^2 \alpha_{n_1,V}, \) then there exist nonnegative constant \(\Sigma_\alpha \) and \(C'_2 \) such that

\[
\|s - \hat{s}_{T_n}\|_1^2 \leq C'_2(\alpha) \inf_{T \leq T_{\text{max}}} \left\{ \|s - \hat{s}_T\|_1^2 + \sigma^2 \alpha_{n_1,V} |T| \right\} + C'_2 \sigma^2 \frac{\xi}{n_1}
\]

(6)

on a set \(\Omega_\xi \) such that \(P_{\mathcal{L}_1}(\Omega_\xi) \geq 1 - 2\Sigma_\alpha e^{-\xi} \), where \(C'_2(\alpha) > 1 \) and \(\Sigma_\alpha \) are increasing with \(\alpha \).

A proof of this proposition is given in subsection VII-B.

The same conclusions as the ones of the M1 case hold in this case. Note that
- the penalty term takes into account the complexity of the collection of trees having fixed number of leaves which can be constructed on \(\{X_i : (X_i, Y_i) \in \mathcal{L}_1\} \). Since this complexity is controlled via the VC-dimension \(V \), \(V \) necessarily appears in the penalty term. It differs from Proposition 1 in the sense that the models we consider are random, so this complexity has to be taken into account to obtain an uniform bound.
- Baraud [15] can no longer be applied in this case since the size \(|T_{\max}| \) of the maximal tree is not easily controlled without any assumption on the distribution \(\mu \) nor on the construction of \(T_{\max} \).

Example: Let us consider the case where \(S \) is the set of all half-spaces of \(\mathcal{X} = \mathbb{R}^d \) (which is more often used in the CART algorithm). In this case, \(V = d + 1 \), consequently, if \(n_1 > V \), we obtain a penalty of the form

\[
\text{pen}_{n}(T) = \beta \sigma^2 \frac{|T|}{n_1} \left(1 + 2(d + 1) \left(2 \log 2 + \log \frac{n_1}{d+1} \right) \right) + 2\beta \sigma^2 \frac{T}{n_1} \left(d + 1 \left(2 \log 2 + \log \frac{n_1}{d+1} \right) \right)
\]

with \(\beta > 1 \). So, if CART provides some minimax estimator on a class of functions, the \(\log n_1 \) term always appears for \(s \) in this case when working in a linear space of low dimension (on a signal for example). On the other hand, Birgé et. al. [8] show that the risk of \(\hat{s}_{T_n} \) explodes if \(\beta \leq 1 \). Thus, in both cases, the penalty of Breiman et al. [1] is well-chosen and the pruning algorithm is valid. Theorem II-A.1 gives another important piece of information: the sequence of pruned subtrees contains all the information, so it is useless to look at all the subtrees. To select a subtree, or equivalently a suitable temperature \(\alpha \), one just has to consider those that appear in the sequence.

In practice, as the suitable temperature \(\alpha \) is unreachable, a test-sample must be used to select a subtree. This particular method is examined in the next subsection.

B. Final Selection

Given the sequence \((T_k)_{1 \leq k \leq K} \) pruned from \(T_{\text{max}} \) as defined in subsection II-A.2, let us recall that the final estimator \(\hat{s} \) provided by CART is defined by

\[
\hat{s} = \arg\min_{\{\hat{s}_{T_k} : 1 \leq k \leq K\}} \left[\gamma_{n_3}(\hat{s}_{T_k}) \right]
\]

The performance of this estimator can be compared to the performance of the subtrees \((T_k)_{1 \leq k \leq K} \) by the following :

Proposition 3: Let \(\|\cdot\|_s \) denote the empirical norm on \(\{X_i : (X_i, Y_i) \in \mathcal{L}_s\} \).

(i) if \(\hat{s} \) is constructed via M1 :

\[
E \left[\|s - \hat{s}\|_1^2 | \mathcal{L}_1, \mathcal{L}_2 \right] \leq C \inf_{1 \leq k \leq K} E \left[\|s - \hat{s}_{T_k}\|_1^2 | \mathcal{L}_1, \mathcal{L}_2 \right] + C \frac{\log K}{n_3}.
\]
A proof of this proposition is given in subsection VII-C. Note that under condition (6) and using truncation, if $n_1 \leq n_3$, the results of Baraud [15] can also be applied in both cases, and the same inequality holds under the norm $\|\|_1$ on a large probability set. Let us also remark that the results of Wegkamp [14] can be applied here since the number of models is small. Nevertheless, since the different norms cannot be compared easily, these results cannot be connected to the results on the pruning procedure.

We can now conclude that:

- Except for the first trees of the sequence $(T_k)_{1 \leq k \leq K}$ for which $\alpha_k \leq \sigma^2 \alpha_{n_1,V}$, all the other trees have conditional risks controlled by the infimum of the errors that can be made on all the subtrees pruned from T_{max}.
- The conditional risk of the final estimator \hat{s} with respect to $\|\|_1$ is controlled by the infimum of the errors that can be made on the subtrees of the sequence $(T_k)_{1 \leq k \leq K}$.
- The discrete selection adds a term of order $\log(\text{log}(n_1)/n_3)$, which is at worst of the same order as the penalty. Thus it does not alter dramatically the accuracy of the estimation.

In addition, if CART provides a collection of models S_T such that

- the maximal dimension of the models is $D_N = o(N/\log N)$,
- the approximation properties of the models are convenient enough to ensure that the bias tends to zero with increasing sample size N,

then the upper bound of the risk tends to zero with N, providing a result of consistency for \hat{s}.

Consequently if we take the pruning and selection procedures separately, each of them has a convenient behaviour. Nevertheless, having $\alpha_{n_1,V}$ and $\alpha > \sigma^2 \alpha_{n_1,V}$ could permit, via Theorem II-A.1, to choose a model without L_3. In that case, a general bound could be established for the final estimator.

IV. BOUNDED REGRESSION

In this section we consider the bounded regression framework, where, for a given $i \in \{1, \ldots, N\}$, $|Y_i| \leq 1$ and ε_i is an unknown bounded noise, centered conditionally to X_i. The three following subsections yield about the same results as those of section III.

A. Validation of the pruning algorithm

We will follow exactly the same lines and use the same notation as in section III-A. All the remarks made in the Gaussian case on the way each model selection is made are still valid in this case.

