Long-term trends of foE and geomagnetic activity variations
A. V. Mikhailov, B. A. De La Morena

To cite this version:

HAL Id: hal-00317022
https://hal.archives-ouvertes.fr/hal-00317022
Submitted on 1 Jan 2003

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Long-term trends of f_0E and geomagnetic activity variations

A. V. Mikhailov1 and B. A. de la Morena2

1Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Troitsk, Moscow Region 142190, Russia
2National Institute of Aerospace Technology, Atmospheric Sounding Station El Arenosillo, 21130 Mazagon-Moguer (Huelva), Spain

Received: 12 December 2001 – Revised: 19 July 2002 – Accepted: 20 August 2002

Abstract. A relationship between f_0E trends and geomagnetic activity long-term variations has been revealed for the first time. By analogy with earlier obtained results on the f_0F_2 trends it is possible to speak about the geomagnetic control of the f_0E long-term trends as well. Periods of increasing geomagnetic activity correspond to negative f_0E trends, while these trends are positive for the decreasing phase of geomagnetic activity. This “natural” relationship breaks down around 1970 (on some stations later) when pronounced positive f_0E trends have appeared on most of the stations considered. The dependence of f_0E trends on geomagnetic activity can be related with nitric oxide variations at the E-layer heights. The positive f_0E trends that appeared after the “break down” effect may also be explained by the [NO] decrease which is not related to geomagnetic activity variations. But negative trends or irregular f_0E variations on some stations for the same time period require some different mechanism. Chemical pollution of the lower thermosphere due to the anthropogenic activity may be responsible for such abnormal f_0E behavior after the end of the 1960s.

Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric disturbances)

1 Introduction

Ionospheric parameter long-term trends have been widely discussed during the last decade. This interest is due to possible anthropogenic impact on the Earth’s atmosphere, and the ionospheric trends may serve as an indicator of such changes in the upper atmosphere. The interest was greatly stimulated by model calculations by Roble and Dickinson (1989), Rishbeth (1990) and Rishbeth and Roble (1992), who predicted changes in the neutral atmosphere and related ionospheric effects under the increase in the atmosphere greenhouse gas concentrations. Since then, researchers have been trying to reveal and confirm the predicted ionospheric effects related to the thermosphere cooling (Bremer, 1992, 1998, 2001; Givishvili and Leshchenko, 1994; Ulich and Turunen, 1997; Jarvis et al., 1998; Upadhyay and Mahajan, 1998; Sharma et al., 1999). But the greenhouse hypothesis encounters serious problems at least with the F2-region parameter long-term trends (Mikhailov and Marin, 2000, 2001; Mikhailov et al., 2002; Mikhailov, 2002).

The main efforts have been directed towards the F2-region parameter long-term trends analysis, since these observations are the most abundant and consistent, while trends in the E-region were considered only by some researchers (Givishvili and Leshchenko, 1993, 1995, 1996, 1998; Bremer, 1998, 2001; Sharma et al., 1999). The result of these analyses is that positive f_0E trends are the most probable and are presumably due to a decrease in the neutral NO concentration at the E-region heights (Danilov and Smirnova, 1997; Bremer, 1998; Danilov, 2001). The “NO mechanism” is strongly supported by [NO$^+$/O$^+_2$] rocket mass-spectrometer observations analyzed by Danilov (1997), Danilov and Smirnova (1997). Since the late 1950s, this ratio demonstrates a pronounced decrease which can be related only to a [NO] decrease at the E-region heights.

The nitric oxide concentration in the E-region is known to be strongly dependent on the geomagnetic activity level (e.g. Titheridge, 1997; Solomon and Barth, 1999; Ridley et al., 1999). Therefore, in the framework of the NO mechanism, in principle, one may expect f_0E trends of different signs for the periods of rising and falling geomagnetic activity, and this would be a good test for the proposed explanation. Besides this mechanism of natural origin, an anthropogenic impact on the neutral atmosphere cannot be excluded as well. Among such artificial factors are the earlier mentioned greenhouse effect and the atmosphere pollution due to the increasing rate of rocket and satellite launchings (Kozlov and Smirnova, 1999; Adushkin et al., 2000). Unfortunately, earlier proposed methods for the E-region trend analysis cannot be used for such investigations, and a new, more accurate approach should be developed to reveal and separate natural and anthropogenic (if it exists) parts in the
foE long-term variations.

