An upper bound on the adaptable choosability of graphs.
Mickael Montassier, André Raspaud, Xuding Zhu

To cite this version:

HAL Id: hal-00322868
https://hal.archives-ouvertes.fr/hal-00322868
Submitted on 18 Sep 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An upper bound on adaptable choosability of graphs

Mickaël Montassier, André Raspaud
Université Bordeaux I
LaBRI UMR CNRS 5800
33405 Talence Cedex, France
{montassi, raspaud@labri.fr}

Xuding Zhu
National Sun Yat-sen University
Kaohsiung, Taiwan
National Center for Theoretical Sciences
{zhu@math.nsysu.edu.tw}

Abstract

Given a (possibly improper) edge-colouring F of a graph G, a vertex colouring c of G is adapted to F if no colour appears at the same time on an edge and on its two endpoints. If for some integer k, a graph G is such that given any list assignment L of G, with $|L(v)| \geq k$ for all v, and any edge-colouring F of G, there exists a vertex colouring c of G adapted to F such that $c(v) \in L(v)$ for all v, then G is said to be adaptably k-choosable. The smallest k such that G is adaptably k-choosable is called the adaptable choice number and is denoted by $ch_{ad}(G)$. This note proves that $ch_{ad}(G) \leq \lceil Mad(G)/2 \rceil + 1$, where $Mad(G)$ is the maximum of $2|E(H)|/|V(H)|$ over all subgraphs H of G. As a consequence, we give bounds for classes of graphs embeddable into surfaces of non-negative Euler characteristics.

Keywords: Adapted colouring, list colouring, planar graphs.

Mathematical Subject Classification: 05C15

*Partially supported by the National Science Council under grant NSC95-2115-M-110-013-MY3 and by the french-taiwanese agreement CNRS/NSC.
1 Introduction

Suppose G is a multigraph and let $F : E(G) \to \mathbb{N}$ be a (possibly improper) colouring of the edges of G. A k-colouring $c : V(G) \to \{1, \ldots, k\}$ of the vertices of G is adapted to F if for every $uv \in E(G)$, $c(u) \neq c(v)$ or $c(v) \neq F(uv)$. In other words, there is no monochromatic edge, i.e., an edge whose two ends are coloured with the same colour as the edge itself. If there is an integer k such that for any edge colouring F of G, there exists a vertex k-colouring of G adapted to F, we say that G is adaptably k-colourable. The smallest k such that G is adaptably k-colourable is called the adaptable chromatic number of G and is denoted by $\chi_{ad}(G)$. The concept of adapted colouring of a graph was introduced by Hell and Zhu in [10], and has connections with matrix partitions of graphs, graph homomorphisms, and full constraint satisfaction problems [4, 5, 6].

Let $L : V(G) \to 2^\mathbb{N}$ be a list assignment that assigns to each vertex v of G a set $L(v)$ of permissible colours. Let F be a (possibly improper) edge colouring of G. A vertex colouring c of G adapted to F is an L-colouring adapted to F if for any vertex $v \in V(G)$, we have $c(v) \in L(v)$. If for any edge colouring F of G and any list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$ there exists an L-colouring of G adapted to F, we say that G is adaptably k-choosable. The smallest k such that G is adaptably k-choosable is called the adaptable choice number (or the adaptable choosability) of G and is denoted by $ch_{ad}(G)$. The concept of adapted list colouring of graphs and hypergraphs was introduced by Kostochka and Zhu in [11].

Adapted list colouring can be used as a model for scheduling problems. Compared to the original list colouring model, the adapted list colouring allows different constraints for different colours. For example, suppose there is a set of basketball games that need to be scheduled into a set of time slots. The time slots are the colours. The constraints are (1): each game has a list of permissible time slots, and (2): some pairs of games cannot be assigned to the same time slot. This problem is modeled as a list colouring problem. It may happen that two games a, b cannot be both assigned to time slot i, however, they can be both assigned to time slot j. The adapted list colouring of graphs provides a model for this problem.

Since a proper vertex k-colouring of a graph G is adapted to any edge colouring of G, we have $\chi_{ad}(G) \leq \chi(G)$ and $ch_{ad}(G) \leq ch(G)$ for any graph G, where $\chi(G)$ is the usual chromatic number of G, and $ch(G)$ is the usual choice number of G.

The adaptable choosability of planar graphs was studied in [3, 8]. It is known that planar graphs are adaptably 4-choosable. Moreover, a planar graph G is adaptably 3-choosable if one of the following holds:

1. G is triangle-free.
2. No two triangles intersect, and no triangle is adjacent to a 5-cycle, and each
6-cycle is adjacent to at most two triangles.