A.1 \hat{s} constructed via M1

We have the following upper bound for the risk of \hat{s}_{T_n} conditionally to L_1 and L_2:

Proposition 4: Let P_{L_1} be the product distribution on \mathbb{L}_2. Let $\xi > 0$.

There exists a nonexplicit positive constant α_0 such that, if $\alpha > \alpha_0$, then there exist some nonnegative constants Σ_α and C_2 such that

$$\|s - \hat{s}_{T_n}\|_{L_1}^2 \leq C_1'(\alpha) \inf_{T \leq T_{\text{max}}} \left\{ \inf_{u \in S_T} \|s - u\|_{L_1}^2 + \frac{|T|}{n_1} \right\}$$

$$+ C_2' \frac{1 + \xi / n_1}{n_1}$$

on a set Ω_ξ such that $P_{L_1}(\Omega_\xi) \geq 1 - 2\Sigma_\alpha e^{-\xi}$, where $C_1'(\alpha) > 0$, Σ_α and α_0 are increasing with α.

A proof of this proposition is given in subsection VIII-A.

Remark 2. The fact that we do not know anything about the noise (except that it is bounded) leads to a minimal temperature α_0 that we cannot reach.

The conclusions concerning the bounded case are the same as those of subsection III-A, except that \hat{s}_{T_n} does not obviously satisfy an oracle inequality since the true risk is unknown, but the inequality obtained is sufficient to validate the pruning procedure.

A.2 \hat{s} constructed via M2

One gets the following upper bound for the risk of \hat{s}_{T_n} conditionally to L_1:

Proposition 5: Let P_{L_1} denote the product distribution on \mathbb{L}_1 and $\|\|_1$ be the empirical norm on $\{X_i : (X_i, Y_i) \in L_1 \}$. For $T \leq T_{\text{max}}$, let \bar{s}_T verify $\|s - \bar{s}_T\|_{L_1}^2 = \inf_{u \in S_T} \|s - u\|_{L_1}^2$.

Let $\xi > 0$ and

$$\alpha_{n_1,V} = 1 + V \left(1 + \log \frac{n_1}{V}\right).$$

There exists a nonexplicit positive constant α_0 such that, if $\alpha > \alpha_0\alpha_{n_1,V}$, then there exist some nonnegative constants Σ and C_2 such that

$$\|s - \hat{s}_{T_n}\|_{L_1}^2 \leq C_1'(\alpha) \inf_{T \leq T_{\text{max}}} \left\{ \inf_{u \in S_T} \|s - u\|_{L_1}^2 + \alpha_{n_1,V} \frac{|T|}{n_1} \right\}$$

$$+ C_2' \frac{1 + \xi / n_1}{n_1}$$

on a set Ω_ξ such that $P_{L_1}(\Omega_\xi) \geq 1 - 2\Sigma e^{-\xi}$, where $C_1'(\alpha) > 0$ and Σ are increasing with α.

A proof of this proposition is given in subsection VIII-B.

We can conclude exactly in the same way as for the pruning validation of the Gaussian regression framework (subsection III-A), except that we do not know anything about the minimal temperature to be chosen in the sequence given by the pruning algorithm. It is therefore necessary to choose a method to select the suitable subtree among the sequence. One method consists in proceeding by test-sample.
In this framework, our goals are exactly the same as in the Gaussian regression one. We define the final estimator given by the CART algorithm as (3) and we analyze the behavior of \tilde{s} during the final step as in the Gaussian regression case:

Proposition 6: Let $\|\cdot\|_1$ denote the empirical norm on $\{X_i : (X_i, Y_i) \in \mathcal{L}_1\}$.

(i) if \tilde{s} is constructed via M1:

$$
\mathbb{E}[\|s - \tilde{s}\|^2 | \mathcal{L}_1, \mathcal{L}_2] \leq C \inf_{1 \leq i \leq K} \mathbb{E}[s - \tilde{s}_{T_i}^2] + C\frac{\log K}{n_3}.
$$

(ii) if \tilde{s} is constructed via M2:

$$
\mathbb{E}[\|s - \tilde{s}\|^2 | \mathcal{L}_1] \leq C \inf_{1 \leq i \leq K} \mathbb{E}[\|s - \tilde{s}_{T_i}^2\| | \mathcal{L}_1] + C\frac{\log K}{n_3}.
$$

A proof of this proposition is given in subsection VIII-C.

In addition, the following result holds for bounded regression. It is a consequence of Propositions 4, 5 and 6:

Theorem 1: Given for $i = 1, \ldots, N$

$$
Y_i = s(X_i) + \varepsilon_i \tag{13}
$$

with $(X_i, Y_i) \in \mathcal{X} \times \mathcal{R}$ and ε_i centered conditionally to X_i, we assume that the $(X_i)_{1 \leq i \leq N}$ are identically distributed with common unknown distribution μ and that $|Y_i| \leq 1$. We consider both methods M1 and M2. Let $\|\cdot\|$ be the $\mathbb{L}^2(\mathcal{X}, \mu)$-norm and $\|\cdot\|_1$ be the empirical norm on $\{X_i : (X_i, Y_i) \in \mathcal{L}_1\}$. Let l^2 be the square distance associated with $\|\cdot\|$ if \tilde{s} is constructed via M1 and with $\|\cdot\|_1$ if \tilde{s} is constructed via M2.

Then there exist some nonnegative constants C_1, C_2 and C_3 such that:

$$
\mathbb{E}[l^2(\tilde{s}, s) | \mathcal{L}_1] \leq C_1 \inf_{T \geq T_{\max}} \left[\inf_{u \in \mathbb{L}^2} l^2(u, s) + \frac{|T|}{n} \right] + C_2 \frac{n}{n_3} + C_3 \frac{\log n_1}{n_3}.
$$

where $n = n_2$ if \tilde{s} is constructed via M1 and $n = n_1$ if \tilde{s} is constructed via M2.

Proof: The proof remains the same as if \tilde{s} is constructed either via M1 or M2. So we just give the proof for the M1 method.

Actually, since we have at most one model per dimension in the pruned subtree sequence, it suffices to note that $K \leq n_1$. Then let α_0 be the minimal constant given by Proposition 4. Hence, since for a given $\alpha > 0$ T_α belongs to the sequence $(T_k)_{1 \leq k \leq K}$,

$$
\mathbb{E}[l^2(\tilde{s}, s) | \mathcal{L}_1, \mathcal{L}_2] \leq C \inf_{\alpha > \alpha_0} l^2(\tilde{s}_{T_\alpha}, s) + C\frac{\log K}{n_3}.
$$

Then, by using Proposition 4 with $\alpha = 2\alpha_0$ and by taking the expectation according to \mathcal{L}_2, we obtain Theorem 1.