The aim of the paper is to develop a method which would be able to remove solar and geomagnetic activity effects from the observed foE long-term variations, to analyze the dependence of foE trends on the phase of geomagnetic activity and to check for any unnatural effects present in the foE trends revealed.

2 Method description

A general method for the F2-layer trends analysis was described by Mikhailov et al. (2002), which, with some modifications, is used in the present study. As earlier we proceed from an assumption that natural foE long-term variations are due to solar and long-term geomagnetic activity variations which may be presented by R_{12} and 11-year running mean A_p indices. The method includes the following steps:

1. Observed mid-latitude monthly median foE values for 10:00, 11:00, 12:00, 13:00, 14:00 LT are reduced to a 12:00 LT moment, to give average noon foE values. The dependence foE $\propto (\cos \chi_0)^p$, where χ_0 - solar zenith angle and $p = 0.6$ (Muggleton, 1972), is used for this reduction. The use of an average over 5 values increases the reliability of the analyzed noon foE values.

2. A regression of this noon foE with R_{12}

$$foE_{reg} = a_0 + a_1 R_{12}^p$$ \hspace{1cm} (1)

is used to define monthly relative deviations

$$\delta foE = (foE_{obs} - foE_{reg}) / foE_{obs}.$$ \hspace{1cm} (2)

We, as initially it was proposed by Danilov and Mikhailov (1998, 1999), we analyze relative rather than absolute δfoE deviations normally considered in the ionospheric trend analyses by most of the authors. As far as we know, relative deviations were considered only by Deminov et al. (2000), to analyze foF2 trends. Relative deviations allows us to combine different months and obtain annual mean δfoE which are used in the analysis, with the final method being based on the 11-year running mean δfoE values. A simple arithmetic running mean smoothing with an 11-year gate is applied everywhere.

The optimal 12 different values of α (for each month of the year) are specified to provide the least standard deviation (SD) after a regression (see later) of 11-year smoothed δfoE values with A_{p132} (11-year running mean A_p indices). The 11-year δfoE smoothing requires all 12 values of α to be available simultaneously at each step of the SD minimization. This implies an application of special multi-regressional methods (Press et al., 1992) to solve the problem considered.

The expression (1) is of a general type and depending on α, it can describe both the linear and nonlinear relationship of foE with R_{12}. The regression coefficients a_i are specified by the least-squares method for each month and a given α value. It should be stressed that the expression (1) does not provide the best approximation of the observed foE versus R_{12} dependence (other dependences may give less sum of residuals), but it should be considered in terms of the following δfoE_{132} regression with A_{p132} to find the minimal SD (see later). Therefore, the regression (1) is not a ”model” in the usual sense of this word, as it is accepted in other approaches. This regression is used to remove the solar activity part from the observed foE variations, since a ”pure” foE dependence on solar activity (presented by the R_{12} index) a priori is not known for each month. The application of this general approach has shown that all 12 values of α turned out to be close to unity, and this strongly simplifies the calculation. It should be noted that monthly α vary in a wide range in the case of the foF2 trends analysis (Mikhailov et al., 2002). The reason for α to be close to unity is considered in the Discussion.

3. One-hour gaps in foE within the 10:00–14:00 LT interval are filled by spline interpolation, but large gaps in observations are not filled. If the number of months with available foE values for a given year is less than 6, then the year is marked as ”zero”. During the 11-year δfoE smoothing, the arithmetic mean is calculated over the non-zero years only. Due to this smoothing, even one-year gaps do not introduce any visible deviation in the δfoE_{132} variation. But large gaps result in noticeable perturbations in the δfoE_{132} variations and an additional analysis is needed for each station to select the period for analysis. Therefore, only clear enough periods were left for further analysis on each station.

4. The geomagnetic activity effect is removed from the 11-year running mean δfoE variation using a regression with A_{p132}

$$\delta foE_{132} = b_0 + b_1 A_{p132}^\beta (t + n),$$ \hspace{1cm} (3)

where δfoE_{132} and A_{p132} are 11-year running mean values, β is a fitting parameter, $n = 0 \div -5$ is a time shift in years of A_{p132} with respect to δfoE_{132} variations, both parameters being specified to give the least SD for the residuals after Eq. (3). The regression coefficients b_i are found by the least squares-method.

