Tuning the formation and rupture of single ligand-receptor bonds by hyaluronan-induced repulsion
Philippe Robert, K. Sengupta, Puech Pierre-Henri, Pierre Bongrand, Laurent Limozin

To cite this version:

HAL Id: hal-00322042
https://hal.archives-ouvertes.fr/hal-00322042
Submitted on 16 Sep 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Tuning the formation and rupture of single ligand-receptor bonds by hyaluronan-induced repulsion

Philippe Robert Kheya Sengupta† Pierre-Henri Puech
Pierre Bongrand Laurent Limozin*

Adhesion & Inflammation
Inserm UMR 600, CNRS UMR 6212, Université de la Méditerranée
case 937, 163 Av. Luminy, 13288 Marseille Cedex 09 FRANCE
† CINaM, CNRS UPR 3118, Luminy, Marseille
* corresponding author: limozin@marseille.inserm.fr
Abstract

We used a combination of laminar flow chamber and reflection interference microscopy to study the formation and rupture of single bonds formed between Fc-ICAM-1 attached to a substrate and anti-ICAM-1 carried by micrometric beads in the presence of a repulsive hyaluronan (HA) layer adsorbed onto the substrate. The absolute distance between the colloids and the surface was measured under flow with an accuracy of a few nanometers. We could verify the long term prediction of classical lubrication theory for the movement of a sphere near a wall in a shear flow. The HA polymer layer exerted long range repulsive steric force on the beads and the hydrodynamics at the boundary remained more or less unchanged. By incubating HA at various concentrations, the thickness of the layer, as estimated by beads most probable height, was tuned in the range 20 to 200 nm. Frequency of bond formation was decreased by more than one order of magnitude by increasing the thickness of the repulsive layer while the lifetime of individual bonds was not affected. This study opens the way for further quantitative studies of the effect of molecular environment and separation distance on ligand-receptor association and dissociation.

Key words: glycocalyx; laminar flow chamber; reflection interference contrast microscopy; antigen-antibody binding; colloidal force probe
Introduction

The glycocalyx is a polysaccharide-rich layer which decorates cell membranes and plays an important role in cell adhesion (1). It is composed of a large variety of glycoproteins, glycolipids and sugar chains dangling from the membrane and it builds a complex polymeric structure exhibiting highly variable density and various degrees of branching and/or entanglement. Its thickness can vary from ten to twenty nanometers in monocytes (2), a length scale which is comparable to the length of most of cell adhesion molecules, to a half a micron in endothelial cells (3), and up to few microns in chondrocytes (4). Measured thicknesses depend strongly on the cells preparation and of the methods of observation, which include electron microscopy, dye exclusion or microparticule image velocimetry (3, 5).

Several studies support the view that the glycocalyx has an anti-adhesive role. Removal of the glycocalyx by enzymes or genetical engineering facilitates cell adhesion (6), while increased expression of glycocalyx constituents impedes adhesion (7). The difference between the length of adhesion molecules versus repulsive molecules is a key parameter (7). A prominent example of the role of repulsive molecules in the control of specific cell response concerns the activation of T cell during the formation of the immunological synapse (8). Another important feature of glycocalyx is the difference between static and dynamic conditions. For example, the ability of P-selectin of various lengths on endothelial cells to bind to their ligand PSGL-1 on leucocytes varies according to whether conditions are static or dynamic: the repulsion exerted by the glycocalyx is more effective under flow (9, 10). Another interesting aspect concerns the role of the effective viscosity of the layer on adhesion events. When two cellular surfaces approach, the solvent trapped between the surfaces has to be expelled to allow the close fitting of the membranes. The viscosity induced by the presence of sugar residues, which are either expelled or compactified during the cells approach, is likely to slow down the process by dissipative effects (5).

While some physical aspects of the role of the glycocalyx have been adressed with cells in vitro or in vivo (3), it is often difficult to distinguish unambiguously between these various effects in living systems. A physicochemical approach consists of building a model glycocalyx in order to assess the role of different physical parameters on adhesion: thickness of the polymer layer vs. extension of the adhesive molecules, elasticity and viscosity of the layer, area of the surfaces bearing the adhesion molecules and shear rate in a presence of a flow. In this context, studies on polymer brushes have proved to be useful in research on antifouling or lubrication of artificial
macroscopic surfaces, using the Surface Force Apparatus in shear mode (11). More realistic models of cell interfaces were realized with colloidal particles of cellular size (12). As an important component of the glycocalyx, the long chains of the disaccharide polymer hyaluronan (HA) have been used to create very soft polymer cushions (13). Thus, hyaluronan layers grafted to flat substrates have been described in terms of elasticity and viscosity using colloidal probes (14, 15), with increasing degree of control of the substrate (12, 16). A few experiments studied the combined effect of adhesive and steric repulsive forces on giant vesicles spreading (17, 18).

At the same time, interactions of ligands and receptors involved in cell adhesion have been explored in great details at the single molecule level (19, 20). Recent studies have shown a relation between the conditions of bond formation and bond lifetime (21). Therefore, a detailed study of glycocalyx effects on single bond kinetics has become necessary. However, to our knowledge, reconstituted systems combining repulsive and adhesive units haven’t been yet studied at the single molecule level.

The method of choice to measure bond kinetics is the laminar flow chamber, where ligand-coated microspheres or cells are convected above a receptor coated-surface in a laminar flow at low shear-rate. Counting particle arrests yields information about molecular bond formation, while duration of arrest is related to bond lifetime. Forces in the pN domain are exerted on individual bonds, while parallel observation of many beads provides efficient statistics (22). To explore the mechanisms of bond formation between surface-attached molecules, a key quantity is the instantaneous distance separating the microbead from the surface (23). Hitherto in the flow chamber, this distance was calculated from the bead velocity using lubrication theory (23, 24). However, a direct measurement is highly desirable, in particular in the presence of a glycocalyx, where lubrication theory used for the solvent can not be a priori assumed to be valid. There are two surface optical microscopic techniques that provide nanometer sensitivity in sphere-surface distance measurement (henceforth referred equivalently as bead height \(h \)), which can be combined with large field of observation which is necessary for compatibility with flow chamber analysis. Total internal reflection microscopy (TIRM) (25) is based on the scattering by the bead of the fast decaying evanescent field away from the surface in total reflection illumination. Reflection interference contrast microscopy (RICM) (26) uses the Newton’s rings produced by interference of rays reflected from the bead and from the surface. While these two techniques provide comparable precision in relative height determination, problems remain to be resolved to measure absolute distances. In the context of protein-ligand interaction, only a few
reported works combine the use of RICM or TIRM/TIRF with colloidal force probe. For example, RICM was used with Biomembrane Force Probe (BFP) (27) or Atomic Force Microscopy (AFM) (28). More recently, movement of tethered brownian spheres have been studied combining TIRM and flow chamber (29) or optical tweezers with TIR Fluorescence Microscopy (30) and RICM (31). However, to our knowledge, no study of transient single molecule binding have been realized with simultaneous measurement of the reactive inter-surface distance.