We can conclude that pruning a maximal tree is a convenient algorithm in terms of model selection for the two regression contexts mentioned above. But two questions remain: first, “how to choose a convenient tree in the pruned sequence?” The method we studied in this paper gives positive results, but could it be possible to remove the third (or second) subsample in order to obtain a better upper bound for the risk of \tilde{s}? Actually, considering the different results we obtained, if we had the true constant α occurring in the penalty, we would only have to take, in the sequence, the subtree T_k such that $\alpha_k \leq \alpha < \alpha_{k+1}$. Then the last term in the upper bound for the risk could be removed. But in theory this α is unreachable since it depends on too many unknown parameters, such as noise variance σ^2. We only have a minimal constant, which can be interpreted as follows: when the temperature increases, the number of leaves decreases. But it follows from Propositions 1, 2, 4 and 5 that a “good” subtree is associated with a large enough temperature. Consequently a jump in the number of leaves could occur when the temperature becomes higher than the minimal constant. At this stage, we hope that the “good” subtree is above this temperature. An answer could be to extract from the data the right temperature for the penalized criterion. So far there exists no general method to do this, but there are some heuristic ones based on the theoretical results of Birgé and Massart [8] and simulations (see Gey and Lebarbier [16] for example).

VI. Appendix A

A. Local bound for some empirical processes

Let $(X, Y) \in \mathcal{X} \times [-1, 1]$ be defined as $Y = s(X) + \varepsilon$, where s takes values in $[-1, 1]$ and ε is a noise centered conditionally to X and bounded by 1. Let $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ be an n-sample of (X, Y). Let μ_n denote the empirical distribution on $X_n^1 = (X_i)_{1 \leq i \leq n}$ and $\|\cdot\|_1$ denote the empirical norm on X_n^1. Then, given z and u in $\mathbb{L}^2(\mu_n)$, define

$$
d^2(z, u) = 16\|z - u\|_{1}^2.
$$

For any tree T constructed on X_n^1, define S_T as the set of all piecewise constant functions bounded by 1 defined on the partition associated with the leaves of T. Then, for any
$u \in S_T$ and any $\sigma > 0$, define
\[
B_T(u, \sigma) = \{ z \in S_T : d(u, z) \leq \sigma \} = \{ z \in S_T : \| u - z \|_1 \leq \sigma / 4 \}.
\]
Finally, for $z \in \mathbb{L}^2(\mathcal{X})$, define the centered empirical quadratic contrast of z by
\[
\bar{\gamma}_n(z) = \gamma_n(z) - \mathbb{E}[\gamma_n(z) \mid X^n_{1}]
\]
where γ_n is defined for any given $z \in \mathbb{L}^2(\mathcal{X}, \mu)$ by
\[
\gamma_n(z) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - z(X_i))^2.
\]

\textbf{Remark 3.} If γ_n is evaluated on a sample (X^n_{1}) independent of X^n_{1}, it is easy to check that the bounds we obtain in what follows are still valid by taking the marginal distribution μ of X instead of μ_n, and the distance d associated with the $\mathbb{L}^2(\mathcal{X}, \mu)$-norm instead of the empirical norm $\| \cdot \|_1$.

Then we have the following result:

\textbf{Lemma 1:} For any $u \in S_T$ and any $\sigma > 0$
\[
\mathbb{E}\left[\sup_{z \in B_T(u, \sigma)} |\bar{\gamma}_n(z) - \bar{\gamma}_n(u)| \mid X^n_{1} \right] \leq (7/2) \sigma \sqrt{\frac{T}{n}}.
\]

\textbf{Proof:} We have
\[
\bar{\gamma}_n(z) - \bar{\gamma}_n(u) = \frac{2}{\sigma} \sum_{i=1}^{n} \epsilon_i(z(X_i) - u(X_i))
+ 2\nu_n((s - u)(z - u)) - \nu_n((z - u)^2),
\]
where ν_n is the re-centered empirical measure. So we have three terms to study, that we simply denote by:

- $A_1 = \mathbb{E}\left[\sup_{z \in B_T(u, \sigma)} \| \frac{2}{\sigma} \sum_{i=1}^{n} \epsilon_i(z(X_i) - u(X_i)) \| \mid X^n_{1} \right]$,
- $A_2 = \mathbb{E}\left[\sup_{z \in B_T(u, \sigma)} \| 2\nu_n((s - u)(z - u)) \| \mid X^n_{1} \right]$,
- $A_3 = \mathbb{E}\left[\sup_{z \in B_T(u, \sigma)} \| \nu_n((z - u)^2) \| \mid X^n_{1} \right]$.

Then we fix an orthonormal basis of S_T denoted by $(\varphi_i)_{i \in \mathbb{T}}$ adapted to T (i.e. some normalized characteristic functions), and we have
\[
B_T(u, \sigma) = \{ z \in S_T : z - u = \sum_{i \in \mathbb{T}} a_i \varphi_i, \sum_{i \in \mathbb{T}} a_i^2 \leq \sigma^2 / 16 \}.
\]
We will now bound each A_i, $i = 1, 2, 3$.

\textbf{upper bound for A_1:}
Using the Cauchy-Schwarz inequality, for any z in $B_T(u, \sigma)$ such that $z - u = \sum_{i \in \mathbb{T}} a_i \varphi_i$, we get:
\[
\sum_{i=1}^{n} \epsilon_i(z(X_i) - u(X_i)) \leq \sqrt{\sum_{i \in \mathbb{T}} a_i^2} \sum_{i=1}^{n} \left(\sum_{i \in \mathbb{T}} \epsilon_i \varphi_i(X_i) \right)^2 \leq \frac{\sigma}{4} \sum_{i \in \mathbb{T}} \left(\sum_{i=1}^{n} \epsilon_i \varphi_i(X_i) \right)^2.
\]
Since the ϵ_i are centered random variables bounded by 1, Jensen’s inequality implies:
\[
A_1 \leq \frac{\sigma}{2n} \mathbb{E}\left[\sum_{i=1}^{n} \sum_{i \in \mathbb{T}} \mathbb{E}(\epsilon_i^2 \mid X^n_{1}) \varphi_i(X_i) \right] \leq \frac{\sigma}{2} \sqrt{\frac{T}{n}}
\]