5. Our previous analysis (Mikhailov et al., 2002) has shown that the best results (the least SD) can be obtained if an additional smoothing is applied to δfoE_{132} and A_{p132} variations. Such smoothing is made by a 5-order polynomial approximation of these parameter variations.

6. The residual linear trend with the slope K_r (in 10^{-4} per year) may be estimated over the residuals after the regression (3).
Fig. 1. Long-term variations of geomagnetic activity (top panel) and corresponding $\delta f_0 E_{132}$ changes for the stations with different types of $\delta f_0 E_{132}$ variations after the end of the 1960s. Note the unsystematic $\delta f_0 E_{132}$ variations after the end of the 1960s (middle panel). Dashed line in the top panel is a linear, very long-term trend with the slope $K = 0.02$ per year in geomagnetic activity obtained over the observed $A_{p_{132}}$ variations.

7. The test of significance for the linear trend parameter K, (the slope) is made with Fisher’s F criterion (Pollard, 1977)

$$F = \frac{r^2(N - 2)}{1 - r^2},$$

where r is the correlation coefficient and N is the number of pairs considered. Keeping in mind that we work with smoothed variations, we put the number of degrees of freedom ($N - 2$) = 4 (the 5th order polynomial is defined by 6 coefficients).

3 Dependence on geomagnetic activity

Figure 1 demonstrates $\delta f_0 E_{132}$ and $A_{p_{132}}$ long-term variations. Four stations with available periods of observations (in brackets): Slough (1931–2000), Tomsk (1945–1997), St. Petersburg (1946–1999), and Juliusruh (1957–1999) were used in these calculations (Fig. 1, middle panel). The 11-year smoothing applied to $\delta f_0 E$ reduces the available periods by 10 years as shown in Fig. 1. Negative $f_0 E$ trends are seen to take place before 1953–1955 for the period of increasing ge-
Table 1. The sign of the δfoE_{132} versus Ap_{132} dependence (“+” – direct, “-” – inverse) and years during which it persists. Symbol “0” means the absence of any pronounced dependence

<table>
<thead>
<tr>
<th>Station</th>
<th>Coordinates Lat</th>
<th>Lon</th>
<th>Period and sign of dependence</th>
<th>Station</th>
<th>Coordinates Lat</th>
<th>Lon</th>
<th>Period and sign of dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomsk</td>
<td>56.5</td>
<td>84.9</td>
<td>+ 1971-1983</td>
<td>Uppsala</td>
<td>59.8</td>
<td>17.6</td>
<td>+ 1970-1979</td>
</tr>
<tr>
<td>Rome</td>
<td>41.9</td>
<td>12.5</td>
<td>+ 1972-1987</td>
<td>Karaganda</td>
<td>49.8</td>
<td>73.1</td>
<td>+ 1970-1977</td>
</tr>
<tr>
<td>Tashkent</td>
<td>41.3</td>
<td>69.6</td>
<td>+ 1969-1979</td>
<td>Slough</td>
<td>51.5</td>
<td>359.4</td>
<td>+ 1955-1974</td>
</tr>
<tr>
<td>Ekaterinburg</td>
<td>56.7</td>
<td>61.1</td>
<td>+ 1972-1984</td>
<td>Moscow</td>
<td>55.5</td>
<td>37.3</td>
<td>+ 1954-1977</td>
</tr>
<tr>
<td>Poitres</td>
<td>46.6</td>
<td>0.3</td>
<td>+ since 1970</td>
<td>Kiev</td>
<td>50.7</td>
<td>30.3</td>
<td>0 1969-1977</td>
</tr>
<tr>
<td>Alma-Ata</td>
<td>43.2</td>
<td>76.9</td>
<td>+ since 1964</td>
<td>Boulder</td>
<td>40.0</td>
<td>254.7</td>
<td>0 since 1968</td>
</tr>
<tr>
<td>Tbilisi</td>
<td>41.7</td>
<td>44.8</td>
<td>+ since 1971</td>
<td>Gorky</td>
<td>56.1</td>
<td>44.3</td>
<td>- 1970-1981</td>
</tr>
<tr>
<td>Khabarovsk</td>
<td>48.5</td>
<td>135.1</td>
<td>+ since 1969</td>
<td>Novokazalinsk</td>
<td>45.8</td>
<td>62.1</td>
<td>- 1969-1984</td>
</tr>
<tr>
<td>St.Petersburg</td>
<td>59.9</td>
<td>30.7</td>
<td>+ since 1953</td>
<td>Lannion</td>
<td>48.5</td>
<td>356.7</td>
<td>- 1976-1981</td>
</tr>
<tr>
<td>Yakutsk</td>
<td>62.0</td>
<td>129.6</td>
<td>+ 1971-1983</td>
<td>Ottawa</td>
<td>45.4</td>
<td>284.1</td>
<td>- 1962-1977</td>
</tr>
<tr>
<td>Dourbes</td>
<td>50.1</td>
<td>4.6</td>
<td>+ 1964-1992</td>
<td>Irkutsk</td>
<td>52.5</td>
<td>104.0</td>
<td>- 1970-1983</td>
</tr>
<tr>
<td>Kaliningrad</td>
<td>54.7</td>
<td>20.6</td>
<td>+ 1969-1979</td>
<td>Ashkhabad</td>
<td>37.9</td>
<td>58.3</td>
<td>- 1966-1977</td>
</tr>
</tbody>
</table>