In this work, we have designed a reconstituted biomimetic system to measure the influence of long repulsive chains on the interaction of individual ligand-receptor pairs. We used laminar flow chamber assay to measure probability of formation and rupture of individual bonds between antibody-coated microspheres and antigen-coated surfaces decorated with hyaluronan. This was combined with the simultaneous measurement of absolute distance separating the two reactive surfaces by RICM. The paper is organized as follows. We first present an original method of absolute distance calibration of RICM with AFM. This is validated on fixed or mobile beads by comparison with predictions of diffusion of a colloidal sphere near a wall in the absence of hyaluronan. The hyaluronan layer is then characterized in terms of repulsive potential, effective viscosity, as determined for two bead sizes and various shear rates. We show that the hyaluronan cushion thickness, as measured from average beads height, can be tuned by varying the concentration of incubating polymer, while the effective viscosity does not change noticeably. Finally measurements of adhesion frequency and detachment curves are presented for several cushion thicknesses.

Materials and Methods

Materials

Beads

Two types of microspheres were used. IDC latex sulfate beads (Invitrogen, Cergy-Pontoise, France; diameter \(9.6 \mu m\), density 1.05, CV 7.4% as measured by flow cytometry) were passivated before use by an incubation of 30 min in Bovine Serum Albumin (Sigma, St-Quentin Fallavier, France) at 3% (30 mg/mL). M450 dynabeads (Invitrogen; diameter 4.5 \(\mu m\), density 1.5, CV 2% by cytometry) were functionalized as follows: beads were rinsed once in borate buffer (0.1 M, pH 9), then incubated for 30 min in a solution of rat anti-mouse Fc fragment antibody (Serotec, Cergy-St-Christophe,
France) at a concentration of 5 µg per 10^7 microbeads (in 0.1 M, pH 9 borate buffer) at 37°C under gentle stirring. BSA was then added at 1 µg/mL and incubation was continued overnight. After rinsing in Phosphate Buffer Solution (Invitrogen), beads were incubated for 30 min in mouse anti-human ICAM-1 antibody (Ebioscience, San Diego, California, clone HA58) or in the corresponding isotype control mouse antibody (Ebioscience, mouse IgG1,κ). Prior to experiment, beads were rinsed once in PBS.

Substrates

All incubations, unless otherwise specified, were performed at room temperature. Coverslides of size 24 × 24mm and corrected thickness 0.170 ± 0.01 mm (Hecht, Sondheim, Germany) were used. For experiments without Fc-ICAM-1 functionalization, the coverslides were cleaned by sonication in a solution of Hellmanex (Hellma, Paris, France) followed by multiple rinsings with ultrapure water and coated successively with Poly-L-lysine (Sigma, 300 kDa) at 10 µg/mL in PBS during 30 min and hyaluronic acid (Sigma, 700 kDa) at 10 µg/mL in PBS in order to create a soft polymer cushion (18). For functionalization with Fc-ICAM-1 chimera, the coverslides were cleaned with a solution of 30% H₂O₂ (50% solution in water, Sigma) and 70% H₂SO₄ (Sigma) under stirring for 10 min, then thoroughly rinsed in ultrapure water. Coverslides were then incubated in PLL at 100 µg/mL in PBS during 30 min, rinsed in PBS, incubated in glutaraldehyde (2.5% v/v in PBS, Sigma) during 30 min, rinsed in PBS, and successively incubated in a 1 µg/mL mouse anti human Fc antibody in PBS for 30 min, and in a blocking solution of 0.2 M glycine (Sigma) in 0.1 M phosphate buffer, pH 7.2 for one hour. They were rinsed, incubated in human Fc-ICAM-1 chimera (R & D Systems Europe, Lille, France) solution for 30 min at different concentrations varying between 0.005 and 0.2 µg/mL. Coverslides were then rinsed in PBS and passivated in 10 µg/mL BSA solution in PBS, or incubated in hyaluronic acid solution in PBS then rinsed in PBS and finally passivated in 10 µg/mL BSA solution in PBS. In some experiments, hyaluronan layers were treaded with the enzyme hyaluronate lyase (Sigma). The final molecular coating of substrates and beads is schematized on Fig. 1B. The density of Fc-ICAM-1 molecules grafted to the surface was estimated by measuring the fluorescence after direct labelling with a fluorescent antibody (Ebioscience, HA58-phycoerythrin). The amount of fluorescence was calibrated by measuring bulk solution containing diluted antibody between coverslip and coverslide. The surface density after incubation of Fc-ICAM-1 at the typical concentration of 0.01 µg/mL during 30 min was estimated at ca. 2
molecules/µm^2.

Flow chamber

The flow chamber consisted of a hollow copper bottom onto which the coverslide is pressed by a plexiglas top with an O-ring for sealing and enclosing a compartment of dimensions 15 × 6 × 0.17 mm. The flow of PBS + 0.2 µg/mL BSA induced by a syringe varied between 1 and 28 s⁻¹. The bottom of the chamber allows access to oil immersion objective for RICM observation. The chamber was put on a home built 3-screws stage in order to ensure a correct orthogonality of the sample with the optical axis.

Optical microscopy and data acquisition

An inverted microscope in bright field illumination equipped with a 20× lens and a standard video camera was used to follow the two-dimensional trajectory of the beads and to measure their adhesion to the underlying substrate. Video signal was digitalized at video rate (25 Hz) by a digitalization card (Hauppauge, Paris, France) and compressed on-the-fly by the DivX codec and the freeware VirtualDubMod. Beads trajectories were tracked off-line by a home-made program written in C++ and operating on disinterlaced compressed DivX sequences. Two-dimensional bead trajectories were retrieved with a 20 ms timestep and ca. 40 nm lateral resolution. Statistics of molecular bond formation and rupture were determined by counting the frequency and duration of beads arrest events in the laminar flow as previously described (22). Briefly, a bead was considered to be arrested if its position did not change by more than δx = 0.5 µm in τ = 0.2 s, and if its velocity before the arrest corresponded to that of a moving sedimented bead.

The adhesion frequency was defined as the number of arrests divided by the total time spent by the beads in the velocity range defined before. An arrest was considered to continue as long as the arrest criterion was satisfied, which yields an apparent duration d_{app}. The true arrest duration d_{true} was obtained with the correction d_{true} = d_{app} + τ - 2δx/v, where v is the most probable velocity of the beads (22). The detachment curve was built by counting the fraction of arrests exceeding the duration t.

For static adhesion assay, the flow chamber was prepared as for dynamic adhesion assay. The bead suspension was injected into the chamber, and was allowed to sediment without any flow. The beads were displaced by imposing a brief high shear stress, and were allowed to rest again for 10 s. At the end of the resting time, a shear stress of 28 s⁻¹ was set to detach the
beads. Adherent beads were detected by comparing their position during the resting period and after restarting the flow. The proportion of bead attached was calculated, accounting for the beads non displaced by the initial high shear stress.