\textbf{upper bound for A_2:}
Given independent random signs $(\zeta_1, \zeta_2, ..., \zeta_n)$, independent from $(X_1, ..., X_n)$, for any z in $B_T(u, \sigma)$ let
\[
\psi(z) = \sum_{i=1}^{n} \zeta_i(s(X_i) - u(X_i))(z(X_i) - u(X_i)).
\]
By a symmetrization argument (see [17] for more details about symmetrization arguments) one has:
\[
A_2 \leq \frac{4}{n} \mathbb{E}\left[\sup_{z \in B_T(u, \sigma)} \| \psi(z) \| \mid X^n_{1} \right]
\]
For all i we have $|s(X_i) - u(X_i)| \leq 1$ and, if $z \in B_T(u, \sigma)$, $|u - z|_1 = \sqrt{\sum_{i \in \mathbb{T}} a_i^2} \leq \sigma / 4$ (8). So, using the Cauchy-Schwarz inequality, we have:
\[
A_2 \leq \frac{\sigma}{n} \sqrt{\sum_{i \in \mathbb{T}} \sum_{i=1}^{n} \mathbb{E}(\zeta_i^2) \varphi_i(X_i)^2}
\]
We can remark that the upper bound of A_2 is, up to a factor 2, the same as the upper bound of A_1 and we can conclude:
\[
A_2 \leq \sigma \sqrt{\frac{T}{n}}
\]

\textbf{upper bound for A_3:}
Given independent random signs $(\zeta_1, \zeta_2, ..., \zeta_n)$, independent from $(X_1, ..., X_n)$, one has by a symmetrization argument:
\[
A_3 \leq \mathbb{E}\left[\sup_{z \in B_T(u, \sigma)} \| 2 \sum_{i=1}^{n} \zeta_i(z(X_i) - u(X_i))^2 \| \mid X^n_{1} \right]
\]
We now consider the contraction θ defined by $\theta(x) = (x^2 \wedge 1) / 2$. Then, since $|(z(X_i) - u(X_i))| \leq 1$, we
have:

\[A_3 \leq \mathbb{E} \left[\sup_{z \in B_T(u, \sigma)} \left(\frac{2}{n} \sum_{i=1}^{n} \zeta_i (z(X_i) - u(X_i)) \right) | \mathcal{F}_T \right] \]

We can now use a contraction inequality established by Ledoux and Talagrand ([17], Lemma 6.3 and Theorem 4.12) and conclude:

\[A_3 \leq \mathbb{E} \left[\sup_{z \in B_T(u, \sigma)} \left(\frac{8}{n} \sum_{i=1}^{n} \zeta_i (z(X_i) - u(X_i)) \right) | \mathcal{F}_T \right] \]

Finally the upper bound is the same as the upper bound of the first term \(A_1 \) up to a constant. Then we get

\[A_3 \leq 2\sigma \sqrt{\frac{T}{n}}. \]

So, combining the three inequalities, we have:

\[A_1 + A_2 + A_3 \leq (1/2 + 1 + 2)\sigma \sqrt{\frac{T}{n}} \]

and the lemma is proven.

B. A complexity bound

Let \(\mathcal{S} \) be a class of subsets of \(\mathcal{X} \) and \((S_m)_{m \in \mathcal{M}} \), a collection of tree-structured models constructed on \(n \) points of \(\mathcal{X} \) using \(\mathcal{S} \). Then we have:

Lemma 2: Let \(V \) denote the Vapnik-Chervonenkis dimension of \(\mathcal{S} \) and suppose \(n \geq V \). Let \(D \in \mathbb{N}^* \) and, for \(m \in \mathcal{M}^*, D_m = \text{Dim}(S_m) \). Then

\[|\{ m \in \mathcal{M}^* ; D_m = D \}| \leq \left(\frac{nD}{V} \right)^D \]

Proof: Let \(\{x_1, \ldots, x_n\} \in \mathcal{X}^n \). We want to bound uniformly in \(\{x_1, \ldots, x_n\} \) the number of ways to construct a tree having \(D \) leaves on these \(n \) points. Then we will have lemma 2.

Let \(D \) be some positive integer. For a tree-structured model \(S_m \), \(D_m \) is the number of leaves of \(S_m \). Thus, a \(D \)-dimensional model is a tree having \(D \) leaves. For such a tree, there are \(D - 1 \) non-terminal nodes, which implies that there are \(D - 1 \) splits.

To prove the lemma, we use Sauer’s lemma that gives a relationship between the different ways to split \(r \) points of \(\mathcal{X} \) in two parts using \(\mathcal{S} \), and the Vapnik-Chervonenkis dimension \(V \) of \(\mathcal{S} \).

For \(A \), a subset of \(\mathcal{X} \), we define \(A \cap \mathcal{S} = \{ A \cap S ; S \in \mathcal{S} \} \) and \(\Delta(A) = |A \cap \mathcal{S}|. \) Then, for any integer \(r \), we define \(m(r) = \max\{\Delta(A) ; A \subset \mathcal{X} \), \(|A| = r \} \). Consequently the number of ways to cut \(\{x_1, \ldots, x_n\} \) in two parts using \(\mathcal{S} \) is at most \(m(n) \). But one has by Sauer’s lemma that, for any integer \(r \)

\[m(r) \leq \sum_{j=0}^{V} \binom{r}{j}. \]

Thus we obtain

\[|\{ m \in \mathcal{M}^* ; D_m = D \}| \leq \left(\sum_{j=0}^{V} \binom{n}{j} \right)^D. \]

Moreover, since \(n \geq V \),

\[\sum_{j=0}^{V} \binom{n}{j} \leq \sum_{j=0}^{V} \binom{n}{j} \leq \left(\frac{e}{V} \right)^V \]

and the proof is achieved.

VII. APPENDIX B

In the following sections, we denote by \(T \) the set of all subtrees pruned from \(T_{max} \) and consider \(\mu, P \) and \(\| \cdot \| \) as defined in subsection II-B.

A. Proof of Proposition 1

We use the result established by Birgé and Massart in [8, Theorem 2] on Gaussian model selection. For the sake of completeness, let us recall this result.

Let \(n = n_2 \) and \(\| \cdot \|_n \) be the empirical norm associated with the empirical distribution \(\tilde{\mu} \) on the grid \((X_1, \ldots, X_n) \).