o magnetic activity (Fig. 1, top), while they are positive until 1965, in accordance with the decrease in geomagnetic activity. Close δfoE_{132} variations are seen to take place for the stations until 1965, while this coherence breaks down after the end of the 1960s. A tendency to switch to a negative foE trend is clearly seen for Tomsk and Juliusruhr after 1965, in accordance with a positive phase in the Ap_{132} variation, but something overpowers this tendency, making the trends positive. The δfoE_{132} variations are seen to be different at different stations after 1970. Therefore, the “natural” type of foE_{132} dependence on geomagnetic activity seems to break down after the end of the 1960s.

Figure 2 shows the foE_{132} versus Ap_{132} dependence in a explicit way for Tomsk, Rome, and Khabarovsky. The inverse relationship takes place between these parameters before 1970 (Rome–1972), but it switches abruptly to a direct one around 1970. The selected stations demonstrate the most pronounced cases of such a changeover in the type of dependence. The results of such analysis for 24 mid-latitude ionosonde stations are given in Table 1. Unfortunately, observations on many stations start only after 1964–65 (1969–70 after 11-year smoothing); therefore, it is only possible to check the sign of this dependence for the years available. For the long observing stations only the discussed period is considered in Table 1.

Table 1 shows that most of the stations demonstrate a direct δfoE_{132} relationship with Ap_{132} after 1968–1972, but there are stations (the end of Table 1) which exhibit the inverse type of this dependence for the same period. Variations of δfoE_{132} for these stations are given in Fig. 1 (bottom). Although foE observations are absent for earlier years on these stations, they clearly show the “natural” type of behavior, that is the inverse δfoE_{132} versus Ap_{132} dependence. Ashkhabad and Irkutsk present the best cases with positive foE trends before 1965 and negative ones afterwards, in accordance with the Ap_{132} long-term variation (Fig. 1, top). At Ashkhabad this “natural” dependence breaks down after 1976. This analysis shows that not all stations were subjected to that breakdown of the “natural” foE behavior after the end of the 1960s. The reason(s) for this is not clear now, and further analysis is needed to explain this interesting result. An important conclusion of this analysis is that foE trends similar to foF2 trends are subjected to geomagnetic control (Mikhailov and Marin, 2000; Mikhailov, 2002), that is the sign of the foE trend depends on the phase of geomagnetic activity long-term variations (Fig. 1, top).

4 Complementary and residual foE trends

The observed δfoE_{132} long-term variations show a clear dependence on geomagnetic activity at least for the period before 1970–1972, while some stations demonstrate this dependence for later years as well (Fig. 1). Therefore, we may try to remove this “natural” dependence on geomagnetic activity and analyze the residual foE trend. Figure 3 shows the δfoE_{132} versus Ap_{132} dependence for Slough and Ashkhabad, where the “natural” type of foE behavior takes place for different years. Two branches are seen in this dependence: on Slough – before and after 1955, on Ashkhabad – before 1965 and after 1967 (Fig. 3, left-hand panels). The inverse type of δfoE_{132} versus Ap_{132} dependence takes place for both branches, but the curves are shifted. It seems as if the “efficiency” of geomagnetic activity has been increasing with time as the same δfoE_{132} values correspond to lower Ap_{132} after the end of the 1950s on Slough and after 1967 on Ashkhabad. The same effect takes place at Tomsk (Fig. 2 for early ages), Moscow, and St. Petersburg, not shown in the plot. It should be stressed that Ashkhabad, which was
not subjected to the 1970–1972 “break down” effect, demonstrates the same type of $\delta f_{oE_{132}}$ versus $A_{p_{132}}$ dependence and for later years as well. (Fig. 3, left-hand bottom panel).