Time-lapse RICM was performed on an inverted microscope (Axiovert 200, Zeiss, Jena, Germany) for RICM with a XCite 120 light source (Exfo, Mississauga, Canada) in epi-illumination, a bandpass green filter 546 +/- 12 nm (Chroma, Rockingham, Vermont), an Antiflex 63× objective and a polarizing cube (Zeiss). The illumination aperture diaphragm was set at the minimal opening for measurements (corresponding to an illumination numerical aperture INA = 0.32). The camera used for the AFM calibration was either a Sensicam (PCO, Kelheim, Germany) run with the software Openbox (32) or a C7780 run with the software Wasabi (both Hamamatsu, Massy, France). Recordings in flow (Fig. 1A) were realized using an iXon camera (Andor, Belfast, UK) run with a custom-built software under Labview (National Instruments, Nanterre, France). The typical frame rate used was fps = 45 Hz, and the typical exposure time was $t_{\text{exp}} = 20$ ms. The focus was reached automatically by maximizing the contrast of the field diaphragm. The horizontality of the sample was realized by successive adjustments of the 3 screws of the chamber holder. The final deviation of the focus on all parts of the sample was less than 50 nm. As shown on Fig. 2, RICM of a micrometer size sphere overing above a surface give rise to circular interference fringes (Newton’s rings) of micron size, whose radius depends on sphere-surface distance and the radius of the sphere (for given wavelength and INA). Typical interference patterns for the two types of beads used are shown on Fig. 2A and 2C.

RICM data analysis and height calibration

Tracking of bead center and RICM fringes

The position of the center of a bead observed in RICM was determined using an algorithm which seeks the center of symmetry of the fringe pattern (32) (implemented in Igor Pro 5, Wavemetrics, Portland, Oregon). Briefly, the sum of the standard deviations of the intensity along successive concentric circles was calculated. The calculation was repeated by taking the center of the circles on every pixels around an initial guess. The matrix of the sums calculated from each pixel-center was built. The center of symmetry was determined with subpixel accuracy as the location of the minimum of the 3D paraboloid interpolating the matrix around its minimum value. For the
tracking of a time-lapse sequence, the center found in the previous image was used as guess for the next image. In case of the AFM calibration, the initial guess of the center was chosen by the user on the first image. Depending on the relative position of the bead with respect to the cantilever, part of the fringes could be hidden by the strong reflection of light on the cantilever. In this case, the symmetry was not calculated by summing on all angles, but only for a angular sector defined by the user, limiting the research of extrema to the visible part of the fringes. In case of the flow chamber assay, new beads reaching the field of view were automatically detected at regular time intervals and their center of mass was approximately found by standard image treatments. This position was used as guess for further subpixel determination which was then performed on the raw image sequence as described above. The algorithm used to find the center of symmetry calculated simultaneously the average radial profile of intensity. The precise positions of the extrema of intensity corresponding to each fringe were determined by fitting locally the profile with a parabola. For 9.6 µm beads, the position of the first three maxima and three minima were stored (only two maxima and two minima were stored for 4.5 µm beads). Typical interference profiles obtained for the two types of beads used are shown on Fig. 2B and 2D.

Bead-substrate distance calibration

The calibration was used to determine the relation between the radius of RICM fringes and the absolute bead-surface separation. To measure this relation directly, a bead was moved vertically relatively to the surface, and the fringe pattern obtained in RICM was simultaneously recorded (Fig. 3A). For this purpose we used an atomic force microscope Nanowizard I (JPK, Germany) in closed-loop force mode. A bead was stuck to the end-side of a cantilever (MLCT, Veeco; nominal spring constant 10 mN/m) using micromanipulation (33). After the bead-substrate contact was established (corresponding to a maximal applied force of ca. 10 nN), series of force curves were recorded, each force curve representing 4096 values of the cantilever deflection as a function of the piezoelectric vertical position during approach and retraction for a travelling range of typically 500 nm, at a velocity of 100 nm/s. A typical raw force curve is showed in Fig. 3B. The part of the curve corresponding to the contact bead-cantilever (where the deflection in V is proportional to the piezo displacement) was fitted by a straight line which slope gives the relation between deflection measured in V and deflection in meters (also called sensitivity). The deflection in meters
was added to the piezo distance to provide the bead-surface distance BSD. The raw force curve was rectified to express the deflection in meters as a function of the BSD (rectified force curve, Fig. 3C). For the entire RICM sequence recorded, the radius of the first six extrema of the intensity fringes were tracked as described in the previous section. The BSD and the extrema positions as a function of time were synchronized at the position where the piezo starts the approach, yielding a time uncertainty of less than one frame duration, corresponding to a maximal height error of 2.5 nm. The BSD h was further plotted as a function of each of the extrema radii r_i (Fig. 3D). Each curve was fitted with the function:

$$h(r_i) = \frac{l_i \lambda}{4n} - R_{\text{eff}, i} + \sqrt{R_{\text{eff}, i}^2 - r_i^2}$$

(1)

which corresponds to the dependence $h(r)$ given by the simple RICM theory (32), with λ the light wavelength and n the medium refractive index. This yielded for each extremum two fitting coefficients: an effective bead radius $R_{\text{eff}, i}$ and a fringe order l_i. These coefficients were measured from force curves repeated up to 6 times in different locations of the sample and for 5 different IDC beads. The radii of the beads measured from bright field illumination micrographs varied from 4 to 5.4 µm. The same procedure was applied to calibrate the M450 beads, using three measured beads of identical radius. The values of the calibration coefficients $R_{\text{eff}, i}$ and l_i obtained for the different beads are summarized in Fig. 3E. These values were linearly interpolated as a function of the bead radius R to provide functions $R_{\text{eff}, i}$ and a fringe order l_i for each extremum i. For example, coefficients for the second extremum of IDC beads are given by: $R_{\text{eff}, 2} = 1.409 + 0.073R$, $l_2 = -3.795 \times 10^{-7} + 1.093 \times 10^{-6}R$ and for M450 beads by: $R_{\text{eff}, 2} = 1.59$, $l_2 = 2.68 \times 10^{-6}$

Bead height determination using the calibration

The time-dependent height of a bead was determined after tracking the bead center and the fringes positions for the entire recorded sequence. The fringe order was defined by numbering the fringes of a calibration bead in contact with the substrate, starting with the first maximum, etc. For a bead fluctuating in height, the order was determined by searching the lowest extremum reached. The bead height was then calculated using the first successive non-disappearing extrema and coefficients of the calibration table. The actual bead radius was selected to minimize the difference between heights calculated from two successive extrema. With this method, one
could retrieve the height of a fluctuating bead between 0 and 300 nm. To check visually that the choice of order was correct, the curves of the intensity at the center with the reconstructed height were plotted and compared with a similar curve $I(h)$ computed for the calibration beads. It should be noted that for symmetry reasons, $I(h)$ is independent of the bead radius.