Let us give a collection of linear deterministic models \((\mathcal{S}_m)_{m \in \mathcal{M}} \), a penalty function \(\text{pen}_n : \mathcal{M}_n \rightarrow \mathbb{R}_+ \) and a sample \(\mathcal{L}_2 \) from the random variable \((X, Y) \) defined as in section III. Let \(\tilde{s}_m \) denote the \(L^2(\mu_n) \)-projection of \(s \) on the model \(\mathcal{S}_m \), and \(D_m \) denote the dimension of \(\mathcal{S}_m \). Let \(\tilde{m} \) be defined by

\[\tilde{m} = \arg\min_{m \in \mathcal{M}_n} [\gamma(\tilde{s}_m) + \text{pen}_n(m)] \]

where \(\tilde{s}_m \) is the minimum contrast estimator of \(s \) on \(\mathcal{S}_m \). Then one gets:

Theorem VII-A.1 (Birgé, Massart) Let \(\xi > 0, \eta \in [0, 1[, K \geq 2 - \eta, \) and \((L_m)_{m \in \mathcal{M}_n} \) be a family of weights such that

\[\Sigma = \sum_{m \in \mathcal{M}_n} e^{-L_m D_m} < +\infty. \]

If

\[\text{pen}_n(m) \geq \sigma^2 \frac{D_m}{n} \left(K + 2(2 - \eta)L_m + \frac{2}{\eta} \sqrt{L_m} \right), \]

then

\[\mathbb{E} \left[\| s - \tilde{s}_m \|^2 \right] \leq C(K, \eta) \inf_{m \in \mathcal{M}_n} \left\{ \mathbb{E} \left[\| s - \tilde{s}_m \|^2 \right] + \text{pen}_n(m) \right\} + \sigma^2 C'(K, \eta) \frac{n}{\Sigma} \]

The collection of models we consider is \(T \) (depending on the first subsample) and is deterministic conditionally to \(\mathcal{L}_1 \). For \(T \in \mathcal{T} \), the model considered is \(\mathcal{S}_T = \left\{ \sum_{t \in T} a_t \mathbb{1}_t ; \forall t \in \mathcal{T} ; a_t \in \mathbb{R} \right\} \) and its dimension is \(|T| \). Given this collection, to apply the result of Birgé and Massart, we need to choose a convenient family of weights \((L_T)_{T \leq T_{max}} \).

Taking \(L \) as a function of the dimension, one has:

\[\Sigma = \sum_{T \leq T_{max}} e^{-L_T |T|} \leq \sum_{D \geq 1} |\{ T \leq T_{max} ; |T| = D \}| e^{-L(D)D}. \]
Furthermore, for any given dimension D, the number of balanced binary trees having D final nodes is the Catalan number $(1/D)(2(D-1))$. Thus we have

$$
\Sigma \leq \sum_{D \geq 1} \frac{1}{D} \left(\frac{2(D-1)}{D-1} \right) e^{-L(D)D} \\
\leq \sum_{D \geq 1} \frac{1}{D} \exp \left((2 \log 2 - L(D))D \right)
$$

Taking $L(D) = \theta$, with $\theta > 2 \log 2$ independent of D, we immediately obtain $\Sigma_n = \Sigma_\theta < +\infty$. Then we get proposition 1 by [8, Theorem 2].

B. Proof of Proposition 2

Let us denote by X^n_1 the sample (X_1, \ldots, X_n) of size n of the random variable (X, Y) and by μ_n the empirical distribution on X^n_1.

First we generalize Theorem VII.A.1 to random models, and then we apply it to CART.

Theorem 2: Let $n \in \mathbb{N}$. Consider the Gaussian regression model defined in section III. Then take an n-sample of the random variable (X, Y) and $(S_m)_{m \in \mathcal{M}_n}$ a countable family of finite dimensional linear subspaces with respective dimensions D_m constructed on the grid X^n_1. Fix $(L_m)_{m \in \mathcal{M}_n}$ a family of weights satisfying the condition:

$$
\Sigma = \sum_{m \in \mathcal{M}_n, D_m > 0} e^{-L_m D_m} < +\infty
$$

where Σ is deterministic.

Given a subspace $\mathcal{M}_n \subset \mathcal{M}_n^*$ that can also depend on (Y_1, \ldots, Y_n), we select the estimators as follows:

- $\hat{m} = \arg\min_{m \in \mathcal{M}_n} \{\gamma_n(m)\}$,
- $\hat{m} = \arg\min_{m \in \mathcal{M}_n} \{\gamma_n(m) + \text{pen}_n(m)\}$ and then $\hat{s} = \hat{s}_m$.

Let $\eta \in [0, 1)$ and $K > 2 - \eta$. Let us consider a penalty function on \mathcal{M}_n^* such that

$$
\text{pen}_n(m) \geq \frac{\sigma^2}{2} D_m \left(K + 2(2-\eta)L_m + \frac{2}{\eta} \sqrt{L_m} \right)
$$

for all $m \in \mathcal{M}_n^*$. Let $\xi > 0$, $\|\cdot\|_n$ the empirical norm on X^n_1 and $s_m = \arg\min_{u \in S_m} \|s - u\|_n$.

Then the penalized estimator satisfies, for all $m \in \mathcal{M}_n$,

$$
\|s - \hat{s}_m\|_n^2 \leq C_1(K, \eta) \{\|s - s_m\|_n^2 + \text{pen}_n(m)\} + C_2(K, \eta) \frac{\sigma^2}{n} \xi
$$

on a set Ω_ξ such that $P(\Omega_\xi) \geq 1 - 2\Sigma e^{-\xi}$ and for suitable constants $C_1(K, \eta)$ and $C_2(K, \eta)$.

Proof: We follow exactly the same lines as in [8], the only difference being that all our upper bounds are obtained by conditioning with respect to X^n_1, so we skip the proof. Note that the result holds on a set Ω_ξ having probability measure P unconditional to X^n_1. This is due to the fact that Σ is deterministic and does not depend on X^n_1.

Application to tree partitions:

In that case we have $n = n_1$. We consider $\mathcal{M}_n = \mathcal{T}$ and we take \mathcal{M}_n^* as all the tree-structured partitions constructed on the grid X^n_1 using S. Taking Theorem 2 into account with $n = n_1$, it suffices to choose the weights $(L_m)_{m \in \mathcal{M}_n^*}$ to obtain Proposition 2.