The ambiguity in this dependence can be removed to a great extent by adding a complementary positive linear trend K_c to the $\delta f_{oE_{132}}$ variations. This approach was used earlier for the f_{oF2} long-term trend analysis (Mikhailov et al., 2002) where the same situation takes place. By a complete analogy with the f_{oF2} trend results, the least SD (the best fitting) is obtained if the complementary trend is applied for the whole analyzed period, starting from the first year. The optimum complementary trends $K_c = +5.13 \times 10^{-4}$ per year for Slough and $K_c = +11.8 \times 10^{-4}$ per year for Ashkhabad, being added to $\delta f_{oE_{132}}$ variations squeeze the loops in the $\delta f_{oE_{132}}$ versus $A_{p_{132}}$ dependence practically to one curve (Fig. 3, right-hand panels), while the curves after 1967 for Slough and after 1975 for Ashkhabad exhibit quite different types of variation.

Figure 4 shows observed (smoothed) and calculated $\delta f_{oE_{132}}$ variations, as well as their difference for Slough and Ashkhabad. A good quality of model fitting practically results in zero residual trends on Slough ($K_r = -0.22 \times 10^{-4}$ per year for the period 1936–1967) and on Ashkhabad ($K_r = 0.04 \times 10^{-4}$ per year over 1962–1975), the trends being insignificant in both cases. This means that the “natural” $\delta f_{oE_{132}}$ dependence on geomagnetic activity can be efficiently removed and there is no residual f_{oE} trend left. On the other hand, strong positive f_{oE} trends are seen for the two stations after the years mentioned.

5 Discussion

The proposed approach to the f_{oE} trend analysis has shown a close relationship between $\delta f_{oE_{132}}$ and $A_{p_{132}}$ long-term variations. The “natural” type of this dependence is the inverse one, that is positive f_{oE} trends correspond to decreasing geomagnetic activity and vice versa. This is a new result which was not mentioned in earlier publications on the f_{oE} trends. However, it should be mentioned that Givishvili and Leshchenko (1996), using quite different methods were the first to reveal the f_{oE} trends of different signs before and after the end of the 1950s without any explanation of this effect. Due to this dependence on the phase of geomagnetic activity, one should be careful with the selection of the periods for trend analysis and not put together years belonging to different (rising/falling) periods of geomagnetic activity. Unfortunately, this is not taken into account in other publications devoted to the ionospheric trends and this (as one of the reasons) results in a chaos of various signs and magnitudes of the trends at various stations.

Our approach allows us to remove to a great extent solar and geomagnetic activity effects from f_{oE} long-term variations and to show that the residual f_{oE} trends are close to zero for the years before the “break down” effect occurs in the $\delta f_{oE_{132}}$ versus $A_{p_{132}}$ dependence (see earlier). From a physical point of view, the obtained result is interesting, telling us that practically all observed f_{oE} long-term variations may be attributed to the variations in solar and geomagnetic activity – that is they are of a natural origin. An additional (presumably of a manmade origin) effect is also clearly seen in the $\delta f_{oE_{132}}$ variations after the end of the 1960s on most of the stations and for later years on some other stations.
The obtained results are mainly due to the efficiency of the method applied and some comments are required in this relation. The first one concerns the procedure of the solar activity effect removal. According to our general approach to the trend analysis (Mikhailov et al., 2002), first, we used a general type of \(f_{0E} \) relationship with \(R_{12} \) (see Eq. 1), to remove the solar activity part from \(f_{0E} \) long-term variations. But unlike our previous results on the \(f_{0F2} \) trend analysis (Mikhailov et al., 2002), where monthly \(\alpha \) values varied in a wide range \(1.8 < \alpha < 3 \), in the case of \(f_{0E} \), the \(\alpha \) parameter turned out to be close to unity and this strongly simplified the calculations. This result may be explained as follows. As the mid-latitude daytime E-layer is produced via the ionization of neutral \(O_2 \) by two close \(EUV \) lines \(\lambda = 977 \text{ Å (CIII)} \) and \(\lambda = 1025.7 \text{ Å (HLy}\beta) \), the classical Chapman theory (Chapman, 1931) may be applied in this case with a sufficient accuracy (Ivanov-Kholodny and Nusinov, 1979). The ionization rate in the E-layer maximum may be written as