Diffusional analysis of tridimensional trajectories

The diffusional properties of beads were obtained from analysis of experimental tridimensional trajectories as follows. Heights h were binned in stacks of equal thickness δh (typically $\delta h = 10$ nm). The distribution of displacements Δ_α (in one of the directions $\alpha = x, y$ or z; x parallel to the flow and z vertical) during the time interval τ at a starting height h was computed and fitted with a gaussian function, following (34, 35):

$$P(h, \Delta_\alpha, \tau|h, 0) = [4\pi D_\alpha \tau]^{-1/2} \exp \left(-\frac{[\Delta_\alpha - v_\alpha(h)\tau]^2}{4D_\alpha(h)\tau} \right) \quad (2)$$

which is valid for short times τ, where D_α is a diffusion coefficient and v_α a drift velocity. τ was varied between the duration of one frame (20 ms) and three frames (60 ms) and D_α, v_α were retrieved from linear fit of the coefficients $v_\alpha(h)\tau$ and $4D_\alpha(h)\tau$ with τ, taking into account the uncertainty on these coefficients obtained from the gaussian fit.

Results

Beads height distributions and diffusion without flow

The resolution of the tridimensional trajectory reconstruction was first tested on beads attached to the substrate. On coverslides coated with BSA or PLL, uncoated clean IDC beads adhered immediately after sedimentation and did not exhibit any visible motion. Height data were then accumulated for several beads during tens of seconds. The distribution of beads heights was approximately gaussian with $h = 0 \pm 6$ nm (\pm SD) on BSA and $h = -12 \pm 5$ nm on PLL. The standard deviation of height in such a population of beads is mainly due to interbead variability. For a single bead trajectory, the standard deviations are $\delta x \simeq \delta y \leq 2$ nm and $\delta z \leq 3$ nm, which sets the resolution of position determination of an immobile bead. In these conditions, the diameters of IDC beads retrieved from the fringes correlate satisfactorily with those directly measured in bright field, with a maximal discrepancy of 0.3 μm.
The height distribution of BSA-coated IDC beads was measured after sedimentation on substrates coated with PLL + antibody + BSA. In this case, beads exhibited long time scale brownian motion and only rarely adhesion events. Trajectories showing adhesion were removed from the statistics. A typical field of view exploited in the present measurements is shown on Fig. 4A. The cumulated height positions of ca. 20 beads observed during 20 s are shown on Fig. 4B. Solid line on Fig. 4B is an exponential fit of the equilibrium distribution of the form \(p(h) \sim \exp(h/h_b), \) with \(h_b = mg/k_BT \) with \(g \) the acceleration of gravity, \(k_BT \) the Boltzmann factor. It yields the average bead mass \(m = (4\pi/3)R^3\Delta\rho \) with the relative density \(\Delta\rho = 0.05 \) and an average bead radius \(R = 4.9 \mu m \) (close to the nominal radius of 4.8 \(\mu m \)). The height distribution of BSA-coated IDC beads on PLL + HA is also shown on Fig. 4B and is consistent with previous measurements on similar substrates (18).

Diffusion coefficients of IDC beads were measured using the analysis associated with Eq. 2 and based on data obtained from several trajectories, for a total of 20000 to 50000 positions. Fig. 4C shows the values of horizontal diffusion coefficients \(D_x \) (x direction from right to left in Fig. 4A) and \(D_y \) (y direction from bottom to top in Fig. 4A). The discrepancy between \(D_x \) and \(D_y \) at a given height is an indication of the error in measurement and is highly dependent on the statistical weight at this height (refer to the bars for the height distribution on Fig. 4C). The underlying substrate was coated either with PLL + antibody + BSA (black symbols corresponding to smaller heights) or PLL + HA (white symbols corresponding to larger heights). The variation of the vertical diffusion coefficient \(D_z \) with height, measured in similar conditions, is shown on Fig. 4D.

The prediction of the classical lubrication theory describing the diffusion of a sphere near a wall was compared to the measurements. The following approximated formulas were used: \(D_x(h) = D_0/F_x(h, R) \) and \(D_z(h) = D_0/F_z(h, R) \). It was assumed that all the beads have identical nominal diameter \(R \) and that all surfaces are perfectly smooth, without polymer coating, so that the viscosity is \(\nu = \nu_{\text{water}} \). \(D_0 = \frac{k_BT}{6\pi R\nu} \) is the bead diffusion coefficient far from the surface. The coefficients:

\[
F_x(h, R) = \exp[0.0032\ln^3(h/R) + 0.0193\ln^2(h/R) - 0.183\ln(h/R) + 0.327] \\
F_z(h, R) = \exp[0.0057\ln^3(h/R) + 0.0922\ln^2(h/R) - 0.527\ln(h/R) + 0.770]
\]

were obtained from fits of numerical results (24). The theoretical diffusion coefficients compare well with the experiments (solid lines in Fig. 4C and
4D), with or without hyaluronan coating. This proves the accuracy of the absolute height determination of diffusing IDC beads with a typical error of less than 5 nm. In this respect, it is also instructive to estimate the effect of finite exposure time $t_{exp}=20$ ms on measurements. The displacements due to bead diffusion at ca. 100 nm height during t_{exp}, are respectively 17 nm horizontally and 5 nm vertically, which sets the resolution of the method for diffusing beads.

Vertical force exerted on the beads

The interaction potential $V(h)$ between beads and surface was retrieved from the equilibrium distribution through $p(h) \sim \exp(-V(h)/k_BT)$. In Fig. 4E, the vertical force calculated as $F(h) = -dV/dh$ is plotted as a function of height for the two substrates coatings (symbols). The force is repulsive at short distances and reaches asymptotically the pure gravity at large heights (dashed line in Fig. 4E). Alternatively, the vertical force was calculated from Einstein’s formula $F = k_BT v_z(h)/D_z(h)$, where D_z is the vertical diffusion coefficient and v_z is the drift velocity in the vertical direction, both measured using Eq. 2. The force calculated with this method is plotted as a plain line in Fig. 4E and shows a good agreement with the values deduced from the interaction potential. This confirms the reliability of the force measurement obtained with two different methods, and the validity of the diffusion measurements.

Horizontal velocity of the beads in flow

While previous measurements were realized in the absence of flow, horizontal velocity in the direction of the flow v_x was also measured when various shear rates were applied in the chamber. The dependence of v_x with height was computed using Eq. 2 in the absence or presence of HA. Results are presented on Fig. 4F. Experimental data was fitted using the lubrication theory with the shear rate G as only adjustable parameter (solid lines in Fig. 4F). The theoretical dependence reads as $v(h) = R \times G \times F_v(h)$, where R is the bead radius and

$$F_v(h) = \exp[0.00376\ln^3(h/R) + 0.0723\ln^2(h/R) + 0.548\ln(h/R) + 0.689]$$

(3)

Values of G are consistent with values deduced from the flow imposed by the syringe and chamber size, when the shear rate G in the range $0 - 7$ s$^{-1}$. The slight discrepancy occurring for the lower heights could be explained
by the polydispersity in bead sizes, since larger beads may be lower but experience a higher flow at their center of mass.