3. Any two triangles have distance at least 2 and no triangle is adjacent to a 4-cycle.

On the other hand, there are C_4-free planar graphs that are not adaptably 3-colourable; and for any integer $k \geq 5$, there are planar graphs that are C_t-free for all $5 \leq t \leq k$ and not adaptably 3-colourable; and for any integer k, there are planar graphs G in which any two triangles have distance at least k and G is not adaptably 3-choosable.

In this note we give a new upper bound for the adaptable choice number of graphs. Given a graph G, the maximum average degree of G, denoted by $Mad(G)$, is the maximum average degree of the subgraphs of G, i.e.,

$$Mad(G) = \max\{2|E(H)|/|V(H)| : H \text{ is a subgraph of } G\}.$$

We shall prove that for any graph G, its adaptable choice number is at most $\lceil Mad(G)/2 \rceil + 1$.

We denote by S_h the orientable surface of genus h, i.e., the surface obtained from the sphere by adding h handles, and denote by N_h the non-orientable surface of genus h, i.e., the surface obtained from the sphere by adding h crosscaps. The Euler characteristic $\chi(S)$ of a surface S is defined as

$$\chi(S) = \begin{cases} 2 - 2h, & \text{if } S = S_h, \\ 2 - h, & \text{if } S = N_h. \end{cases}$$

Two cycles C_1 and C_2 in a graph G are said to be adjacent if they have at least one edge in common. As a consequence of the above upper bound for $ch_{ad}(G)$, we shall show that if G is a simple graph which can be embedded in a surface S of non-negative Euler characteristic, then G is adaptably 4-choosable. Moreover, if G is simple, embedded in a surface of non-negative Euler characteristic and no triangle of G is adjacent to a triangle or a C_4, and each C_5 is adjacent to at most three triangles, then G is adaptably 3-choosable. Since two adjacent triangles will contain a 4-cycle, the above corollary implies that if a simple graph G has no 4-cycle and no 5-cycle, and can be embedded in a surface of non-negative Euler characteristic, then G is adaptably 3-choosable.

In 1976, Steinberg [12] conjectured that planar graphs without cycles of length 4 and 5 are 3-colourable. The corresponding question for adaptable choosability and adaptable colourability was asked in [3]: Are simple planar graphs without 4-cycles and 5-cycles adaptably 3-colourable (or even adaptably 3-choosable)? By the above result we have that simple planar graphs without 4-cycles and 5-cycles are adaptably 3-choosable, answering the mentioned question in positive.
Finally we give a new proof of the fact that every K_5-minor free graph is adaptably 4-choosable [3] based on the relationship between adaptable choice number and maximum average degree.

2 Upper bounds for $ch_{ad}(G)$

Theorem 2.1 For any graph G (parallel edges are allowed),

$$ch_{ad}(G) \leq \lceil \text{Mad}(G)/2 \rceil + 1.$$

Proof. To prove this Theorem we will use the following result of Hakimi [9]. A graph G on vertices x_1, x_2, \cdots, x_n has an orientation in which x_i has out-degree $d^+(x_i) = k_i$ if and only if the following hold:

1. For each subset X of $V(G)$, $\sum_{x_i \in X} k_i \geq |E(G[X])|$.
2. $\sum_{i=1}^n k_i = |E(G)|$.

An easy consequence of this result is that if for each subset X of $V(G)$, $\sum_{x_i \in X} k_i \geq |E(G[X])|$, then G has an orientation in which $d^+(x_i) \leq k_i$ for each x_i (see also [7]).

If $\text{Mad}(G) \leq k$ for an integer k, then for any subgraph H of G, $|E(H)| \leq \frac{k}{2} |V(H)|$. It follows from the above result that G has an orientation in which each vertex x_i has $d^+(x_i) \leq \lceil \frac{k}{2} \rceil$. Assume each vertex x_i is given a list $L(x_i)$ of $\lceil \frac{k}{2} \rceil + 1$ colours and F is an edge colouring of G. Let $c(x_i)$ be any colour in $L(x_i)$ which does not appear in any outgoing edges of x_i. Then it is obvious that c is an L-colouring of G adapted to F. This completes the proof of Theorem 2.1.

Corollary 2.1 If G is a simple graph which can be embedded in a surface S of non-negative Euler characteristic, then G is adaptably 4-choosable. If, moreover, no triangle of G is adjacent to a triangle or a C_4, and each C_5 is adjacent to at most three triangles, then G is adaptably 3-choosable.