\[
q_m = \frac{I_{\infty} \sigma^I \cos \chi_0}{H \sigma^a e},
\]

where \(I_{\infty} \) – the incident ionizing flux, \(H \) – scale height of neutral \(O_2 \), \(\chi_0 \) – solar zenith angle, \(\sigma^I, \sigma^a \) – ionization and absorption cross sections. Critical frequency, \(f_{0E} \) is proportional to

\[
f_{0E} \propto \sqrt{q_m / \alpha_{\text{eff}}},
\]

where \(\alpha_{\text{eff}} \) is the effective dissociative recombination coefficient for the molecular ions \(NO^+ \) and \(O_2^+ \). The intensity of solar \(EUV \) emission is proportional to \(F_{10.7}^p \), where \(p = 1 \div 0.67 \) (Nusinov, 1984, 1992; Tobiska et al., 2000, and references therein). Our method gave a linear \(f_{0E} \) relationship with \(R_{12} \). This is also valid for \(F_{10.7} \), as annual mean \(F_{10.7} \) and \(R_{12} \) indices are known to be highly correlated (the correlation coefficient is 0.991 being significant at the 99% confidence level). This means that under the root sign we have to have an expression depending on solar activity as \(F_{10.7}^{3/2} \), or the \(H \alpha_{\text{eff}} \) product should be proportional to \(F_{10.7}^{3/2} \), at least. The only possibility of obtaining such a strong dependence on solar activity is to take into account a strong dependence of \(T_e/T_n \) on \(F_{10.7} \), revealed by rocket probe measurements in the E-region at the 110 km height (Duhau and Azpiazu, 1985; also Oyama et al., 2000). We used this idea earlier to explain seasonal variations in the E-region (Mikhailov et al., 1999). The dependence \(T_e/T_n \) versus \(F_{10.7} \) (Fig. 2 in Duhau and Azpiazu, 1985) is well approximated by cubic polynomial on \(F_{10.7} \). Keeping in mind

\[\text{Fig. 3. Two stations illustrating the "natural" inverse type of } \delta f_{0E132} \text{ versus } Ap_{132} \text{ dependence during 1936–1967 on Slough and 1962–1975 on Ashkhabad (left-hand panel). Right-hand panels show the same dependencies after applying the complementary trends. Note the tightening of the two branches in the } \delta f_{0E132} \text{ versus } Ap_{132} \text{ dependence before the “break down” effect occurs.} \]
that α_{eff} is proportional to $T_e^{-0.8}$, this practically gives the required dependence on $F_{10.7}$ under the root sign in (5), while T_n is highly compensated in the $H\alpha_{\text{eff}}$ product as $H \propto T_n$.

The other problem concerns the removal of geomagnetic activity effects from the f_0E long-term variations. This problem was discussed by Mikhailov et al. (2002) with respect to f_0F2 trends. Here we used the same approach with the only difference – the dependence on β in the regression (3) is of a general type as a priori we do not have any information on this dependence. Similar to $F2$-layer trends, a time shift n (in years) of A_{p132} with respect to δf_0E_{132} variations is required to obtain the least SD for the residuals after the regression (3). In our case the average time shift is 1 year. As in the $F2$-layer case, no physical explanation can be proposed now for this delayed thermosphere reaction to the geomagnetic activity variations, and a special consideration is required to understand this result. Such time delay implies the whole Earth’s atmosphere to be involved with the processes provoked by geomagnetic activity. Changes in the global atmospheric circulation and/or in eddy diffusion and related variations in the thermosphere neutral composition and temperature is the most probable mechanism. On the other hand, one should keep in mind that A_{p132} maybe is not the most adequate proxy for solar wind influence on long-term trend studies. Unfortunately, A_p, as well as R_{12}, are the only indices which have been observed long enough to be used for the long-term trend analyses.