Tuning of hyaluronan layer thickness and apparent viscosity

The incubating concentration of hyaluronan was systematically varied in the range 0 to 1 µg/mL. BSA-coated IDC beads or M450 beads coated with the isotype control antibody were allowed to sediment on the top of the polymer layer. Additionally, shear was applied with shear rate values ranging from 0 to 5 s⁻¹. In each case, the height distribution was measured with RICM and found to exhibit similar shape as in Fig. 4B. The most probable height \(h^* \) was determined as the location of the maximum of the histogram with a precision of ±5 nm for IDC beads and ±10 nm for M450. The error is higher for M450 beads due to the poorer quality of the calibration. \(h^* \) increases regularly with incubating HA concentration (Fig. 5A). Values range from around 20 to 40 nm in the absence of HA to almost 200 nm in the presence of a polymer layer formed at 1 µg/mL incubating HA. \(h^* \) shows a slight but systematic increase for increasing values of the shear rate, of the order of 10 to 30%. \(h^* \) of M450 are systematically lower than \(h^* \) for IDC.

The apparent viscosity \(\nu \) was estimated for various HA layers in the absence of flow. For this, the vertical diffusion coefficient \(D_z \) was measured as a function of height as described above. Looking at the quasilinear relation on Fig. 4D, a reasonable approximation is:

\[
D_z(h) = \frac{k_B T h}{6\pi \nu R^2}
\]

where \(\nu \) is the apparent viscosity supposing an homogeneous medium under the bead and \(R \) is the nominal bead radius. As shown before, the relative viscosity measured with IDC beads does not differ from that of water even in the presence of polymers: \(\nu/\nu_{\text{water}} \sim 1 \). However, the relative viscosity, when measured with M450 beads, exhibits values significantly larger than 1 when \([\text{HA}] \geq 0.2 \ \mu\text{g/mL}\), as shown in Fig. 5B.

In the presence of an applied flow and for various HA layer thicknesses, the distributions of velocities in the direction of the flow were measured. They exhibited a maximum for non-vanishing velocity, as previously observed (36). This most probable velocity \(\nu^* \) is plotted as a function of the most probable height \(h^* \) for various incubating concentrations of HA (Fig. 5C). The results were compared with the prediction of the lubrication theory relating the velocity and the bead height. Solid line in Fig. 5C is obtained from the theory using a shear rate of \(G = 20 \ \text{s}^{-1} \). To estimate the uncertainty, theoretical curves for \(G = 18 \ \text{s}^{-1} \) and \(G = 22 \ \text{s}^{-1} \) are represented with dashed lines. All theoretical values of G are noticeably smaller than
the one predicted from the chamber size and shear rate at 28 s\(^{-1}\).

The role of the HA molecules in repulsion was directly tested by digesting the polymer chains with the specific enzyme hyaluronidase (HAase). After 10 min of incubation of HAase at an activity of 10 U on a thick HA layer (obtained as described before, with 1 \(\mu\)g/mL HA incubated for 30 min), beads initially at around 200 nm height fall to \(\sim\) 20 nm. The height distribution after of HAase treatment is similar to the one obtained in absence of incubated HA.

Single bond formation through the hyaluronan layer

The adhesion of functionalized M450 beads to the underlying substrate coated with Fc-ICAM-1 was studied for various HA coverages. Positive adhesion assay was performed using M450 coated with anti-ICAM-1. Negative assay was performed on the same substrate with beads coated with a control isotype. Specific adhesion frequency was defined as positive minus negative frequencies (36). First the conditions for single bond formation and rupture were determined as follows. Successive dilutions of Fc-ICAM-1 on the substrate lead to a regime, at an incubation concentration \([\text{Fc-ICAM-1}] \leq 0.01 \mu\)g/mL, where specific adhesion frequency varied proportionally with the Fc-ICAM-1 density. In this regime, the detachment curves showed no variation with further Fc-ICAM-1 dilution, indicating that the nature of the bond rupture remained identical.

Positive and negative adhesion frequencies were measured for various HA coatings and a shear rate of \(G = 28\) s\(^{-1}\). Both were found to decrease by almost two orders of magnitude when the incubating HA concentration was raised from 0 to 1 \(\mu\)g/mL (Fig. 6A). The number of arrest events considered ranged from a few hundreds at low HA concentration to a few tens at high HA concentration. The ratio of positive to negative adhesion frequencies varied typically between two and four. Error bars \(\delta F_A^{pos}\) and \(\delta F_A^{neg}\) are standard deviations of values obtained on at least three different samples for each condition.

Detachment curves for different HA coverages are shown in Fig. 6B. Each curve was built with several hundreds of rupture events. The rupture process appears to be roughly biphasic, with a change of rate of detachment at around 1 s. The variations in bound fraction in the first five seconds of binding differed by less than 10% between the various conditions: \([\text{HA}] = 0, 0.02, 0.1 \mu\)g/mL, indicating that the nature of the bond rupture was not noticeably affected by the presence of the HA layer.

The specific adhesion frequency of functionalized M450 at [Fc-ICAM-1]
≤ 0.01 μg/mL and $G = 28 \text{ s}^{-1}$ is plotted as a function of the beads most probable height for various HA coverages (Fig. 6C). Most probable heights have been measured as described previously. Error bars on specific adhesion frequencies are calculated as $\delta F A_{spe} = \sqrt{\delta F A_{pos}^2 + \delta F A_{neg}^2}$.

Adhesion was also measured in static conditions by counting the proportion of beads, initially at rest for 10 s, which were not detached by a flow of $G = 28 \text{ s}^{-1}$. Both positive and negative adhesion were found to decrease by one order of magnitude when the incubating HA concentration was raised from 0 to 1 μg/mL (Fig. 6D). Each data point was calculated by counting ca. 500 beads.

Simultaneous measurement of instantaneous height and velocity

The classical criterion used in flow chamber to define a binding event is that the velocity is less than a given threshold, fixed here at $v_s=2.2 \text{ μm/s}$. In order to compare the events detected with this method with the proximity between the two reacting surfaces, an alternative criterion based on height was defined. Thus, events of close-contact occurred when a bead approached the surface at a height $h \leq h_s$ and remained at $h \leq h_s + \delta h_s$. δh_s accounts for height fluctuations of a bound bead. In order to correct for bead to bead variations in absolute height, the zero height reference for a given bead was taken as the average height during the arrests defined by the velocity criterion.