Taking the weights as a function of the dimension, we have by Lemma 2:

$$
\Sigma \leq \sum_{D \geq 1} \exp(-L_D D + DV + DV \log \frac{n_1}{V}).
$$

Then, we take $L_D = V (\theta + \log (n_1/V))$, with $\theta > 1$ and we obtain Proposition VII.B.

C. Proof of Proposition 3

Let us call $n = n_3$. Then let us note that, for $u \in L^2(\mu_n)$,

$$
\|s - u\|_n^2 = \mathbb{E} [\gamma_n(u) - \gamma_n(s) | X^n_1].
$$

(9)

Since this equality depends only on L_1, the same proof can be achieved for M_1 as for M_2, the only difference being in the conditioning which depends on L_1 and L_2 for M_1 and only on L_1 for M_2. Consequently we just give the proof for the M_1 method.

Let $k \in \{1, \ldots, K\}$ and take γ_n as (7).

Then we have by (9):

$$
\|s - \hat{s}\|_n^2 \leq \|s - \hat{s}_{T_k}\|_n^2 + \bar{\gamma}_n(\hat{s}_{T_k}) - \bar{\gamma}_n(\hat{s}) \leq \|s - \hat{s}_{T_k}\|_n^2 + 2 \frac{\sigma}{\sqrt{n}} \mathbb{E} [Z(\hat{s}) - Z(\hat{s}_{T_k})]
$$

where $Z_{k,j} = (Z(\hat{s}_{T_{k,j}}) - Z(\hat{s}_{T_k})) \|\hat{s}_{T_j} - \hat{s}_{T_k}\|_n$ is $\mathcal{N}(0, 1)$-distributed, knowing subsamples L_1 and L_2.

The general principle is to use the fact that $Z_{k,j}$ is a Gaussian variable to bound it uniformly in k, j. The result will be an in-probability uniform upper bound for $Z_{k,j}$ that will be integrated to obtain proposition 3.

Since $Z_{k,j}$ is a Gaussian variable conditionally to L_1 and L_2, for all $x \in \mathbb{R}$ we have

$$
P \left[Z_{k,j} \geq x \mid L_1, L_2 \right] \leq e^{-x^2/2}.
$$

Taking $\xi > 0$ and setting $x = \sqrt{2(\log K + \xi)}$ we get

$$
P \left[Z_{k,j} \geq \sqrt{2(\log K + \xi)} \mid L_1, L_2 \right] \leq \exp(- \log K - \xi).
$$

Thus

$$
P \left[\sup_{1 \leq j \leq K} Z_{k,j} \geq \sqrt{2(\log K + \xi)} \mid L_1, L_2 \right] \leq e^{-\xi}
$$
We can now integrate the first inequality with respect to C and then we apply it to CAR T.

First we generalize Theorem VIII-A.1 to random models. For the sake of completeness, let us recall this result.

Let $n = n_2$. Assume $(S_m)_{m \in \mathcal{M}_n}$ is a collection of models and that one has a sample L_2 of the random variable (X, Y) defined as in IV-A. The contrast function is here bounded by 1, and pen_n, \tilde{s}_m, and \check{m} are defined as in the proof of Proposition 1.

Suppose that, for $m \in \mathcal{M}_n$,

$$S_m = \left\{ \sum_{t \in C} a_t I_1 : C \in \mathcal{C}_m, (a_t) \in [0, 1]^{|C|} \right\},$$

where each \mathcal{C}_m is a countable class of subsets of \mathbb{R}. Then we define $D_m = \text{Dim}(S_m)$ as the dimension of the linear space associated with S_m. One makes the following assumptions:

\textbf{H$_1$}: There exist some pseudo-distance d and some absolute constant c such that for every $(t, u) \in (L^2(\mu))^2$, one has $\text{Var}_x [\gamma(t, X) - \gamma(u, X)] \leq d^2(u, t)$, and particularly

$$\text{Var}_x [\gamma(t, X) - \gamma(s, X)] \leq d^2(s, t) \leq c ||s - t||^2$$

\textbf{H$_2$}: For any positive σ and for any $u \in S_m$, let us define

$$B_m(u, \sigma) = \{ t \in S_m : d(u, t) \leq \sigma \}$$

where d is given by assumption \textbf{H$_1$}. We now assume that for any $m \in \mathcal{M}_n$, there exists some continuous function ϕ_m mapping \mathbb{R} onto \mathbb{R}_+ such that $\phi_m(0) = 0$, $\phi_m(x)/x$ is non-increasing and

$$\mathbb{E} \left[\sup_{t \in B_m(u, \sigma)} |\gamma_n(t) - \gamma_n(u)| \right] \leq \phi_m(\sigma)$$

for all $\sigma \geq \sigma_m$, where σ_m is the solution of the equation $\phi_m(x) = x^2$, $x > 0$. One gets the following result:

\textbf{Theorem VIII-A.1} (Massart). Let $\xi > 0$. Let K_1 and K_2 be two constants, with $K_1 > 0$, $i = 1, 2$. Take a family of weights $(x_m)_{m \in \mathcal{M}_n}$ such that $\Sigma = \sum_{m \in \mathcal{M}_n} e^{-x_m} < +\infty$. Then, for some nonnegative constant K_3, for every $m \in \mathcal{M}_n$ and every positive ξ, if $\text{pen}_n(m) \geq K_1\sigma_m^2 + K_2(x_m/n) - K_3(\xi/n)$ with probability larger than $1 - \exp(-x_m - \xi)$,

$$||s - \check{s}_m||^2 \leq C(K_1, K_2) \inf_{m \in \mathcal{M}_n} \left[||s - \tilde{s}_m||^2 + \mathbb{E}[\text{pen}_n(m)] \right] + C'(K_1, K_2) \frac{\xi + 1}{n}$$

on a set Ω_ξ such that $P(\Omega_\xi \mid \mathcal{L}_1, \mathcal{L}_2) \leq e^{-\xi}$. Here again the collection of models we consider is T and, for $T \in \mathcal{T}$, $S_T = \{ \sum_{t \in T} a_t I_1 : \forall t \in T, a_t \leq 1 \}$ and its dimension is $|T|$. Given this collection, to apply [9, Theorem 4.2] we firstly choose the pseudo-distance d defined on $L^2(\mu)$ in the following way: since Y is bounded by 1, for all u and t in $L^2(\mu)$ we have

$$\text{Var} \left[(Y - u(X))^2 - (Y - t(X))^2 \right] \leq 16 ||u - t||^2.$$ (10)

Then, given $T \in \mathcal{T}$, by Lemma 1 we have

$$\mathbb{E} \left[\sup_{t \in B_T(u, \sigma)} |\tilde{\gamma}_n(t) - \gamma_n(u)| \mid \mathcal{L}_1 \right] \leq \frac{7}{2} \sigma \sqrt{|T|/n},$$

where, for $u \in S_T$, $B_T(u, \sigma) = \{ t \in S_T : ||t - u|| \leq \sigma/2 \}$. Hence the solution of the equation $\sigma^2 = (7/2)\sigma \sqrt{|T|/n}$ is $\sigma_T = (7/2) \sqrt{|T|/n}$.