The revealed relationship between f_0E trends and geomagnetic activity may be explained by the variations of nitric oxide, NO, whose concentration in the E-region is strongly dependent on the geomagnetic activity level (e.g. Titheridge, 1997; Solomon and Barth, 1999; Ridley et al., 1999). The variation of [NO] alters the $[\text{NO}^+]/[\text{O}_2^+]$ ratio by transforming primary O_2^+ ions to NO^+ via the fast charge transfer reaction

$$O_2^+ + \text{NO} \rightarrow NO^+ + O_2 \quad (\gamma = 4.4 \times 10^{-10}) \tag{6}$$

After this, the standard scheme (e.g. Danilov, 1994) of chemical processes may be used. The total ion concentration ($n_i = \Sigma n_i$) in the E-region is presented by molecular ions O_2^+ and NO^+ which disappear via the reactions of dissociative recombination

$$\text{NO}^+ + e \rightarrow N + O \quad (\alpha = 4.5 \times 10^{-7} (300/T_e)^{0.83}) \tag{7}$$

$$O_2^+ + e \rightarrow O + O \quad (\alpha = 1.95 \times 10^{-7} (300/T_e)^{0.7}) \tag{8}$$
The key point of the “NO mechanism” is the difference in the reaction rate constants of these two reactions. Under increasing geomagnetic activity (before 1955 and after 1967, Fig. 1, top), resulting in the neutral [NO] increase, the share of NO$^+$ ions increases via the reaction (6). Since the recombination rate for NO$^+$ ions is higher (Eqs. 7 and 8), the electron concentration decreases and we have negative trends in foE (Fig. 1, middle and bottom panels). During the decreasing phase of geomagnetic activity (1955–1967), the situation inverses and we have positive trends in foE (Fig. 1). This mechanism explains the “natural” relationship of foE trends with geomagnetic activity.

An inclusion of a complementary linear trend to our analysis restores the unambiguity in the δfoE$_{132}$ versus A_{p132} dependence (Fig. 3) and practically results in zero residual trends (Fig. 4) at least for the years when a “natural” relationship between δfoE$_{132}$ and A_{p132} is valid. By a complete analogy with the results of the foF2 trend analysis (Mikhailov et al., 2002), the only plausible explanation (as it is seen from now) of the complementary trend is a compensation of a negative foE trend, which is due to a very long-term increase in geomagnetic activity during the 20th century. This increase is seen even for the analyzed period (Fig. 1, top) where a positive trend with $K = 0.02$ per year exists in the observed A_{p132} variation. Figure 1 (top) is only a fragment of the general picture showing the increase in geomagnetic activity in the course of the 20th century (e.g. Clilverd et al., 1998). This long-term effect in geomagnetic activity cannot be removed using conventional indices and smoother A_{p132} indices are required for its description. But this is a very delicate question which requires a special consideration and is not discussed here. The same NO mechanism can be used to explain the negative background foE trend related to this very long-term increase in geomagnetic activity.

But around 1970±2 (on some stations later), this “natural” inverse relationship of foE trends with geomagnetic activity has broken down. A well-pronounced positive foE trend not related to geomagnetic activity variations has appeared on most of the stations analyzed (Fig. 2 and Table 1). In some cases this hardly can be considered as a trend – just a positive δfoE$_{132}$ upsurge lasting for some years followed by a drop in the δfoE$_{132}$ variation (Table 1, Fig. 1). But in many cases, this is a prolonged positive effect. The only plausible possibility is to relate this effect with the anthropogenic impact on the upper atmosphere. Among such mechanisms may be considered the increasing rate of rocket and satellite launchings which leads to the thermosphere chemical pollution (Kozlov and Smirnova, 1999; Adushkin et al., 2000) and the greenhouse effect mentioned in the Introduction.

Since the E-region formation mechanism is relatively simple, some explanations may be proposed for this positive effect in the δfoE$_{132}$ variations. A decrease in the molecular oxygen neutral scale height H will increase the production rate and foE, correspondingly (see Eqs. 4 and 5). The scale height H may be decreased by an intensified downward air motion at the E-region heights, as model calculations show (Mikhailov, 1983). Another possible channel of the foE increase is via a decrease in the effective dissociative recombination coefficient α_{eff} (Eq. 5) due to a decrease in [NO] at the E-region heights. The decrease in α_{eff} in this case is due to the [NO$^+$/[O$^+_2$] ratio decrease, as explained earlier. This mechanism of positive foE trends was considered by Danilov (2001), who has found a strong confirmation of it in both the [NO$^+$/[O$^+_2$] ratio trend at 120 km and in the positive trend of electron concentration in the D-region, where the ionization of NO plays the dominate role in the total ionization rate. Both results may be explained by the vertical transfer of NO from the E- to D-region due to intensified downward air motion or eddy diffusion. The latter was obtained by Kalgin (1998), analyzing rocket mass-spectrometer data on the [Ar]/[N$_2$] ratio at the E-region heights for the 1966–1991 period. But vertical air motion seems to be more preferable, since it decreases the neutral scale height H and transfers NO downward, thus, increasing the positive effect in foE.