In Fig. 7A and 7B are shown the representative trajectories for height and velocity of two M450 beads, functionalized with anti-ICAM-1, hovering above the substrate coated at [Fc-ICAM-1]=0.01 μg/mL and [HA]=0.05 μg/mL. The shear rate was fixed at $G = 7 \text{ s}^{-1}$. In Fig. 7A, the velocity exhibit two periods where $v \leq 2.2 \text{ μm/s}$ (dashed line), corresponding to two arrests. The criterion of binding with height, with $h_s = 10 \text{ nm}$ and $\delta h_s = 15 \text{ nm}$, identified two close-contact events which are superimposed to the velocity arrests. In Fig. 7B, one arrest was detected with the velocity, while four close-contact were detected with the height. This illustrates the additional information gained by the measurement of height, as dicussed later.

The two criteria were used to define the distribution of arrest and close-contact durations in a population of 100 beads in the conditions defined above for the beads of Fig. 7A and 7B. The close-contact events defined using the height are roughly two times more numerous than the classicaly counted arrest events and their durations distribute roughly in an exponential
manner (Fig. 7C). In order to assess for the role of the arbitrary threshold h_s used to define the height threshold, it was varied between 5 and 25 nm. Only the distribution of close-contact events found with $h \leq h_s = 5$ nm show a significant reduction of the number of events detected, while all distributions for the other thresholds were similar, indicating no strong influence of $h \leq h_s$ beyond 10 nm.

Discussion

Validation of the RICM-flow chamber and alternatives

We discuss here the challenges which led us to choose the proposed techniques. Firstly, the study of single bond formation and rupture should rely on the statistics of a large number of events which is tedious to retrieve with single probe techniques like biomembrane force probe BFP (19), AFM or optical tweezers. The flow chamber offers a faster approach based on the parallel observation of multiple events on a wide microscopic field. In the problem of bond formation, the distance separating the reactive surfaces is of crucial importance (23, 37). The measurement of this distance has a poor resolution with BFP (38) and is only indirect with AFM, based on the location of the hard wall repulsion of the surface. For optical tweezers, it is often based on back focal plane interferometry, which gives only the distance of the bead relative to the focal plane and not to the surface (39). Colloidal probes are the most sensitive force sensors which rely on equilibrium height distributions to evaluate the interaction potential (25). Recent reports confirm the excellent resolution of the technique (40, 41) to measure forces in the range of a few tens of fN. To measure the bead-substrate distance, the main tool is total internal reflection microscopy, based on the scattering of the evanescent wave by the colloid (TIRM, (25)). This technique reliably measures the relative distance from the scattered intensity. The usual method to determine absolute height is either to induce colloid binding at the end of the observation (42), or to rely on the dependence of the vertical diffusion coefficient with height, based on lubrication theory (25, 34). Moreover, in the latter case, the bead radius should be measured independently. None of these methods are appropriate in the present situation, since transient interactions in an environment of unknown hydrodynamic properties are to be probed.

Alternatively, the bead-substrate distance can be measured with RICM (14, 15, 43, 44). While the technique is not new, the challenge of measuring absolute distances efficiently remains. The conventional method relies on
calculating the interference pattern from the laws of refraction (26, 44). However some discrepancies between experimental and theoretical radial intensity profiles have been identified, specially for distances shorter than 20 nm or small bead diameters (26, 31).

For these reasons, we set out to measure the bead-substrate distance directly by calibrating it in the range $0 - 200$ nm, using the controlled movement of a bead stuck to an AFM cantilever. The calibration was performed for two types of beads in absence of antibody and polymer coating. Our main assumption that the calibration is also valid in the presence of the artificial glycocalyx is reasonable since antibody and hyaluronan layer are diluted and their refractive index is very close to that of the solvent (18). The proof of principle was realized on $10 \mu m$ diameter latex beads (IDC, sulfate modified, smooth interface) by comparing systematically the bead movement with the predictions of the lubrication theory, in the range of distance to radius ratio $h/R \ll 1$. This was recently done similarly using TIRM measurements of diffusion parallel and orthogonal to the substrate (45). In addition, we measured, to our knowledge for the first time, the dependence of bead velocity in a flow to the instantaneous height in the range $h/R \ll 1$. Our measurements agree satisfactorily to the theory that leads to Eq. 3. This confirms experimentally the relation exploited to deduce height from velocity in flow chamber measurements (24). The second type of beads (Dynal, M450) was more adapted to adhesion experiments: the smaller size ($4.5 \mu m$ diameter) allows higher throughput and the prefunctionalization and passivation steps were realized by the supplier. However, the beads, as seen in RICM, exhibit dark and bright patches deteriorating the fringe pattern and reducing slightly the precision of the measurement. The origin of these patches, maybe surface irregularities of the bead, poses then further problems in defining the bead-surface distance. For this reason, we could not perform precise verification of diffusion and convection laws with these beads. However, we could still estimate reliably the thickness of the polymer, if its size exceeds the small topographical irregularities of the bead surface. One current limit of the technique is that the finite exposure time $t_{\text{exp}}=20$ ms limits the accuracy of measurements in flow: during the recording of one frame, the displacement of a bead moving at $10 \mu m/s$ (for $G = 7 \text{ s}^{-1}$) is $0.2 \mu m$ along the flow. Therefore, the contrast of high order fringes was damped in the direction x of the flow. This affects the determination of the center position along x, but not along y direction, as checked by calculating the diffusion coefficient D_y, which is not changed by the flow. However, because the contrast damping is symmetrical in the x direction, the position of the extrema was not significantly affected for low order fringes and at low shear.
rates (for $G = 10 \text{s}^{-1}$). At higher shear rate, the precise height determination will require shorter exposure time and higher frame rate, as recently achieved in experiments that track one single tethered bead (31).

Structural and physical properties of the hyaluronan layer

The thickness of the hyaluronan layers was estimated as the most probable height h^* of the beads heights distribution. This height corresponds to the conditions of vanishing force exerted on the bead, i.e., a balance between bead weight and the electrosteric repulsion exerted by the polymer layer. Beads of both type have an effective weight $F_g \simeq 0.235 \text{pN}$ in water.

Hyaluronan molecules of molecular weight $M_w = 700000 \text{Da}$ ($N = 1700$ monomers of size $a = 1 \text{nm}$) have a persistence length $l_p = 4.2 \text{nm}$ and a radius of gyration $R_g = 100 \text{nm}$ (46). Assuming that all the incubating chains did bind, the average distance between the centers of adsorbed chains varies between $\xi = 55 \text{nm}$ (for an incubation at [HA] = $1 \mu\text{g/mL}$) and $\xi = 400 \text{nm}$ (for [HA] = $0.02 \mu\text{g/mL}$). One goes therefore from a configuration of isolated adsorbed chains at low HA concentration, to a sparse brush configuration at high HA concentration. The repulsive force exerted by one single chain of radius of gyration R_g at distance d is $F_{\text{chain}}(d) = 36\sqrt{3}(k_B T/R_g) \exp(-\sqrt{3}d/R_g)$ (47). This force balances the bead weight F_g at a distance $d = 140 \text{nm}$ which agrees well with the layer thickness measured at [HA] = $0.2 \mu\text{g/mL}$ (corresponding to an interchain distance $\xi = 120 \text{nm}$, at the limit between disperse and brush regime).