Proof. Assume G is a simple graph embedded in a surface S of Euler characteristic $\chi(S) \geq 0$. Let H be a subgraph of G. Then H is also a simple graph embedded in S. Let V, F, E be the sets of vertices, faces and edges of H, respectively. By Euler’s formula,

$$|V| + |F| - |E| = \chi(S) \geq 0.$$

Let f_i be the number of i-faces, i.e., faces whose boundary is a walk of length i. Since H is simple, each face is an i-face for some $i \geq 3$. Therefore

$$3|F| \leq \sum_{i \geq 3} i \cdot f_i = 2|E|.$$
It follows that
\[|E| \leq 3|V|. \]
Hence \(Mad(G) \leq 6 \), and by Theorem 2.1, \(G \) is adaptably 4-choosable.

Assume moreover that no triangle in \(G \) is adjacent to a triangle or a \(C_4 \), and each \(C_5 \) is adjacent to at most three triangles. Then each 3-face of \(H \) is adjacent to three faces of degree at least 5. Each 5-face is adjacent to at most three 3-faces, and for \(i \geq 6 \), each \(i \)-face is adjacent to at most \(i \) 3-faces. Therefore
\[
3f_3 \leq 3f_5 + \sum_{i \geq 6} i \cdot f_i,
\]
It follows that
\[
4|F| = 3f_3 + 4f_4 + 5f_5 + (f_3 - f_5) + 4 \sum_{i \geq 6} f_i
\]
\[
\leq 3f_3 + 4f_4 + 5f_5 + \sum_{i \geq 6} (\frac{i}{3} + 4) f_i
\]
\[
\leq 2|E|.
\]
By Euler formula, \(|V| + |F| - |E| = \chi(S) \geq 0 \). By replacing \(|F| \) with \(|E|/2 \), we obtain the inequality that \(|E| \leq 2|V| \). So \(Mad(G) \leq 6 \). By Theorem 2.1, \(ch_{ad}(G) \leq 3 \).

The following result was proved in [3].

\textbf{Corollary 2.2} \textit{Every \(K_5 \)-minor free simple graph is adaptably 4-choosable.}

\textbf{Proof.} It suffices to prove that any maximal \(K_5 \)-minor free graph \(G \) has \(|E(G)| \leq 3|V(G)| - 6 \). It is known that a maximal \(K_5 \)-minor free graph is constructed recursively, by pasting along \(K_2 \)'s and \(K_3 \)'s, from plane triangulations and copies of the Wagner’s graph (the graph obtained from \(C_8 \) by adding four diagonal edges). Assume \(G \) is obtained from the union of \(G_1, G_2 \) by pasting along a \(K_2 \) or \(K_3 \), and \(|E(G_i)| \leq 3|V(G_i)| - 6 \). Then \(|E(G)| = |E(G_1)| + |E(G_2)| - t \), where \(t = 1 \) or 3, respectively, and \(|V(G)| = |V(G_1)| + |V(G_2)| - s \), where \(s = 2 \) or 3, respectively. Now a straightforward calculation shows that \(|E(G)| \leq 3|V(G)| - 6 \).

Corollaries 2.1 and 2.2 show that the upper bound for \(ch_{ad}(G) \) in Theorem 2.1 is very useful. In fact for graphs embedded in surface of non-negative Euler characteristic, the upper bounds for \(ch_{ad}(G) \) in Corollary 2.1 are sharp. Theorem 2.1 is also sharp in the sense that for any integer \(g, d \), there are \(d \)-regular graphs \(G \) of girth at least \(g \) for which \(ch_{ad}(G) = \chi_{ad}(G) = d + 1 \) [11]. However, for random graphs, the upper bound given in Theorem 2.1 is usually far from sharp. As an example, we consider random \(d \)-regular graphs \(G \), which have \(Mad(G) = d \). Let \(k_d \) be the smallest integer \(k \) such that \(d < 2k \log k \). It is known that with high probability, \(\chi(G) = k_d \) or
Let $f(n) = \min\{\chi_{ad}(G) : \chi(G) = n\}$. Is it true that $f(n) = \chi_{ad}(K_n)$? Is it true that $\lim_{n\to\infty} f(n) = \infty$? If so, what is the order of $f(n)$?

Similar questions can be asked for adaptable choosability of graphs.

Let $g(n) = \min\{\text{ch}_{ad}(G) : \text{ch}(G) = n\}$. Is it true that $\lim_{n\to\infty} g(n) = \infty$? If so, what is the order of $g(n)$?

It follows from a result of Alon [2] that there is a function $h(d)$ goes to infinity with d such that if $\text{Mad}(G) \geq d$ then $\text{ch}(G) \geq h(d)$.

Let $\phi(t) = \min\{\text{ch}_{ad}(G) : \text{Mad}(G) = t\}$. Is it true that $\lim_{t\to\infty} \phi(t) = \infty$?

References