Such explanations come from normal processes taking place in the lower thermosphere. But chemical pollution due to rocket launching may result in quite a different scheme of chemical processes, since the rocket fuel comprises exotic for the upper atmosphere components. Long-living “holes” in the electron concentration is a well-known effect accompanying heavy rocket launchings (Adushkin et al., 2000). Such chemical pollution looks as a very probable mechanism to explain the break down effect in the natural δfoE$_{132}$ versus A_{p132} dependence around 1970–1972. Figure 5 gives the number of rocket launchings for the 1957–1999 period. Data may be found in Aviation Week and Space Technology for 1957–1991, Rocket-Space Technique GONT-1 for 1975–2000 (in Russian), (Adushkin et al., 2000). Maximum occurrence of rocket launchings is seen to take place in the second half of the 1960s. Keeping in mind that some time is necessary for the accumulation of the effect, we obtain the
discussed “break down” time around 1970.

With regard to the greenhouse hypothesis widely used in attempts to explain the ionospheric trends, the following may be noted. There are serious problems with this hypothesis in the F2-region (Mikhailov and Marin, 2001; Mikhailov 2002), since it cannot be reconciled with the observed F2-layer parameter trends. Positive foE trends in the E-region observed for some periods seem to be in qualitative agreement with this hypothesis, but the observed trends already are much larger than predicted (Bremer, 2001), although we are still very far from the doubting of greenhouse gases in the atmosphere (Keeling et al., 1995; Houghton et al., 1996). On the other hand, positive foE trends, usually related with the worldwide greenhouse effect, in fact does not take place at all stations – the sign of trends may be different (Fig. 1 and Table 1). One can say about the spotty global pattern with an unsystematic foE behavior at different stations after 1970 (cf. Slough and Juliusruh in Fig. 1, middle panel). It is only possible to conclude that since the beginning of the 1970s, there has appeared an additional factor in the lower thermosphere which has broken down the normal foE dependence on geomagnetic activity on a long-term scale. Chemical pollution of the upper atmosphere due to the rocket launchings and perhaps the greenhouse effect look like the most probable reasons.

6 Conclusions

The main results of our analysis may be summarized as follows:

1. Using a newly proposed approach to the foE trend analysis, it was shown for the first time the relationship between foE trends and geomagnetic activity long-term variations. By a complete analogy with the earlier obtained results on the foF2 trends, the periods of increasing geomagnetic activity correspond to negative foE trends, while these trends are positive for the decreasing phase in geomagnetic activity. Therefore, it is possible to speak about the geomagnetic control of the foE long-term trends as well.

2. Similar to the foF2 trends, there exists a background negative foE trend which may be considered as a manifestation of a very long-term geomagnetic activity increase which took place during the 20th century (e.g. Clilverd et al., 1998). This effect is seen in the δfoE132 versus Ap132 dependence before the breaking down of “natural” dependence around 1970 (on some stations later). After removal of this background effect the residual foE trends are close to zero and insignificant. This means that observed “natural” foE long-term variations (trends) have a natural origin and may be attributed to solar and geomagnetic activity long-term variations.

3. The dependence of foE trends on geomagnetic activity can be related with [NO] variations at the E-layer heights, where the [NO] is known to be dependent on the geomagnetic activity level. The key point of this NO mechanism is the [NO+]/[O+2] ratio change, resulting in the effective dissociative recombination coefficient alteration.

4. Positive foE trends (or more or less prolonged positive upsurges) appearing after the “break down” effect around 1970 may be related with the [NO] decrease at the E-region heights due to the intensification of the downward air motion (Danilov, 2001). But negative trends or irregular foE variations also take place on some stations for the same time period, and this tells us about some other additional mechanism. Chemical pollution of the lower thermosphere due to the increasing rate of the rocket launchings and/or the greenhouse effect may be responsible for such abnormal foE behavior since the beginning of the 1970s.

Acknowledgements. This work was in part supported by the Russian foundation for Fundamental Research under Grant 00-05-64189.

Topical Editor M. Lester thanks a referee for his help in evaluating this paper.

References