Some observations support the idea that the HA layer presents a certain lateral inhomogeneity at the length scale of the contact between the bead and the polymers (typically $1 \mu\text{m}^2$): (i) the most probable height h^* increases with shear rate; (ii) h^* found for M450 beads are around 10% smaller than with IDC beads; (iii) adhesion is reduced in dynamic conditions. This can be explained by the polydispersity of HA chains and by the sparse covering at low concentration. Since a single chain can repel the bead at 140 nm, a few dispersed long dangling chains can keep a bead convected by the flow far from the surface. Conversely, smaller beads can find some local depressions in the layer which are not accessible to large beads.

The apparent viscosity of the layer was estimated by fitting the dependence of the measured vertical diffusion coefficient as a function of the height. For IDC beads, which height is measured at $\pm 5 \text{nm}$, the values obtained for the viscosity are non distinguishable from the one of the solvent, at any concentration of HA. Additionally, the dependence of the velocity along the flow as a function of height follows the theoretical prediction. This is consistent
with the hypothesis that the hydrodynamics is not significantly modified by the HA layer, due to the very low density of polymer. Alternatively, it can be argued the bead is too light to actually probe the viscosity of the polymer layer. Previous measurements realized with latex beads of 20 μm diameter on comparable substrates, gave viscosities of the order of three to four times that of the solvent (14). More recently, relative viscosities of the order of one were measured with a dissipation quartz microbalance on brush-like HA layers (16). Interestingly, using the M450 beads, an apparent viscosity slightly higher than water at [HA] ≥ 0.2 μg/mL is measured. This raises questions about the significance of the present measurement and interpretation in the case of a laterally inhomogeneous, sparse polymer layer. Expressed in terms of permeability of the hyaluronan layer, our observations are in line with the recent report that the penetration of hyaluronan layer by large solutes is controlled by the grafting density (16). Additionally, the measured velocity along the flow is smaller than the theoretical prediction (Fig. 5C). A different picture would arise if one considers the possibility of a shift of the no-slip boundary condition for the fluid to the edge of the layer, as observed for a dense brush of short polymers (48).

Mechanisms of single bond formation

Among its multiple putative roles, the glycocalyx acts first as a repulsive barrier. We showed that both specific and unspecific attachments were strongly reduced by a layer of adsorbed long HA chains. As detailed in the Results part, two observations strongly support the fact that adhesion events correspond to single bond formation: the dilution of Fc-ICAM on the substrate leading to a) a proportional decrease of the adhesion frequency and b) no measurable variation of the detachment curve (22, 36). However, as in any ligand-receptor measurement technique, there is no absolute proof to test single bonds (49). The specific adhesion frequency falls by one order of magnitude when the layer exceeds 80 nm. Remarkably, the total length of the bound molecules represents four times the length of an IgG, or approximately 80 nm. The simultaneous fall of unspecific arrests and the above considerations about the lateral heterogeneity of the layer leads to consider the possibility that part of the adhesion events occur in thinner parts of the polymer cushion. However, microscopic observation of fluorescently labelled HA cushion did not reveal visible holes in the polymer layer.

The lifetime of bonds formed under different HA coating conditions were measured and reported in distributions of Fig. 6B. The biphasic rupture process was not affected by the layer thickness in the range of low HA con-
centrations. Detachment curves obtained for higher HA concentrations are based on poorer statistics but do not exhibit any significant change compared to the no-cushion case (data not shown). This leads to the simple hypothesis that the HA layer acts to reduce the number of encounter events between the reactive partners, but the nature of the bond formed remained unchanged. An additional effect of the polymer layer could be to reduce the duration of each encounter. We performed parallel studies by varying systematically the shear rate, which is known to affect binding efficiency of cells (50). Our preliminary results indicate that the reduction of the duration of contact between molecules strongly reduces the probability of bond formation, and not in a linear manner as classically predicted (unpublished results). In this process, the rupture kinetics was unaffected.

To distinguish between the relative effects of frequency and duration of encounter on the bond formation, one option is to perform numerical simulations. Within the framework of (24), the addition of the interaction potential induced by the polymer layer and measured here should provide insights into these mechanisms. Based on the present data and using the proposed technique for further studies, the long-standing question of the role of the distance between the reactive surfaces can be now addressed quantitatively, as in recent numerical studies (51, 52). As an example, we show that numerous events of close bead-substrate contact do not give rise to any detectable arrest (Fig 7C). This work represents a first step towards the measurement of the binding probability as a function of distance between the molecules and duration of encounter.

It is interesting to compare the variations of adhesion frequencies measured in dynamic conditions (Fig. 6A) and the proportion of bead attached in static conditions (Fig. 6D). While adhesion of the negative assay exhibits a comparable decrease as a function of hyaluronan incubating concentration, the adhesion of the positive assay decreases faster in dynamic conditions. Half of the maximal adhesion level is reached for [HA] = 0.3 µg/mL in static case while this is reached at [HA] = 0.02 µg/mL in dynamic case. This emphasizes the relevance of operating adhesion measurements in dynamic conditions, as previously observed with cells (9, 10) and raises interesting possibilities to explain these differences on a model system. For example, this is consistent with the observation that the most probable height increases systematically with shear rate.
Physiological relevance of the present model

The glycocalyx has a repulsive effect on the endothelial surface, where it acts as an anti-adhesive layer (53). Recent experiments have shown that endothelial glycocalyx controls leucocyte adhesion to endothelial surface (54). Inflammation induces shedding of the glycocalyx, resulting in loss of its thickness and increasing leucocyte adhesion and therefore increased leucocyte recruitment to inflamed tissues. Also, alterations of the glycocalyx in pathological circumstances could induce exagerated leucocyte recruitment and contribute to anomalous inflammation, as seen in the initial stages of atherosclerosis (55). Understanding quantitative influence of glycocalyx on adhesion is therefore necessary to describe accurately leucocyte-endothelial interactions in physiological and pathological situations.