The last step consists in choosing the sequence of weights $(x_T)_{T \leq T_{max}}$ such that the family $(e^{-x_T})_{T \leq T_{max}}$ is summable. Considering the same argument as in the proof of Proposition 1 and taking x as a function of the dimension, we choose $x(D) = \theta D$, with $\theta > 2 \log 2$ independent of D.

Thus we get proposition 4 by [9, Theorem 4.2].

\textbf{B. Proof of Proposition 5}

In what follows, we denote by X_n^p the sample (X_1, \ldots, X_n) of size n of the random variable X and by μ_n the empirical distribution on X_n^p.

First we generalize Theorem VIII-A.1 to random models, and then we apply it to CART.

\textbf{Theorem 3}: Consider the bounded regression model defined in section IV and $(S_m)_{m \in \mathcal{M}_n}$ a countable random family of finite dimensional subspaces constructed on the X_n^p with respective dimensions D_m. Fix $(x_m)_{m \in \mathcal{M}_n}$ a family of weights satisfying the condition:

$$\sum_{m \in \mathcal{M}_n, D_m > 0} e^{-x_m} \leq \Sigma$$
Given a subspace $\mathcal{M}_n \subset \mathcal{M}_n^*$ that can also depend on (Y_1, \ldots, Y_n), we select the estimators as follows:

- $\hat{s}_m = \text{argmin}_{s\in S_m} [\gamma_n(t)]$.
- $\hat{m} = \text{argmin}_{m\in\mathcal{M}_n} [\gamma_n(\hat{s}_m) + \text{pen}_n(m)]$ and then $\hat{s} = \hat{s}_{\hat{m}}$.

Moreover, we make the following assumptions:

H1: The contrast is bounded by some constant b.

H2: Let $Z_t = (X_t, Y_t)$. There exists a nonnegative constant c_1 such that, for all t and u in $L^2 (\mathcal{X}, \mu_n)$,

$$
\frac{1}{n} \sum_{i=1}^{n} \text{Var} [\gamma_t(t, Z_i) - \gamma(u, Z_i) \mid X^n_t] \leq c_1 \|t - u\|_n^2
$$

almost surely, where $\|\cdot\|_n$ is the empirical norm on X^n_t.

H3: Take $\tilde{\gamma}_n$ as (7) and for $m \in \mathcal{M}_n^*$ define $B_m(u, \sigma) = \{t \in S_m ; \sqrt{\sigma}\|t - u\|_n \leq \sigma\}$. Then for all $m \in \mathcal{M}_n^*$ there exists some continuous function ϕ_m mapping \mathbb{R}_+ onto \mathbb{R}_+ such that $\phi_m(0) = 0$, $\phi_m(x)/x$ is nonincreasing and

$$
\mathbb{E} \left[\sup_{u \in B_m(u, \sigma)} |\tilde{\gamma}_n(t) - \tilde{\gamma}_n(u)\mid X^n_t \right] \leq \phi_m(\sigma)
$$

for all $\sigma \geq \sigma_m$ where σ_m is such that $\phi_m(\sigma_m) = \sigma_m^2$.

Given **H1**, **H2** and **H3**, given $\xi > 0$, if for all $m \in \mathcal{M}_n^*$

$$
\text{pen}_n(m) \geq K_1 \sigma^2_m + K_2 \frac{x_m}{n}
$$

for some constants K_1 and K_2, then

$$
\|s - \hat{s}\|_n^2 \leq C_1 \inf_{m \in \mathcal{M}_n^*} \left\{ \|s - s_m\|_n^2 + \text{pen}_n(m) \right\} + C_2 \frac{1 + \xi}{n}
$$
on a set Ω_ξ such that $P(\Omega_\xi) \geq 1 - 2\Sigma e^{-\xi}$.

Proof: Since there are just a few lines that change from the proof of [9, Theorem 4.2], we just give a sketch of proof.

Note that assumption **H2** permits to give exactly the same upper bounds (except that they depend on X^n_t) for the variance as in [9]. We denote $\sqrt{\sigma}\|\cdot\|_n$ by d_n.

Taking (9) into account, we have the following upperbounding:

$$
\|s - \hat{s}\|_n^2 \leq \|s - s_m\|_n^2 + w_{\hat{m},m}(\hat{s})V_{\hat{m},m} + \text{pen}_n(\hat{m})
$$

(11)

where for m' and M in \mathcal{M}_n^*

$$
w_{m',M}(t) = (d_n(s, s_M) + d_n(s, s_{m'}))^2 + (y_{m'} + y_M)^2,
$$

$$
V_{m',M} = \sup_{t \in S_{m'}} \left[\tilde{\gamma}_n(t) - \tilde{\gamma}_n(s_M) \right] \quad \text{and} \quad y_{m'} \geq \sigma_{m'} \quad \text{and} \quad y_M \geq \sigma_M
$$

so that on $\bar{\Omega}_\xi$, one has $V_{m',M} \leq 1/K$ for all m' and M in \mathcal{M}_n^*, we derive from (11) that

$$
\|s - \hat{s}\|_n^2 \leq \|s - s_m\|_n^2 + w_{\hat{m},m}(\hat{s})K^{-1} + \text{pen}_n(\hat{m}) - \text{pen}_n(\hat{m})
$$

Thus, using the same technique as in [9] and assumption **H2**, and taking $\Omega_\xi = \Omega_\xi \cap \Omega_n$, the proof is achieved.
Application to the risk bound of the CART estimator

In that case we have \(n = n_1, \mathcal{M}_n = \mathcal{T} \) and \(\mathcal{M}_n^* \) as the collection of all trees that can be constructed on the grid \(\{X_1; \ldots; X_{n_1}\} \) using \(S \). Taking Theorem 3 into account, we have to check assumptions H1, H2 and H3 and then to choose the family of weights \((x_m)_{m \in \mathcal{M}^*_n} \).

Since \(Y \) is supposed to be bounded by 1 and since we consider all the functions in \(L^2(\mathcal{X}, \mu_n) \) also bounded by 1, the contrast is bounded by 1 and we have assumption H1. Then H2 is checked with \(c_1 = 16 \). Furthermore, in the same manner as in the proof of Proposition 4, since lemma 1 is still valid when working with \(\|w_k\| \), we have H3 with \(\phi_T(\sigma) = (7/2)\sigma \sqrt{T/n} \) and \(\sigma_T = (7/2)\sqrt{\mu(T)/n} \).

Finally, since Lemma 2 is true uniformly on \((x_1, \ldots, x_n) \), we choose the weights \((x_T)_{T \in \mathcal{T}, \mu(T) \neq 0} \) in the same manner as in the proof of Proposition 2 and we obtain \(x_T = V(\theta + \log(n/V)) \) with \(\theta > 1 \).

And the proof is achieved by Theorem 3.

C. Proof of Proposition 6

As for the proof of Proposition 3, the only difference being in the norms used, it suffices to give the proof of Proposition 6 for the M1 method. We use the same definitions and notation.

We have

\[
\|s - \hat{s}\|^2 \leq \|s - \hat{s}_{T_k}\|^2 + V_kw_k,
\]

where

\[
V_k = \frac{\gamma_n(\hat{s}_{T_k}) - \gamma_n(s)}{(d(s, \hat{s}_{T_k}) + d(s, \hat{s}))^2} + C^2,
\]

with \(d^2(t, u) = E[(\gamma(t, \cdot) - \gamma(u, \cdot))^2] \) satisfying \(d^2(t, s) \leq 2 \|t - s\|^2 \) (see [9]), and \(C \) a nonnegative constant we will choose later in the proof. The road map of this proof is exactly the same as the one of the proof of Proposition 5. Note that, since the collection of models considered is finished, we will use Berstein’s instead of Talagrand’s inequality to bound \(V_k \) uniformly in \(k \).

Let

\[
V_{k,j} = \frac{\gamma_n(\hat{s}_{T_{k,j}}) - \gamma_n(s)}{(d(s, \hat{s}_{T_{k,j}}) + d(s, \hat{s}))^2} + C^2.
\]

We use Bernstein’s concentration inequality for centered and bounded random variables in order to bound the random variable \(V_{k,j} \) uniformly on \(k \) and \(j \) to obtain an uniform upper bound for \(V_k \). To proceed, note that

\[
V_{k,j} = \frac{1}{n} \sum_{i=1}^{n} \frac{G_i - E(G_i)}{w_{k,j}}
\]

with \(-1 \leq G_i \leq 1\). Then, since for all \(l \geq 2 \)

\[
\left| \frac{G_i}{w_{k,j}} \right|^l \leq \left(\frac{G_i}{w_{k,j}} \right)^2 \left(\frac{1}{C^2} \right)^{l-2},
\]

by Bernstein’s inequality we obtain, for \(x > 0 \)

\[
P \left[\sum_{i=1}^{n} \frac{G_i}{w_{k,j}} \geq \frac{\sqrt{2vx}}{C} + \frac{x}{C^2} \right] \leq e^{-x}
\]

where \(v = \sum_{i=1}^{n} \frac{E(G_i^2)}{w_{k,j}^2} \) is bounded by :

\[
v = \frac{n d^2(\hat{s}_{T_k}, \hat{s}_{T_j})}{w_{k,j}^2} \leq \frac{n}{4C^2}.
\]

Then, taking \(\xi > 0 \) and setting \(x = \log K + \xi \) in (13), we get :

\[
P \left[\sum_{i=1}^{n} \frac{G_i}{w_{k,j}} \geq \frac{\sqrt{2vx}}{C} + \frac{x}{C^2} \right] \leq e^{-x}
\]

Thus, except on a set \(\Omega_\xi \) with probability lower than \(e^{-\xi} \), we have

\[
\sum_{i=1}^{n} \frac{G_i}{w_{k,j}} \leq \frac{\sqrt{2vx}}{C} + \frac{x}{C^2} \leq \frac{1}{C} \sqrt{\frac{\log(K + \xi)}{n}} \left(1 + \frac{1}{C} \frac{\sqrt{\log(K + \xi)}}{n} \right).
\]

Then, taking \(C = B \sqrt{\log(K + \xi)/n} \), where \(B \) will be chosen later, we get

\[
\|s - \hat{s}\|^2 \leq \|s - \hat{s}_{T_k}\|^2 + \frac{1}{B} \left(1 + \frac{1}{B} \right) \frac{w_k}{n},
\]

except on \(\Omega_\xi \).

Then, using the condition satisfied by \(d \) and the inequality \((a + b)^2 \leq 2(a^2 + b^2) \), we obtain

\[
\left(1 - \frac{4}{B} \left(1 + \frac{1}{B} \right) \right) \|s - \hat{s}\|^2 \leq \left(1 + \frac{4}{B} \left(1 + \frac{1}{B} \right) \right) \|s - \hat{s}_{T_k}\|^2 + \frac{B}{n} \left(\frac{\log(K + \xi)}{n} \right),
\]

except on \(\Omega_\xi \).

Given \(B \geq 5 \) to ensure that \(1 - (4/B)(1+1/B) > 0 \), we finally obtain on \(\Omega_\xi \)

\[
\|s - \hat{s}\|^2 \leq C_1(B) \|s - \hat{s}_{T_k}\|^2 + C_2(B) \frac{\log K}{n} + C_3(B) \frac{\xi}{n}.
\]

Taking the expectation with respect to the third subsample, we get Proposition 6.

REFERENCES

Servane Gey received the Doctorat in Mathematics degree in 2002 from Université Paris XI, France. She is currently Associate Professor of Probability and Statistics at the Institut Universitaire de Technologie of Université Paris 5, France. Her main fields of interest are statistical learning, nonparametric estimation and algorithms.

Elodie Nedelec is currently PhD student at the Université of Paris XI, France. During 2001-2004, she worked as a teacher of Mathematics in Classe Préparatoires aux Grandes Ecole (CPGE) de Commerce at the College of Louis Le Grand, Paris, France. She is currently teacher of Mathematics in CPGE de Biologie at the College of Saint Louis, Paris, France. Her main areas of interest are nonparametric estimation, statistical learning, classification and their applications to genomics.