T lymphocyte glycocalyx is composed of several molecules including CD43, CD45 and CD148, and is much less dense than endothelial glycocalyx. Numerous T cell receptors are interacting with MHC-peptide complex and the half-life of these interactions is thought to be determinant in T lymphocyte activation (56, 57). Several reports indicate that the size of the TCR molecule, MHC-peptide complex related to the size of large surface molecules around TCR have a direct impact on T lymphocyte activation (58, 59). An exciting hypothesis is that large extracellular domains containing molecules such as CD45 and CD148 could be expelled due to size from the vicinity of TCR (8), as TCR bind to MHC-peptide complex and the surfaces of a T lymphocyte and an antigen presenting cell approach each other. As CD45 and CD148 have intracellular phosphatase domains, balance between kinases and phosphatases would be displaced toward kinase activity around bound TCR. We demonstrated with the present model that a sparse glycocalyx, as seen on T lymphocyte surface, has no influence on the half-life of the antigen-antibody reaction, but has a strong effect on the frequency of antigen-antibody association. The antibody-antigen interaction frequency is strongly dependent on the distance between the functionalized surfaces and the ability to bind the ligand is dependent on the number of glycocalyx molecules, even at low surfaces densities. Therefore, the exploration of the modulation of adhesion by low-density glycocalyx model participates to the understanding of the role of large surface molecules in lymphocyte activation.
Conclusion and outlook

In this work, we have presented a new technique combining RICM and laminar flow chamber to study the effect of a repulsive polymer layer mimicking the glycocalyx on the formation of antigen-antibody bonds. We have found that low densities of hyaluronan can regulate the formation of bonds by reducing the number of encounter between the reaction partners. This sets the basis for further exploration of the effect of molecular environment on the bond formation of surface-attached biomolecules, through the regulation of distance and duration of reactive encounters. A promising development is the use of supported lipid bilayer to assess the role of diffusion of the glycocalyx molecules, for example in the context of T-cell activation.

Acknowledgements

We thank Rudolf Merkel for access to AFM for pilot measurements, Guillaume Léa for the implementation of the acquisition software and ANR for financial support through grant JCJC06-0135.

References

Figure Legends

Figure 1
Principle of coupled laminar flow chamber and Reflection Interference Contrast Microscopy (RICM) in presence of adhesion molecules and an artificial glycocalyx. (A) RICM is performed on micrometer-sized beads in shear flow. (B) Beads are coated with a double-layer of antibodies recognizing Fc-ICAM-1 attached to the substrate through a first layer of antibody. Adsorbed hyaluronan mimics the glycocalyx.

Figure 2
RICM fringes obtained with two types of microbeads. (A,C) Raw RIC micrographs of interference fringes from microspheres taken in typical conditions: latex IDC 9.6 µm diameter (A), M450 4.5 µm diameter (C). (B,D) Corresponding intensity radial profile taken from the center of symmetry of the rings, averaged on angles. Bead-substrate distance is retrieved from the position of the fringes extrema.

Figure 3
Principle of bead-substrate distance calibration with Atomic Force Microscopy (AFM). (A) A bead attached to the tip of a cantilever is moved vertically while recording simultaneously cantilever deflection and fringes in RICM. (B) Typical force curve showing the cantilever deflection during push (black) and retract (grey) movement of the substrate towards the bead. (C) Rectified force curve after calibration of deflection and determination of zero bead-substrate distance. (D) Bead substrate distance obtained from (C) plotted as a function of fringes radii measured from RICM sequence. Curves are fitted according to Eq. 1 yielding for each extremum and each bead radius an effective bead radius \(R_{\text{eff},i} \) and a fringe order \(l_i \). (E) Plot of \(R_{\text{eff},i} \) vs \(l_i \) obtained with 8 different beads: five IDC of various diameter (black symbols) and three M450 of identical diameter (grey symbols). Error bars are SD obtained from repeated force curves measured on beads of identical diameter.

Figure 4
Diffusion and interaction with the surface for BSA–coated 9.6 µm latex beads in absence or presence of a repulsive HA layer. (A) Typical field
of view in RICM and flow conditions showing the field diaphragm and the fringes of four IDC beads. (B) Beads height distribution on substrates coated with PLL + antibody (white bars) or PLL + HA (grey bars). (C) Horizontal diffusion coefficients D_x and D_y as a function of height: without HA (D_x-plain circles, D_y-plain squares), with HA (D_x-hollow circles, D_y-hollow squares). Height distributions identical to (B) are also shown. The line is the prediction of lubrication theory, in absence of polymers. (D) Vertical diffusion coefficient D_z as a function of height: without HA (plain circles) or with HA (hollow triangles). The line is the prediction of lubrication theory, in absence of polymer. (E) Force exerted beads as a function of height without HA (plain triangles) or with HA (hollow triangles), and deduced from equilibrium distribution (B). The line is the force calculated from the vertical diffusion coefficient and vertical drift velocity and using Einstein’s relation. The dashed line represents the gravity force only. (F) Velocities along the flow as a function of height without HA (plain symbols) or with HA (hollow symbols). The line is the prediction of lubrication theory, in absence of polymers and for values of the shear rate indicated in the boxes.

Figure 5

Tuning of hyaluronan layer properties by varying the concentration of incubation. (A) The most probable height of 9.6 µm (white square) or 4.5 µm (black disks) beads as a function of the incubating concentration of HA. Error bars are standard deviations of measurements obtained on various samples with various shear rates. (B) Relative viscosity extracted from the slope of $D_z(h)$ as a function of the incubating concentration of HA. (C) Most probable velocity of M450 beads as a function of their most probable height, when the incubating concentration of HA is varied. The solid line is the prediction of the lubrication theory in the absence of polymers and for a shear rate of 20 s$^{-1}$. Dashed lines are theoretical curves obtained for shear rates of 18 or 22 s$^{-1}$.

Figure 6

Adhesion through hyaluronan layers of variable thickness. (A) Frequency of adhesion (number of arrests per second) of 4.5 µm beads functionalized with Anti-ICAM-1 (black circle, positive) or an isotype control antibody (white circle, negative) to a surface coated with Fc-ICAM-1 and hyaluronan layer formed at variable concentration of incubation. Shear rate $G = 28$ s$^{-1}$. Error bars are standard deviations of values measured on at least three
samples in identical conditions. (B) Detachment curve showing the fraction of arrested beads functionalized with Fc-ICAM-1 which are still arrested after the time in abscissa. Incubating concentrations of HA are 0 (crosses), 0.02 (circles) and 0.1 µg/mL (triangles). (C) Specific adhesion frequency of M450 beads (defined as positive minus negative adhesion frequency) as a function of the most probable height, for variable hyaluronan coatings. (D) Proportion of 4.5 µm beads, initially immobile during 10 s, which are non detached by a flow of 28 s⁻¹ (same symbols as in (A)). Error bars are SEM.

Figure 7

Simultaneous measurement of velocity and height trajectories and criterion for binding. (A,B) Two typical trajectories of an anti-ICAM-1 coated 4.5 µm bead hovering above a ICAM-coated surface and a hyaluronan layer and showing binding events. The velocity as function of time (circles, left axis) was calculated on four successive frames. The dashed line shows the velocity cutoff used to determine arrest events. The time dependent height is represented on the right axis (plain line). The gray zone indicates the heights below which the bead is considered in close contact. The arrowheads represent the start and end of events determined with the height criterion. (C) Histograms of the durations of events as determined with the velocity criterion (grey bars) or with the height criterion (plain lines) for height threshold values: 5, 10, 15, 20 and 25 nm (from black to light grey).
Fig. 2
Fig. 3
Fig. 5
Fig. 6
Fig. 7